Thèse soutenue

Superradiance plasmonique dans des nanohybrides métallo-diélectriques
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Pierre Fauché
Direction : Renaud A. L. ValléeBrahim Lounis
Type : Thèse de doctorat
Discipline(s) : Lasers, matière et nanosciences
Date : Soutenance le 21/11/2016
Etablissement(s) : Bordeaux
Ecole(s) doctorale(s) : École doctorale des sciences physiques et de l’ingénieur (Talence, Gironde)
Partenaire(s) de recherche : Laboratoire : Centre de Recherche Paul Pascal (Pessac ; 1963-....)
Jury : Président / Présidente : Cécile Zakri
Examinateurs / Examinatrices : Renaud A. L. Vallée, Brahim Lounis, Cécile Zakri, Yannick De Wilde, Jean-Jacques Greffet, Niek Van Hulst
Rapporteurs / Rapporteuses : Yannick De Wilde, Jean-Jacques Greffet

Résumé

FR  |  
EN

Hybridization of quantum emitters and plasmonic nanostructures has attracted much attention over the last years, due to their potential use as plasmon-based nanolasersor to achieve long-range quantum bit entanglement. Recent theoretical studies suggest that the plasmonic field can induce efficient cross-talking between emitters and lead to the formation of collective superradiant states. In this thesis, we developed a theoretical modelable to analyse collective effects in large ensemble of dipoles coupled by an electromagnetic nanoresonator. We experimentally investigated the plasmon-mediated superradiance of organic emitters grafted at a well-controlled distance from a metal nanosphere at room temperature. We report on the measured decay rates of these hybrid structures at the ensemble and single object levels. We find that the decay rate increases i) with the number ofemitters and ii) as the spacing between the emitters and the metal core decreases, a direct and clear evidence of plasmonic superradiance. This trend was observed for two types of hybrid structures, differing both by the size of the metal core and the type of organic dye used as emitter. The observation of plasmonic superradiance at room temperature opens questions about the robustness of these collective states against decoherence mechanisms.This robustness is of major interest for potential applications of quantum systems at room temperature.