Etude des effets des préparations de surface avant projection thermique : application barrière thermique

par Robin Kromer

Thèse de doctorat en Matériaux

Sous la direction de Sophie Costil et de Jonathan Cormier.

Soutenue le 05-12-2016

à Belfort-Montbéliard , dans le cadre de École doctorale Sciences pour l'ingénieur et microtechniques (Besançon ; Dijon ; Belfort) , en partenariat avec IRTES. LERMPS (laboratoire) , Laboratoire d'Études et de Recherches sur les Matériaux- les Procédés et les Surfaces / IRTES - LERMPS (laboratoire) et de Université de technologie de Belfort-Montbéliard (Etablissement de préparation) .

Le président du jury était Daniel Monceau.

Le jury était composé de Luc Bianchi, Laurent Berthe.

Les rapporteurs étaient Alain Denoirjean, Fernando Pedraza Diaz.


  • Résumé

    L'adhésion des revêtements est l'objectif premier de tout système afin de pouvoir apporter les propriétés de surface voulues par projection thermique. De façon conventionnelle, des traitements de sablage sont régulièrement employés afin de promouvoir des phénomènes d'ancrage mécanique entre les deux matériaux mis en contact.Néanmoins, selon la nature même des matériaux, un certain nombre de limitations peuvent être observées aussi bien d'un point de vue usage que tenue. Une fragilisation des surfaces peut en effet être remarquée dès lors qu'ils'agit du traitement de matériaux ductiles. Pour palier certaines de ces contraintes, des traitements palliatifs sont alors recherchés parmi lesquels les traitements laser apparaissent particulièrement bénéfiques dont la texturation laser. Les revêtements barrière thermique sont l'application visée de cette étude avec comme objectif une optimisation de leur durabilité à chaud (oxydation, fluage). Une sous-couche d'accroche est habituellement déposée mais les modes d'endommagement recensés semblent se concentrer autour de cette dernière. L'objectif de c etravail a donc visé à remplacer la sous-couche par une topographie de surface spécifique du substrat générée partexturation laser et permettant un ancrage mécanique suffisant aux chargement mécaniques et thermiques subis par les aubes de turbines hautes températures.Lors de l'interaction laser-matière, une élévation en température de l'extrême surface jusqu'à la température defusion et de vaporisation du matériau peut être observée et permettre la formation de motifs. Les dimensions de tels motifs sont donc liées à l¿énergie par impulsion et au nombre d¿impulsions. Pour valider de tels effets, les mécanismes de perçage ont donc été étudiés grâce à une modélisation thermo hydraulique et une validation postmortem des échantillons. Les dimensions des motifs alors contrôlées, le remplissage des surfaces texturées par des particules fondues projetées par le procédé APS a été étudié afin de minimiser le nombre de défauts proche de l'interface. Deux modes de rupture ont pu être identifiés en fonction de la morphologie de surface pour descontraintes de traction et de cisaillement. Les fissures se propagent à l'interface jusqu'à avoir des changements dedirection. L'énergie de propagation de la fissure augmente donc jusqu'à atteindre une valeur limite correspondant àla ténacité du revêtement. Dans ce cas, la tenue n'est pas fonction de la surface totale en contact mais de larépartition spatiale et l'ouverture des motifs, la seule limite de la tenue du revêtement restant la cohésion du dépôt.D'un point de vue applicatif, le but de cette étude a été de caractériser les modes d'endommagements de systèmes barrière thermique sans sous-couche pour des conditions rencontrées en service. Les mécanismes d'endommagement dus à l'oxydation et à l'allongement viscoplastique à 1100C ont donc été isolés par des essais àdes flux thermiques isothermes et cyclés, de fluage et de fatigue thermomécanique. Le traitement laser modifiant localement la microstructure des surfaces, une modification des couches d'oxydes a tout d'abord pu être identifiée.En effet, contrairement aux traitements conventionnels où la croissance d'oxyde n'est pas constante (point limitant de la durée de vie du système), l'apparition de spinelles et d'une couche dense d'alumine protectrice en surface des matériaux texturés a pu être observée. L'ancrage mécanique ainsi créé a démontré alors une durée de vie nettement améliorée face à des conditions extrêmes.

  • Titre traduit

    Effects on adhesion mechanisms of prior-surface treatments before thermal spraying : Thermal barrier coating


  • Résumé

    Coating adhesion is requiered to rpomote specific surface properties by thermal spraying. Conventional prior-surface treatments have been developed to create anchoring zones but the adhesion strenght and their applications are limited. Laser surface texturing increases and adapts the adhesion surface. Therefore, two interface failure modes have been related to texture morphologies for tensile and shear stresses. The energy released rate at the interface increases up to coating toughness when the crack path is sharp. Mixed-mode failures have been observed with adhesive and cohesive cracks around and above pattern respectively. So, the adhesion stengyh is function of the contact aera precisely linked to pattern distribution and morphology. Thermal barrier coating system without bond coat life-span has been evaluated for thermomechanical stresses (YSZ coating on single crystal based Nickel). The bond coat has been remplaced by an adapted substrate surface topography. According ti the laser parameters (energy per pulse, pulse numbers) pattern morphology can be created. Therefore, textured surface filling by melted particles has been studies to minimize interface defaults and created mixed-mode failures for during plasma spray coatings. The drilling mechanisms have been evaluated by numerical modeling and experimental analysis. The pattern dimensions and heat affected zones has been identified. The laser treatment changes the microstructure locally.Oxydation tests have been performed to study the surface pre-tratments effects on oxide nature and mass gain rate. The damaging mechanisms ave been studied under isotherm and cyclic high temperature tests and also under creeping and thermo-mechanical fatigue tests. Grit-blasting change the natural oxides, limits life-span and bucking failure mode have been obeserved. Natural oxides have been analyzed for the textured substraes also but anchoring mechanism enables large life-span under high temperature tests. Mechanical applied stresses (constant and cyclic) validate the beneficial effects of patterned surfaces. The interface is stronger than the coating toughness and the patterns do not create early cracks under thermo-mechanical solicitations.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.