
ECOLE DOCTORALE ED352

"Physique et Sciences de la Matière"

Aix-Marseille Université

Centre de Physique Théorique
Campus de Luminy, Case 907
13288 Marseille cedex 9, France

Thèse présentée pour obtenir le grade universitaire de docteur

Discipline : Physique Fondamentale et Appliquée
Spécialité : Physique Théorique et Mathématique

François COLLET
Sous la direction de C. ROVELLI
et la co-direction de S. SPEZIALE

Short scale study of 4-simplex assembly with curvature, in euclidean

Loop Quantum Gravity

2

Abstract

A study of symmetrical assembly of three euclidean 4-simplices using classical, Regge and quantum geometry.
We analyze the geometric properties and especially the presence of curvature. We show that classical and Regge's
geometry of the assembly have curvature, which evolves in function of its boundary parameters. Concerning
quantum geometry, an euclidean version of the EPRL model was used with a convenient value of the Barbero-
Immirzi parameter to de�ne the transition amplitude of the assembly and its components. A C++ code was
designed (Annexes B) to compute the amplitudes and numerically study the quantum geometry. We show that
classical geometry, with curvature, emerges already at low spin. We also identi�ed the appearance of degenerate
con�gurations and their e�ects on the expected geometry.

Résumé français

Une étude d'un assemblage symétrique de trois 4-simplex en géométrie classique, de Regge et quantique.
Nous étudions les propriétés géométriques et surtout la présence de courbure. Nous montrons que les géométries
classique et de Regge de l'assemblage ont une courbure qui évolue en fonction de ses paramètres de bordure.
Pour la géométrie quantique, une version euclidienne du modèle EPRL est utilisé avec une valeur pratique du
paramètre Barbero-Immirzi pour dé�nir l'amplitude de transition de l'ensemble et de ses composants. Un code C
++ est conçu (Annexes B) pour calculer les amplitudes et étudier numériquement la géométrie quantique. Nous
montrons qu'une géométrie classique, avec une courbure, émerge déjà à bas spin. Nous reconnaissons également
l'apparition de con�gurations dégénérées et de leurs e�ets sur la géométrie attendue.

3

Remerciement

Longue et di�cile a été cette aventure, et je pense a�rmer que je ne serais pas arrivé au bout sans le soutien
infaillible des personnes qui me sont chères.

Je tiens à remercier tout d'abord Carlo Rovelli et Simone Speziale, qui m'ont o�ert l'opportunité inestimable
de pouvoir étudier et contribuer au monde de la gravitation quantique. Merci à eux pour leurs conseils et soutien.

Je tiens également à remercier Aurélien Barrau et Karim Noui qui m'ont fait l'honneur d'être mes rapporteurs,
ainsi que Etera Livine et Francesca Vidotto qui ont acceptés de faire partie de mon jury de soutenance.

Bien évidemment je remercie chaleureusement mes amis Sylvain, Wilfried, Julie, Thomas, Mathieu, Christian
et ma famille qui, même dans les moments di�ciles, ne m'ont jamais fait défaut et ont toujours été là pour moi. A
vous qui m'avez tant donné, et à qui je suis à jamais redevable, je vous suis dévoué.

J'aurais voulu que certaines personnes soient présentes, et même si la vie nous a séparé je tiens à les remercier
également pour les brefs instants que j'ai pu partager avec eux. Même si je ne les reverrai jamais, ils resteront à
jamais dans ma mémoire et dans mon âme.

Merci à vous. Merci à vous tous... du fond du coeur.

4

Synthèse

Introduction

Dans cette thèse nous nous somme intéressé à l'étude de la théorie de la Gravitation Quantique à Boucles, et plus
particulièrement à sa limite semi-classique dans le cadre d'un objet à la géométrie simple possédant classiquement
de la courbure. La Gravitation Quantique à Boucles (Loop Quantum Gravity), abrégé LQG, est une théorie de
quanti�cation non-perturbative de la gravitation visant à décrire, sous un formalisme quantique approprié, les lois
de la gravitation basées sur les principes de la géométrie de l'espace-temps décrit par Einstein au sein de sa théorie
de la Relativité Générale. Elle vise ainsi, en tant qu'ébauche, à outrepasser les limites conceptuelles de la Relativité
Générale et apporter une nouvelle physique qui permettrait de mieux comprendre les phénomènes gravitationnels
à petite échelle : comme les trous noirs, ou les premiers instants de notre univers. L'étude des propriétés de cette
théorie, notamment concernant ses géométries et la présence de courbure, s'avère importante pour in�rmer ou
con�rmer sa validité avec la réalité physique de notre monde et, si tel est le cas, d'apporter des réponses sur les
grands mystères cosmologique de notre temps : origine de la constante cosmologique, histoire de la naissance de
l'univers, etc.

L'étude de cette théorie s'est faite, au sein de cette thèse, via l'étude d'un assemblage très simple de trois �atomes
d'espace-temps�. Cet assemblage, comparable à une toute petite parcelle d'espace-temps, possède à la fois une
interprétation classique en terme d'assemblage d'objets géométriques �trois 4-simplex faisant o�ce d'atomes/pièces
de notre ensemble� et une formulation quantique en termes de graphes et d'états de géométrie au sein du modèle
EPRL issu de la LQG :

5

Figure 1: En premier, la représentation classique de notre assemblage en termes de 4-simplex et d'arrêtes. Ensuite,
les graphes associés à la représentation quantique : Le réseau de spin, chaque lien est le dual d'une face de la
bordure et chaque noeud et le dual d'un tétraèdre de la bordure ; La mousse de spin, chaques lignes representent un
tetrahèdre (les bleues sont ceux de bordure, les rouges sont ceux internes) et chaque vertex represente un 4-simplex.

Le but principal est d'étudier la dynamique quantique avec courbure de cet assemblage et de la comparer à sa
description classique. Cet assemblage est le cas le plus simple, possédant une représentation classique aisée avec de
la courbure et permettant une dynamique de la géométrie quantique via une unique face interne.

Dans l'interprétation classique, notre assemblage peut être étudié via de simple outils de géométrie usuels et
possède la propriété d'avoir une courbure qui évolue en fonction de la longueur de ces arrêtes. La présence de cette
courbure est très importante car, la gravitation étant décrite par Einstein comme une manifestation de la courbure
de l'espace-temps, il est nécessaire de pouvoir l'obtenir pour pouvoir être en adéquation avec physique actuelle.
Le fait de pouvoir également transcrire notre objet dans le formalisme de la LQG, via le modèle EPRL, permet
ainsi d'en étudier les propriétés, tout en comparant avec son interprétation classique, a�n de voir si la courbure est
préservée au sein de la théorie et si l'on retrouve des solutions classiques de la géométrie.

Pour cela, on dé�ni les propriétés classiques de cet assemblage et réécrivons les paramètres usuels de la géométrie
classique en fonction de paramètres qui s'avéreront utiles pour le formalisme quantique. Puis, a�n de commencer
à voir si une dynamique de la géométrie existe dans notre assemblage et redonne de la courbure, on adapte notre
objet pour y appliquer les principes du calcul de Regge : principe de géométrie discrète, permettant d'associer
une action et une dynamique à notre assemblage, et dont la théorie de la LQG possède un lien dans la limite
semi-classique. En�n, nous dé�nissons notre objet dans le cadre de la géométrie quantique, via le modèle EPRL,
avec tout ses outils, formalisme d'états (cohérents) de géométrie et amplitudes de transitions. On développe un
code pour pouvoir calculer les di�érentes grandeurs et amplitudes quantiques associés pour, �nalement, étudier et

6

comparer les résultats de la géométrie classique et quantique de notre assemblage.

Géométrie classique

Dans cette première partie, on se concentre à dé�nir notre assemblage dans une interprétation de géométrie (discrète)
classique ainsi que ces propriétés en fonction de ces paramètres fondamentaux. Nous mettons en avant une bijection
entre les paramètres usuels de géométrie classique, que sont les longueurs des arrêtes, et les paramètres de bordure,
que sont les aires et les paramètres de forme associés aux tétraèdres vivant sur la bordure 3d de notre assemblage.
Nous exposons simplement les équations et l'évolution de la courbure de notre objet en fonction de ces paramètres
:

Figure 2: Evolution de la courbure de notre objet en fonction d'un paramètre de longeur (à gauche) et d'un
paramètre de forme (à droite)

Nous voyons donc le lien entre la géométrie de la bordure de notre objet, donné par les paramètres de forme,
et la géométrie interne de notre objet, tel la courbure, qui en découle. Nous avons donc une description de
notre assemblage classique, sans dynamique, ou toute la géométrie peut être décrite en fonction des paramètres de
bordure. Notre objet possède dans ce cadre de géométrie de la courbure, et elle évolue continument en fonction des
dit paramètres.

Géométrie de Regge

Les géométrie de Regge [1], et plus particulièrement l'action de Regge avec sa dynamique associée, étant une limite
semi-classique de la théorie de la LQG s'avéraient intéressantes à étudier. Elles permettraient ainsi de voir une
première approche et dé�nition d'une dynamique au sein de notre objet. Nous avons donc adapté, uniquement dans
cette partie, notre objet pour voir comment la dynamique de Regge s'e�ectuait. Nous avons donc observé que le
calcul de Regge était parfaitement applicable, et redonnait des solutions avec de la courbure :

7

Figure 3: Evolution de la courbure solution des equations de Regge, angle dé�cient εf ′ de la face interne (à gauche)
et courbure de Regge R =

∑
F aF εF (à droite), en fonction des paramètres de longeurs.

Nous obtenons donc avec succès une dynamique de Regge fonctionnelle qui donne des solutions avec de la
courbure ! Ce qui, outre le fait de renforcer les précédentes études tendant à montrer que le calcul de Regge est un
bon équivalent des équations d'Einstein dans le cadre des géométries discrètes, donne con�ance sur la persistance
de la courbure dans la théorie de la LQG.

Géométrie quantique

Fort de ces résultats, nous avons e�ectué une transcription de notre objet dans le formalisme de la LQG via le
modèle EPRL [2, 3]. Nous dé�nissons les di�érents graphes, ainsi que les états de géométrie qui en découle. Nous
dé�nissons également les amplitudes de transitions associées à la géométrie de notre assemblage. Après l'élaboration
d'un code C++ (see Annexes B) a�n de calculer ces di�érentes grandeurs, nous avons pu étudier les résultats et
les propriétés de la géométrie quantique associée. Même si, à l'image de toute théorie quantique et de leurs
principes d'incertitude, une partie de l'information sur la géométrie interne est brouillée, l'étude des amplitudes de
transition permit de reconstruire certaines propriétés semi-classique de la géométrie. La recherche des points cols
et stationnaires des amplitudes et intégrants permit de trouver les valeurs les plus probables de certains paramètres
associés à la géométrie interne. Nous avons donc étudié tout d'abord les propriétés des amplitudes individuelles des
4-simplex de notre assemblage, et retrouvé les géométries classique correspondante tout en retrouvant les résultats
annoncé par Barett dans ses écrits [6, 30]. Ensuite, nous nous somme plus particulièrement interessé à l'amplitude
de transition totale et ses intégrants où nous avons pu les comparer à leurs équivalent classique attendu :

8

Figure 4: Évolution de l'aire d'une face interne (à gauche) et d'un angle interne (à droite) en fonction d'un paramètre
de forme de la bordure. Les points violets sont les résultats fourni par les amplitude de transition de la théorie
quantique et les courbes vertes représentent l'évolution des paramètres en géométrie classique.

On observe certaines régions où géométrie classique et quantique sont en accord, essentiellement dans la région où
le paramètre de forme A ∈ [9.23; 13.86], correspondant à des régions où l'équivalent classique possède une courbure
εf ∈

[
−π; 2π − 3 arccos

(
1
4

)]
: ce qui soutient le fait que la géométrie quantique préserve, au moins dans ces plages

de valeurs, de la courbure. Cependant, même dans ces régions, l'équivalence n'est pas parfaite ce qui sous-entend
que si il y a courbure elle peut être légèrement di�érente du cas classique. L'absence de dé�nition d'opérateur
de courbure nous empêche de statuer dé�nitivement sur la valeur de la courbure dans le cas quantique, mais ces
résultats sont un fort indice de l'émergence de la géométrie classique et de ces propriétés au sein de la théorie de
la LQG. Nous remarquons aussi une région divergent fortement du cas classique pour A ≤ 7.69 correspondant à
l'in�uence de géométries purement quantiques.

Conclusion

Nous avons donc au cours de cette thèse fournit une contribution à la compréhension de la théorie de la LQG, et plus
particulièrement au modèle EPRL. Nous avons montré que dans le cas d'un petit assemblage, pouvant posséder
de la courbure dans l'interprétation classique, la théorie redonnait des résultats compatibles avec la géométrie
classique. Nous voyons, dans une certaine région de paramètres, l'émergence de la géométrie classique et de sa
courbure associée au sein de la LQG. L'émergence de la géométrie classique avec sa courbure et un bon indice
et encouragement mettant en avant les avantages et intérêts de la LQG comme une bonne théorie quantique de
la gravitation. Nous voyons cependant une région avec l'apparition de géométrie purement quantique qui di�ère
fortement de la géométrie classique. Cette dernière région, en raison de sa nature et de l'absence d'équivalent
classique, est di�cile d'interprétation, mais représente une nouvelle physique apporté avec la théorie apparaissant
à faible échelle. Cette nouvelle physique, pourrais être la voie, ou du moins une piste, pour tenter de répondre à
certaine questions concernant les trous noirs et les premiers instants de notre monde.

9

Contents

1 Introduction 12

2 Study object and classical geometry 13
2.1 Geometry of a classical tetrahedron . 14
2.2 Cylindrical symmetries for the 4-simplices and fundamental parameters 15
2.3 Curvature of the f triangle . 17

3 Regge's geometry with dynamics 22
3.1 De�nition of Regge's actions and equations . 22

3.1.1 4-dimensional Regge's actions and equations for a non-�nite euclidean space 22
3.1.2 4-dimensional Regge's actions and equations for a �nite euclidean space 23

3.2 Adaptation of study object for Regge calculus . 24
3.2.1 Split objects . 24
3.2.2 Parameters and geometric objects . 26
3.2.3 Equations for de�cit angles . 31

3.3 Applications of Regge calculus . 33
3.3.1 Regge computation for unspeci�ed face f . 33
3.3.2 Regge computation for equilateral face f . 34

3.4 Conclusion about Regge calculus . 39

4 Interlude for the quantum geometry 40

5 Quantum geometry 40
5.1 Introduction to Loop Quantum Gravity and EPRL model (see [3, 7, 4, 14, 15]) 40

5.1.1 Spin-network . 41
5.1.2 Spin-foam . 41
5.1.3 Transition amplitude . 42

5.2 spin-network of our objects . 43
5.2.1 spin-networks for the individual cylindrical 4-simplices . 43
5.2.2 spin-networks for the boundary of the assembly . 44
5.2.3 Coherent states . 46

5.3 Spin-foam and transition amplitude . 48
5.3.1 Spin-foam for the individual 4-simplices an speci�c value of γ 48
5.3.2 Spin-foam for the assembly . 50
5.3.3 Coherent transition amplitude . 51

6 Numerical analysis of amplitude 53
6.1 Transition amplitude for individual 4-simplex . 54

6.1.1 Sections of the space of shapes . 54
6.1.2 Phases and actions of individual 4-simplices . 58
6.1.3 Short conclusion for the individual 4-simplex amplitude . 64

6.2 Transition amplitude for the assembly . 65
6.2.1 Full transition amplitude . 65
6.2.2 Transition amplitude for jf -representation . 70
6.2.3 Conclusion about the �rst study of the full transition amplitude 74

6.3 Internal geometry . 74
6.3.1 Quantum conditional probability and transition amplitude for geometry 74
6.3.2 Prelude and used conditional probabilities for the amplitude analysis 77
6.3.3 Numerical result for P (−−→nf,i|A,Φ) . 79
6.3.4 Numerical results for P (θf |A) . 83
6.3.5 Numerical result for P (jf |A) . 84

10

6.3.6 Numerical result for P (jf , θf |A) . 85
6.4 Conclusion about the results . 86

7 Conclusion 87

A Tetrahedron geometry 90

B The C++ code 91
B.1 Library used . 92
B.2 De�nitions of arrays, tables and links with the math elements . 92

B.2.1 Arrays of the faces . 93
B.2.2 Arrays for the 3j-symbols . 94
B.2.3 Arrays for the intertwiners . 94
B.2.4 Arrays of the 15j±-symbols . 95
B.2.5 Arrays for the fusion coe�cients . 95
B.2.6 Arrays for the 15j-SO(4)-symbols . 96
B.2.7 Arrays for the coherent results . 96

B.3 De�nitions of global functions . 96
B.3.1 Call-functions for the arrays and tables . 96
B.3.2 Some useful functions . 97
B.3.3 Function for the 3j-symbols . 99
B.3.4 Function for the intertwiners . 100
B.3.5 Function for the 15j±-symbols . 100
B.3.6 Function for the iDroit . 102
B.3.7 Function for the fusion-coe�cients . 104
B.3.8 Function for 15j-SO(4)-symbols . 104
B.3.9 Function for the representation Dj

mj (θ, φ) . 107
B.3.10 Function for load the 15j-SO(4)-symbols �le . 108

B.4 Main code . 109
B.4.1 Boundary components . 109
B.4.2 Loop for the face f and internal components . 116
B.4.3 Writing the results . 129

11

1 Introduction

Gravitation is a fundamental force of our universe which the quantum description is still un�nished and mysterious.
Gravitation governs the large structure of the cosmos, its deterministic formulation in General Relativity describes
it as a force from the geometry of space-time and has improved the understanding of our universe and its evolution.
The gravitational �eld is the metric gµν of space-time, and the interaction between the curvature of space-time
and matter is governed by Einstein's equations. General Relativity also lead to the discovery of new physics
phenomena such as time dilation and space contraction, the expansion of the universe and cosmic acceleration via
the cosmological constant, and peculiar solutions of Einstein's equations leading to the black hole... etc. Even
if the theory of General Relativity remains the current best model to describe the world at large scale, many
unsolved mysteries remain: The properties of space-time at very small scale, the fundamental sens and origin of
the cosmological constant, the evaporation of black holes... are questions which are outside the domain of validity
of the classical theory.

With the advent of quantum mechanics, accurately describing the world at small scales and its peculiar prop-
erties, that presents new perspectives. Matter is found composed of quanta, namely particles, whose properties
escapes the intuition of the classical world. Particles move following probability waves, whose physical properties
are described by states that can be superpositioned and are governed by probabilistic laws. Quantum mechanics
accurately describes the subatomic world, especially via the uncertainty principle and probabilities, in contradiction
with the determinism of General Relativity. A �rst uni�cation with Special Relativity have yielded the quantum
�eld theory and its applications to the world of particles via the Feynman integral and transition amplitude W .
However, gravitation and quantum mechanics should be united in a new theory to draft a model describing the
world at small and large scales. This draft will provide a better understanding of the universe that surrounds us,
to perhaps explain its origin or at least its �rst moments during which the universe was both very small and dense,
and thus respond to many unanswered questions.

The �rst approach to describe a discrete space-time was published by T. Regge [1]. He describes, with classic
discrete geometry, a space-time cut into simplices associated with a action SRegge. The Regge model discretizes
space-time into simplices, equivalent to space-time quanta, whose geometric properties reconstruct its discrete
curvature. Variables appear as the length of the simplex segments, and Regge's action depends of the geometry
of the assembly. The minimization of this action, via the lengths, provides equations that govern the dynamics
of this discrete space-time geometry. For space-time with dimension 3 or lower, Regge's action yields the same
physics as General Relativity for vacuum (without matter) in the limit of an in�nitesimal discretization. The Regge
model and its associated actions are a �rst conceptual step for quantify space-time geometry and gravity in terms
of discrete geometry and space-time quanta. However, the Regge model is not a quantum theory, but just a draft
of quanti�cation of geometry with classical objects, i.e., no uncertainties or lost information exists, all geometry is
provided perfectly by the set of lengths.

The Loop Quantum Gravity theory [2, 3] involves quantum formalism associated with the concepts of Regge
. The Loop Quantum Gravity theory is a nonperturbative quanti�cation of gravity and geometry. According to
this theory, General Relativity space-time is divided into quanta, �space-time atoms� like Regge, although with
�uctuating, fuzzy and probabilistic geometry such as the particle properties in usual quantum mechanics. The
assembly of these atoms, like puzzle pieces, pave and rebuild space-time with curvature. The de�cient angles of the
assembly provide the curvature [4, 5], while the states of �space-time atoms� enable a quantum description of the
assembly's geometry. Formally, the states of geometry are provided in graphs representing the assembly of space-
time atoms for which links are associated with group elements u. The representations Dj of the group elements
are linked to the physical quantities of the geometry, such as the areas, and yield quanti�cation of the geometry.
The mathematical invariants of these graphs, in group representation theory, correspond to the probability of the
associated geometries. The limit of invariants used in the theory rebuild an exponentiation of Regge's action. The
group elements from the graphs of the Loop Quantum Gravity theory contain information concerning the geometry,
while their integrations reconstruct the invariants, equivalent to Feynman integral with Regge's action. In this
sense, the Loop Quantum Gravity theory is consistent with Regge's physics, and therefore in a certain limits to the
General Relativity, while o�ering a quantum formulation equivalent of Feynman integrals for geometry:

W =

∫
graphs

du
∏

Dj(u)→
∫
due−iSRegge[u] ∼

∫
Dgµνe−iSGR[gµν] (1)

12

Indeed, a celebrated theorem published by Barrett et.al. [6] (see also Conrady and Freidel [7]) states that the
vertex amplitude [2, 8, 9, 10] of the Loop Quantum Gravity admits a geometrical interpretation in terms of the
geometry of a 4-simplex, in which the properties are determined by the Regge's action of this 4-simplex. This
theorem has been extended to the Lorentzian theory [11], to the physical case of positive cosmological constant
[12, 13], and is at the basis of many results relating the quantum dynamics of Loop Gravity to classical General
Relativity [4, 7, 14, 15, 16], which are at the foundation of the covariant formulation of Loop Quantum Gravity [3].
All these results are derived from the large spin limit, namely under the assumption that the vertex describes (to
low order) a process in a region of space-time large compared to the Planck size.

The idea of this thesis was to take the EPRL model of the Loop Quantum Gravity theory, simpli�ed in the case
of a 4d euclidean space-time, applied to a simple assembly of three 4-simplices. The assembly presented is complex
enough to have curvature and simple enough for analysis in the context of classical geometry, Regge's geometry and,
�nally, with the euclidean EPRL model. To simplify the analysis, we used a convenient �cylindrical� symmetry for
the 4-simplex from the assembly, which renders makes the problem tractable. Geometrically, this corresponds to
studying the assembly where the geometry of all 4-simplices is invariant under cyclic permutations of three of their
tetrahedra. Thus, the main goal was to analyse the assembly to draw conclusions on the persistence and presence
of curvature in the di�erent aspects and theories discussed.

This thesis intermix classical, Regge and quantum geometry with analytic and especially numerical tools, orga-
nized as follows. We �rst present the object of study from a purely classical perspective. In particular, we express
its geometry in terms of the natural variables in quantum gravity: the areas of the 2d triangles (corresponding to
the spins of Loop Quantum Gravity) and suitable variables to capture the shape of the tetrahedra (corresponding
to the intertwiners of Loop Quantum Gravity). Brie�y, before using quantum geometry and the EPRL model, we
adapted our assembly to study the associated Regge's geometry. We shall see, that the Regge calculus is viable for
this 4d Euclidean assembly ; the Regge's equations reproduce curvature. Next, we present the spin-network, spin-
foam graphs and express the quantum amplitude of a coherent boundary state with the selected symmetries. The
objective was to study the quantum properties of the amplitude and identify its geometric properties via numerical
analysis. All results of the transition amplitude studies were using a C++ code (Annexes B) that we designed.

Our analysis and code have three main limitations. First, the analysis involve euclidean domain instead of the
physically relevant Lorentzian domain, because the Lorentzian vertices appear to be algebraically more complicated.
The euclidean vertices and their assembly can be simply expressed in terms of Wigner n− j symbols, which can be
directly handled (numerically). Second, the euclidean theory has an intrinsic di�culty (absent in the Lorentzian
one), which is that for generic values of the Barbero-Immirzi parameter γ the simplicity conditions between (discrete)
spins cannot be satis�ed. We have circumvented this obstacle by choosing γ = 1/2 and the appropriate closest
discrete values for the spins. Finally, we limited our analysis to (Livine-Speziale [20]) boundary states with the
chosen �cylindrical� symmetry.

In the wake of previous similar results [17, 18, 19], we found that the mathematically proven results in the limit
j → ∞ actually hold true at rather small spin j, namely for vertices representing space-time regions of Planckian
size. We found evidence for the emergence of semi-classical geometry behavior already for j ∼ 10, i.e., an order of
magnitude above the Planck scale, as previously described in the article [29], which is to say an order of magnitude
above the Planck scale. This might be relevant for instance in cosmology, suggesting that quantum gravitational
e�ects could be limited to regimes very near Planckian densities.

However, we also observed the appearance of genuine quantum phenomena in the numerical result. These are
�rst of all the spread of the amplitude around the classical values, i.e., the Heisenberg uncertainty principle. We
also observed the emergence of degenerate geometries, on which we comment in closure.

2 Study object and classical geometry

The assembly studied, see �gure 6, it's a assembly of three �at 4-simplex, sharing a same face. Each individual
4-simplex is a 4d-triangulation of �at space bounded by a 3d surface formed by �ve 3d-�at tetrahedra matching their
triangle faces. As a generalization of tetrahedra assemblies, where the tetrahedra are glued face-by-face and share
triangular face, each 4-simplex share tetrahedra with their neighbors. In our speci�c case, each 4-simplex is glued
to their two neighbors by sharing two tetrahedra (one tetrahedron per neighbors) and the all shared-tetrahedra

13

share the same triangle base. For summary, this assembly have 1 special triangle, called f , shared between the
three 4-simplices, and is a triangular base of the three shared-tetrahedra which attach the 4-simplex together. By
construction, the triangle f is internal (means inside the bulk of the assembly, not in the 3d boundary) and the
three shared-tetrahedra are internal. The other triangles of the shared-tetrahedra are not internal, but they belong
to the boundary of the assembly. The other triangles and tetrahedra of the assembly shape the boundary.

The properties of the assembly are the following :
- The geometry is given by 15 parameters, which can be taken to be the length of its 15 segments or the triangle

areas and shape variables (we see that below).
- The assembly have 3 (internal) shared-tetrahedra with joint base triangle f , and 9 (external) tetrahedra which

shape the boundary.
- The assembly have 18 boundary triangles, and 1 internal face f
- The parameters of geometry can give curvature around the internal face f
The big interest of this assembly is the last point : the �size� of the 4-simplices given by the geometry parameters

can give curvature around the face f . As described in the article [29], individual tetrahedra geometry can be
expressed in terms of triangle area variable a and the shape variable A, Φ. In quantum interpretation of this
assembly, for the boundary tetrahedra we will use coherent state |a, (Φ, A)〉 peaked on a given shape (Φ, A). The
idea is that the boundary quantum geometry can be encoded inside the coherent state |a, (Φ, A)〉 of all boundary
tetrahedra, which choose a internal geometry for the shared-tetrahedra and the face f with curvature.

2.1 Geometry of a classical tetrahedron

As the articles [20, 5] and [29] for a tetrahedron in 3d �at space with the area ai of the labeled face i = 1, 2, 3, 4 ,
geometry gives :

4∑
i=1

ai
−→ni = 0 (2)

where the −→ni are the unit vector normal to the face i.
Each vector −→ni can be expressed in shared coordinate system by the two S2 angle parameters (θi, φi) ∈ [0, π]×

[0, 2π]. And we can de�ne the shape variable Φ, A by the relations :

cos Φ := −
(−→n1 ∧ −→n2

‖−→n1 ∧ −→n2‖

)
·
(−→n3 ∧ −→n4

‖−→n3 ∧ −→n4‖

)
(3)

A−→nA := a1
−→n1 + a2

−→n2 = − (a3
−→n3 + a4

−→n4) (4)

Where −→nA is just a unit vector.
The parameters, with a arbitrary orientation (gauge choice), can be computed from the six parameters (ai, A,Φ).

For example take the orientation (or �gauge�) where (θ1, φ1) = (0, 0) and φ2 = 0, the others parameters (θi, φi) are
just given by the relations (3) and (4) (See the Annexes A for the full equations).

For the next, where we will have a lot of tetrahedra which share the same faces, it will be useful to take a
more appropriate notation to distinguish the areas �a� and their normal vectors �−→n �. So for a speci�c tetrahedron
called τk we will use the notation akl for the area of the face shared with a another tetrahedra τl. Of course, the
notations akl and alk are equivalent and represent the same shared area between the tetrahedra τk and τl. For the
normal vectors �−→n � we need to be more precise about the indices : the vector −→nkl will represent the vector of the
tetrahedron τk, normal to the face of area akl, outgoing of τk, but in-going the next tetrahedron τl. Conversely,
the vector −→nlk represent the vector of the tetrahedron τl, normal to the same shared area akl, but outgoing of τl
and in-going to τk. The vectors

−→nkl and −→nlk are independent, because the −→nkl is only de�ne in the 3d-frame of the
tetrahedron τk and the −→nlk only in the 3d-frame of the tetrahedron τl. Only when the tetrahedra τk and τl are
de�ned in the same 3d-frame, means the two tetrahedra are glued by the face-area akl in a 3d-�at assembly, we
have the relation −→nkl = −−→nlk. With this notation the closure condition for a classical tetrahedron τk become just :∑

l

akl
−→nkl = akl1

−−→nkl1 + akl1
−−→nkl1 + akl3

−−→nkl3 + akl4
−−→nkl4 = 0 (5)

14

Where we have the sum over the four tetrahedra τl which share a face with τk. By de�nition, each unit vector
−→nkl can be expressed by the two S2 angle parameters (θkl, φkl) in the shared coordinate system associated to the
3d-frame of the tetrahedron τk. And, from the closure condition of tetrahedron τk, we have the associated shape
variables (Ak,Φk) which are �xed by their usual de�nition given above :

cos Φk = −
(−−→nkl1 ∧ −−→nkl2
‖−−→nkl1 ∧ −−→nkl2‖

)
·
(−−→nkl3 ∧ −−→nkl4
‖−−→nkl3 ∧ −−→nkl4‖

)
(6)

Ak
−−→nAk = akl1

−−→nkl1 + akl2
−−→nkl2 = − (akl3

−−→nkl3 + akl4
−−→nkl4) (7)

2.2 Cylindrical symmetries for the 4-simplices and fundamental parameters

The large number of variables makes the problem hard to analyze. To simplify we will impose symmetry restrictions.
The three 4-simplices used will be identical, and will have a cylindrical symmetry around the face f . With cylindrical
symmetry, as in Figures 5a,5b, each 4-simplex can be seen with their two shared-tetrahedra with the same equilateral
base f representing a �invariant plane� of symmetry, and the three other tetrahedra (belonging to the boundary
of the assembly) are around the �invariant plane� of f . The cylindrical 4-simplex is invariant under the discrete
rotation which preserve f , and transform by cyclic permutation the boundary tetrahedra to each others. For more
convenience, we call τNk the tetrahedron labeled k inside the 4-simplex labeled N . And for all individual 4-simplex
N , we will take k = 4, 5 for the shared-tetrahedra and k = 1, 2, 3 for the boundary tetrahedra. In the 4-simplex N ,
we can also de�ne PNk the vertex opposite to the tetrahedron τNk , and de�ne LNkl the length of the segment joining
PNk and PNl .

(a) The cylindrical 4-simplex and its exploded view in tetrahedra

1

5

4

3

2

τ5

τ4

τ3

τ2

τ1

(b) Another view of the cylindrical 4-simplex where we
can see the invariant plane of f (given by the red seg-
ments) under the discrete rotation which transform by
cyclic permutation τ1 to τ2 and τ3.

Figure 5: Presentation of the cylindrical symmetric 4-simplex

The cylindrical symmetric 4-simplices, and the condition where the three 4-simplices inside the assembly are
identical, impose that the full geometry is entirely given by three lengths :

Lf := LN12 = LN23 = LN31 , L0 := LN14 = LN24 = LN34 = LN15 = LN25 = LN35 , L := LN45 ∀N (8)

respectively red, black and blue in Figures 5a,5b.Lf is just the length of the triangle f segments, L0 is the length
of the segments which shape the shared-tetrahedra faces on f , and L is the length which connect the top of shared-
tetrahedra and close the 4-simplices. Also, the segments of length L form a equator around the internal face f on
the assembly's boundary. As the following Figure :

15

Figure 6: In the left, the study object. In the right, the exploded view of the assembly of the 4-simplices.

The set of the length (L,L0, Lf) determinate the geometry of the 4-Simplices and, therefore, determinate the
full geometry of the assembly with the cylindrical symmetry. L, L0 and Lf belong to the boundary of the assembly,
and are the fundamental parameters of the geometry in the Regge sens, we will come back about that in the Regge
section for talk about the dynamics of the assembly geometry.

For the quantum section, we need to adapt the fundamental parameters to the area and shape variables. Calling
aNkl the area of the triangle opposite to the segment kl, separating the tetrahedra τNk and τNl . The symmetries
impose :

aN12 = aN23 = aN31 ≡ a , aN14 = aN24 = aN34 = aN15 = aN25 = aN35 ≡ a0 , a
N
45 ≡ af ∀N (9)

We have three sort of faces : the isosceles triangles given by two (black) segments of length L0 and one (blue)
segment of length L with the area a ; the isosceles triangles given by two (black) segments of length L0 and one
(red) segment of length Lf with the area a0; and the equilateral triangle f given by the segments of length Lf with
the area af . We will respectfully call these faces : fa, f0 and (obviously) f . Note, we will call sometimes these faces
: a-faces, a0-faces, af -face or j-faces, j0-faces, jf -face ; for remember explicitly the area or the associated quantum
number of the face in the classical or quantum sections. The faces fa and f0 belong to the boundary of the assembly
and the face f is internal (only the face is inside the bulk, because their segments belong to the boundary). Of
course, the di�erent areas can be expressed in terms of their segments length :

a ≡ a (L,L0) = L
2

√
L2

0 − L2

4

a0 ≡ a0 (Lf , L0) =
Lf
2

√
L2

0 −
L2
f

4

af ≡ af (Lf) =
√

3
4 L

2
f

(10)

Remember that the geometry of individual tetrahedra can be also express in terms of triangle areas and shape
variables. The geometry of boundary tetrahedra can be given by a, a0 and their shape variables

(
ΦNk , A

N
k

)
k=1,2,3

.

The geometry of shared-tetrahedra can be given by a0, af and their shape variables
(
ΦNk , A

N
k

)
k=4,5

. Always in the
context of the cylindrical symmetries [29], the three area a, a0, af can be use to determine the geometry of the
4-simplices and, by assembly constraints, the geometry of the full assembly. Because the cylindrical symmetries
implies :

ΦNk =
π

2
∀N, k (11)

AN1 = AN2 = AN3 ≡ A ∀N (12)

AN4 = AN5 ≡ Af ∀N (13)

The geometry of the shared-tetrahedra gives :

Af =
L0Lf

2
=

√
a2

0 +
1

3
a2
f (14)

16

And the assembly constraints (meaning matching faces of tetrahedra and closure condition for individual euclidean
4-simplex) gives :

A =
LLf

2
=

√
2A2

f − 2

√
A4
f −

4

3
a2a2

f (15)

Note, the formula for Af (a0, af) and A (a, a0, af) are extended for the all variable set af ∈ [0; 3a0] but give only
classical and physical geometric 4-simplex for A ∈

[
0; min

(
2a0, a

√
3
)]
.

In this sens, with the symmetries and the assembly constraints, the set (a, a0, af) is also a set of fundamental
parameters of the full geometry of the assembly. We have a bijection between the fundamental length parameters
and the fundamental areas parameters, that can be use for restore the lengths and the shape variables :

(a, a0, af)⇔ (L,L0, Lf)⇒ (A,Af) (16)

L2
f = 4√

3
af

L2
0 =

3a20+a2f√
3af

L2 = 2L2
0 − 2

√
L4

0 − 4a2

(17)

Alternatively, if you give the parameters (a, a0, A), called the boundary parameters, you can compute af by the
classical constraint from geometry :

A2 4a2
0 −A2

4a2 −A2
=

4

3
a2
f (18)

And also compute the full geometry :

L2
f = 2A

√
4a20−A2

4a2−A2

L2
0 =

16a2a20−A
4

2A
√

4a20−A2
√

4a2−A2

L2 = 2A
√

4a2−A2

4a20−A2

(19)

That will be important for the quantum section, because we expect that the coherent state of the assembly's
boundary(a, a0, A) will �x the value of af and the geometrical properties of the internal face f .

In summary, the classical geometry give for our assembly with cylindrical symmetries three equivalent set of
parameters :

(L,L0, Lf)⇔ (a, a0, af)⇔ (a, a0, A) (20)

These are three equivalent classical descriptions of the geometry ; the last one is the most appropriate for the
quantum theory.

2.3 Curvature of the f triangle

The most important thing about our study object, it's the presence of curvature with the classical interpretation.
When you assembles the 4-simplices around the same triangle f and close the assembly, you create a de�cit angle
and curvature around f . And the value of the de�cit angle evolve with the size of the equator (de�ned by the L
segments) compared to the rest of the geometry. Inside our individual 4-simplices, the 4d-space is euclidean and
�at, so we can compute the angle ΘN

kl between two tetrahedra τNk , τNl along the sharing face aNkl, see Figure 7a.
The de�nition of the ΘN

kl is :

cos ΘN
kl =

cos θN(kc)(lc) − cos θN(kl)(kc) cos θN(kl)(lc)

sin θN(kl)(kc) sin θN(kl)(lc)
∀c (21)

Where θN(kc)(lc) is the (dihedral) angle between the faces aNkc and aNlc . We can see visual representations of these
angles below :

17

(a) Representation of the angle ΘN
kl between the tetrahedra

τNk , τNl of same basis aNkl inside the 4-simplex N .

(b) Representation of the dihedral angle θN
(kc)(lc)

be-

tween the faces aNkc, a
N
lc inside the tetrahedron τNc

(belonging to the 4-simplex N).

Figure 7: Angles de�ned from the 4-Simplex geometry.

In our symmetric case, where kl = 45 correspond to the f triangle, kl = 1, 2, 3 correspond to the fa triangles,
and the others kl correspond to the f0 triangles, we have only three sorts of Θ angles : Θf , Θfa and Θf0 . With the
symmetries of the assembly the de�cit angle associated to the triangle f is just :

εf = 2π − 3Θf (22)

and we can express all the Θ angles in the three set of fundamental parameters :
- In terms of fundamental lengths (L,L0, Lf) :

cos Θf = 1− 3

2
· L2

3L2
0 − L2

f

(23)

cos Θfa =
1

2

(
1−

L2
f

4L2
0 − L2 − L2

f

)
(24)

cos Θf0 =
LLf

2
√

3L2
0 − L2

f

√
4L2

0 − L2 − L2
f

(25)

that will be useful for understand the Regge's geometries, and it's the most simple way for see the evolution of
the curvature in function of the geometry. For the example (L0, Lf) = (1, 1), we can draw the de�cit angle εf in
function of the equator length L :

18

Figure 8: Curvature in function of length L for L0 = Lf = 1

- In terms of fundamental areas (a, a0, af) :

cos Θf =
−4a2

f + 3

√(
3a2

0 + a2
f

)2

− 12a2a2
f

9a2
0 − a2

f

(26)

cos Θfa = 1− 3a2

6a2 − 3a2
0 − a2

f +

√(
3a2

0 + a2
f

)2

− 12a2a2
f

(27)

cos Θf0 =
1√
2
· 1√

9a2
0 − a2

f

·
3a2

0 + a2
f −

√(
3a2

0 + a2
f

)2

− 12a2a2
f√

6a2 − 3a2
0 − a2

f +

√(
3a2

0 + a2
f

)2

− 12a2a2
f

(28)

19

that will be useful for connect the classical interpretation with the quantum equivalent where the fundamental

parameters are the areas. For (a0, af) =
(√

3
4 ,
√

3
4

)
, we can draw the de�cit angle εf in function of the area a :

Figure 9: Curvature in function of area a for a0 = af =
√

3
4

- In terms of boundary parameters (a, a0, A) :

cos Θf = 1−
6A2

(
4a2 −A2

)
12a2

0 (4a2 −A2)−A2 (4a2
0 −A2)

(29)

cos Θfa =
1

2

(
1− A2

4a2 −A2

)
(30)

cos Θf0 =
A2√

12a2
0 (4a2 −A2)−A2 (4a2

0 −A2)
(31)

that will be useful for understand the quantum case where the curvature evolve only with the boundary parameters
given by coherent states. That means, if you �x the boundary geometry, by coherent state which give (a, a0, A),

20

you will allow curvature inside the assembly. For (a0, a) =
(√

3
4 ,
√

3
4

)
, you can see the evolution of de�cit angle εf

in function of A :

Figure 10: Curvature in function of A for a0 = a =
√

3
4

Of course in the three descriptions, when the de�cit angle εf is null we have a 4-dimentional �at assembly, if εf
is positive we have positive curvature and when εf is negative we have negative curvature. For example, if we take
the most regular case where the all lengths are equal (equivalent to have the all areas equal), the angle Θf give
cos Θf = 1

4 and the de�cit angle is εf = arccos
(
− 11

16

)
≈ 2.329 which correspond to a positive curvature. And if we

have the relation (written in the three set of variables) :

−3L2
0 +L2 +L2

f = 0 ⇔ 3
(
a2
f − a2

0

)
= 2

√(
3a2

0 + a2
f

)2

− 12a2a2
f ⇔ 4

(
4a2 −A2

) (
4a2

0 −A2
)

= 16a2
0a

2−A4 (32)

we have a null de�cit angle and no curvature. That relation can be seen like the �atness condition of the assembly.

21

3 Regge's geometry with dynamics

The study of our assembly in classical geometry show us the interest of this assembly in term of simplicity and
curvature : the study object (in the context of this symmetries) have only three parameters for describe its full
geometry and have a curvature easily expressible. It will be interesting to see if its curvature it preserved in the
context of Regge calculus. Regge calculus is a simplest way, �nd by T. Regge [1], for associate a physics action
for a discretized geometry. The main idea of Regge, in its simplest example and interpretation, is to discretizes
the space-time in simplices and associate a action given by the areas and the de�cit angles of this discretization.
The fundamental parameters of the Regge's action will be the length of the �skeleton bones� of the discretization
: in other words, the length of the segments of the simplices. The Regge's action give the classical solution of
the geometry by its minimization along the segments length ; this process is called Regge calculus. The length of
segments from Regge calculus will be the fundamental variables of the geometry like the metric for the Einsteinian
space-time, and the Regge's equations, from the minimization of the Regge's action by the lengths, are the equivalent
of Einstein's equations from General Relativity. And for a 3d-space-time which is in�nitesimally discretized, where
the lengths and size of the simplices used for discretization tends to 0, the Regge calculus give exactly the same
physics of General Relativity theory. In this sens, the Regge calculus is a strong equivalent of General Relativity
for discretized space-time where the Regge's action is the discretized equivalent of Einstein-Hilbert's formulation.
For a quantum theory of gravitation and space-time, the Regge formulation is a very interesting starting point for
understand and formalize a discretized space-time in quantas that are the simplices. Moreover, the Loop Quantum
Theory is linked over a group formulation of Regge principle where the transition amplitude reproduce, in a certain
limit, the complex exponentiation of the Regge's action.

Our goal in this section is to see if the Regge is viable for our study object and give also curvature. The problem
here it's that our study object does not have Regge's dynamics, because the all segments belong to the boundary
and the Regge calculus is only viable along segments from the bulk. So, only in this section , we will re�ne our
object by the splitting of the internal face f to reveal internal segments. That will allow to make Regge calculus on
this new bulk segments without a�ect too much the boundary data and properties from our study object. We will
show for our study object, in the 4d-euclidean case with this speci�c splitting, that we can use Regge calculus inside
and its Regge's equations give solutions with non-null curvature. We will give the de�nitions of Regge calculus, and
give the process to adapt the calculus to our study object.

3.1 De�nition of Regge's actions and equations

As explain in the classical Sections 2,2.2, the set of lengths give the full geometry of the assembly via the area
and shape parameters, and reciprocally. The Regge's geometry is given by a triangulation of the part of space in
simplices, with a action associated, where the length of segments are the fundamental parameters. Here, that is
exactly the case. Our study object is a assembly of 4-simplices where the full geometry can be given by the length
of segments and, in the cylindrical symmetry context, by the set of fundamental parameters (L,L0, Lf).

3.1.1 4-dimensional Regge's actions and equations for a non-�nite euclidean space

The Regge's action SRegge for a non-�nite 4-dimensional euclidean space (with no boundary) sliced/discretized in
4-simplices with the length Lij for segments �ij� is :

SRegge [Lij] =
∑

F∈faces

aF [Lij] εF [Lij] (33)

We have the sum over the all triangular faces F of the area aF and the associated de�cit angle εF , all function of
the segments length Lij .

The dynamics of the Regge's geometry is given by the action minimizing by the lengths, and give the Regge's
equations :

δSRegge
δLab

[Lij] =
∑

F∈{faces⊃Lab}

εF [Lij] cotαab,F [Lij] = 0 ∀ab (34)

22

Where αij,F is the �view angle� of the segments �ab� from the opposite point in the face F (Figure 11).

Figure 11: For the segment 'ab' of length Lab (in orange), we have the set of the connected faces F (which include
the 'ab' segment) and their associated de�cit angle εF and �view angle� αab,F . That picture help to apply the Regge
equation along the segment 'ab', where you sum the de�cit angle εF with the cotangent of the �view angle� αab,F
for each connected faces F ⊃ ab.

The Regge's action and equations are the discretized equivalent of Einstein-Hilbert's action and equations :

SRegge ∼ SEinstein−Hilbert (35)

δSRegge
δLab

∼ δSE−H
δgµν

(36)

In fact, for the 3-dimensional case (where the Regge's action and equations are di�erent from 4-dimensional case)
we know they describe the same physic for a in�nitesimal discretization of space :

S3d
Regge −−−−→

Lij→0
S3d
Einstein−Hilbert (37)

δS3d
Regge

δLab
⇒ ε = 0 ←−−−→

Lij→0

δS3d
E−H
δgµν

⇒ Rσµρν = 0 (38)

So Regge formulation is a strong equivalent and interpretation for discretized geometry and gravitation.

3.1.2 4-dimensional Regge's actions and equations for a �nite euclidean space

For a �nite 4-dimensional euclidean space, where boundary take a important place, we will rewrite the Regge's
action in a convenient form :

SRegge [Lij] = 2π
∑

F∈faces

aF [Lij]−
∑

N∈simplices

∑
F∈{faces of N}

aF [Lij] ΘN
F [Lij] (39)

Here, in the left, we have the sum of ��atness space� from the all faces F with the area aF . In the right, we have
the sum over the all 4-simplices N of their individual actions, corresponding to the sum of their areas with their
associated angle ΘN

F . The angle ΘN
F correspond to the angle between the two tetrahedra inside the simplex N

along their shared-face F (from (21), see 7a). With these de�nitions, we have the individual Regge's action from a
4-simplex N :

SNRegge [Lij] =
∑

F∈{faces of N}

aF [Lij] ΘN
F [Lij] (40)

Which reproduce the usual Regge's action de�nition with their associated de�cit angles :

SRegge = 2π
∑

F∈faces

aF −
∑

N∈simplices

SNRegge =
∑

F∈faces

aF εF (41)

23

εF = 2π −
∑

N∈{simplices⊃F}

ΘN
F (42)

This de�nition is easy to study and understand because we can see the individual e�ect of each 4-simplices. More,
this de�nition contain the correct de�nition of Regge's action for the internal geometry of assembly, the bulk, and
also the extended de�nition of Regge's action for the external geometry of assembly, the boundary. For the all bulk
part, the εF associated to the internal faces are just the de�cit angles with exactly the same de�nition of before.
And for the boundary part, the εF associated to the boundary faces are not a �complete de�cit angle� because
it miss the extrinsic curvature. That can be seen as the boundary e�ect of (missing) extrinsic curvature over the
action and geometry of assembly. This last point are the most important, because the idea is than the geometry of
the boundary will a�ect the dynamics of the internal geometry, via the Regge equation, and will create curvature :
The boundary properties will a�ect the internal geometry and curvature.

The corresponding Regge's equations are given by minimizing Regge's action over the segment lengths in the
bulk. So for each segments �ab� non-include to the boundary, we have the Regge's equations :

δSRegge
δLab

[Lij] =
∑

F∈{faces⊃Lab}

εF [Lij] cotαab,F [Lij] = 0 ∀ab ∈ {segments in the bulk} (43)

which are the same as usual Regge equation, but only e�ective for the bulk.

3.2 Adaptation of study object for Regge calculus

We have seen than Regge's equations take place only for the bulk lengths. The problem it's our study object have
only one internal face, the all segments belong to the boundary. The set of lengths (L,L0, Lf) of boundary give the
all geometry, and their values can give classically curvature, but we have no dynamics in the Regge sens ! Even if
the classical geometry give curvature with the appropriate set of (L,L0, Lf), it will be important and instructive
to see if the Regge's dynamics can reproduce the same result. But we must adapt our study object for than the
Regge's equations be e�ective and physical.

3.2.1 Split objects

To make viable Regge calculus inside our study object the simplest way it's just to split the internal face f for reveal
internal segments. In agreement with the cylindrical symmetries, we split the segments of the face f (of length Lf)
by the middle in two segments of length 1

2Lf and connect the middles by new internal segments. That will split
the face f in 4 triangles : one in the center, with new internal f -segments of respective lengths L1

f
′, L2

f
′, L3

f
′, and

three faces around, with 2 segments of length 1
2Lf and 1 associated f -segments of length Lif

′ each. The center face
will be called f ′, in reference of the f -segments L1

f
′, L2

f
′, L3

f
′ which compose it. The others faces will be called f i,

in reference to the f -segment Lif
′ which compose it with two 1

2Lf segments. We can see the splitting of the face f
as follow :

Figure 12: The splitting of the face f to make viable Regge calculus.

24

The splitting of f , base of the internal tetrahedra, split the faces of internal tetrahedra with new segments and
new tetrahedra with bases f ′ and f i. The old faces f0 (given previously by two [black] L0 and one [red] Lf) are
split in half with secants passing by the middle of the previousLf segments ; the lengths of the secants segments
will be L′0. We have the new boundary faces given by L0, L′0 and 1

2Lf , called f
′
0 and the new internal faces given

by two L′0 and one Lif segments, called f i0. As the Figures :

Figure 13: The splitting of the face f and internal tetrahedra. Next, the exploded view of the split internal
tetrahedra.

Figure 14: The splitting of the faces f0, called also a0-faces, given by the splitting of f .

The splitting of the old faces f0, from shared-tetrahedra, in new faces f ′0 also split the boundary tetrahedra
which shared these faces. The boundary tetrahedra appear split in half, by the middle of the previous Lf segments,
and create new faces given by the two L′0 and one L segments ; as in the following Figure :

25

Figure 15: The splitting of the boundary tetrahedra given by the splitting of f

The new faces, with two (purple) L′0 and one (blue) L, will be called f ′a.
Note, the new internal f -segments lengths L1

f
′, L2

f
′, L3

f
′ are not �xed by the boundary data, and their values will

be given dynamically by the Regge's equations. The speci�c case where Lif
′ =

Lf
2 and L′0 =

√
L2

0 −
L2
f

4 correspond

to the case where the internal face f ′ =
(
L1
f
′, L2

f
′, L3

f
′
)
and the internal facesf i =

(
Lif
′, 1

2Lf ,
1
2Lf

)
are co-planar

and reproduce the equilateral triangular face f with lengths Lf . But, in general, the new internal faces are not
necessary in the same plane and the contour of the set is not necessary a triangle.

This splitting is really interesting because, in addition to make internal f -segments for viable Regge calculus,
we will see the geometry dynamics of the assembly for our object with boundary parameters which give curvature
in the usual/classical way. The interest is to take classical parameters (L,L0, Lf) which give curvature in the usual
assembly and see the preservation of curvature from the internal f -segments and associated Regge's equations :
our study object will be able to have Regge's dynamics and non-null curvature within. Moreover, we can reverse
the interpretation and consider our usual study object as a part of a bigger assembly with associated curvature.
Indeed, after the splitting, the central assembly given by the faces f ′, f i0 and (L,L′0, L

′
0) is like our usual study

object with its parameters
(
L,L′0, L

i
f

)
and its curvature εf ′ inside a bigger object : this central part is exactly

like our usual study object, can have curvature and is contained inside as a solution of Regge's equations. With
this �nding, we can easily imagine our usual study object, with non-null curvature and associated parameters, from
a bigger assembly as a Regge's solution. So we will see with the proper boundary lengths that our study object
can contain Regge's solutions with curvature and, by reverse interpretation, can be seen as a solution of Regge's
equations inside a imaginary bigger assembly.

3.2.2 Parameters and geometric objects

Now, the face f of our original study object is split in 4 triangular faces with new f -segments in the bulk, where
the Regge's equations will act. We have a new boundary for this assembly formed by the L and L0 segments, the
split segments of f of length 1

2Lf , and the new secants segments of length L′0 introduced by the splitting of f . The
boundary geometry are given by four parameters : L, L0 and Lf , L′0. The drawing of the symmetrical boundary
with its tetrahedra is below :

26

Figure 16: The �rst picture represent the 3d-boundary of the new assembly, and its exploded view in pieces of
shape of split 4-simplex (The contour from the red segments give no face, it's the contour of a hole). The second
picture represent the exploded view of shape of one split 4-simplex in new boundary tetrahedra.

As previously, the purple segments have the same length L′0 and the red segments have the same length Lf
2 .

The blue and black segments have respectively the length L and L0. In these pictures, we see the all boundary of
the new object as a assembly of the same sort of tetrahedra. These tetrahedra have their geometry given by the
set
(
L,L0,

1
2Lf , L

′
0

)
and share the faces f ′a (two purple L′0 and one blue L) and fa (two black L0 and one blue L)

for built the shape of split 4-simplex. The three shapes of split 4-simplices share the faces f ′0 (one purple L′0, one
black L0 and one red 1

2Lf) for built the boundary of the all split assembly. The drawing of the full new object,
including the internal (orange) f -segments for Regge calculus and their associated faces f ′, f i , is :

27

Figure 17: In the left, the split object for the Regge calculus. And its exploded view in terms of assembly of
4-simplices, in the right.

28

Figure 18: The exploded view of each assembly of 4-simplices for the Regge calculus object. The f -segments where
we will apply the Regge's equations appear in orange.

Where we �nd a internal face with these f -segments in orange. Remember, in the context of Regge calculus, the
length of f -segments are not necessarily equals ! The equality properties of f -segment lengths will be a consequence
of Regge's action and equations from the cylindrical symmetries of boundary, not a initial constraint.

We can see the �assembly drawing� of the split object via this spin-foam graph :

29

Figure 19: Spin-foam of the split assembly dual of Figures 17,18. The orange and pink edges represents the internal
tetrahedra which come from of shared-tetrahedra splitting (Figure 13), the light blue edges represents the external
tetrahedra which come from of boundary tetrahedra splitting (Figure 15), and the purple edges represents internal
tetrahedra needed to complete the splitting and glue the new 4-simplices together. We see the associated pieces of
geometry of the graph in the right.

The split assembly have the following properties :
- 30 segments :

- 3 internal segments : the f -segments in orange, with the lengths L1
f
′, L2

f
′, L3

f
′ which will be given by the

Regge's equations.
- 27 boundary segments :

- 12 from the boundary tetrahedra of original study object :
- 9 segments of length L0 in black
- 3 segments of length L in blue

- 15 from the splitting :
- 6 segments of length Lf

2 in red
- 9 segments of length L′0 in purple

30

- 49 faces :
- 13 internal faces :

- 1 �fully� internal face from the split face f : the face f ′ with its three (orange) f -segments.
- 12 �simple� internal faces :

- 3 from the split face f : the faces f i composed by two red segments and one orange each.
- 9 from the split internal tetrahedra : the faces f i0 composed by two purple segments and one

orange each.
- 36 boundary faces :

- 27 from the split of boundary tetrahedra :
- 9 composed by two purple segments and one blue segment each.
- 18 composed by one red, black, purple segments each.

- 9 from the boundary tetrahedra : composed by two black segments and one blue segment each.
- 39 tetrahedra :

- 21 internal tetrahedra :
- 12 from the splitting of internal tetrahedra :

- 3 composed with the face f ′ and three purple segments each.
- 9 : composed with the by two purple, two red, one black and one orange each.

- 9 from the splitting of boundary tetrahedra : composed with the four purple, one orange and one
blue segments each.

- 18 boundary tetrahedra : composed by two purple, two black, one red and one blue each.
- 12 4-simplices :

- 3 composed by the purple, orange and blue segments.
- 9 composed by the black, purple, red, orange and blue segments.

3.2.3 Equations for de�cit angles

In the optics to use Regge's equations on the f -segments, we need to compute the de�cit angle for the all faces
connected to them. In this subsection, we will express the formulas necessary to compute the de�cit angle for the
face f , f i and the face f i0. After that, the Regge calculus (derived from Subsection 3.1.2) just consist to compute
the quantities :

∂SRegge
∂Lif

(
L,L0, L

′
0,

1

2
Lf , L

1
f
′, L2

f
′, L3

f
′
)

=
∑

F∈{faces⊃Lif}
εF cotαi,F

(
L,L0, L

′
0,

1

2
Lf , L

1
f
′, L2

f
′, L3

f
′
)
i = 1, 2, 3 (44)

and see for what values of L1
f
′, L2

f
′, L3

f
′ these quantities becomes nulls.

For the central part, given by the face f ′ (see the Figure 18, �rst picture), the angle between the tetrahedra of
same base f ′ are given by :

cos ΘN
kl =

cos θN(kc)(lc) − cos θN(kl)(kc) cos θN(kl)(lc)

sin θN(kl)(kc) sin θN(kl)(lc)
for kl = f ′ (45)

With the dihedral angles :

cos θi(kc)(lc) =
4 L′0

2 − 2L2 − Lif
′ 2

4 L′0
2 − Lif

′ 2
(46)

cos θi(kl)(kc) = cos θi(kl)(lc) =
Lif
′√

4 L′0
2 − Lif

′ 2
·

Ljf
′ 2 + Lkf

′ 2 − Lif
′ 2√

2 Lif
′ 2 Ljf

′ 2 + 2 Lif
′ 2 Lkf

′ 2 + 2 Ljf
′ 2 Lkf

′ 2 − Lif
′ 4 − Ljf

′ 4 − Lkf
′ 4

(47)

31

And with the associated de�cit angle equal to εf ′ = 2π−
∑3
i=1 Θi

f ′ . In the special case where the lengths L1
f
′, L2

f
′,

L3
f
′ will be equal to the same length L′f (that will be the solution that we will �nd in the next) we can reduce the

dihedral and �nd a simple expression of the de�cit angle of the face f ′ :

cos θ(kc)(lc) =
4 L′0

2 − 2L2 − L′f
2

4 L′0
2 − L′f

2 , cos θ(kl)(kc) = cos θ(kl)(lc) =
L′f√

4 L′0
2 − L′f

2
· 1√

3
(48)

⇒ cos Θf ′ =
3
(
L′0

2 − 1
2L

2
)
− L′f

2

3 L′0
2 − L′f

2 ⇒ εf ′ = 2π − 3Θf ′ (49)

For the exterior parts, given by the faces f i (see the Figure 18, second picture), the angle between the tetrahedra
of same base f i are given by the dihedral angle :

cos θi(kc)(lc) =
4 L′0

2 − 2L2 − Lif
′ 2

4 L′0
2 − Lif

2 cos θi(kl)(kc) = cos θi(kl)(lc) =
4 L′0

2
+ L2

f − 4L2
0 − 2 Lif

′ 2

2
√

4 L′0
2 − Lif

2
√
L2
f − Lif

2
(50)

That can be reduce for the special case L1
f
′ = L2

f
′ = L3

f
′ = L′f to :

cos θ(kc)(lc) =
4 L′0

2 − 2L2 − L′f
2

4 L′0
2 − L′f

2 , cos θ(kl)(kc) = cos θ(kl)(lc) =
4 L′0

2
+ L2

f − 4L2
0 − 2 L′f

2

2
√

4 L′0
2 − L′f

2
√
L2
f − L′f

2
(51)

Which imply for the faces f i :

⇒ cos Θfi =
4
(
L2
f − L′f

2
)(

4 L′0
2 − 2L2 − L′f

2
)
−
(

4 L′0
2

+ L2
f − 4L2

0 − 2 L′f
2
)2

4
(
L2
f − L′f

2
)(

4 L′0
2 − L′f

2
)
−
(

4 L′0
2 + L2

f − 4L2
0 − 2 L′f

2
)2 ⇒ εfi = 2π − 3Θfi (52)

For the face f i0, composed by 2 purple segments and one orange f -segments, shared between the central part to
the exterior part, we have two type of angles ΘN

fi0
: those in the central part Θa

fi0
, and those in the exterior parts

Θb
fi0
. The �rst angles Θa

fi0
, de�ned in the central part connected to the face f ′, are given by the dihedral angles :

cos θi(kc)(lc) =
Lif
′√

4 L′0
2 − Lif

′ 2
·

Ljf
′ 2 + Lkf

′ 2 − Lif
′ 2√

2 Lif
′ 2 Ljf

′ 2 + 2 Lif
′ 2 Lkf

′ 2 + 2 Ljf
′ 2 Lkf

′ 2 − Lif
′ 4 − Ljf

′ 4 − Lkf
′ 4

= cos θi(kl)(kc)

(53)

cos θi(kl)(lc) =
4 L′0

2 − 2L2 − Lif
′ 2

4 L′0
2 − Lif

′ 2
(54)

Which give in the special case L1
f
′ = L2

f
′ = L3

f
′ = L′f :

cos θ(kc)(lc) =
L′f√

4 L′0
2 − L′f

2
· 1√

3
= cos θ(kl)(kc), cos θ(kl)(lc) =

4 L′0
2 − 2L2 − L′f

2

4 L′0
2 − L′f

2 (55)

⇒ cos Θa
fi0

=
L′fL

2
√

3 L′0
2 − L′f

2
√

4 L′0
2 − L′f

2 − L2
(56)

The second angles Θb
fi0
, de�ned in the exterior parts connected to the face f i, are given by the dihedral angles :

cos θi(kc)(lc) =
4 L′0

2
+ L2

f − 4L2
0 − 2 Lif

2

2
√

4 L′0
2 − L′f

2
√
L2
f − Lif

2
= cos θi(kl)(kc), cos θi(kl)(lc) =

4 L′0
2 − 2L2 − Lif

2

4 L′0
2 − Lif

2 (57)

32

Which give in the special case L1
f
′ = L2

f
′ = L3

f
′ = L′f :

cos θ(kc)(lc) =
4 L′0

2
+ L2

f − 4L2
0 − 2 L′f

2

2
√

4 L′0
2 − L′f

2
√
L2
f − L′f

2
= cos θ(kl)(kc), cos θ(kl)(lc) =

4 L′0
2 − 2L2 − L′f

2

4 L′0
2 − L′f

2 (58)

⇒ cos Θb
fi0

=

(
4 L′0

2
+ L2

f − 4L2
0 − 2 L′f

2
)
L√

4
(

4 L′0
2 − L′f

2
)(

L2
f − L′f

2
)
−
(

4 L′0
2 + L2

f − 4L2
0 − 2 L′f

2
)2√

4 L′0
2 − L′f

2 − L2

(59)

Finally we have the de�cit angle of the face f i0 :

εfi0 = 2π − 2Θa
fi0
− 2Θb

fi0
(60)

3.3 Applications of Regge calculus

In order to compute and study the Regge calculus of the new object, we have designed a C++ code (not included
in this thesis report) for compute the Regge's action and �nd the values of the f -segments who minimize it. In the
code we give the boundary lengths L, L0, L′0,

1
2Lf as constants. For each set of f -segments lengths L1

f
′, L2

f
′, L3

f
′

which respect the triangle inequalities of the all assembly, the code compute the individual action of each 4-simplex
in function of lengths, and sum the individual actions as de�ne above (see 3.1.2 and (39)). After, the code give the
values of L1

f
′, L2

f
′, L3

f
′ which �locally minimize� the full action and the corresponding curvatures εf associated to

the faces from f . Of course, because of numerical limitation, the computed values of L1
f
′, L2

f
′, L3

f
′ are not from a

continuum ; they will be given with a precision δL′f inherent to the code (and so perfectly de�ned) and the real
values where the full action is perfectly �locally minimized� are always in the intervals ±δL′f . The precision will be
also given for each computations and cases studied.

3.3.1 Regge computation for unspeci�ed face f

In �rst, we will study the general cases where the three f -segments, of respective lengths L1
f
′, L2

f
′, L3

f
′, can be

di�erent and �locally minimize� the action :

∂SRegge
∂Lif

(
L,L0, L

′
0,

1

2
Lf , L

1
f
′, L2

f
′, L3

f
′
)

= 0 for i = 1, 2, 3 (61)

For the special case where L0 = Lf = 1 and L′0 =
√

3
2 , L =

√
2, corresponding to the �at case in the original

object from the classical geometry, we �nd obviously the solution :
- L1

f
′ = L2

f
′ = L3

f
′ = 0.5± 0.02 with εf ′ = 0, εfi = 0, εfi0 = 0

Which is just the �at solution where the split faces are in the same plane, and the splitting just cut the original
object without no change.

For the special case where L0 = Lf = 1 and L′0 =
√

3
2 , L = 1, corresponding to the original object but with

positive curvature induced by a �tight equator� L <
√

2, we �nd the solution :
- L1

f
′ = L2

f
′ = L3

f
′ = 0.711518± 0.02 with εf ′ = 1.99152, εfi = 1.53229, εfi0 = −0.421284

For the special case where L0 = Lf = 1 and L′0 =
√

3
2 , L = 1.5, corresponding to the original object but with

negative curvature induced by a �stretched equator� L >
√

2, we �nd the solution :
- L1

f
′ = L2

f
′ = L3

f
′ = 0.421923± 0.02 with εf ′ = −0.469524, εfi = −0.422882, εfi0 = 0.118673

For the special case where L0 = Lf = 1 and L′0 = L = 1, we have the solution :
- L1

f
′ = L2

f
′ = L3

f
′ = 0.866± 0.02 with εf ′ = 2.59031, εfi = 2.59031, εfi0 = 9.9961× 10−5

Corresponding in fact to the exact solution :
- L1

f
′ = L2

f
′ = L3

f
′ =

√
3

2 with εf ′ = εfi = 2π − 3 arccos
(

1
3

)
, εfi0 = 0

Here we have interesting results, because we have already a solution with non-null curvature ! We can see this
solution as the local extremum if we draw the full action SRegge in function of L1

f and L2
f = L3

f :

33

Figure 20: Evolution of Regge's action in function of the L1
f and L2

f = L3
f . Of course we are o�-shell of the Regge's

dynamics, the Regge's equations correspond just to the extremums of this surface.

So we found several solutions from the Regge's action minimization : the solutions can have curvature, and
solutions AND curvatures evolve of the boundary lengths L, L0, L′0, L

′
f .

3.3.2 Regge computation for equilateral face f

As seen previously, the solutions are always the equilateral cases where the f -segments have the same lengths.
Because these solutions preserve the cylindrical symmetries of the original study assembly, will be easily comparable
to the classical/quantum cases studied, and are probably the only physical solutions for cylindrical symmetries.
Because of these results, we will study the simplest cases where the L1

f
′, L2

f
′, L3

f
′ are equal in the next.

For the equilateral cases where Lif
′ = L′f ∀i, we can study the evolution of solution and its corresponding

curvature in function of the boundary lengths L, L0, L′0, L
′
f . Because of the size space of con�guration, and more

convenience, we take L0 = 1 and Lf = 1. The choice of L0 = 1 is purely arbitrary, that can be understand like just

34

a scale choice for the assembly ; the other lengths can be compared to this scale length. The choice of Lf = 1 come
from the choice for con�ne the f -segments : fundamentally the curvature associated to the face f depend to L, L′0,
1
2Lf (when the scale L0 = 1 is given) but in fact the curvature induced by the boundary depend to the shape of
boundary tetrahedra and the (non-linear) �ratio� between

(
L0,

1
2Lf

)
and (L′0, L) ; so we can �x Lf = 1 and just

see the evolution of induced curvature by the evolution of (L′0, L) compared to
(
L0,

1
2Lf

)
=
(
1, 1

2

)
.

So, with
(
L0,

1
2Lf

)
=
(
1, 1

2

)
parameters, we can compute the solutions L′f and associated curvatures εf in

function of L′0 and L. We obtain the following drawings :

Figure 21: Length L′f from the Regge's equations solutions in function of L′0 and L under di�erent views. The �rst
and second pictures are the isometric views of the surface of solutions, the third is the top view (in the pane L′0,
L), the fourth is the front view (in the plane L′f , L

′
0) and the �fth is the side view (in the plane L′f , L).

35

Figure 22: Curvature (de�cit angle) εf ′ from the Regge's equations solutions in function of L′0 and L under di�erent
views. The �rst and second pictures are the isometric views of the surface of solutions, the third is the top view (in
the pane L′0, L), the fourth is the front view (in the plane εf ′ , L′0) and the �fth is the side view (in the plane εf ′ ,
L).

Where the length L′f and curvature εf ′ solutions from Regge's equations evolve continuously in function of the

boundary parameters L′0, L. If we look the sections with L′0 =
√

3
2 , we have the following drawing of εf ′ , εfi and

εfi0 in function of L :

36

Figure 23: Evolution of εf ′(purple), εfi (green) and εfi0 (blue) from the Regge's equations solutions in function of
L.

Where we show the curvatures from Regge's solutions evolve continuously in function of L for �xed L0 = Lf = 1

and L′0 =
√

3
2 . We recover the expected �at solution for the crosspoint at L =

√
2. We show also a discontinuity for

L = 2
√

2
3 , that correspond to the geometrical limit where the split 4-simplices are degenerated �at : means they

are each in a 3d frame, and the length L = 2
√

2
3 correspond to the height of two regular tetrahedra with the same

basis with three tetrahedra glued �atly inside. The solutions from L > 2
√

2
3 correspond to solutions where three

tetrahedra for each 4-simplex are longer than the height of the two last tetrahedra : means the 4-simplex geometries

are hyperbolic. We see also in the region L ∈
]

2
3

√
5; 2
√

2
3

[
we have two solutions for the Regge's geometries, that is

the two possible way to bend the split Lf -segments : to the �exterior�, means we have a convex boundary geometry,
or to the �interior�, means we have a concave boundary geometry.

We can also draw the evolution of R =
∑
F⊂bulk aF εF (explicitly R = af ′εf ′ + 3afiεfi + 9afi0εfi0 with the

symmetries) which is the equivalent of the Einstein-Hilbert's action
∫
bulk

d4x
√
−gR(gµν) in function of L0 and L :

37

Figure 24: R =
∑
F⊂bulk aF εF from the Regge's equations solutions in function of L′0 and L under di�erent views.

The �rst and second pictures are the isometric views of the surface of solutions, the third is the top view (in the
pane L′0, L), the fourth is the front view (in the plane R, L′0) and the �fth is the side view (in the plane R, L).

Again, the results give curvature which evolve with the boundary parameters L′0, L and �xed
(
L0,

1
2Lf

)
=
(
1, 1

2

)
.

For the section where L′0 =
√

3
2 :

38

Figure 25: Evolution of R =
∑
F⊂bulk aF εF from the Regge's equations solutions in function of L.

We �nd the values of R =
∑
F⊂bulk aF εF are overall positive, with the �at case at L =

√
2 which give R = 0

and the cases 0.82175 ≤ L <
√

2 which give small negative values.

3.4 Conclusion about Regge calculus

To summarize, in the last two chapters we have studied Regge calculus on two di�erent triangulations. The �rst,
corresponding to ∆3 of Figure 6, has a single internal face, but all segments are boundary, thus there are no Regge's
equations to be satis�ed and the dynamics is trivial. The curvature associated to the internal face is then directly
determined by the boundary data. This triangulation de�nes nonetheless a non-trivial dynamics in spin foams,
because there the fundamental variables are areas instead of lengths, thus there will be internal degrees of freedom
associated with the area and normals of the internal face. To study the classical dynamics in the Regge setting, we
considered a natural re�ning of ∆3 , given by ∆12 from Figures 17,19, which has 3 internal segments, and thus 3
non trivial dynamical equations to be satis�ed. We study the solutions to the equations as a function of simple,
axial-symmetric boundary data, obtaining results consistent with a discretization of general relativity, as expected.
In particular, the curvature obtained from solving the equations varies continuously with the boundary data and

39

switches sign as we `squeeze' the con�guration moving from a positively curved bulk, to a �at bulk, to a negatively
curved bulk, see Figures 22,23 and 24,25. Moreover, in this speci�c case and re�ning, the splitting give a assembly
composed by some sub-assemblies which are �like� the study object : so you have no limitation for split again the
structure, or imagine the structure inside a bigger assembly, and built more complex objects where Regge calculus
is always viable and give non-null curvature !

4 Interlude for the quantum geometry

We show the Regge's geometries of our study object reproduce successfully curvature in function of the boundary
data. In our original object given by three 4-simplices we have curvature, but no Regge's dynamics. In the
speci�c re�ned object, given by twelve 4-simplices, we preserve a equivalent boundary and get Regge's dynamics
with curvature. But what happen for the quantum geometry ? The need to re�ne our object in the previous
section come to the fact of the Regge's dynamics come to the bulk segments, and our original object had no such
segments. Conversely, the quantum geometry and its dynamics is de�ned by the areas, so we can have quantum
geometry dynamics for our original object, on its internal face f , without any re�ne. It would be interesting to
get the quantum dynamics of the re�ned object, and compare it with the Regge's dynamics, but unfortunately the
associated quantum geometry is too di�cult to do analytically and numerically : the associated spin-foam, given by
the Figure 19, is too much complex to adapt for numerical computation. So let us concentrate to do the quantum
de�nitions of our original study object (Drawing 6 and future spin-network & spin-foam Figures 27,30) and study
numerically the quantum dynamics of this one.

5 Quantum geometry

We have shown that our study object can be used with the Regge's formulation and give curvature, this is a �rst
step for understand and see if the quantum theory of geometry can give the same physic of classical geometry.
But for have more clues if the quantum geometry contain, in a certain part, the usual geometry and the possible
di�erences we need to apply the Loop Quantum Gravity theory for our object.

The goal of this section it's de�ne the states and transition amplitude for our study object and give it a
quantum formulation from the euclidean version of Loop Quantum Gravity theory. We will expose the spin-network
formulation, adapt-it for the boundary of our assembly, and give the corresponding proper and coherent states of
the geometry. After, we will give the spin-foam and express the transition amplitude. In the transition amplitude
the Immirzi parameter γ, from the EPRL model, will be taken with the convenient value γ = 1

2 . We make this
choice for obtain correct de�nitions of intertwiners, coherent with the euclidean version of the EPRL model. We
will introduce in the next subsections.

5.1 Introduction to Loop Quantum Gravity and EPRL model (see [3, 7, 4, 14, 15])

In covariant Loop Quantum Gravity, states are de�ned on the 3d boundary of a space-time region. A basis of
states is given by the spin-network states, that have support on a graph that can be interpreted as the dual of
the 3d discretization of the space. As a dual, the spin-network graph can be seen like a �assembly drawing� of
the 3d boundary : the links are the dual of the geometric faces and the nodes are the dual of the assembly of the
geometric faces in polyhedra. In the context of a triangulation of 3d boundary, the links represent just the triangles
and the nodes represent the tetrahedra. Formally, the quantum states of the boundary will be given as function
of group elements associated at each link of the spin-network graph. The quantum parameters associated to the
representation of the group will be connected to the classical parameters via some operators, as the area-operators.

The theory associates an amplitude to such boundary states. The amplitude can be computed using the spin-
foam expansion: at each order the amplitude is given a by a spin-foam de�ned on a two-complex whose boundary
is the graph of the boundary state. In particular, the spin-foam can be de�ned on the dual of a triangulation of the
space-time region. As the spin-network graph for the 3d regions, the spin-foam graph can be seen like a �assembly
drawing� of the 4d pieces of space-time where the edges represent the shared 3d polyhedra and the vertices represent
the space-time pieces. For a triangulation of 4d space-time, the edges are just the tetrahedra and the vertices are

40

4-simplices. Finally, the amplitude will be given as integration over the group elements of the spin-foam graph with
its associated spin-network states.

Of course, the all processes de�ne in this introduction of Loop Quantum Gravity will be more explicit when we
will use them for our study object.

5.1.1 Spin-network

From the boundary of a quantum geometry, we have a graph Γ dual to the 3d discretization of this boundary
called the spin-network graph. The nodes, labeled �k�, are the duals of the polyhedra from the boundary of the
geometry. The links, labeled �kl� between the nodes k and l, can be seen are the dual of the shared faces between
the polyhedra from k and l. The quantum states associated to the boundary geometry are square integral functions
ψ(ukl) of one SU(2) group variable ukl per each link of the spin-network graph Γ. A basis in their space is given
by the spin-network functions :

ψ
jkl,{J}k
Γ (ukl) =

∏
nodes k

i{J}k ·
∏

links kl

Djkl (ukl) (62)

where jkl are the link spins and {J}k are the intertwiner spins. The Djkl are the j-representations (Wigner's repre-
sentations) of the SU(2) group elements ukl and, as the intertwiners i{J}k , have magnetic indices ; the contraction
is dictated by the topology of the graph. The intertwiner i{J}k associated for each node k and can be obtained
from the group invariance of the node :∑

{J}k

i
{J}k
mkl1 ,mkl2...

i
{J}k
nkl1 ,nkl2...

=

∫
SU(2)

dgkD
jkl1
mkl1nkl1

(gk)D
jkl2
mkl2 ,nkl2

(gk) . . . (63)

That formula can be interpreted as the invariance of the geometry (like the dipheomorphism invariance) from the
node k, and the intertwiner spins {J}k are the quantum numbers associated to the node and geometry properties
from the associated polyhedra (like projected area, dihedral angle or volume. See the Subsection 5.2.1 and 5.2.3).

The states ψ
jkl,{J}k
Γ are eigenstates of the area operator âkl of the faces dual to the links �kl� :

âkl

∣∣∣ψjkl,{J}kΓ

〉
= akl

∣∣∣ψjkl,{J}kΓ

〉
(64)

akl =
8πγ~G
c3

√
jkl (jkl + 1) (65)

We chose units where 8πγ~G/c3 = 1 so we do not have to carry over the dimensional factor. The group elements
ukl correspond physically to the parallel transport (on the boundary) from the node k to the node l ; the conserved
quantity correspond to the area, given by jkl, along the parallel transport. That quantum description have strong
links with the properties from the (usual) geometry dual to the spin-network graph.

5.1.2 Spin-foam

From the bulk of quantum geometry, which have a boundary de�ned by its spin-network graph, we have a graph
Υ dual to the 4d discretization called spin-foam graph. The vertices, labeled N , are the duals of the 4-polytopes
(4d generalization of polyhedra) and the edges are the duals of polyhedra. By de�nition, the external edges from a
spin-foam correspond to the boundary polyhedra from its spin-network graph. The faces of the spin-foam, means
loops and external faces (open-loops which are connected to the link from boundary spin-network), are the duals
of geometric faces of the geometry.

For each vertex N , we can de�ne a amplitude as a function of uNkl ∈ SU(2) variables :

AN
(
uNkl
)

=

∫
GN

dUNk
∏

kl⊂Simplex N

δ
(
Y †UNk

(
UNl
)−1

Y uNlk

)
(66)

41

where we have a integral over the all group elements UNk ∈ G, from the edges connected to the vertex N ; N are just
the number of edges connected to N and thus the number of copies of G. G is the group associated to the vertex
N and correspond to the group of rotations of the space-time region associated to the dual of N : G = SL(2,C)
for Lorentzian space-time, G = SO(4) ' SU(2)+ × SU(2)− for Euclidean space-time.

The UNk and UNl can be seen as the group elements associated to polyhedra (edges) �k� and �l� from the vertex
N . The uNkl is the parallel transport element between the polyhedra (edges) �k� and �l�, like in the previous spin-
network subsection. In fact, the uNkl variables are the spin-network variables from the boundary of the individual
vertex N ; and the Y is the map between the group elements UNk ∈ G and the group elements uNkl ∈ SU(2). The
map Y depend of the de�nition of G, and glue the group representation of UNk with the group representation of uNlk
:

Y :


|j,m〉 = |γj, j; j,m〉 for G = SL(2,C)

|j,m〉 =
√

2j + 1
∑
m+,m−

(
j+ j− j

m+ m− m

)
|j+,m+〉 ⊗ |j−,m−〉 ; j± = 1±γ

2 j for G = SO(4)
(67)

With the de�nition of the SU(2)-delta function :

δ (•) :=
∑
j

(2j + 1)Tr
[
Dj (•)

]
(68)

We have formally :

δ
(
Y +UNk

(
UNl
)−1

Y uNlk

)
=

∑
jkl

(2jkl + 1)
∑
mkl

∑
nkl

Dγjkl,jkl
jklmkl,jklnkl

(
UNk

(
UNl
)−1
)
Djkl
mklnkl

(
uNlk
)

for G = SL(2,C)∑
jkl

(2jkl + 1)
2∑

m±klmkl

∑
n±klnkl

(
j+
kl j−kl jkl

m+
kl m−kl mkl

)(
j+
kl j−kl jkl

n+
kl n−kl nkl

)
×Dj+kl

m+
kln

+
kl

(
uNk

+
(
uNl

+
)−1

)
D
j−kl
m−kln

−
kl

(
uNk
−
(
uNl
−
)−1

)
Djkl
mklnkl

(
uNlk
) ; j± = 1±γ

2 j for G = SO(4)

(69)
Here we see the �rst-fruits of the problem associated to γ for the Euclidean case : the j± must be integer or
half-integer, that implies speci�c values of γ and j ; we will talk more about that when we will apply the process
in our study object.

The full transition amplitude WΥ from the spin-foam Υ is given by the integration over the all uNkl with SU(2)-
delta functions for glue the all vertices :

WΥ (ukl) =

∫
duNkl

∏
N

AN
(
uNkl
) ∏
loops⊂Υ

δ

 ∏
(ab,N)⊂loop

uNab

 ∏
fexternal⊂Υ

δ

ukl ∏
(ab,N)⊂fexternal

uNab

 (70)

where we have a product of δ-functions for each loops from the spin-foam, that give the delta function of the
oriented product of the uNab elements from the loop, and we have a product of δ-functions for each external faces
which connect the residual uNab with the ukl from the boundary.

5.1.3 Transition amplitude

With the state from the spin-network boundary Γ and the amplitude of the associated spin-foam Υ, we can express
the transition amplitude of the geometry state :〈

WΥ|ψ
jkl,{J}k
Γ

〉
=

∫
duklWΥ (ukl)ψ

jkl,{J}k
Γ (ukl) (71)

which represent the quantum evolution of the geometry state ψ
jkl,{J}k
Γ from the boundary with the quantum

geometrical constraint inside the de�nition of WΥ. We have the geometric properties associated to the boundary,
via the basis state of spin-network, and the quantum summation over the all possible bulk geometries, via the
spin-foam and its integrals from the vertex amplitudes.

42

5.2 spin-network of our objects

Here we consider a simple case, where the 4d triangulation is formed by the assembly of three 4-simplices. Figures
26, 27 gives respectively the graph of the triangulation of the boundary of 4-simplex and 4-simplices assembly.
Although formally similar, this represents actually the graphs duals to the boundary of these Figures 5a, 6 : points
represent tetrahedra and lines represents triangles. The quantum states will be spin-network functions

ψjkl,Jk(ukl) =
∏

nodes k

iJk ·
∏

links kl

Djkl (ukl) (72)

where jkl are spins and Jk intertwiner spins for 4-valent intertwiners. The group variable ukl can be understood like
the group element to make the parallel transport (on the boundary) of tetrahedron τk to a tetrahedron τl through
them shared face of area akl =

√
jkl (jkl + 1).

5.2.1 spin-networks for the individual cylindrical 4-simplices

For each individual 4-simplex N , we begin implementing the cylindrical symmetry by choosing boundary states
where, as in 2.2 (and more especially from (9)),

jN12 = jN23 = jN31 ≡ j, jN14 = jN24 = jN34 = jN15 = jN25 = jN35 ≡ j0 and jN45 ≡ jf . (73)

The integers or half-integers j, j0, jf are the quantum equivalent of the areas a, a0, af .
Let us now come to the intertwiners. For the intertwiners between four representations j1, ..., j4, we use a basis

de�ned by

iJm1m2m3m4
=
√

2J + 1
∑
M

(−1)
J−M

(
j1 j2 J
m1 m2 M

)(
j3 j4 J
m3 m4 −M

)
, (74)

where the

(
j1 j2 j3
m1 m2 m3

)
are the Wigner 3j-symbols de�ning the 3-valent invariant of SU(2). In the case of

the boundary tetrahedra (we say boundary in the context of the boundary of the full assembly) we pair the faces
with the same area and write

i
JNk
m1m2m3m4 =

√
2JNk + 1

∑
M (−1)

JNk −M
(

j j JNk
m1 m2 M

)(
j0 j0 JNk
m3 m4 −M

)
(for k = 1, 2, 3 and ∀N)

While for the shared-tetrahedra (which are internal for the full assembly, but belonging to the boundary of
individual 4-simplex), we de�ne the matching and the intertwiners as follows

i
JNk
m1m2m3m4 =

√
2JNk + 1

∑
M (−1)

JNk −M
(

jf j0 JNk
m1 m2 M

)(
j0 j0 JNk
m3 m4 −M

)
(for k = 4, 5 and ∀N)

The intertwiners iJ
N
k associated to a node determines the quantum geometry of the tetrahedron τNk . The

number JNk , integer or half-integer, is the quantum number equivalent of the projected area ANk (We can see the
link between the two aspects in the coherent states Subsection 5.2.3). The following graph illustrates the quantum
numbers de�ning the spin-network and the chosen pairings for the intertwiners :

43

Figure 26: Spin-network of individual 4-Simplex with the speci�cation of the spins

Explicitly, the spin-network eigenstates for each individual 4-simplex N are :

ψ
j0,j,jf ,J

N
k

N

(
uNkl
)

=
∑
m,n

(−1)
∑

(jNkl−nkl)i
JN1
−n12m31−n14m51

i
JN2
−n23m12−n24m52

i
JN3
−n31m23−n34m53

i
JN4
m54m24m34m14i

JN5
−n54−n52−n53−n51

×Dj0
m14n14

(
uN14

)
Dj0
m24n24

(
uN24

)
Dj0
m34n34

(
uN34

)
Dj0
m51n51

(
uN51

)
Dj0
m52n52

(
uN52

)
Dj0
m53n53

(
uN53

)
(75)

×Dj
m12n12

(
uN12

)
Dj
m23n23

(
uN23

)
Dj
m31n31

(
uN31

)
D
jf
m54n54

(
uN54

)
These states are eigenstates of the area operators of the boundary :

âNkl

∣∣∣ψj0,j,jf ,JNk 〉 =
√
jNkl
(
jNkl + 1

) ∣∣∣ψj0,j,jf ,JNk 〉 =


√
j (j + 1)

∣∣∣ψj0,j,jf ,JNk 〉 for k, l = 1, 2, 3√
jf (jf + 1)

∣∣∣ψj0,j,jf ,JNk 〉 for kl = 45√
j0 (j0 + 1)

∣∣∣ψj0,j,jf ,JNk 〉 else

(76)

and satisfy the orthogonality relation :〈
ψ
j′0,j
′,j′f ,J

N
k
′

N |ψj0,j,jf ,J
N
k

N

〉
=

∫
SU(2)

duNψj
′
0,j
′,j′f ,J

N
k
′ (
uNkl
)
ψj0,j,jf ,J

N
k
(
uNkl
)

=
δj0,j′0δj,j′δjf ,j′f

(2j0 + 1)
6

(2j + 1)
3

(2jf + 1)

5∏
k=1

δJNk ,JNk ′

(77)

5.2.2 spin-networks for the boundary of the assembly

For our assembly, the spin-network associated to its boundary depend only of the boundary tetrahedra (without the
shared-tetrahedra) which depend of the j, j0,

{
JNk
}
k=1,2,3

parameters and corresponding intertwiners. With the
same pairing and de�nitions of intertwiners than previously, we can use the following graph showing the spin-network
of the boundary from assembly :

44

Figure 27: Spin-network of the assembly's boundary. The black links represents the faces f0 with their associated
spin j0, and the blue links represents the faces fa with their associated spin j. We see the associated pieces of
geometry of the graph in the right.

Explicitly, with N = 1, 2, 3 for distinguish the 4-simplices, the boundary spin-network eigenstates are

Ψj,j0,J
N
k

(
uNkl, u

NN ′

k

)
=
∑
m,n(−1)

∑
(jNkl−nkl) i

J1
1

−n1
12m

1
31−n1

14m
1
51
i
J1
2

−n1
23m

1
12−n1

24m
1
52
i
J1
3

−n1
31m

1
23−n1

34m
1
53

×iJ
2
1

−n2
12m

2
31−n2

14m
2
51
i
J2
2

−n2
23m

2
12−n2

24m
2
52
i
J2
3

−n2
31m

2
23−n2

34m
2
53

×iJ
3
1

−n3
12m

3
31−n3

14m
3
51
i
J3
2

−n3
23m

3
12−n3

24m
3
52
i
J3
3

−n3
31m

3
23−n3

34m
3
53

×Dj0
m1

53n
2
34

(
u12

3

)
Dj0
m1

52n
2
24

(
u12

2

)
Dj0
m1

51n
2
14

(
u12

1

)
×Dj0

m2
53n

3
34

(
u23

3

)
Dj0
m2

52n
3
24

(
u23

2

)
Dj0
m2

51n
3
14

(
u23

1

)
(78)

×Dj0
m3

53n
1
34

(
u31

3

)
Dj0
m3

52n
1
24

(
u31

2

)
Dj0
m3

51n
1
14

(
u31

1

)
×Dj

m1
12n

1
12

(
u1

12

)
Dj
m1

23n
1
23

(
u1

23

)
Dj
m1

31n
1
31

(
u1

31

)
×Dj

m2
12n

2
12

(
u2

12

)
Dj
m2

23n
2
23

(
u2

23

)
Dj
m2

31n
2
31

(
u2

31

)
×Dj

m3
12n

3
12

(
u3

12

)
Dj
m3

23n
3
23

(
u3

23

)
Dj
m3

31n
3
31

(
u3

31

)
Where uNkl are the SU(2) group elements associated to the j-faces in the 4-simplex N , and the uNN

′

k are the SU(2)
group elements of the j0-faces from the shared-tetrahedra between the 4-simplices N and N ′. In fact, we can
construct its boundary states Ψ with the states ψN of the individual 4-simplices :

(−1)
∑
k,N jN4kΨjNkl,J

N
k

(
uNkl, u

NN ′

k

)
δJ1

5J
2
4
δJ2

5J
3
4
δJ3

5J
1
4

∑
jf

δjf ,jN45
(2jf + 1)

2

∏
k,NN ′

δjN4k,jN
′

5k

2jN4k + 1
(79)

45

=
∑
J4,J5

∫
du5kdu4k ψ

j1kl,J
1
k

1

(
u1
kl

)
ψ
j2kl,J

2
k

2

(
u2
kl

)
ψ
j3kl,J

3
k

3

(
u3
kl

)
×δ
(
u1

53u
2
34u

21
3

)
δ
(
u1

52u
2
24u

21
2

)
δ
(
u1

51u
2
14u

21
1

)
×δ
(
u2

53u
3
34u

32
3

)
δ
(
u2

52u
3
24u

32
2

)
δ
(
u2

51u
3
14u

32
1

)
×δ
(
u3

53u
1
34u

13
3

)
δ
(
u3

52u
1
24u

13
2

)
δ
(
u3

51u
1
14u

13
1

)
×δ
(
u1

54u
2
54u

3
54

)
Each ψN states represent the boundary of the individual pieces of the assembly, the Kronecker symbols δAB and the
SU(2)-delta function δ (•) =

∑
j (2j + 1)Tr

[
Dj (•)

]
allow to match the shared-tetrahedra and corresponding group

elements between the pieces. These states, by construction, are also eigenstates of area operator of the assembly's
boundary :

âNkl

∣∣∣Ψj,j0,J
N
k

〉
=
√
jNkl
(
jNkl + 1

) ∣∣∣Ψj,j0,J
N
k

〉
=


√
j (j + 1)

∣∣∣Ψj,j0,J
N
k

〉
for k, l = 1, 2, 3√

j0 (j0 + 1)
∣∣∣Ψj,j0,J

N
k

〉
else

(80)

And respect the orthogonality relation :〈
Ψj′,j′0,J

N
k
′
|Ψj,j0,J

N
k

〉
=

∫
SU(2)

duΨj′,j′0,J
N
k
′ (
uNkl, u

NN ′
k

)
ψj0,j,jf ,J

N
k

(
uNkl, u

NN ′

k

)
=

δj0,j′0δj,j′

(2j0 + 1)
9

(2j + 1)
9

3,3∏
N=1,k=1

δJNk ,JNk ′

(81)

5.2.3 Coherent states

The spin-network states de�ned in the previous section are eigenstates of the projected area ANk of the tetrahedra,
and are therefore completely spread in the corresponding angles ΦNk , which do not commute with ANk . Therefore
they are very non-classical. We are interested, instead, in wave packets that are minimally spread both in ANk and
in ΦNk . To this aim, we use the (intrinsic) coherent states de�ned by Livine and Speziale [20]. These are de�ned as
follows. The coherent link states are de�ned by

|j−→n 〉 = R (−→n) |j, j〉 =
∑
m

Dj
mj (R (−→n)) |j,m〉 (82)

where −→n is the normal vector to a face of tetrahedron with area j. The group element R (−→n) is a rotation than
maps the vector −→uz into the normal vector −→n :

R (−→n) · −→uz = −→n (83)

For a tetrahedron with vectors −→ni associated to its faces, the Livine-Speziale state is:

|ji−→ni〉 =
∑
m

Dj1
m1j1

(R (−→n1))Dj2
m2j2

(R (−→n2))Dj3
m3j3

(R (−→n3))Dj4
m4j4

(R (−→n4)) |j1,m1〉 ⊗ |j2,m2〉 ⊗ |j3,m3〉 ⊗ |j4,m4〉

(84)
And the projection of this state on the corresponding intertwiner gives:〈

iJ |ji−→ni
〉

=
∑
m

iJm1m2m3m4
Dj1
m1j1

(R (−→n1))Dj2
m2j2

(R (−→n2))Dj3
m3j3

(R (−→n3))Dj4
m4j4

(R (−→n4)) (85)

Writing −→n = (cosφ sin θ, sinφ sin θ, cos θ) from the spherical coordinates system, we have

R (−→n) = R (θ, φ) = e−ıφJZe−ıθJY (86)

Where JZ and JY are the generators of (usual) rotations. With this choice of R, we can express the j-representation
:

Dj
mj (R (−→n)) = Dj

mj (θ, φ) = Dj
mj

(
e−ıφJZe−ıθJY

)
= e−ımφdjmj(θ)

=
√

(2j)!
(j+m)!(j−m)! ·

ξj−m

(1+|ξ|2)
j · e−ıjφ ; ξ = tan

(
θ
2

)
eıφ

(87)

46

Where the d are the little Wigner matrices. The expression of Livine-Speziale state with his intertwiner became :

〈
iJ |ji−→ni

〉
=

 4∏
i=1

e−ıjiφi
√

(2ji)!(
1 + |ξi|2

)ji
∑

m

iJm1m2m3m4

4∏
i′=1

ξi′
ji′−mi′√

(ji′ +mi′)!(ji′ −mi′)!
(88)

Which is physically the distribution of the coherent states of tetrahedron geometry with the normal face-vectors −→ni
and their associated areas ji over the intertwiner basis iJ . This distribution over the intertwiner spin J depend of
the four j-areas and �ve angles: we have four set of (θ, φ) variables, one for each −→ni , but with the invariance under
the rotations (gauge �xing) we can �x three of them. If the tetrahedron geometry is classical, that means it respect
the closure condition

∑
i ai
−→ni =

−→
0 ∼

∑
i ji
−→ni =

−→
0 , we can reduce the angles parameters to the shape parameters

A, Φ as in the classical Subsection 2.1 and Annexes A.
In a assembly of tetrahedra, as in our study object, we will take the precise notation for the Livine-Speziale of

the tetrahedron τNk : 〈
iJ
N
k |jNkl

−→
nNkl

〉
=
∑
m

i
JNk
mkl1mkl2mkl3mkl4

∏
l

D
jNkl
mkljNkl

(
θNkl , φ

N
kl

)
(89)

In the cylindrical symmetric setting, where the tetrahedra respect the closure condition
∑
l a
N
kl

−→
nNkl =

−→
0 ∼

∑
l j
N
kl

−→
nNkl =

−→
0 , we have two types of Livine-Speziale distributions:〈
iJ
N
k |j, j0, A,Φ

〉
≡
〈
iJ
N
k |jNkl

−→
nNkl
(
ANk ,Φ

N
k

)〉
for the boundary tetrahedra (k = 1, 2, 3) from the 4-simplex N

(90)〈
iJ
N
k |jf , j0, Af ,Φf

〉
≡
〈
iJ
N
k |jNkl

−→
nNkl
(
ANk ,Φ

N
k

)〉
for the shared tetrahedra (k = 4, 5) from the 4-simplex N

(91)
These states are peaked around the classical geometry de�ne by the variables (ji, A,Φ) of each tetrahedron. A
example of these distribution over the J parameter can be seen in the next Figure for ji = 8, A = 2√

3
j ≈ 9.24,

Φ = π
2 parameters :

Figure 28: The norm (in the left) and the real part (in the right) from the Livine-Speziale distribution with ji = 8,
A = 2√

3
j ≈ 9.24, Φ = π

2 . The points are the exact values of the Livine-Speziale distribution (de�ne only for J ∈ 1
2N,

and here in this special case J ∈ N), and the green lines are the approximation in terms of Gaussian and complex
phase.

47

Approximately: 〈
iJ |ji−→ni (A,Φ)

〉
∼ N (ji, A,Φ) (−1)

J
e−iJΦe

− (J−A)2

2σ2(ji,A) (92)

These states

ψ
jNkl,A

N
k ,Φ

N
k

N

(
uNkl
)

=
∑
Jk

ψj
N
kl,J

N
k
(
uNkl
)∏
k

〈
iJ
N
k |jNkl

−→
nNkl
(
ANk ,Φ

N
k

)〉
(93)

ΨjNkl,A
N
k ,Φ

N
k

(
uNkl, u

NN ′

k

)
=
∑
Jk

ΨjNkl,J
N
k

(
uNkl, u

NN ′

k

)∏
k,N

〈
iJ
N
k |jNkl

−→
nNkl
(
ANk ,Φ

N
k

)〉
(94)

approximate the intrinsic classical geometry, respectively, of the 4-simplices and the assembly. The J appear to
be the quantum equivalent of A as well ; the distribution is maximum for J ∼ A with the Gaussian part, which
become a delta-function in the limit j −→∞.

A interesting feature of the Livine-Speziale distribution is the complex conjugate give the inversion symmetry
of the tetrahedron geometry. That come from the properties of Wigner j-representation :

Dj
mj (R (−→n)) = Dj

mj (θ, φ) = eımφdjmj(θ) = Dj
mj (θ,−φ)

= e−ıπme−ı(−m)(π+φ)dj−mj(π − θ) = e−ıπmDj
−mj (π − θ, π + φ) = e−ıπmDj

−mj (R (−−→n))

(95)

which give :

〈iJ |ji−→ni〉 =
∑
m i

J
m1m2m3m4

∏4
i=1D

ji
miji

(R (−→ni)) =
∑
m i

J
m1m2m3m4

(−1)
∑
imi

∏4
i=1D

ji
−miji (R (−−→ni))

=
∑
m (−1)

∑
i ji iJ−m1−m2−m3−m4

∏4
i=1D

ji
−mji (R (−−→n)) = (−1)

∑
i ji
〈
iJ |ji −−→ni

〉 (96)

We have the link between a coherent state to this complex conjugate by the inversion of the vectors : |ji−→ni〉 ∝
〈ji −−→ni |. That have physical sens, because the complex conjugate correspond to a time inversion. If you have a
sub-region of space which is oriented in space-time, the inversion of time reverse the orientation of the sub-region :
you can see that as the PT symmetry of geometry, where the inversion of time come with a inversion of space.

5.3 Spin-foam and transition amplitude

In LQG, the spin-foam graph will represent how �build� your space-time with the 3d boundary given by the spin-
network. Each external-lines will represent the boundary tetrahedra dual to the nodes from the spin-network
(associated to the boundary, where the boundary states are de�ned). And each internal-lines will represent the
internal tetrahedra dual to the �intermediate� spin-network states (see [3, 7, 4, 14, 15]). For example, Figure 29
give the �assembly drawing� of tetrahedra from its boundary (external-lines in blue) with the internal tetrahedra
(internal lines in red) in assembly of 4-simplex. For our simple case, where the vertices represent just 4-simplices,
we have only �ve-valents vertices for the spin-foam graphs.

The covariant LQG amplitude is a function of SU(2) group elements ukl from the associated boundary spin-
network. In our euclidean 4-dimentional space, we have 5 copies of SO(4) ' SU(2)+×SU(2)− for each vertices/4-
simplices amplitude and some integrals over SU(2)-delta function for gluing the vertices and the group elements
ukl from the spin-networks. We will describe these steps in the following.

5.3.1 Spin-foam for the individual 4-simplices an speci�c value of γ

We now construct the amplitude of one individual 4-simplex associated to its boundary state constructed above.
This is given by a single vertex, �ve edges (See Figure 29) and ten faces.

48

Figure 29: Spin-foam for one individual 4-simplex. The red edges will correspond to shared-tetrahedra, and blue
edges to boundary tetrahedra.

The red edges correspond to the shared-tetrahedra (internal in the full assembly, but belonging to the boundary
of the individual 4-simplex) and the blue edges are the boundary tetrahedra (in the context of the full assembly) ;
they are connected at single the 4-simplex vertex.

The covariant LQG 4-simplex amplitude is a function of an SU(2) group element uNkl per each face shared between
the tetrahedra τNk , τNl in the 4-simplex N . It is de�ned as an integral over 5 copies of SO(4) ' SU(2)+ × SU(2)−

as follows: ∫
(SO(4))5

dUNk
∏
kl

δ
(
Y +UNk

(
UNl
)−1

Y uNlk

)
(97)

Where UNk are the SO(4) group elements associated to edges and their dual tetrahedra, δ the SU(2)-delta function,
and Y the map between the SO(4) ' SU(2)+ × SU(2)− bulk variables and the SU(2) boundary variables :

Y : |j,m〉 =
√

2j + 1
∑

m+,m−

(
j+ j− j
m+ m− m

) ∣∣j+,m+
〉
⊗
∣∣j−,m−〉 (98)

With j± = 1
2 (1± γ) j given by the Immirzi parameter γ, which be taken equal to 1

2 . That choice is justi�ed by
the fact that if you take γ = 1

2 and a even number for j, the values of j± become integer or half-integer ! That
remove the problem of the map, but need to use even number for j. For the case where j can be not even, as in the
sum over the jf in the full transition amplitude (106), we choose to take for j+ and j− the integers or half-integers
closest to the theoretical values 1±γ

2 with the constraint j+ + j− = j. We don't know how bad this choice is, but
the reader (because the properties of the Wigner 3j-symbols) can choose to consider that the corresponding math
objects are nulls in these cases.

Like in the article [29] vertices amplitude parts give :∫
(SO(4))5

dUNk
∏
kl

δ
(
Y +UNk

(
UNl
)−1

Y uNlk

)
=
∑
jN

(∏
kl

(
2jNkl + 1

))∑
KN

[
KN
k , j

N
kl

]
ψ
jNkl,K

N
k

N

(
uNkl
)

(99)

With the SO(4) 15j-symbols :[
KN
k , j

N
kl

]
=
∑
K±

(
K+N

k , j
+N
kl

)(
K−

N
k , j

−N
kl

)∏
k

IK
N
k

K+ N
k K

− N
k ,

(
jNkl
)

(100)

Given by the SU(2) 15j-symbols (Kk, jkl) and the fusion coe�cients IKK+,K− (ja) :

(Kk, jkl) =
∑
p

(−1)
∑
kl(jkl−pkl)iK1

−p12p13−p14p15i
K2
−p23p12−p24p25i

K3
−p13p23−p34p35i

K4
p45p24p34p14i

K5
−p45−p25−p35−p15 (101)

49

IKK+,K− (ja) =
∑

m,m+,m−

iKm1m2m3m4
(ja)iK

+

m+
1 m

+
2 m

+
3 m

+
4

(j+
a)iK

−

m−1 m
−
2 m
−
3 m
−
4

(j−a)

4∏
a=1

√
2ja + 1

(
j+
a j−a ja
m+
a m−a ma

)
(102)

We have the amplitude of a individual 4-simplex express in terms of its boundary eigenstates ψj
N
kl,K

N
k

N and
SO(4) 15j-symbols. That really important because we have a quantum de�nition of geometry with its geometries

states given by ψj
N
kl,K

N
k

N and their weight given by the SO(4) 15j-symbols
[
KN
k , j

N
kl

]
. That physically contains some

information about the geometry, in terms of areas given by aNkl ≡
√
jNkl
(
jNkl + 1

)
, and their probabilities to appears

with
[
KN
k , j

N
kl

]2
.

5.3.2 Spin-foam for the assembly

We construct the spin-foam amplitude associated to our assembly and its boundary state. In our case the spin-foam
is given by three vertices, with �ve edges and ten faces each, and interconnected by a loop of three shared edges (see
Figure 30). The blue edges correspond to the boundary tetrahedra and the red edges are the shared-tetrahedra.
Each face from spin-foam is the dual of the triangle from assembly : the faces given by two blue-edges (in same
vertex) are the boundary j-triangles, the faces given by two blue-edges connected by one red-edge are the boundary
j0-triangles, and the red-loop is the dual of the internal triangle f .

Figure 30: Spin-foam of the assembly. The red edge represents the shared-tetrahedra τN4
(

= τN
′

5

)
, and the blue

edge represents the boundary tetrahedra. We see the associated pieces of geometry of the graph in the right.

Here the amplitude will be given as a function of SU(2) group elements uNkl and u
NN ′

k from the faces. The uNkl
just come from of the boundary faces of the 4-simplices (who are also in the boundary of the full assembly for
k, l = 1, 2, 3). The uNN

′

k come from the boundary faces of the 4-simplices they share between them via the shared
internals tetrahedra. For the amplitude, we have integrals over 15 copies of SO(4) ' SU(2)+ × SU(2)− (5 copies
per each vertices) from the 4-simplices amplitude, and integrals of SU(2)-delta function for gluing the vertices. The

50

amplitude function W can be written :

W
(
uNkl, u

NN ′

k

)
=
∫
SU(2)

du5ldu4l

∏
N

[∫
(SO(4))5

dUNk
∏
kl δ
(
Y +UNk

(
UNl
)−1

Y uNlk

)]
δ
(
u1

54u
2
54u

3
54

)∏
k,NN ′ δ

(
uN5ku

N ′

k4 u
N ′N
k

)
(103)

With the previous de�nitions from the amplitude for individual 4-simplex, the covariant LQG amplitude of the full
assembly is :

W
(
uNkl, u

NN ′

k

)
=
∫
SU(2)

du5ldu4l

∏
N

[∑
jN (

∏
kl (2jkl + 1))

∑
KN

[
KN
k , j

N
kl

]
ψj

N
kl,K

N
k

(
uNkl
)]∏

k,NN ′ δ
(
uN5ku

N ′

k4 u
N ′N
k

)
δ
(
u1

54u
2
54u

3
54

)
(104)

And the gluing parts allow to rewrite the amplitude in terms of boundary states Ψ :

W
(
uNkl, u

NN ′

k

)
=
∑
j

(∏
N,kl

(
2jNkl + 1

))∑
jf

δ
jf ,j

N
45

(2jf+1)2

∑
K

∏
N

[
KN
k , j

N
kl

]
ΨjNkl,K

N
k

(
uNkl, u

NN ′
k

)∏
NN ′ δKN

5 K
N′
4

∏
k,NN ′

δ
jN
4k
,jN
′

5k

2jN4k+1

=
∑
j

(∏
N,kl 6=45

(
2jNkl + 1

))∑
K1K2K3

(∑
jf

(2jf + 1)
∑
K4,K5

∏
N

[
KN
k , j

N
kl

]
jN45=jf

∏
NN ′ δKN

5 K
N′
4

)
×Ψjkl,KN

k

(
uNkl, u

NN ′
k

)
(105)

The amplitude of a spin-network state is just given by :

W jNkl,J
N
k =

〈
W |ΨjNkl,J

N
k

〉
=
∫
SU(2)

duklW
(
uNkl, u

NN ′

k

)
Ψjkl,J

N
k

(
uNkl, u

NN ′

k

)
=

∑
jf

(2jf + 1)
(∑

K

∏
N

[
JNk ,K

N
4 ,K

N
5 ; jNkl

[
jN45 = jf

]]∏
NN ′ δKN

5 K
N′
4

) (106)

And �nally give for our cylindrical symmetric boundary assembly :

W jNkl,J
N
k =

〈
W |Ψj,j0,J

N
k

〉
=
∑
jf

(2jf + 1)
(∑

K4,K5

∏
N

[
JNk ,K

N
4 ,K

N
5 ; j, j0, jf

]∏
NN ′ δKN

5 K
N′
4

)
=

∑
jf

(2jf + 1)
(∑

K4

[
J1
k ,K

1
4 ,K

2
4 ; j, j0, jf

] [
J2
k ,K

2
4 ,K

3
4 ; j, j0, jf

] [
J3
k ,K

3
4 ,K

1
4 ; j, j0, jf

]) (107)

The mathematical structure of the amplitude of spin-network state is really interesting and have links with classical
geometry :

- Each SO(4) 15j-symbols
[
KN
k , j

N
kl

]
represent 4-simplices and depend of the area parameters jNkl and the

quantum equivalent of shape parameters �and projected area� KN
k

- The Kronecker symbols δKN
5 K

N′
4

glue the 4-simplices together and share the tetrahedra by summation over

KN
4 and KN

5

- The summation over jf correspond to the quantum summation over the all possible area associated to f .

5.3.3 Coherent transition amplitude

With the Livine-Speziale coherent states for the quantum tetrahedra, we can construct coherent transition amplitude
for the individual 4-simplex and the assembly. For the full assembly, we have the coherent transition amplitude :

W
(
j, j0, A

N
k ,Φ

N
k

)
=

〈
W |
⊗
N,kl

jNkl
−→n N

kl

(
ANk ,Φ

N
k

)〉
=
∑
JNk

〈
W |Ψj,j0,J

N
k

〉∏
N,k

〈
iJ
N
k |ji−→ni

(
ANk ,Φ

N
k

)〉
(108)

That will be reduce with the cylindrical symmetries to :

W (j, j0, A,Φ) =
∑
jf

(2jf + 1)wf (j, j0, jf , A,Φ) (109)

51

{
ANk ≡ A
ΦNk ≡ Φ

k = 1, 2, 3 and ∀N (110)

where wf are the amplitude associated to the spin-network with a speci�c area jf -representation for the internal
face f :

wf (j, j0, jf , A,Φ) =
∑
JNk

(∑
K4

[
J1
k ,K

1
4 ,K

2
4 ; j, j0, jf

] [
J2
k ,K

2
4 ,K

3
4 ; j, j0, jf

] [
J3
k ,K

3
4 ,K

1
4 ; j, j0, jf

])∏
N,k

〈
iJ
N
k |j, j0, A,Φ

〉
(111)

It physically represent, in a certain sens, the three 4-simplices �interacting� together for a speci�ed face f with jf
given.

The summation over the K4, which glue the 4-simplex together, can be expressed in terms of coherent states
from the shared-tetrahedra. In fact, the Kronecker symbols δKN

4 K
N′
5

from (106) can be expressed as below :

δKN
4 K

N′
5

=

(2jf + 1)(2j0 + 1)3
4∏
i=1

∫
d
−−→
nNf,i
4π

〈iKN
4 |jf , j0,

−−→
nNf,i

[
ANf ,Φ

N
f

]〉〈
iK

N′
5 |jf , j0,

−−→
nNf,i

[
ANf ,Φ

N
f

]〉
(112)

where the
〈
iK

N
4,5 |jf , j0,

−−→
nNf,i

[
ANf ,Φ

N
f

]〉
are the Livine-Speziale coherent state associated to the shared-tetrahedra

(Subsection 5.2.3) :〈
iK

N
4,5 |jf , j0,

−−→
nNf,i

[
ANf ,Φ

N
f

]〉
=

∑
m i

KN
4,5

m1m2m3m4

∏
iD

jNi
mijNi

(
R(
−−→
nNf,i)

) [
ANf ,Φ

N
f

]
=

∑
m i

KN
4,5

m1m2m3m4

∏
iD

jNi
mijNi

(
θNf,i, φ

N
f,i

) [
ANf ,Φ

N
f

] ;

{
jN1 = jf

jNi = jf for i = 2, 3, 4

(113)

These states depend of the face-vectors
−−→
nNf,i associated to the faces of the corresponding shared-tetrahedra and

implicitly of the feasible shape parameters ANf , ΦNf . But, only when the normal face vector
−−→
nNf,i respect the closure

condition (2) these states are reduced to the coherent states from the Subsection 5.2.3 :〈
iK

N
k |jNi

−→
nNi
[
ANf ,Φ

N
f

]〉∣∣∣∣∑
i j
N
i

−→
nNi =

−→
0

≡
〈
iK

N
k |jf , j0, Af ,Φf

〉 (
with

(
ANf ,Φ

N
f

)
≡ (Af ,Φf)

from the cylindrical symmetries

)
(114)

Note also the interesting property from (96) :〈
iK

N′
5 |jf , j0,

−−→
nNf,i

[
ANf ,Φ

N
f

]〉
∝
〈
iK

N′
5 |jf , j0,−

−−→
nNf,i

[
ANf ,Φ

N
f

]〉
(115)

With these relations, we can express the wf amplitude in function of the integration over the all geometries of
the shared-tetrahedra :

wf (j, j0, jf , A,Φ) =
∏
N

(
(2jf + 1)(2j0 + 1)3

∏4
i=1

∫ d
−−→
nNf,i
4π

) 〈
D1|j, j0, jf , A,Φ,

−−→
n1
f,i

[
A1
f ,Φ

1
f

]
,−
−−→
n2
f,i

[
A2
f ,Φ

2
f

]〉
×
〈
D2|j, j0, jf , A,Φ,

−−→
n2
f,i

[
A2
f ,Φ

2
f

]
,−
−−→
n3
f,i

[
A3
f ,Φ

3
f

]〉
×
〈
D3|j, j0, jf , A,Φ,

−−→
n3
f,i

[
A3
f ,Φ

3
f

]
,−
−−→
n1
f,i

[
A1
f ,Φ

1
f

]〉
(116)

where we have the coherent amplitude transition for each 4-simplex of the assembly :〈
DN |j, j0, jf , A,Φ,

−−→
nNf,i

[
ANf ,Φ

N
f

]
,−
−−→
nN
′

f,i

[
AN

′

f ,ΦN
′

f

]〉
=
∑
JN ,KN

[
JNk ,K

N
4 ,K

N
5 ; j, j0, jf

] 〈
iK

N
4 |jf , j0,

−−→
nNf,i

[
ANf ,Φ

N
f

]〉〈
iK

N
5 |jf , j0,

−−→
nN
′

f,i

[
AN

′
f ,ΦN

′
f

]〉∏3
k=1

〈
iJ
N
k |j, j0, A,Φ

〉
(117)

52

For summarize, the coherent amplitude transition describes the quantum geometry of our study object with the

boundary tetrahedra whose the geometries are given by the coherent states
〈
iJ
N
k |j, j0, A,Φ

〉
. We can rewrite the

coherent transition amplitude in terms of product of coherent 4-simplex amplitude where we sum (quantumly) over
the all possible geometries of shared-tetrahedra :

W (j, j0, A,Φ)︸ ︷︷ ︸
coherent
transition
amplitude

=
∑
JNk︸︷︷︸

sum over
the

coherent
states

〈
W |Ψj,j0,J

N
k

〉
︸ ︷︷ ︸

transition amplitude(
contains the all [quantum,
classical] possible geometries

)
∏
N,k

〈
iJ
N
k |j, j0, A,Φ

〉
︸ ︷︷ ︸

coherent states for the
boundary tetrahedra

=
∑
jf︸︷︷︸

sum over
the all
possible
area of f

(2jf + 1)wf (j, j0, jf , A,Φ)︸ ︷︷ ︸
transition amplitude of the
"interacting" 4-simplices
with the jf -area for f

=
∑
jf︸︷︷︸

sum over
the all
possible
area of f

(2jf + 1)
∏
N

(2jf + 1)(2j0 + 1)3
∏
i

∫
d
−−→
nNf,i
4π


︸ ︷︷ ︸

sum over the geometries of
one shared-tetrahedron︸ ︷︷ ︸

sum over the geometries of
all shared-tetrahedra

∏
N

〈
DN |j, j0, jf , A,Φ,

−−→
nNf,i,−

−−→
nN
′

f,i

〉
︸ ︷︷ ︸
coherent transition amplitude of

one individual 4-simplex︸ ︷︷ ︸
transition amplitude of the three

(disjoint) 4-simplices

(118)
The amplitudes contains the information about the geometry boundary and have the quantum summation over the
all possible geometries. In this sens, we see the equivalence with a path integral formulation for the geometry :

W ∼
∫

bulk
geometries

w︸︷︷︸
amplitude of
geometries

∼
∫
Dgµνe−iSGR[gµν] (119)

The next will be to study the properties of W , wf and of the other amplitudes, for �nd speci�c values and their
corresponding geometries, especially classical solutions, and see how it contributes.

6 Numerical analysis of amplitude

Now we have the transition amplitudes and mathematical objects that describe the quantum geometry of our
assembly, we will just compute them with a designed C++ code of our conception (Annexes B) and study the
results. Of course, the computation of the all transition amplitudes and quantum objects are not enough for
understand the quantum geometry. So we will also compute and give many interpretations and exploitations from
the results for �nd the internal geometry of our object. The idea is, as in the classical interpretation where the
choice of boundary parameters (a, a0, A) �x the all geometry by assembly and classical constraints ((18),(14) and
(19)), the transition amplitude computed for (j, j0, A,Φ) will reproduce the full quantum geometry and its study
will give some information about. First, we will compute and study the individual 4-simplex amplitude and show

53

that we �nd the classical geometry properties for the shared-tetrahedra when the coherent states of boundary are
given. Next, we will compute the value of transition amplitude W in function of coherent states given by the
shape variables (A,Φ) for �xed value of j and j0 and study its properties and integrants (wf , product of coherent
4-simplices...) for restore the full geometry information. Even if the developed code can be used for arbitrary values
of j and j0 (≤ 10), we do the all computations for the case j = j0 = 8.

6.1 Transition amplitude for individual 4-simplex

Barrett et al.'s theorem [6] (see also Conrady and Freidel [7]) states that the vertex amplitude for a coherent
boundary state is exponentially suppressed in the large spin limit (jkl � 1) unless the shapes of the boundary
tetrahedra are those determined non-locally by the classical �at geometry of 4-simplex, in terms of the areas of the
faces, namely by the jkl themselves. In the cases we are considering, this means that the shape variables Ak,Φk
must take the �classical values�, functions of j, j0, jf for the amplitude not to be suppressed.

We have studied these classical values in Section 2.2. For the angles, they are Φk = π
2 for all k. For the Ak

variables, they are given by the functions Ak(j, j0, jf) de�ned by the constraint (15) for k = 1, 2, 3 and by the
constraint (14) for k = 4, 5 (in the sense of the areas (a, a0, af) ∼ (j, j0, jf) in the spin-network state, see Section
5.2.1). Thus, �xing large values of the spins j, j0, jf , we expect the 4-simplex amplitude 〈D|j, j0, jf , Ak,Φk〉, seen
as a function of the Ak and the Φk, to be peaked on the classical values Φk = π

2 and Ak = Ak(j, j0, jf). We are
interested to explore what happens for small spins.

To this aim, we have designed a C++ program that computes the amplitude 〈D|j, j0, jf , Ak,Φk〉 (derived from
the (117)). Ideally, we would like to �x the spins and study the peakedness properties of the real function of ten
variables fj0,j,jf (Ak,Φk) = |〈D|j, j0, jf , Ak,Φk〉|. However, the ten dimensional space Ak,Φk is too large to explore
numerically. So, we study it gradually by exploring some of its sections.

6.1.1 Sections of the space of shapes

To start with, we �x all the angles and all the boundary projected areas to their classical values given respectively
by Φk = π

2 and by equation (14). This de�nes a function of two variables, the projected areas of the two shared-
tetrahedra :

f(A4, A5) = fj0,j,jf

(
A(j0, j, jf), A(j0, j, jf), A(j0, j, jf), A4, A5,

π

2
,
π

2
,
π

2
,
π

2
,
π

2

)
(120)

A typical result from the numerical calculation is given in the left panel of Figure 31, where this function is plotted
for j = j0 = jf = 8.

54

Figure 31: Left: f(A4, A5) for j = j0 = jf = 8. Right: The position of the peak as jf varies (crosses), compared
with the classical value (line) and the analytic continuation of the classical value (dotted line).

The amplitude clearly peaks on a value of A4 = A5 = Af , which is easily recognized precisely on the classical
value Af = Af (j0, j, jf). We can track the position of this peak as we change jf and compare it with the classical
value of Af (or its analytic continuation when the triangular conditions are not respected). The result of this
numerical analysis is given in the right panel of Figure 31, which shows that the peaks of the amplitude computed
numerically (crosses) follow the classical value. This shows that, quite remarkably, the peakedness properties on
the classical values already appears at small spins j ∼ 10. This pattern is quite general.

Figure 32: f(Φ4,Φ5) (Left) and f(Af ,Φf) (Right), for j = j0 = jf = 8.

Next, we can reverse the role of the A's and the Φ's. That is, we �x all the A's to their classical value and we

55

compute the amplitude as a function of Φ4 and Φ5. That is :

f(Φ4,Φ5) = fj0,j,jf

(
A(j0, j, jf), A(j0, j, jf), A(j0, j, jf), Af (j0, jf), Af (j0, jf),

π

2
,
π

2
,
π

2
,Φ4,Φ5

)
(121)

The numerical result is given in the left panel of Figure 32. We also give the transverse section de�ned by :

f(Af ,Φf) = fj0,j,jf

(
A(j0, j, jf), A(j0, j, jf), A(j0, j, jf), Af , Af ,

π

2
,
π

2
,
π

2
,Φf ,Φf

)
(122)

The corresponding numerical result is given in the right panel of Figure 32. Again we see the peak of the amplitude
on the classical values.

The last of these �gures shows also that there seem to be an increase of the amplitude away from the classical
values for low angles and low projected areas. To study this e�ect it is convenient to move away from the classical
region. It is instructive to see what happens if we take a non-classical value of the projected area A = A1 = A2 = A2

of the boundary tetrahedra. The numerical amplitude is given in Figure 33 with di�erent values of A (the classical
one is the fourth). That is, Figure 33 plots :

f(Af ,Φf |A) = fj0,j,jf

(
A,A,A,Af , Af ,

π

2
,
π

2
,
π

2
,Φf ,Φf

)
(123)

56

A = 0.156863 A = 3.92157

A = 8 A = 9.2549 ≈ 2√
3
jf

∣∣∣
jf=8

A = 12.0784 A = 15.8431

Figure 33: f(Af ,Φf |A), always for j = j0 = jf = 8.

57

Here we see an interesting phenomenon: there is large peaks for small areas and angles, which is not accounted
for by the classical limit geometry. It is clearly an e�ect of degenerate geometries, as evident from the fact that it
is at the angles Φf ∼ π

2 ±
π
2 and/or at the shape parameter A ∼ {0, 2 min(j, j0)}. As A increases and get closer to

its classical value, the peak at the classical values Φf ∼ π
2 and Af ∼ Af (j0, jf) emerges. If the value of A increase

more, the peak become more �clean� around the classical values (Af ,Φf) =
(
Af (j0, jf), π2

)
but the value of the

height of the summit decrease : we assumed that it's a trace of the presence of the classical peak for all possible
value of A, but it become maximum when A get closer to its classical value. For small value of A, the classical peak
is probably always present, but is completely drown in the degenerate geometries.

6.1.2 Phases and actions of individual 4-simplices

Besides the properties of the norms, which appears to be peaked around the classical geometry which �t the values
given by the j-areas representations, it will be important to �nd inside the de�nition of the mathematical object the
trace of the 4d-geometry parameters. So we will look the evolution of one 4-simplex amplitude with coherent states
and see if we can �nd the 4-dimentional properties of the geometry, and more particularly if we �nd the de�nition
of Regge's action. For a set of j-areas parameters, which �x the areas, we have only one set of coherent state which
perfectly �t the corresponding classical geometry. As the classical geometry of the 4-simplex, the choice of the j-
areas give non-locally via the 4d-geometry constraints the speci�c values of shape variables A (j, j0, jf) ,Φ = π

2 and
Af (j0, jf) ,Φf = π

2 given earlier (see Subsection 2.2). The idea will be to study the values of 4-simplex amplitude
with the coherent states given by the shape variables �on-shell of the 4d-geometry� A (j, j0, jf), Af (j0, jf) and
Φ = Φf = π

2 in function of the j-areas parameters. We will �x j, j0 and see the evolution of the transition
amplitude in function of jf . The expression of the 4-simplex amplitude with the coherent states previously de�ned
is just :〈

DN |j, j0, jf , A (j, j0, jf) , π2 ,
−→
nNi
[
Af (j0, jf) , π2

]
,−
−−→
nN
′

i

[
Af (j0, jf) , π2

]〉
=
∑
JN ,KN

[
JNk ,K

N
4 ,K

N
5 ; j, j0, jf

] 〈
iK

N
4 |jf , j0, Af (j0, jf) , π2

〉 〈
iK

N
5 |jf , j0, Af (j0, jf) , π2

〉
×
∏3
k=1

〈
iJ
N
k |j, j0, A (j, j0, jf) , π2

〉
(124)

which are always real, and the drawing of this amplitude for j = j0 = 8 in function of jf is :

58

Figure 34: In the left, the 4-simplex amplitude with �on-shell 4d-geometry� coherent states for the each jf quantumly
possible : jf ∈ [0; 3j0]. In the right, the same but only for the jf which have classical equivalent : jf ∈

[
0; 3

2j0
]
.

The j, j0 parameters are equal to 8.

The goal is to �nd a formula which approximate the results and contains inside its de�nition the Regge's action.
As in the article [30], the integral I of the SU(2) 4-simplex transition amplitude are connected to Regge's action
by the stationary phase points approximation :

I (jkl) =
∫

(SU(2))5
dh
∏
klD

jkl
(
hkh

−1
l

)
=
∑
K

∣∣〈DSU(2)|j, j0, jf ,Ki

〉∣∣2 =
∑
K (Kk, jkl)

2

∼ − (−1)2
∑
kl jkl

24

(∑
σ P (σ) cos

(∑
kl (2jkl + 1) Θkl (σ) + χπ4

))
+D

(125)

We �nd the connection between the 15j-symbol (Kk, jkl) for the SU(2) 4-simplex and the twice of Regge's action :∑
kl

(2jkl + 1) Θkl = 2SRegge [jkl,Θkl] (126)

for SRegge [jkl,Θkl] =
∑
kl

(
jkl +

1

2

)
Θkl ∼ SRegge [akl,Θkl] =

∑
kl

aklΘkl (127)

We have the result for coherent transition amplitude
〈
DSO(4)|jkl, Ak,Φk

〉
that is a combination of 15j-symbol from

the j+ and j− : 〈
DSO(4)|jkl, Ak,Φk

〉
=
∑
K

[Kk, jkl]
∏
k

〈
iKk |j(k)l, Ak,Φk

〉
(128)

[Kk, jkl] =
∑
K±

(
K+
k , j

+
kl

) (
K+
k , j

−
kl

)∏
k

IKk
K+
k K
−
k

(jkl) (129)

And the 15j-symbols are, in a certain sens, connected to the square-root of the integral I :

∑
K

(
K±k , j

±
kl

)2
=
∫ D−→n±

4π

∣∣∣∑K±

(
K±k , j

±
kl

) 〈
iK
±
k |j±(k)l,

−−→
n±(k)l

〉∣∣∣2
= I ∼ − 1

24

(∑
σ± P

± (σ±) cos
(∑

kl

(
2j±kl + 1

)
Θ±kl (σ

±) + χ± π4
))

+D±

(130)

59

The postulate is you can express the coherent 15j-symbols as a expression in terms of Regge's action for the
corresponding coherent geometry :∑

K±

[
K±k , j

±
kl

]∏
k

〈
iK
±
k |j±(k)l,

−−→
n±(k)l

〉
∼
{
N± cos

(
S±Regge

[
j±kl,Θ

±
kl

]
+ α±

)
+D′±

}
j±
(k)l

,
−−−→
n±
(k)l

(131)

Which give in �rst approximation for the coherent SO(4) transition amplitude :〈
DSO(4)|jkl, Ak,Φk

〉
=
∫ D−→n+

4π

∫ D−→n−
4π

(∑
K+

[
K+
k , j

+
kl

]∏
k

〈
iK

+
k |j+

(k)l,
−−→
n+

(k)l

〉)(∑
K−

[
K−k , j

−
kl

]∏
k

〈
iK
−
k |j−(k)l,

−−→
n−(k)l

〉)
×
∏
k

(∑
K+
k ,K

−
k ,Kk

〈
j+
(k)l,
−−→
n+

(k)l|i
K+
k

〉〈
j−(k)l,

−−→
n−(k)l|i

K−k

〉
IKk
K+
k K
−
k

(jkl)
〈
iKk |j(k)l, Ak,Φk

〉)
∼
{
N cos

(
S+
Regge

[
j+
kl,Θ

+
kl

]
+ α+

)
cos
(
S−Regge

[
j−kl,Θ

−
kl

]
+ α−

)
+D′

}
j(k)l,Ak,Φk

(132)

So we will try to approximate the results of the coherent transition amplitude of 4-Simplex with the formula :〈
DN |j, j0, jf , A (j, j0, jf) , π2 ,

−→
nNi
[
Af (j0, jf) , π2

]
,−
−−→
nN
′

i

[
Af (j0, jf) , π2

]〉
= N cos

(
S+
Regge

[
j+, j+

0 , j
+
f ,Θ

+
f ,Θ

+
0 ,Θ

+
a

]
+ α+

)
cos
(
S−Regge

[
j−, j−0 , j

−
f ,Θ

−
f ,Θ

−
0 ,Θ

−
a

]
+ α−

)
+ C

(133)

Where the actions S±Regge and the angles Θ± are given by classical 4-simplex geometry from j+'s and j−'s part
with the same symmetries of the classical 4-simplex from the j's :

S±Regge

[
j±, j±0 , j

±
f ,Θ

±
f ,Θ

±
0 ,Θ

±
a

]
=

(
j±f +

1

2

)
Θ±f + 6

(
j±0 +

1

2

)
Θ±0 + 3

(
j± +

1

2

)
Θ±a (134)

cos Θ±f = 1− 6A±2(4a±2−A±2)
12a±2

0 (4a±2−A±2)−A±2(4a±2
0 −A±2)

cos Θ±0 = A±2√
12a±2

0 (4a±2−A±2)−A±2(4a±2
0 −A±2)

cos Θ±a = 1
2

(
1− A±2

4a±2−A±2

) (135)

A± =

√
2A±2

f − 2

√
A±4
f −

4

3
a±2a±2

f , A±f =

√
a±2

0 +
1

3
a±2
f (136)

a± = j± , a±0 = j±0 , a±f = j±f (137)

The best �t between the results and the postulate formula is given by the following Figure :

60

Figure 35: In purple, the points of the computed coherent 4-simplex amplitude for j = j0 = 8 in function of jf
(for the region of jf which give possible/physical classical geometries). In green, the points from the postulate
formula (133) which �t the results. The postulate formula �t very well the results with the parameters N = 0.285,
α+ = 2.57611, α− = 2.89027 and C = −0.022.

We have nice results, because the approximate function are really close to the real computation from coherent
transition amplitude. The biggest di�erences between the �t and the computation are for the extremum values of
jf : jf = 0 and jf = 3

2j0 = 12 where the corresponding classical geometry are really degenerated with very �at and
elongated tetrahedra. For these extremum values, the usual de�nitions of Regge's action, which are classical, are
wrong and give bad approximation because the results are strongly quantum. But for the others values, the Regge's
action give very good approximation for the quantum action from transition amplitude, and that start already the
scale j ∼ 10 !

But for the transition amplitude of the assembly, we will lose the information about the value of jf , it will be
useful to check the e�ciency of the approximate formula in the variable space A. Because the transition amplitude
of the assembly is express in terms of boundary coherent states |j, j0, A,Φ〉, if we want restore the internal geometries
with its action and curvature we need to study the corresponding approximate formula and corresponding action for
these geometries states. With the equivalent reasoning of previously, the choice of j, j0, A and Φ give �non-locally�

61

in classical geometry the value of f area and shape variables Af , Φf : that �x the full geometry of individual
4-simplex. Of course in the quantum gravity, the f area is quanti�ed with the jf -area parameter unlike the classical
case where the f area evolve continuously with the values of (j, j0, A). So for express the evolution of the transition
amplitude in function of A we will choose the quantum value of jf closest to the classical f area given by classical
geometry (18) :

af =

√
3

2
A

√
4a2

0 −A2

4a2 −A2
→ jf (A) ≈

√
3

2
A

√
4j2

0 −A2

4j2 −A2
(138)

The shape variables Φ and Φf will be taken to π
2 in agreement with cylindrical symmetries, and the variable Af

can be expressed in term of (j, j0, A) via its de�nition with jf (j, j0, A) :

Af (j, j0, A) =

√
j2
0 +

1

3
j2
f (j, j0, A) (139)

With this approximation for the value of jf , we can express the transition amplitude of 4-simplex in function of
variables set (j, j0, A) :〈

DN |j, j0, jf , A, π2 ,
−→
nNi
[
Af (j, j0, A) , π2

]
,−
−−→
nN
′

i

[
Af (j, j0, A) , π2

]〉
=
∑
JN ,KN

[
JNk ,K

N
4 ,K

N
5 ; j, j0, jf (j, j0, A)

] 〈
iK

N
4 |jf (j, j0, A) , j0, Af (j, j0, A) , π2

〉 〈
iK

N
5 |jf (j, j0, A) , j0, Af (j, j0, A) , π2

〉
×
∏3
k=1

〈
iJ
N
k |j, j0, A, π2

〉
(140)

and draw this evolution in function of A for j = j0 = 8 :

62

Figure 36: Amplitude transition of 4-simplex �on-shell 4d-geometry� in function of A for j = j0 = 8 and the
approximation jf (j, j0, A)

The many discontinuities of the Figure come from the approximation of jf , because the non-null values of
transition amplitude are given for quantum value of jf and compatible values of j+

f and j−f from the map inside the
de�nition of the SO(4) transition amplitude. These discontinuities are non-physical and are purely the artifacts of
the jf approximation, for a �xed jf the transition amplitude are perfectly continuous as the previous �gures in the
�space of shapes� Section 6.1.1. Now if we take our approximate formula de�ne above, but with the de�nition of
Af (j, j0, A) and the quantum approximate value jf (j, j0, A) as in the transition amplitude, we have the following
Figure :

63

Figure 37: In purple, the points of the computed coherent transition amplitude for j = j0 = 8 in function of A. In
green, the points from the postulate formula with the Regge's action. The postulate formula (133) �t the results
as well with the parameters N = 0.285, α+ = 2.57611, α− = 2.89027 and C = −0.022.

Again the approximate formula (133) �t very well the true results from the 4-simplex amplitude ! The region
where the �t is the best are for A ∈ [5.4902; 11.451] corresponding to a region where the corresponding geometry
parameters are susceptible to give curvature for the next.

6.1.3 Short conclusion for the individual 4-simplex amplitude

The quantum geometry of a individual coherent 4-simplex is determined by the values of the areas of the tri-
angles and the shape variables of the tetrahedra. Under cylindrical symmetry, the independent variables are
j, j0, jf , Af ,Φf , A,Φ and, in the limit of large areas, the modulus square of the amplitude is peaked on the expected
classical values of Af ,Φf for given A, Φ. Here we have studied numerically the peakedness properties of the modulus
square of the amplitude for small values of the spins, up to j ∼ 10. We have found that the classical behaviour
already emerges. In particular, the modulus of the amplitude appear to clearly peaked on the classical values of
Af ,Φf (Figures 31,32,33). The peak in A is disturbed by the presence of high amplitude values around degenerate

64

con�gurations (Figures 33) for small-volume 4-simplices. Moreover, the study of the norm of the individual coherent
4-simplex amplitude in function of jf show results (Figures 35,37) where we found the Regge's action as expected
by Barrett [6, 30].

6.2 Transition amplitude for the assembly

Now that the properties of individual 4-simplex amplitude are studied, we will study the transition amplitude of
the full assembly. We will brie�y, look the norm and phase of the transition amplitude W , for �xed value of (j, j0),
in the space (A,Φ). In the all next, the value of j and j0 will be �xed to 8.

6.2.1 Full transition amplitude

So, for j = j0 = 8, we can compute the full coherent transition amplitude W (j, j0, A,Φ) in the function of A and
Φ and look the peakedness properties of its norm. The drawing of the norm is :

Figure 38: Drawing of the norm of W (j, j0, A,Φ) in the space variables (A,Φ) for j = j0 = 8

So, with just the properties of raw data, the transition amplitude seem to choose very degenerate geometry. We

65

have two high peak for (A,Φ) =
(
0, π2 ±

π
2

)
corresponding geometrically to completely �at boundary tetrahedra.

That can be explain by the summation of all internal geometries, classical and quantum, and volume e�ect given by
the norm of the states used. If we look the properties of transition amplitude in the cylindrical case, where Φ = π

2 ,
we have :

Figure 39: Drawing of the norm of W
(
j, j0, A,

π
2

)
in function of A for j = j0 = 8

Again we see that the transition amplitude is peaked on the degenerate geometry A = 0. So for j, j0 �xed, the
transition amplitude is not classical and priority choose completely �at boundary. But that make sens with the
volume e�ect of the states, because the parameters j, j0 and Φ are not enough for �x the full geometry. Indeed, in
classical geometry the choice of a and a0 (Φ = π

2 is imposed by cylindrical symmetry) don't �x the full geometry,
so we have no preferential value of A : the choice of A is arbitrary and cause all geometries from A are possible.
In quantum geometries, because the volumes e�ects from the coherent states and intertwiners (see (92)) grow up
for degenerated case, that maximize naturally the transition amplitude for degenerate geometries and make them
dominant in the raw data of transition amplitude.

Now, if we draw the real and imaginary part of the phase from transition amplitude :

66

Figure 40: Real part of the phase from the transition amplitude R
(
W (j,j0,A,Φ)
|W (j,j0,A,Φ)|

)
in function of (A,Φ) under

di�erent views. The �rst is a isometric views of the surface, the second is the top view (in the pane A, Φ), the third
is the front view (in the plane R, Φ) and the fourth is the side view (in the plane R, A).

67

Figure 41: Imaginary part of the phase from the transition amplitude I
(
W (j,j0,A,Φ)
|W (j,j0,A,Φ)|

)
in function of (A,Φ) under

di�erent views. The �rst is a isometric views of the surface, the second is the top view (in the pane A, Φ), the third
is the front view (in the plane I, Φ) and the fourth is the side view (in the plane I, A).

68

We show that really oscillating in the space (A,Φ) ! In fact, the most stable part seem to be for Φ = π
2 ,

corresponding again to the cylindrical symmetries. If we look more precisely what happen for the cases where
Φ = π

2 :

Figure 42: Drawing of real (in the left) and imaginary (in the right) parts of the phase W (j,j0,A,Φ)
|W (j,j0,A,Φ)| in function of

A for Φ = π
2 and j = j0 = 8

We see the real parts are dominant with just a sign change for A > 10.1961 and the imaginary parts are
really small and erratic. At this point, it assumes that the transition amplitude is probably real for the cylindrical
symmetry Φ = π

2 , and the discontinuities of the imaginary part just from some error in the computations. But these
computation errors are relative errors of transition amplitude with the magnitude order of 10−5 : that are really
weak, so we can consider that the computations are really precise. If we look, at A �xed (for example A = 6.11765),
the evolution of the imaginary part :

69

Figure 43: Drawing of the imaginary parts of the phase W (j,j0,A,Φ)
|W (j,j0,A,Φ)| in function of Φ for A = 6.11765 and j = j0 = 8

we have no more ambiguities : the appearing central symmetry of the imaginary part, at the point (Φ, I) =(
π
2 , 0
)
, has a proof of the realness of the transition amplitude for Φ = π

2 .
The result where the (correct) coherent state applied over the transition amplitude give real coherent transition

amplitude is in agreement with the past studies of these objects [6]. The Barrett study suggests that when you put
the correct associated coherent geometry to the 4-simplex you have a real results: the realness of coherent amplitude
means the coherent tetrahedra states are on-shell the correct geometry. The study of the amplitudes, especially
their real parts, will give essential information about the quantum geometry and if they are peaked around their
(correct) classical equivalent.

6.2.2 Transition amplitude for jf -representation

For study more the results from the full transition amplitude, we will see, for j = j0 = 8, the properties of wf in
the phase space (A,Φ) in function of the possible value of jf . We will draw the norms and phase of wf for several
value of jf , look their properties with specifying the corresponding classical values, and discuss about the results.
The drawings of the norms for the jf , and their classical expected value of A (Aclassical = 2√

3
af for j = j0), are the

following :

70

jf = 0 (Aclassical = 0) jf = 4 (Aclassical ≈ 4.62)

jf = 8 (Aclassical ≈ 9.23) jf = 12 (Aclassical ≈ 13.86)

jf = 16 jf = 20

jf = 24

Figure 44: |wf (A,Φ)| for some value of jf , always for j = j0 = 8.

71

We see interesting results, because we have a transition of the global shape over a critical value jf = 12 ; call this
speci�c value jcriticalf . For value of jf close to jcriticalf or smaller we see the transition amplitude are really peaked
around the solution (A,Φ) =

(
0, π2

)
. For jf = 0 we have also some degenerated cases around (A,Φ) ≈

(
14, π2 ±

π
2

)
,

but that not relevant because the case jf = 0 is highly degenerated and quantum in itself : the corresponding
classical geometry give in�nitely elongated tetrahedra. For jf bigger of jcriticalf the transition amplitude tends to
take the very degenerate cases (A,Φ) =

(
0, π2 ±

π
2

)
.

The �rst results from the values jf < jcriticalf is interesting for two reasons : Primo, we �nd than the transition
amplitude reproduce the cylindrical symmetries with Φ = π

2 , that means the symmetries of j-parameters reproduce
the classical cylindrical symmetries. Secondo, the transition amplitude don't take the expected classical value for
A. Classically, give the j, j0 and jf parameters �x all geometrical properties of the 4-simplex and should be give
a speci�c value A (j, j0, jf) as in classical geometry, but that not the value selected by the transition amplitude.
Probably because the coherent state are not normalized, we have volumes terms given by the norm of coherent
state over the intertwiner subspace

∑
K

∣∣〈iK | {j,−→n }〉∣∣2 6= 1, and we don't have renormalization rules for the for
the spin-foam part. We have probably some kind of normalization, from the spin-network states and spin-foam,
which a�ect the evolution of the norm of transition amplitude and don't give a clear understanding of physical
properties of our quantum geometries. For exploit the physics of the data, and also determine the properties of
internal geometries of the assembly, we need to study more the norm AND the phase of the transition amplitude
to try to restore the spread/encrypted information. We do that in the next section.

The second results from the values jf > jcriticalf is also interesting, because we see the e�ect of degenerate
geometry reproduce the full transition amplitude. In fact, the degenerate geometry from the case jf = 24 reproduce
virtually alone the full transition amplitude. Indeed, if you take the maximum of the degenerated peak from the full
coherent transition amplitudeW

(
j, j0, 0,

π
2 ±

π
2

)
≈ 0.109236 it is composed to 97.35% from the transition amplitude[

(2jf + 1)wf
(
j, j0, jf , 0,

π
2 ±

π
2

)]
jf=24

≈ (2× 24 + 1) × 0.00217203 ≈ 0, 10634127. That clearly show the weight
dominance of the degenerate geometries in the full transition amplitude.

For �nish, we will talk about the physical sens of jcriticalf : it seem to be the classical maximum value of jf for
classical geometry. Because, if you take the classical condition for the existence of a 4-simplex with the areas a, a0,
af and A, classical constraints say the classical equivalent exist only for A ∈

[
0; min

(
2a0, a

√
3
)]

(See Subsection

2.2). But, the classical link between A and af is A
√

4a20−A2

4a2−A2 = 2√
3
af (from (18)) ; that implies for the case j = j0 = 8

(meaning a = a0) the maximum value of jf : jmaxf =
√

3
2 A

max = 3
2j = 12. So for jf bigger of jcriticalf = 12 we

have no more equivalent classical geometries, only dominate quantum geometry that explain the beginning of the
degeneracy from transition amplitude.

Now if we look the real part of the phase from transition amplitude for several values of jf in the (A,Φ) space :

72

jf = 0 (Aclassical = 0) jf = 4 (Aclassical ≈ 4.62)

jf = 8 (Aclassical ≈ 9.23) jf = 12 (Aclassical ≈ 13.86)

jf = 16 jf = 20

jf = 24

Figure 45: Real part of wf (A,Φ)
|wf (A,Φ)| for some value of jf , always for j = j0 = 8.

73

We have, as the full transition amplitude, very oscillating results except for the cases Φ = π
2 where the transition

amplitudes are real regardless the value of jf . So we can conclude that the most stable part of the transition
amplitudes wf are also given for Φ = π

2 and preserve, in this sens, the cylindrical symmetries.

6.2.3 Conclusion about the �rst study of the full transition amplitude

For conclude brie�y, the full transition amplitude give a predominance for the very degenerate geometries. Because
the non-constrained geometry from j and j0 promotes the degenerate geometries via the volume e�ects. The full
transition amplitude are, for the scale studied j = j0 = 8, produced essentially from the pure quantum cases where
we have no classical equivalent of the geometry :

W (j, j0, A,Φ) =
∑
jf

(2jf + 1)wf (j, j0, jf , A,Φ) ≈ 49wf (j, j0, 24, A,Φ) (141)

But from the maximum of the wf norms, for jf < jcriticalf , and from the stability region of its phase, for all jf , we
recover the cylindrical symmetry constraint Φ = π

2 where the transition amplitude become real. That reality values
from the transition amplitude from Φ = π

2 are in agreement with the limit and the choice of correct coherent states
for 4-simplex as in the Barrett paper [6].

6.3 Internal geometry

If you let free the transition amplitude, for the set of j ∼ 10, it peak always on the degenerate cases. Because
the quantum geometries of degenerate cases are dominant with volumes terms which become bigger. But for a
given boundary states, where the j and the shape (A,Φ) parameters are �xed, what internal geometry is selected
? For that we need methods for restore the lost information inside the transition amplitude. So we will study the
problem via the integrants of the transition amplitude W : because we can express the full amplitude in terms of
sum and integrals over intermediate transition amplitudes, like wf , which contain information about the internal
geometry of our study object. In the optic to get the most probabilistic internal geometries, given the transition
amplitude of the assembly, we will talk about quantum conditional probabilities ([24, 25]) and show the physical
link with the intermediate transition amplitude. Of course, the quantum probabilities that we will expose are not a
strict de�nitions or introduction to quantum conditional probabilities, just a talk and a physical meaning about the
information we try to reproduce from the transition amplitude. After, we will study the norms of these transition
amplitude for look if we �nd classical results.

6.3.1 Quantum conditional probability and transition amplitude for geometry

The conditional probabilities in quantum theories are di�cult to de�ne, because their de�nitions are not unique and
give some problem for interpretation. One of these de�nition come from the extension of Bayes rules to quantum
world where the probabilities are de�ne by quantum projector. If you have a system in the state |Ψ〉, the probability
to measure the quantity a associated to the state |a〉 is given by :

PΨ (a) = |〈a|Ψ〉|2 =
〈

Ψ
∣∣∣ ˆProj(a)

∣∣∣Ψ〉 (142)

With the projector associated to a :
ˆProj(a) = |a〉 〈a| (143)

Of course, the corresponding probability is real and positive (because the hermitian properties of projector) and
the sum of the all possible value of a (given by the integral over the state |a〉 in the Lebesgue sens and Lebesgue
measure dµ (a)) is equal to 1 :∫

dµ (a)PΨ (a) = 〈Ψ|
(∫

dµ (a) |a〉 〈a|
)
|Ψ〉 = 〈Ψ| I |Ψ〉 = 1 (144)

74

In classical probability, the Bayes de�nitions of conditional probability to have A given B is just :

P (A|B) =
P (A,B)

P (B)
, P (B) =

∑
A

P (A,B) (145)

Where P (A,B) is the joint probability to have A and B, and P (B) the probability to have B which must be the
sum of all possible probabilities to have B for each compatible A. The most simplest way to extend Bayes rules to
quantum with projector are :

PΨ (a, b) =
〈

Ψ
∣∣∣ ˆProj(a, b)

∣∣∣Ψ〉
PΨ (b) =

∫
dµ (a)PΨ (a, b)

}
⇒ PΨ (a|b) ≡ PΨ (a, b)

PΨ (b)
(146)

At this step, we have a speci�c aspect of quantum conditional probability : the de�nition of joint probability
in term of projector are not necessary real ! But the sum of all probabilities to measure b for each measure
a compatible give the correct de�nition of PΨ (b) ! For example, if in the speci�c cases where you can express

ˆProj(a, b) = ˆProj(a) ˆProj(b) we have :

PΨ (a, b)
∗

=

〈
Ψ

∣∣∣∣(ˆProj(a) ˆProj(b)
)†∣∣∣∣Ψ〉 =

〈
Ψ
∣∣∣ ˆProj(b) ˆProj(a)

∣∣∣Ψ〉 (147)

=

{
PΨ (a, b)⇒ PΨ (a, b) ∈ R if ˆProj(a), ˆProj(b) commute

PΨ (b, a)⇒ PΨ (a, b) ∈ C if not
(148)

∫
dµ (a)PΨ (a, b) =

〈
Ψ

∣∣∣∣(∫ dµ (a) |a〉 〈a|
)

ˆProj(b)

∣∣∣∣Ψ〉 =
〈

Ψ
∣∣∣I ˆProj(b)

∣∣∣Ψ〉 = PΨ (b) (149)

So the quantum conditional probability PΨ (a|b) with this projector de�nition are in general complex, and the
sum over a of these probabilities give 1. Complex number for probability seem nonphysical, but remember than
the quantum mechanics are described by wave functions which can be complex. In quantum mechanics, physical
measures is given by the expectation values, so the complexeness of probability itself doesn't matter : only the
expectation value �sum over these probabilities� have physical sens. But, we can study the evolution of these
conditional probability distributions, in terms of norm, real part, etc... for understand if we have speci�c value
chosen by the system.

In the optics to de�ne conditional probability in our case, we will adapt the previous methodology. The internal

geometry are given by the states
∣∣∣jNf,i−−→nNf,i〉 associated to the internal tetrahedra which have the normal face-vectors

−−→
nNf,i and their areas jNf,i, and the external geometry is given by the states

∣∣∣jNi −→nNi [A,Φ]
〉
de�ned above for the

coherent spin-network. The quantum geometry state is given by |W 〉 and contain the sum over the all possible
geometries. So the conditional probability to have a internal geometry given external geometry can be expressed
as :

PW

(
jNf,i
−−→
nNf,i|jNi

−→
nNi [A,Φ]

)
=

〈
W
∣∣∣ ˆProj

(
jNf,i
−−→
nNf,i, j

N
i

−→
nNi [A,Φ]

)∣∣∣W〉〈
W
∣∣∣ ˆProj

(
jNi
−→
nNi [AN ,ΦN]

)∣∣∣W〉 (150)

Where the corresponding projector are �like� :

ˆProj

(
jNf,i
−−→
nNf,i, j

N
i

−→
nNi [A,Φ]

)
∼
⊗
N

∣∣∣∣jNf,i−−→nNf,i〉〈jNf,i−−→nNf,i∣∣∣∣⊗⊗
N,kl

∣∣∣∣jNi −→nNi [A,Φ]

〉〈
jNi
−→
nNi [A,Φ]

∣∣∣∣ (151)

ˆProj

(
jNi
−→
nNi [A,Φ]

)
∼
⊗
N,kl

∣∣∣∣jNi −→nNi [A,Φ]

〉〈
jNi
−→
nNi [A,Φ]

∣∣∣∣ (152)

We say �like� because the de�nition of the action of these states, especially the internal states, on the geometry state
|W 〉 are not clearly de�ned. The Livine-Speziale coherent states, which de�ne the |j−→n 〉, act on the distribution of

75

the spin-networks states Ψ and ψN (de�ne in the spin-network section (75),(78)) which act on the spin-foam, in

the transition amplitude sens, given by W (remember Figure 30). The internal states
∣∣∣jNf,i−−→nNf,i〉 can be rewritten〈

jNf,i −
−−→
nNf,i

∣∣∣, so the projectors of internal states become :∣∣∣∣jNf,i−−→nNf,i〉〈jNf,i−−→nNf,i∣∣∣∣ ∝ 〈jNf,i −−−→nNf,i∣∣∣∣ 〈jNf,i−−→nNf,i∣∣∣∣ (153)

The state
〈
jNf,i
−−→
nNf,i

∣∣∣ correspond to the coherent states associated to a internal tetrahedron from a 4-simplex, and〈
jNf,i −

−−→
nNf,i

∣∣∣ correspond to the coherent states associated to the same tetrahedron but in another 4-simplex where it

is reversed ! In other words,
〈
jNf,i −

−−→
nNf,i

∣∣∣ 〈jNf,i−−→nNf,i∣∣∣ represent the state of the internal tetrahedron from a 4-simplex

coupled to the state of this tetrahedron going in a another 4-simplex ! The projector of joint probability of internal
and external geometry become :

ˆProj

(
jNf,i
−−→
nNf,i, j

N
i

−→
nNi [A,Φ]

)
∼
⊗
N,kl

∣∣∣∣jNi −→nNi [A,Φ]

〉⊗
N

{〈
jNf,i −

−−→
nNf,i

∣∣∣∣ 〈jNf,i−−→nNf,i∣∣∣∣⊗
kl

〈
jNi
−→
nNi [A,Φ]

∣∣∣∣
}

(154)

The left action of the projector contain only the geometry of the assembly's boundary, and the right action of the
projector contain the geometry of the assembly's boundary and the internal geometry. In fact, the right action of the
projector correspond to the product of individual geometry of 4-simplex boundary. With this physic interpretation,
we have the joint probability :

PW

(
jNf,i
−−→
nNf,i, j

N
i

−→
nNi [A,Φ]

)
=

〈
W
∣∣∣ ˆProj

(
jNf,i
−−→
nNf,i, j

N
i

−→
nNi [A,Φ]

)∣∣∣W〉
∼ 〈W |

⊗
N,kl

∣∣∣jNi −→nNi [A,Φ]
〉 [⊗

N

{〈
jNf,i −

−−→
nNf,i

∣∣∣ 〈jNf,i−−→nNf,i∣∣∣⊗kl

〈
jNi
−→
nNi [A,Φ]

∣∣∣}] |W 〉
∼

〈
W |
⊗

N,kl j
N
kl
−→n N

kl (A,Φ)
〉∏

N

〈
DN |j, j0, jf , A,Φ,

−−→
nNf,i,−

−−→
nN
′

f,i

〉
(155)

We postulate the conditional probability :

PW

(
jNf,i
−−→
nNf,i|jNi

−→
nNi [A,Φ]

)
≡
〈W |⊗N,kl j

N
kl
−→n N
kl(A,Φ)〉∏N

〈
DN |j,j0,jf ,A,Φ,

−−→
nNf,i,−

−−→
nN
′

f,i

〉
|〈W |⊗N,kl j

N
kl
−→n N
kl(A,Φ)〉|2

=

∏
N

〈
DN |j,j0,jf ,A,Φ,

−−→
nNf,i,−

−−→
nN
′

f,i

〉
〈W |⊗N,kl j

N
kl
−→n N
kl(A,Φ)〉

(156)

in accord of the internal coherent structure ofW ((108) and (118)) and the de�nition of conditional probability. PW

can be seen as a (complex) probability density function over the
−−→
nNf,i variables, where the sum over the all internal

geometry of these conditional probability reproduce 1 :

∑
jf︸︷︷︸

sum over the
all possible
area for f

(2jf + 1)
∏
N

(2jf + 1)(2j0 + 1)3
∏
i

∫
d
−−→
nNf,i
4π


︸ ︷︷ ︸

sum over the geometries of
one shared-tetrahedron︸ ︷︷ ︸

sum over the geometries of
all shared-tetrahedra

PW

(
jNf,i
−−→
nNf,i|jNi

−→
nNi [A,Φ]

)
︸ ︷︷ ︸

"conditional probability" to have:

internal geometries jNf,i,
−−→
nNf,i

given

external geometries jNi ,
−→
nNi [A,Φ]

=
∑
jf

(2jf + 1)
∏
N

(
(2jf + 1)(2j0 + 1)3

∏
i

∫ d
−−→
nNf,i
4π

) ∏
N

〈
DN |j,j0,jf ,A,Φ,

−−→
nNf,i,−

−−→
nN
′

f,i

〉
〈W |⊗N,kl j

N
kl
−→n N
kl(A,Φ)〉

=
∑
jf

(2jf + 1)
wf (j,j0,jf ,A,Φ)

〈W |⊗N,kl j
N
kl
−→n N
kl(A,Φ)〉 = 1

(157)

76

Of course, the de�nition of PW
(
jNf,i
−−→
nNf,i|jNi

−→
nNi [A,Φ]

)
is in fact the (renormalized) transition amplitude to have the

three 4-simplices given by the parameters (j, j0, A,Φ),
(
jf , j0,

−−→
nNf,i

)
and is like the quantum conditional probability

to have internal tetrahedra with the normal face-vectors
−−→
nNf,i and the area jNf,i = (jf , j0, j0, j0) given the boundary

parameters A, Φ and jNi = (j, j, j0, j0). We can de�ne more conditional probabilities, which are just parts from
transition amplitudes, whose properties will give us information about the internal geometries.

So we want compute these transition amplitudes and study their properties : peakedness of the norms, evolution
of the complex phase... etc. The idea is to extract some information about the chosen internal geometry : for
example, in the case where the conditional probability PW (a|b) is purely real, that means we can physically measure
a and b regardless without no quantum interaction between them. In this special case, the norm of this probability
(which is just the absolute value) can be interpreted as a classical conditional probability : so the most probabilistic
value of a given b is just the value of a which maximize |PW (a|b)|. For the general case, where PW (a|b) is complex,
you need to study also the complex phase in addition to the norm : because the complex phase contain a part of
the action, and the minimization of this action give the classical evolution of probabilities and classical value of a.
Simply, transition amplitudes and quantum conditional probability PW (a|b) can be seen like :

PW (a|b) =
〈W |a, b〉
〈W |b〉

=
|〈W |a, b〉| ei arg〈W |a,b〉

|〈W |b〉| ei arg〈W |b〉 =
e−iSW [a,b]

e−iSW [b]
→

∫
DaPW (a|b) =

∫
Dae−iSW [a,b]

e−iSW [b]
= 1 (158)

With the quantum action SW [a, b] ∈ C which are minimized for the classical evolution of geometries with a and b in
the Feynman integrals sens. So the special value of a where ∂

∂aSW [a, b] = 0 ⇐⇒ ∂
∂aPW (a|b) = 0 correspond to the

most probabilistic/contributory value of the integral and, by de�nition, the classical value. Of course for the case
where PW (a|b) is real, means SW [a, b] − SW [b] ∈ iR, we recover the classical case as the maximum of |PW (a|b)|.
Brie�y, the study of the norms and phase of transition amplitude integrants will give us the most �probabilistic�
internal geometry for given boundary parameter.

6.3.2 Prelude and used conditional probabilities for the amplitude analysis

Let us recall that we have 6 internal parameters for the shared-tetrahedra that are being summed over in the path
integral for build the transition amplitude: the area of the bulk face, jf and 5 angles θ,φ. The latter characterize a
con�guration of 4 unit vectors up to a global rotation used to align one of them with the z axis, and a second one
to lie on the Greenwich meridian (plane Oxz). If the model has the correct semi-classical behaviour, we expect the
amplitudes to be peaked on con�gurations satisfying the classical conditions: �rst of all, it should be peaked on a
closed con�guration of the four vectors, which then represents a �at tetrahedron characterized by the areas and two
angles; by symmetry assumptions, the internal tetrahedra θ are equal and described by the same data; then, the
remaining two angles and the area jf should be peaked on the Regge con�gurations determined by the boundary
data as studied in Sections 2,2.2, and given by equilateral tetrahedra.

We will study the peakedness in three di�erent ways, which can be seen via the decomposition in quantum sum
from transition amplitude: (118). First (6.3.3), we keep the sums over jf , and keep the 5 angles free. Requiring
that both real and imaginary parts of the amplitudes are maximal, we will �nd that the chosen con�guration indeed
corresponds to the classical equilateral one, where the three θ are equal, and the two φ's are 2π

3 and 4π
2 ; furthermore

(6.3.4) it gives the right classical geometric value for boundary data which are far from degenerate con�gurations.
Second (6.3.4), we will study the reverse, keeping jf free and integrate over the �ve internal angles. In this case we
have again a region where the classical geometry appears, but the disparities and the degenerate geometries region
are bigger. Third (6.3.6), we consider a more o�-shell amplitude where we assume that the three shared-tetrahedra
are equilateral with their θ equal (the φ are �xed by the equilateral geometry) and we allow it to vary together with
jf ; we have no more integration and have just the product of the three amplitude with just this speci�c case of
symmetries for shared-tetrahedra. In this last case, we observe that the amplitude reproduce very well the classical
geometry, but degenerate region is always present.

The corresponding probabilities and amplitudes which will be studied will be the following :

• P (−−→nf,i|A,Φ) in the Subsection 6.3.3

77

� Which de�ne the probability to have the 5 parameters (θf,2, θf,3φf,3, θf,4φf,4) for the all shared-terahedra
given the boundary shape parameters (A,Φ) for j = j0 = 8. The probability is de�ned as :

P (−−→nf,i|A,Φ) ≡ 1

〈W |j, j0, A,Φ〉
∑
jf

(2jf + 1) 〈D|j, j0, jf , A,Φ,−−→nf,i,−−−→nf,i〉
3 (159)

with the de�nitions for the coherent 4-simplex :

〈D|j, j0, jf , A,Φ,−−→nf,i,−−−→nf,i〉
=
∑
J,K [Jk,K4,K5; j, j0, jf]

〈
iK4 |jf , j0,−−→nf,i

〉
〈iK5 |jf , j0,−−→nf,i〉

∏3
k=1

〈
iJk |j, j0, A,Φ

〉 (160)

and the coherent states for shared-tetrahedra :〈
iK |jf , j0,−−→nf,i

〉
=
∑
m

iKjfm1m2m3
Dj0
m1j0

(θf,2, 0)Dj0
m2j0

(θf,3, φf,3)Dj0
m3j0

(θf,4, φf,4) (161)

which come from 5.2.3 and can be o�-shell of the tetrahedron geometry (closure condition not necessarily
respected).

• P (θf |A) in the Subsection 6.3.4

� Which de�ne the probability to have parameters θf for the all shared-tetrahedra given the boundary
shape parameter A for j = j0 = 8. The probability is de�ned as :

P (θf |A) ≡ 1〈
W |j, j0, A, π2

〉∑
jf

(2jf + 1)
〈
D|j, j0, jf , A,

π

2
,−−→nf,i [θf] ,−−−→nf,i [θf]

〉3

(162)

with the de�nitions for the coherent 4-simplex :〈
D|j, j0, jf , A, π2 ,

−−→nf,i [θf] ,−−−→nf,i [θf]
〉

=
∑
J,K [Jk,K4,K5; j, j0, jf]

〈
iK4 |jf , j0,−−→nf,i [θf]

〉
〈iK5 |jf , j0,−−→nf,i [θf]〉

∏3
k=1

〈
iJk |j, j0, A, π2

〉 (163)

and the coherent states for shared-tetrahedra :〈
iK |jf , j0,−−→nf,i [θf]

〉
=
∑
m

iKjfm1m2m3
Dj0
m1j0

(θf , 0)Dj0
m2j0

(
θf ,

2π

3

)
Dj0
m3j0

(
θf ,

4π

3

)
(164)

which come from 5.2.3 and can be o�-shell of the tetrahedron geometry if cos θf 6= − jf
3j0

.

• P (jf |A) in the Subsection 6.3.4

� Which de�ne the probability to have parameter jf for the internal face f given the boundary shape
parameter A for j = j0 = 8. The probability is de�ned as :

P (jf |A) ≡
(2jf + 1)wf

(
j, j0, jf , A,

π
2

)〈
W |j, j0, A, π2

〉 (165)

with the wf from (116) which represent the quantum summation over the shared-tetrahedra geometry
for given jf .

• P (jf , θf |A) in the Subsection 6.3.6

� Which de�ne the probability to have parameters jf and θf for the all shared-tetrahedra given the
boundary shape parameter A for j = j0 = 8. The probability is de�ned as :

P (jf , θf |A) ≡ (2jf + 1)〈
W |j, j0, A, π2

〉 〈D|j, j0, jf , A, π
2
,−−→nf,i [θf] ,−−−→nf,i [θf]

〉3

(166)

78

with the de�nitions :

〈D|j, j0, jf , A,Φ,−−→nf,i [θf] ,−−−→nf,i [θf]〉
=
∑
J,K [Jk,K4,K5; j, j0, jf]

〈
iK4 |jf , j0,−−→nf,i [θf]

〉
〈iK5 |jf , j0,−−→nf,i [θf]〉

∏3
k=1

〈
iJk |j, j0, A,Φ

〉 (167)

and the coherent states for shared-tetrahedra :〈
iK |jf , j0,−−→nf,i [θf]

〉
=
∑
m

iKjfm1m2m3
Dj0
m1j0

(θf,2, 0)Dj0
m2j0

(θf,3, φf,3)Dj0
m3j0

(θf,4, φf,4) (168)

which come from 5.2.3 and can be o�-shell of the tetrahedron geometry if cos θf 6= − jf
3j0

6.3.3 Numerical result for P (−−→nf,i|A,Φ)

We are interested to :

P (−−→nf,i|A,Φ) ≡ 1

〈W |j, j0, A,Φ〉
∑
jf

(2jf + 1) 〈D|j, j0, jf , A,Φ,−−→nf,i,−−−→nf,i〉
3 (169)

which is linked to the transition amplitude of the three 4-simplices from the assembly, with the quantum summation
over the all possible area jf for the face f , but don't have the quantum summation over the face-vectors −−→nf,i from
shared-tetrahedra (see the link with (118)). In this context, the all shared-tetrahedra have the same geometry given
by the −−→nf,i vectors and their �ve parameters (θf,2, θf,3φf,3, θf,4φf,4). For a set of j,j0 and A, Φ given, we want
compute P (−−→nf,i|A,Φ) and see what −−→nf,i are chosen.

The main reason of this interest and simpli�cation is because the space of variables in the general case is really

huge ! In the general case, each face-vectors
−−→
nNf,i of shared-tetrahedra are given by two parameters

(
θNf,i, φ

N
f,i

)
(see

coherent states Subsection 5.2.3), that give 5 parameters for each shared-tetrahedron with their 4 face-vectors :

you can use gauge �xing to set
(
θNf,1, φ

N
f,1

)
= (0, 0) and φNf,2 = 0. Give a total of 15 parameters for the three

shared-tetrahedra. Because the individual 4-simplex sections 6.1.1 show some clues that the transition amplitude

for the 4-simplices are peaked around the symmetric cases, where the
−−→
nNf,i are the same for all internal tetrahedra,

we will reduce the number of parameters and just compute this probability density function to the �ve parameters
(θf,2, θf,3φf,3, θf,4φf,4) from −−→nf,i = {−−→nf,1(0, 0),−−→nf,2(θf,2, 0),−−→nf,3(θf,3φf,3),−−→nf,4(θf,4φf,4)}. That give the de�nition
of the coherent 4-simplex used :

〈D|j, j0, jf , A,Φ,−−→nf,i,−−−→nf,i〉
=
∑
J,K [Jk,K4,K5; j, j0, jf]

〈
iK4 |jf , j0,−−→nf,i

〉
〈iK5 |jf , j0,−−→nf,i〉

∏3
k=1

〈
iJk |j, j0, A,Φ

〉 (170)

and the associated coherent states for shared-tetrahedra :〈
iK |jf , j0,−−→nf,i

〉
=
∑
m

iKjfm1m2m3
Dj0
m1j0

(θf,2, 0)Dj0
m2j0

(θf,3, φf,3)Dj0
m3j0

(θf,4, φf,4) (171)

In this �rst approach, we want �nd some symmetry properties between the parameters θf,i, φf,i for reduce
again the parameters and try to get the maximum of precision for the calculus. So, for �xed j,j0, and each shape
parameters A, Φ we will compute P (−−→nf,i|A,Φ) and take the value of (θf,2, θf,3φf,3, θf,4φf,4) which maximize its
norm. We can draw the �chosen� values of (θf,2, θf,3φf,3, θf,4φf,4) in function of the shape parameters A, Φ :

79

Figure 46: Value of θf,2, θf,3, θf,4, φf,3 and φf,4 which maximize the norm of P (−−→nf,i|A,Φ) in function of A, Φ. We
see appearing the equilateral symmetry θf,i = θf and φf,3 = 2π

3 , φf,4 = 4π
3 .

The precision of the chosen values (θf,2, θf,3φf,3, θf,4φf,4) is not really good, because the number of parameters
and the limitation of computer impose to have a incertitude of ± π

11 (±9.1%), but we can clearly see that the cases
where the θf,i are equal and φf,3 = 2π

3 , φf,4 = 4π
3 are the main solutions. Except for the very degenerate geometries

from the regions (A,Φ) ∼
(
0, π2 ±

π
2

)
, we obtain the equilateral symmetries properties for the shared-tetrahedra as

80

in the classical equivalent. That reinforces the idea where the cylindrical symmetries of the boundary impose only
the equilateral cases for the geometry of the shared-tetrahedra, with a equilateral face f for base and same isosceles
triangle for the j0-faces. Note, the regions of degenerate geometries where the equilateral face is not preserved are
the same as those from the individual 4-simplex amplitude study (Subsection 6.1.1, Figures 32,33).

Because the symmetries between the θf,i (see Figures 46), we can do the same computation with more precision
for the restricted equilateral geometries where θf,i = θf and φf,3 = 2π

3 , φf,4 = 4π
3 . So we can draw the speci�c

values of θf which maximize the norm of P (−−→nf,i [θf] |A,Φ) for the equilateral cases in function of A, Φ :

Figure 47: Value of θf which maximize |P (−−→nf,i [θf] |A,Φ)| for the equilateral cases
(
θf,i = θf ;φf,3 = 2π

3 ;φf,4 = 4π
3

)
in function A, Φ.

Now, with more precise data, we can draw and look the evolution of P (−−→nf,i [θf] |A,Φ) in function of θf , for �xed
A, Φ :

81

Figure 48: Norm (purple, in the left) and real & imaginary (purple & green, in the right) parts ofP (−−→nf,i [θf] |A,Φ)
in function of θf , for A = 9.2549 and Φ = π

2 .

Figure 49: Norm (purple, in the left) and real & imaginary (purple & green, in the right) parts ofP (−−→nf,i [θf] |A,Φ)
in function of θf , for A = 9.2549 and Φ = 1.6324.

We have two interesting type of results, the �rst from the Figure 48 correspond to the geometry with the
cylindrical symmetries Φ = π

2 , and the second from the Figure 49 correspond to a geometry without cylindrical
symmetries.

The �rst result from Φ = π
2 (Figure 48), as the previous results from the Subsection 6.2 and the Figures

42,43, give P (−−→nf,i [θf] |A,Φ) real. By virtue of the talk about quantum conditional probabilities in Subsection
6.3.1, the realness of P (−−→nf,i [θf] |A,Φ) allow to understand this probability �like� a classical probability : the
maximum values of the norm give the most probabilistic result chosen by the quantum geometry. So we have
two peak from the norm, corresponding to the two most probabilistic solution of θf : the �rst, which is the

82

higher, is for θf ∼ 1.7402, the second is for θf ∼ 1.9558, which are very close to the classical expected value

θclassicalf = arccos
(
− 1√

3
· A

2a0

)
≈ 1.9113. The classical geometry is found in the quantum geometry via this second

peak and correspond here to a classical solution with curvature ! Indeed, from the classical equations (21) and (22)
we can express the angle between two shared-tetrahedra :

cos Θf =
cos θA − cos2 θf

1− cos2 θf
=

(
1− A2

2a20

)
− cos2 θf

1− cos2 θf
≈ 0.2209 (172)

and the de�cit angle of f :
εf = 2π − 3Θf ≈ 2, 2392 rad (173)

But the main solution, given by the �rst peak, is a priory not a classical solution. Note, if you suppose that the
formula given by (21) and (22) can be extended to the quantum geometry, we �nd again a solution with curvature.
That a not a proof, because the formula is used beyond this validity domain in this case, but it's maybe a clue of
the presence of curvature.

The second result from Φ = 1.6324 (Figure 49) give P (−−→nf,i [θf] |A,Φ) complex, so it's more di�cult to determi-
nate what is the �classical solution chosen� by the amplitude. By the norm, we have again two peak which almost
the same of the Figure 48, that is normal because the value of Φ are close to the cylindrical/classical case π

2 . The
most interesting part is given by the real and imaginary parts of P (−−→nf,i [θf] |A,Φ), because we show that the both
give a same local extremum for the solution θf ∼ 1.7402 but di�er for the solution θf ∼ 1.9558. So if like in
the section 6.3.1 we de�ne the classical solution as the speci�c solutions where ∂

∂aPW (a|b) = 0, the corresponding
selected solution is the �rst peak of the norm where the real and imaginary parts have the same local extremum.
The second peak of the norms come with the local extremum of the real part, but no extremum for the imaginary
part. We don't know exactly what to think, but it's important to reveal these particularities.

6.3.4 Numerical results for P (θf |A)

Guided by the previous results, where the symmetric shared-tetrahedra with θf,i = θf and (φf,3, φf,4) =
(

2π
3 ,

4π
3

)
are

dominant, we will study more precisely the properties of the conditional probability P (θf |A) ≡ P
(−−→nf,i [θf] |A, π2

)
.

In this equilateral case, with the cylindrical symmetry Φ = π
2 , the all results will be real so we can just study the

norms of P (θf |A). We can draw precisely the values of θf , in function of A, with a color for indicate if it correspond
to a maximum or not for the �xed value of A. We have the colored drawing and chosen values of θf given by the
following Figures :

83

Figure 50: Representation of θf values in function of A for Φ = π
2 ; the yellow correspond to the values

which maximize |PW (θf |A)| for the given A. The green line represent the expected solution of θclassicalf (A) =

arccos
(
− 1√

3
· A

2a0

)
from classical geometry. We show the classical solution θclassicalf �t the quantum results in the

region A ∈]9.2376; 13.8564[.

We notice that the parameter θf associated to the shared-tetrahedra and internal geometry evolve in the same

way of the value θf (A) = arccos
(
− 1√

3
· A

2a0

)
from the classical geometry. The evolution of θf in function of A are

approximately the same in the region A ∈]9.2376; 13.8564[. We see some level for the value, like a quanti�cation of
the θf , which are around the usual solution of classical geometry except for extreme geometries (as for A < 9.2376
or A > 13.8564). In the region A ∈]9.2549; 13.86[, the value of θf given by the quantum probabilities are around to
the classical solution : this region correspond in the classical interpretation to a assembly between the case where
the all tetrahedra are regular (most symmetrical case possible, which contain curvature with A = 2√

3
a ≈ 9.2376,

θf = arccos
(
− 1

3

)
≈ 1.910 and εf = 2π − 3 arccos

(
1
4

)
≈ 2.3288) and the case where the assembly is extremum

hyperbolic (with A =
√

3a ≈ 13.8564, θf = arccos
(
− 1

2

)
= 2π

3 and εf = −π). Maybe it's a clue to say the quantum
geometry have the same properties of classical geometry but for �moderate curvature� (|εf | < π). For A < 9.2376
we see a huge divergence between the results and the classical geometry, that di�erence can be explain by the
in�uence of degenerate geometries (see Figures 33).. For A > 13.8564, we have no more classical equivalent for the
geometry, the physics is given only by quantum geometry.

A this step we can conclude some properties : the transition amplitude of the full assembly, with the cylindrical
constrains on this boundary, choose the geometry of shared-tetrahedra in agreement with cylindrical constraints.
We will have internal tetrahedra with a equilateral base f , and isosceles j0-faces as the classical geometry where the
θNf,i = θf ∀N, i and (φf,3, φf,4) =

(
2π
3 ,

4π
3

)
. The evolution of θf is approximately the same that classical geometry

for the region A ∈
]

2√
3
a;
√

3a
[
which classically give curvature, but we have some divergence with the extremum

cases and quantum regions.

6.3.5 Numerical result for P (jf |A)

As the previous section, we can try to get the most probabilistic value of jf chosen by the transition amplitude.
Similarly, we have the de�nition of :

P (jf |A) ≡
(2jf + 1)wf

(
j, j0, jf , A,

π
2

)〈
W |j, j0, A, π2

〉 (174)

84

which is linked to the transition amplitude of the three 4-simplices from the assembly, with the quantum summation
only over the all possible shared-tetrahedra geometries (see the link with (118)). We want to compute it for look
what the values of jf are selected for given A. With the cylindrical symmetries, Φ = π

2 , the P (jf |A) are real so we
just need to study the norm of it.

If we draw the jf in function of A with a colored view which indicate if the values jf maximize |P (jf |A)| for
given A, that give the Figure :

Figure 51: Representation of jf values in function of A for Φ = π
2 ; the yellow correspond to the values which maxi-

mize |PW (jf |A)| for the given A. The green line represent the expected solution of jclassicalf (A) =
√

3
2 A from classical

geometry. We show the classical solution jclassicalf �t the quantum results in the region A ∈]10, 4745; 13.8564[.

Here we see a �similar� evolution of the value of jf and the classical expected value jclassicalf (A) =
√

3
2 A from

the classical constraint (18) ; the disparity is more important here. The region where the quantum and classical
geometry give the same results, is for A ∈]10, 4745; 13.8564[, that more small that previously. The lower bound,

A ≈ 10, 4745 probably correspond to the case where the classical Θf is equal to π
2 (for A = 2

√
3
7a with (21) and

(22)); that give the de�cit angle εf = π
2 in the classical equivalent. The region A ∈

]
2
√

3
7a;
√

3a
[
, where the classical

and quantum geometry are in agreement, correspond to the curvature region with εf ∈
]
π
2 ;−π

[
. For A >

√
3a, we

have no more classical geometry, so the jf are given only by the quantum geometries. For A ∈
]
6.4314; 2

√
3
7a
[
we

have a moderate divergence, which become bigger beyond A < 6.4314. We assumes that the di�erences come from
the degenerate geometries, but we don't know the physical meaning of the value A = 6.4314.

For summarize, overall the evolution of the quantum and classical geometry is the same in the region where
curvature exist classically and is moderate. but we have a important di�erences for the quantum regions and small
values of expected jclassicalf .

6.3.6 Numerical result for P (jf , θf |A)

For try to get more information about the internal geometries, we will study the probability to have a speci�c value
of jf and θf given the coherent states A and Φ = π

2 :

P (jf , θf |A) ≡ (2jf + 1)〈
W |j, j0, A, π2

〉 〈D|j, j0, jf , A, π
2
,−−→nf,i [θf] ,−−−→nf,i [θf]

〉3

(175)

85

As in the decomposition (118), that linked to the transition amplitude of the three (disjoint) 4-simplex with the
same face f and their coherent data given by j,j0,A and θf . Again, if we look just the norm of the probability, and
take the couple of values (jf , θf) which maximize the norm for each given A, we have the evolution of jf and θf in
function of A :

Figure 52: Representation (purple points) of the selected couple jf (left Figure), θf (right Figure) values
which maximize |P (jf , θf |A)| in function of A. The green lines are the expected solutions (jf ; θf)

classical
=(√

3
2 A; arccos

(
− 1√

3
· A

2a0

))
from classical geometry. We show the classical solutions �t very well, in the both data,

the quantum results in the region A ∈]7.6862; 13.8564[.

We see a important evolution here, because the di�erence between the computation and the classical expectation
over jf and θf have less disparities of before ! The classical case seem emerge from the quantum transition amplitude
in the maximum of the probability. The matching region of the classical and quantum geometry is restored for

A ∈
]√

12
13a;
√

3a
[
, which classically correspond to geometry with moderate curvature. In fact, the value A =

√
12
13a

correspond to the case where the de�cit angle, from (21) and (22), is εf = π ; the matching region thus correspond

to the curvature interval εf ∈]−π;π[. We assume that the degenerate region A <
√

12
13a is the source of the biggest

di�erences between the quantum and classical geometry for the previous Figures 50,51.

6.4 Conclusion about the results

Overall, we see in the study of the transition amplitude properties that we �nd classical solutions in the region
A ∈ [7.69; 13.86] (Figure 52). That region correspond, in the classical equivalent, to geometry with curvature
εf ∈ [−π;π] ; it's a good indication that the euclidean Loop Quantum Gravity contain curvature. The speci�c region
where the all transition amplitudes are in agreement with the classical geometry is more precisely for A ∈ [9.23; 13.86]
(50,51,52), corresponding to the curvature region εf ∈

[
−π; 2π − 3 arccos

(
1
4

)]
. Naively, this could be understood

as the manifestation that quantum geometry prefer negative curvature. But in presence of some classical solutions
with positive curvature, and the fact where the corresponding jf become bigger and close to the classical expected
value with the increasing of A, its probably just a in�uence of quantum e�ect of geometry from low value of jf .
Although we have no explicit expressions of the curvature in the context of quantum theory, it is reasonable to
assume that the curvature is found in the EPRL model. For the region A ≥ a

√
3 ≈ 13.86, we have no equivalent of

classical geometry, so the results come from the pure quantum geometry. The region A ≤ a
√

12
13 ≈ 7.69, equivalent

86

to jclassicalf < 7, are just dominated by degenerate geometry and their volumes e�ects.

7 Conclusion

In this study, we investigated a simple assembly of 4-simplices with classical, Regge, and quantum geometry to
identify di�erences and similarities between these aspects and theories. Our assembly was formed by three 4-
simplices, sharing tetrahedra with a unique internal face f , in which the symmetries were devised to simplify the
study.

We studied the classical geometry of the assembly and showed that the complete geometry could be restored from
the lengths of its segments. We highlighted the bijection between the lengths of the segments, natural variables of
geometry, and the areas and shape parameters from the boundary. We show that the assembly possessed curvature
around the face f which evolved continuously in function of the lengths or, via the bijection, in function of the
boundary parameters.

To investigate whether if the curvature was preserved through the Regge's geometries, we adapted the assembly
by cutting it via the split of the face f . The split of f generate new segments where we have Regge's dynamics,
while retaining a similar boundary structure to our study object. We then show that the Regge calculus was viable
in our object and reproduced the curvature, which evolved in function of the segments length from the boundary.

Based on the Regge calculus that reproduces curvature in the context of our object, it was interesting to see
what happened in the case of quantum geometry. The EPRL model dynamics, which is de�ned on the areas and
especially the face f , was perfectly applicable to our assembly without any modi�cation. In the context of quantum
geometry, we de�ned the graphs and boundary states of our assembly. We expressed the transition amplitudes
of the 4-simplices and their union to numerically analyze their properties. We therefore developed a C++ code
(Annexes B) to compute the various mathematical objects and numerically construct the amplitudes.

Any amplitudes previously calculated for a small scale (j = 8) were studied from their norms and phase, as
conducted in typical studies of �eld theory for which �classical� solutions are provided by the stationary points
from the amplitudes and their integrants. After identifying these stationary points from transition amplitudes and
integrants, we have found some solutions in agreement with classical geometry.

From the 4-simplex amplitude, we identi�ed a great emergence of the classical geometry far away the degenerate
region. Moreover, the 4-simplex amplitude well reproduced the semi-classical limit predicted by Barrett [6, 30] with
the corresponding Regge's action.

From the full transition amplitude, we found also solutions in agreement with classical geometries that have
curvature. Some classical solutions therefore possess parameters in agreement with classical geometry and are likely
to have curvature as their classical equivalent. The regions where classical solutions appear were obtained for
parameters intervals around to the full regular case and which would give moderate curvature. Thus, in the context
of our assembly, the Loop Quantum Gravity theory is in agreement with classical geometry regarding the moderate
curvature regions.

In addition to a few expected geometry results, we also highlighted the in�uence of degenerate geometry states.
These degenerate solutions greatly a�ect certain geometric properties that therefore diverge from classical solutions
and yield regions for which quantum and classical geometry di�ers. These regions correspond to geometries for
which the classical equivalents would be very extreme (very elongated tetrahedra, tetrahedra nearly �at and high
curvature), which mainly occur in intervals of parameters that typically yield a low associated spin to f . The
geometry of these regions is purely quantum and corresponds to a new physics that is not included in classical or
Regge geometry. This new physics would therefore be interesting to study, because it opens a door to possible novel
insights into physics phenomena for which curvature is high and possibly quantum, such as black holes and the �rst
instants of the universe.

87

References

[1] T. Regge, �General Relativity Without Coordinates� , Nuovo Cim. 19 (1961) 558-571.

[2] J. Engle, E. Livine, R. Pereira, and C. Rovelli, �LQG vertex with �nite Immirzi parameter�, Nucl. Phys. B799
(2008) 136149, arXiv:0711.0146.

[3] C. Rovelli and F. Vidotto, �Covariant Loop Quantum Gravity�. Cambridge University Press, 2014.

[4] E. Magliaro and C. Perini, �Emergence of gravity from spin-foams�, EPL (Europhysics Letters) 95 (aug, 2011)
30007, arXiv:1108.2258.

[5] B. Dittrich and S. Speziale, �Area-angle variables for general relativity�, NewJ. Phys. 10 (2008) 083006,
arXiv:0802.0864 [gr-qc].

[6] J. W. Barrett, R. J. Dowdall, W. J. Fairbairn, H. Gomes, and F. Hellmann, �Asymptotic analysis of the EPRL
four-simplex amplitude�, J.Math.Phys. 50 (2009) 112504.

[7] F. Conrady and L. Freidel, �Path integral representation of spin foam models of 4d gravity�, Class. Quant.
Grav. 25 (2008) 245010, arXiv:0806.4640.

[8] J. Engle, R. Pereira, and C. Rovelli, �The loop-quantum-gravity vertex-amplitude�, Phys. Rev. Lett. 99 (2007)
161301, arXiv:0705.2388.

[9] L. Freidel and K. Krasnov, �A New Spin Foam Model for 4d Gravity�, Class. Quant. Grav. 25 (2008) 125018,
arXiv:0708.1595.

[10] W. Kaminski, M. Kisielowski, and J. Lewandowski, �Spin-Foams for All Loop Quantum Gravity�, Class. Quant.
Grav. 27 (2010) 95006, arXiv:0909.0939.

[11] J. W. Barrett, R. J. Dowdall, W. J. Fairbairn, F. Hellmann, and R. Pereira, �Lorentzian spin foam amplitudes:
graphical calculus and asymptotics�, Class. Quant. Grav. 27 (2010) 165009, arXiv:0907.2440.

[12] M. Han, �Cosmological Constant in LQG Vertex Amplitude�, Phys.Rev. D84 (2011) 64010, arXiv:1105.2212.

[13] W. J. Fairbairn and C. Meusburger, �Quantum deformation of two four-dimensional spin foam mod-
els�,J.Math.Phys. 53 (dec, 2010) 45, arXiv:1012.4784.

[14] E. Magliaro and C. Perini, �Regge gravity from spin-foams�, International Journal of Modern Physics D 22
(2013) 1350001, arXiv:1105.0216.

[15] M. Han, Covariant Loop �Quantum Gravity, Low Energy Perturbation Theory, and Einstein Gravity�, Phys.
Rev. D 89 (2014) 124001, arXiv:1308.4063.

[16] H. Haggard, M. Han, W. Kaminski, and A. Riello, �SL(2,C) Chern-Simons Theory, a non-Planar Graph Opera-
tor, and 4D Loop Quantum Gravity with a Cosmological Constant: Semiclassical Geometry�, arXiv:1412.7546.

[17] E. Magliaro, C. Perini, and C. Rovelli, �Numerical indications on the semi-classical limit of the �ipped vertex�,
arXiv.org gr-qc (2007) .

[18] E. Bianchi and H. M. Haggard, �Discreteness of the volume of space from Bohr-Sommerfeld quanti�cation�,
arXiv:1102.5439 [gr-qc].

[19] E. Bianchi and H. M. Haggard, �Bohr-Sommerfeld quanti�cation of space�, Physical Review D 86 (dec, 2012)
124010, arXiv:1208.2228.

[20] E. R. Livine and S. Speziale, �Physical boundary state for the quantum tetrahedron�, Classical and Quantum
Gravity 25 (apr, 2008) 085003, arXiv:0711.2455.

88

[21] E. R. Livine and S. Speziale, �Group Integral Techniques for the Spin-foam Graviton Propagator�, JHEP 11
(2006) 92, arXiv:0608131 [gr-qc].

[22] B. Bahr, B. Dittrich, �(Broken) Gauge Symmetries and Constraints in Regge Calculus�, Class. Quant. Grav.
26 (2009) 225011, arXiv:0905.1670 [gr-qc].

[23] M. Han, �4-dimensional Spin-foam Model with Quantum Lorentz Group�, J. Math. Phys. 52 (2011) 072501,
arXiv:1012.4216 [gr-qc].

[24] A. M. Steinberg, �Conditional probabilities in quantum theory, and the tunneling time controversy�, Phys. Rev.
A52:32-42,1995, arXiv:quant-ph/9502003.

[25] I. G. Bobo, �On Quantum Conditional Probability�, 0495-4548 (2013) 28: 76; pp. 115-137

[26] R. De Pietri and C. Rovelli, �Geometry Eigenvalues and Scalar Product from Recoupling Theory in Loop
Quantum Gravity�, Phys. Rev. D54:2664-2690, 1996, arXiv:gr-qc/9602023.

[27] J. B. Hartle and Z. Perjes, �Solutions of the Regge's equations on some Triangulations of CP 2�, J. Math. Phys.
38 (1997) 2577-2586, arXiv:gr-qc/9606005.

[28] P Khavari, "Regge Calculus as a Numerical Approach to General Relativity", 2009.

[29] F. Collet, C. Rovelli, V. Bayle, �Short-scale Emergence of Classical Geometry, in Euclidean Loop Quantum
Gravity�, arXiv:1603.07931 [gr-qc].

[30] J. W. Barrett, R. M. Williams, �The asymptotics of an amplitude for the 4-simplex�, arXiv:gr-qc/9809032

89

A Tetrahedron geometry

For a classical tetrahedron with this four areas ai and their face-vectors −→ni which respect the closure condition∑
i ai
−→ni =

−→
0 , we express the unit normals−→ni in polar coordinates as−→ni = (θi, φi), meaning−→ni = (cosφi sin θi, sinφi sin θi, cos θi).

We choose the orientation of the tetrahedron by (gauge) �xing (θ1, φ1) = (0, 0), φ2 = 0 and φ3 ∈ [0, π], φ4 ∈ [π, 2π].
By using these relations (and more especially 3,4), straigthforward geometry gives:

θ1 = 0 φ1 = 0

cos θ2 =
A2−a21−a

2
2

2a1a2
φ2 = 0

4a1a3A
2 cos θ3 = cos Φ

√
2A2 (a2

3 + a2
4)− (a2

3 − a2
4)

2 −A4

√
2A2 (a2

1 + a2
2)− (a2

1 − a2
2)

2 −A4

−
(
A2 +

(
a2

3 − a2
4

)) (
A2 +

(
a2

1 − a2
2

))
4a1a4A

2 cos θ4 = − cos Φ

√
2A2 (a2

4 + a2
3)− (a2

4 − a2
3)

2 −A4

√
2A2 (a2

1 + a2
2)− (a2

1 − a2
2)

2 −A4

−
(
A2 +

(
a2

4 − a2
3

)) (
A2 +

(
a2

1 − a2
2

))
cosφ3 =

a24 sin2 θ4−a22 sin2 θ2−a23 sin2 θ3
2a2a3 sin θ2 sin θ3

cosφ4 =
a23 sin2 θ3−a22 sin2 θ2−a24 sin2 θ4

2a2a4 sin θ2 sin θ4
with the shape parameters of the tetrahedron A and Φ.

In the case of cylindrical symmetry (Φ = π
2 , a1 = a2 = a, a3 = a4 = a0), these relations simplify. For the

boundary tetrahedra, we have:
θ1 = 0 φ1 = 0

cos θ2 = A2

2a2 − 1 φ2 = 0

cos θ3 = − A2

4aa0
cosφ3 = −A

√
4a2−A2√

16a2a20−A4

θ4 = θ3 φ4 = 2π − φ3

90

B The C++ code

In the optics to present and attest the validity of the results, we will show a brief review of the C++ code and
process designed and used for the computation. In this section, we will expose (some) code parts, explain the tricks
used and how the code compute the di�erent quantities. We can show a brief sketch (functional organizational
chart) of the code as below :

91

Where the all parts are describe more precisely in the next.

B.1 Library used

The �rst of all, we need to explicit the libraries that we use :

#inc lude <fstream> // Library f o r open/ c l o s e f i l e s
//(and some read ing / wr i t i ng ope ra t i on s)

#inc lude <iostream> // Library f o r read /wr i t e stream
#inc lude <sstream> // Library prov id ing s t r i n g stream c l a s s e s
#inc lude <s t r i ng> // Library f o r s t r i n g s
#de f i n e _USE_MATH_DEFINES //Def ine some math constants , l i k e p i
#inc lude <cmath> // Library f o r use the math−f un c t i on s : cos , s q r t l . . .
#inc lude <s t d l i b . h> // Library f o r use unix commands in the code
#inc lude <complex> // Library f o r d e f i n e and use the complex numbers
#inc lude <omp . h> //OpenMP l i b r a r y f o r p a r a l l e l i z a t i o n

us ing namespace std ; //For more convenience ,
// a l l ows to not n e c e s s a r i l y l o c a l l y−de f i n e the std−f un c t i on s

The stream-libraries are for allow to read/write results in some �les and, with the <string> and <cmath>, are
the standard libraries in a lot of C++ code. The most important libraries for the computation in itself are the
<complex> and the <omp.h>. The complex-library will provide to use complex numbers, that of course necessary
for the computation of coherent states and all coherent transition. The omp-library refer to a optimized libraries, the
OpenMP library, for use parallelization for the computation, that will be very useful for compute more e�ectively
some big tables of values. Indeed, to store the large tables of values, from the 15j-symbols for example, we will
have a lot of �for�-loops in the code ; the OpenMP library automatically allow to cut the loops in sub-loops which
are computed simultaneously over the available processors of the machine when you use the line-code �#pragma
omp parallel for�.

B.2 De�nitions of arrays, tables and links with the math elements

Now, for the all functions can use the intermediate results during the computation process we will de�ne the di�erent
arrays and tables. The following arrays and tables will be de�ned just after the libraries and out of the �main()�,
that will allow all the tables available for the all code but impose to �x (manually in the code) the maximum size
of the corresponding arrays.

f l o a t j_face [1 1] [3] ;

long double trois_j_type_t [1 1] [2 2] [6 1] [2 1] ;
long double trois_j_plusmoins_t [4] [6 1] [6 1] ;

long double in te r tw iner_t [7] [2 2] [6 1] [2 1] [2 1] ;

long double function_15j_plus_t [2 2] [2 2] [2 2] [2 2] [2 2] ;
long double function_15j_moins_t [2 2] [2 2] [2 2] [2 2] [2 2] ;

long double iDroit_type1_t [2 2] [2 2] [2 1] [2 1] [2 1] ;
long double iDroit_type2_t [2 2] [2 2] [6 1] [2 1] [2 1] ;

long double iCourbe_type1_t [2 2] [2 2] [2 2] ;
long double iCourbe_type2_t [2 2] [2 2] [2 2] ;

92

long double function_15j_so4_t [2 2] [2 2] [2 2] [2 2] [2 2] ;

long double t15j_so4_loaded [2 2] [2 2] [2 2] [2 2] [2 2] ;
bool t15j_so4_present [2 2] [2 2] [2 2] [2 2] [2 2] ;

complex<long double> so4semicoherent [5 1] [5 1] [2 2] [2 2] ;
complex<long double> so4coherent [3 1] [5 1] [5 1] [5 1] [5 1] ;
complex<long double> w_coherent_f [3 1] [5 1] [5 1] ;

The indices of tables and arrays, in accordance with the represented math objects, will depend of the intertwiner
representations (the J and K parameters) and the magnetic indices (the m parameters). Because of the symmetries
of the math objects, the J , K parameters will be always positive integer so we can use them directly as array indices.
But the magnetic indices m can be integer or half-integer (same type as their corresponding j-representation) and
can be negative, so for the array indices we will use the trick to replace the m by the m = m+ j = 0, 1, 2, . . . , 2j+1.
With these indices, the maximum size of the array for a given j is for the J , K and m parameters [2j + 1] ; that
means for a max scale with j = 10 we have the size for the arrays equal to [21] (except for the m indices linked
to jf ∈ [0; 3j0] which need to have the size [2jmaxf +1]=[61]). For more visibility, the tables and arrays are de�ned
with the size [21] for the (usual) m indices, the size [61] for m indices from jf ,j

±
f , and the size [22] for the J , K

indices. The others size are given by the indices which allow to select the type of math objects we want, we will
specify that in the following. For the coherent-objects tables, the size come from the arbitrary resolution selected
for : we take a resolution with 51 points for the coherent variables ; of course these objects will be de�ned and
presented in their respective subsections.

B.2.1 Arrays of the faces

The �rst of all is the table of the j-representations for the faces : j_face[][]. This table will contain the values of
the corresponding j for the intertwiners. The element j_face[n][p] of the table will have the j-values of the face
number �p� from the 3j-symbol �n� :

3j-symbol of type "n":

(
j_face[n][1] j_face[n][2] J

m1 m2 M

)
(176)

Because, because of symmetries of our object and our will to save computing time, all the future intertwiners can
be written with a type of intertwiner �n� and their corresponding face �p�. The corresponding mapping between the
real math objects and the n,p variables for identify the faces is the following :

93

type of 3j-symbol (n) 3j-symbol −→ associated j_face[n][p]

1

(
j j J
m1 m2 M

)
−→

{
j_face[1][1] = j
j_face[1][2] = j

2

(
j+ j+ J+

m+
1 m+

2 M+

)
−→

{
j_face[2][1] = j+

j_face[2][2] = j+

3

(
j− j− J−

m−1 m−2 M−

)
−→

{
j_face[3][1] = j−

j_face[3][2] = j−

4

(
j0 j0 J
m1 m2 M

)
−→

{
j_face[4][1] = j0
j_face[4][2] = j0

5

(
j+
0 j+

0 J+

m+
1 m+

2 M+

)
−→

{
j_face[5][1] = j+

0

j_face[5][2] = j+
0

6

(
j−0 j−0 J−

m−1 m−2 M−

)
−→

{
j_face[6][1] = j−0
j_face[6][2] = j−0

7

(
jf j0 J
m1 m2 M

)
−→

{
j_face[7][1] = jf
j_face[7][2] = j0

8

(
j+
f j+

0 J+

m+
1 m+

2 M+

)
−→

{
j_face[8][1] = j+

f

j_face[8][2] = j+
0

9

(
j−f j−0 J−

m−1 m−2 M−

)
−→

{
j_face[9][1] = j−f
j_face[9][2] = j−0

B.2.2 Arrays for the 3j-symbols

After the de�nition of the j_face[][], we have the corresponding de�nition of the tables for the 3j-symbols. For the
table trois_j_type_t[][][][], the element trois_j_type_t[n][J][ma][mb] will contain the value of the corresponding
3j-symbols �n� :

trois_j_type_t[n][J][ma][mb] =

(
j_face[n][1] j_face[n][2] J

m1 m2 M

)
;
m1 = ma-j_face[n][1]
m2 = mb-j_face[n][2]
M = −m1 −m2

(177)

Next we have the table de�nition of the speci�c 3j-symbol : trois_j_plusmoins_t[][][]. It correspond to the 3j-
symbol for the fusion coe�cients that link the j+× j− with their corresponding j, so we will use a speci�c notation
for designate these {j+j−j}-symbols. Similarly to the other 3j-symbols, we will use a �n� (valid only in the context
of this table) for label the corresponding {j+j−j}-symbols in the table. We have the mapping :

type of {j+j−j}-symbols (n) trois_j_plusmoins_t[n][ma][mb]

1 trois_j_plusmoins_t[1][ma][mb] =

(
j+ j− j

ma− j+ mb− j− j −ma−mb

)
2 trois_j_plusmoins_t[2][ma][mb] =

(
j+
0 j−0 j0

ma− j+
0 mb− j−0 j0 −ma−mb

)
3 trois_j_plusmoins_t[3][ma][mb] =

(
j+
f j−f jf

ma− j+
f mb− j−f jf −ma−mb

)
The trois_j_type_t[][][][] and trois_j_plusmoins_t[][][] tables contain the all values of the all 3j-symbols we

need for built the all intertwiners and next math objects necessary.

B.2.3 Arrays for the intertwiners

The next de�ned table, intertwiner_t[][][][][], will contain the all values of the all intertwiners needed. In the same
way, we have a number �n� for specify the type of the intertwiner you consider, and the other parameters give the
corresponding values :

94

type of
intertwiner (n) intertwiner_t[n][J][ma][mb][mc]

1 intertwiner_t[1][J][ma][mb][mc] = iJ(ma−j)(mb−j)(mc−j0)(2j+j0−ma−mb−mc) (j, j, j0, j0)

2 intertwiner_t[2][J][ma][mb][mc] = iJ
(ma−j+)(mb−j+)(mc−j+0)(2j++j+0 −ma−mb−mc)

(
j+, j+, j+

0 , j
+
0

)
3 intertwiner_t[3][J][ma][mb][mc] = iJ

(ma−j−)(mb−j−)(mc−j−0)(2j−+j−0 −ma−mb−mc)

(
j−, j−, j−0 , j

−
0

)
4 intertwiner_t[4][J][ma][mb][mc] = iJ(ma−jf)(mb−j0)(mc−j0)(jf+2j0−ma−mb−mc) (jf , j0, j0, j0)

5 intertwiner_t[5][J][ma][mb][mc] = iJ
(ma−j+f)(mb−j+0)(mc−j+0)(j+f +2j+0 −ma−mb−mc)

(
j+
f , j

+
0 , j

+
0 , j

+
0

)
6 intertwiner_t[6][J][ma][mb][mc] = iJ

(ma−j−f)(mb−j−0)(mc−j−0)(j−f +2j−0 −ma−mb−mc)

(
j−f , j

−
0 , j

−
0 , j

−
0

)
With the de�nition of intertwiners :

iJm1m2m3m4
(j1, j2, j3, j4) =

√
2J + 1

∑
M

(−1)
J−M

(
j1 j2 J
m1 m2 M

)(
j3 j4 J
m3 m4 −M

)
(178)

Inside the de�nition of the intertwiners, we can see the contribution of the 3j-symbol previously presented ; of
course, the method for compute the value of the intertwiners table in function of the 3j-symbols table will be given
later via the associated code.

B.2.4 Arrays of the 15j±-symbols

Next, we have the 15j+-symbols and 15j−-symbols table. At this point, the j-representation are implicitly given in
the de�nition of the objects : the table will only depend of the intertwiners parameter J. So we have just the map :

fonction_15j_plus_t[J1p][J2p][J3p][J4p][J5p] =
(
J1p,J2p,J3p,J4p,J5p; j+

kl

)
=∑

p(−1)
∑
kl(j

+
kl−pkl)iJ1p−p12p13−p14p15i

J2p
−p23p12−p24p25i

J3p
−p13p23−p34p35i

J4p
p45p24p34p14i

J5p
−p45−p25−p35−p15

(
j+
kl

) (179)

fonction_15j_moins_t[J1m][J2m][J3m][J4m][J5m] =
(
J1m,J2m,J3m,J4m,J5m; j−kl

)
=∑

p(−1)
∑
kl(j

−
kl−pkl)iJ1m−p12p13−p14p15i

J2m
−p23p12−p24p25i

J3m
−p13p23−p34p35i

J4m
p45p24p34p14i

J5m
−p45−p25−p35−p15

(
j−kl
) (180)

B.2.5 Arrays for the fusion coe�cients

We will have the de�nition of a table for construct the future fusion coe�cients :

iDroit_type1_t[Jp][Jm][ma][mb][mc] =∑
m+,m− i

Jp

m+
1 m

+
2 m

+
3 m

+
4

(
j+, j+, j+

0 , j
+
0

)
iJm
m−1 m

−
2 m
−
3 m
−
4

(
j−, j−, j−0 , j

−
0

)∏4
l=1

√
2jl + 1

(
j+
l j−l jl
m+
l m−l ml

)
with :

m1 = ma− j
m2 = mb− j
m3 = mc− j0(

m4 = −
∑3
i=1mi

)


(181)

iDroit_type2_t[Jp][Jm][ma][mb][mc] =∑
m+,m− i

Jp

m+
1 m

+
2 m

+
3 m

+
4

(
j+
f , j

+
0 , j

+
0 , j

+
0

)
iJm
m−1 m

−
2 m
−
3 m
−
4

(
j−f , j

−
0 , j

−
0 , j

−
0

)∏4
l=1

√
2jl + 1

(
j+
l j−l jl
m+
l m−l ml

)
with

m1 = ma− jf
m2 = mb− j0
m3 = mc− j0(

m4 = −
∑3
i=1mi

)


(182)

where the intertwiners and the {j+j−j}-symbols appear. And, obviously, a table for the fusion coe�cients :

iCourbe_type1_t[Jp][Jm][J] = IJJp,Jm (j, j, j0, j0) (183)

95

iCourbe_type2_t[Jp][Jm][J] = IJJp,Jm (jf , j0, j0, j0) (184)

B.2.6 Arrays for the 15j-SO(4)-symbols

Finally, we have the table for the last important computation : the function_15j_so4_t[][][][][] table to store the
values of the 15j-SO(4)-symbols :

fonction_15j_so4_t[J1][J2][J3][J4][J5] = [J1,J2,J3,J4,J5; jkl] =∑
K+,K−

(
K+
k ; j+

kl

) (
K−k ; j−kl

)
IJ1
K+
k ,K

−
k

(j, j, j0, j0) IJ2
K+

2 ,K
−
2

(j, j, j0, j0) IJ3
K+

3 ,K
−
3

(j, j, j0, j0)

×IJ4
K+

4 ,K
−
4

(jf , j0, j0, j0) IJ5
K+

5 ,K
−
5

(jf , j0, j0, j0)
(185)

The two next table correspond to a temporary storage for load in memory previous values of 15j-SO(4)-symbols
computed. Because the time part for compute the 15j-SO(4)-symbols is very long, we have a part of the code for
write the symbols computed, and load the values already given. The t15j_so4_loaded[][][][][] will correspond to the
temporary storage in memory of the read values, and the t15j_so4_present[][][][][] to a Boolean table for check if
the values are already read/computed or not.

B.2.7 Arrays for the coherent results

Finally, the last three (complex) tables correspond to the coherent results, where :

so4semicoherent[n][t][J4][J5] =
∑

J1,J2,J3

[Ji, J4,J5; j, j0, jf]

3∏
k=1

〈
iJk |j, j0, A [n] ,Φ [t]

〉
so4coherent[(int)(jf)][n][t][n2][t2] =

∑
J,K

[Jk,K4,K5; j, j0, jf]

〈
iK4 |jNi

−→
nNi [Af [n2] ,Φf [t2]]

〉

×
〈
iK5 |jN ′i

−−→
nN
′

i [Af [n2] ,Φf [t2]]

〉 3∏
k=1

〈
iJ
N
k |j, j0, A [n] ,Φ [t]

〉
w_coheren_f[(int)(jf)][n][t] = wf (j, j0, jf , A [n] ,Φ [t])

That will give all the raw data we need to compute all the probabilities and study the properties of transitions
amplitudes. The exact process for the computation of these quantities and the parameters �n�, �t�, �n2�, �t2�
associated to the coherent states will be de�ned in their section of code respectively.

B.3 De�nitions of global functions

Before to process to the main of the code, we need to de�ne all the global functions we will use. The all functions
necessary to compute and store the tables will be expressed and (brie�y) explained below.

B.3.1 Call-functions for the arrays and tables

In the context of the code development, we have de�ned some functions for call the tables. The interest of this call-
functions is just to give the corresponding value of the tables, in this sens the call-functions are no more necessary
because you can just take the value from the tables directly. But if you want check the number of time the tables
are called, or if you want add some intermediate calculation when you call a value of a table without a�ect the
table, the user can add some code in the call-functions. That is the old interest to de�ne these functions : look if
the code compute exactly the good value and check if the process of the code is going well.

//////////////////////////////−Cal l o f the tab l e s −//////////////////////////////

long double tro i s_j_plusmoins (i n t type , i n t ma, i n t mb) {

96

// The type here correspond to one o f these 3 j−symbols :
// 1−> (j+, j−, j) , 2 −> (j0+, j0−, j 0) e t 3 −> (j f +, j f −, j f)

r e turn trois_j_plusmoins_t [type] [ma] [mb] ;
}

long double tro is_j_type (i n t type , i n t K, i n t ma, i n t mb) {
// The type here correspond to one o f the 9 ca s e s o f 3 j−symbols

re turn trois_j_type_t [type] [K] [ma] [mb] ;
}

long double intertwiner_mem (in t typeInter , i n t K, i n t ma, i n t mb, i n t mc){
// The type In t e r here correspond to one o f the 6 ca s e s o f i n t e r tw i n e r s

re turn inte r tw iner_t [type In t e r] [K] [ma] [mb] [mc] ;
}

long double function_15j_moins_mem(in t K1, i n t K2, i n t K3, i n t K4, i n t K5) {
return function_15j_moins_t [K1] [K2] [K3] [K4] [K5] ;

}

long double function_15j_plus_mem (in t K1, i n t K2, i n t K3, i n t K4, i n t K5) {
return function_15j_plus_t [K1] [K2] [K3] [K4] [K5] ;

}

long double iDroit_type1_mem(in t kplus , i n t kmoins , i n t ma, i n t mb, i n t mc) {
return iDroit_type1_t [kplus] [kmoins] [ma] [mb] [mc] ;

}

long double iDroit_type2_mem(in t kplus , i n t kmoins , i n t ma, i n t mb, i n t mc) {
return iDroit_type2_t [kplus] [kmoins] [ma] [mb] [mc] ;

}

long double iCourbe_type1_mem(in t kplus , i n t kmoins , i n t k) {
re turn iCourbe_type1_t [kplus] [kmoins] [k] ;

}

long double iCourbe_type2_mem(in t kplus , i n t kmoins , i n t k) {
re turn iCourbe_type2_t [kplus] [kmoins] [k] ;

}

long double function_15j_so4_mem (in t K1, i n t K2, i n t K3, i n t K4, i n t K5){
return function_15j_so4_t [K1] [K2] [K3] [K4] [K5] ;

}

B.3.2 Some useful functions

Of course, for the next functions and many parts of the code, that will be useful to de�ne some basic functions, as
the maximum, minimum and factorial functions.

f l o a t max(f l o a t e , f l o a t f) ///Maximum func t i on ///
{
i f (e>=f)

97

{ return e ;
}

e l s e
{ re turn f ;
}

}

f l o a t min (f l o a t e , f l o a t f) ///Minimum func t i on ///
{
i f (e<=f)

{ re turn e ;
}

e l s e
{ re turn f ;
}

}

long double f a c t (long double j) /// Fa c t o r i a l f unc t i on ///
{
i f ((j <0) | | ((j−(long i n t) (j)) !=0))
{ cout << " problem" << j << endl ;
}

i f ((j ==1)| |(j ==0))
{ re turn 1 ;

} e l s e {
re turn f a c t (j −1)∗ j ;
}

}

The factorial here, for more convenience with the precision from the rest of the code, is de�ne with numbers which
have long double precision. For check if no errors occur with the used values in the factorial, because whatever the
precision of the number it must be physically a integer, we have a line where the code check if the number can be
expressed as a integer. If not, the code give the error message �problem�, that give the information to the user that
some values for the factorial from the code are not consistent : that means we have a error in the code. Of course,
in the all simulations done, this error message never appear : that means the values used/computed are right and
(probably) this check-line is no more useful.

For the future de�nition of the j+, with the constraint j+ ≈ 1+γ
2 j, we need to introduce a function which give

the integer or half-integer closest to the exact value 1+γ
2 j. This function is the following :

f l o a t jp_approx (f l o a t Immirzi , f l o a t j f , f l o a t j_type) //Approximation func t i on f o r j+
{
f l o a t j fp_theor ique =0.5∗(i n t) ((1 .0+ Immirzi)∗ j f) ;
f l o a t j fm_theorique=j f−j fp_theor ique ;
i f (f abs (j fp_theor ique ∗(1.0− Immirzi)− j fm_theorique ∗(1.0+ Immirzi))
<fabs ((j fp_theor ique +0.5)∗(1.0− Immirzi)−(j fm_theorique −0.5)∗(1.0+ Immirzi)))
{ re turn j fp_theor ique ;
}

i f (f abs (j fp_theor ique ∗(1.0− Immirzi)− j fm_theorique ∗(1.0+ Immirzi))
==fabs ((j fp_theor ique +0.5)∗(1.0− Immirzi)−(j fm_theorique −0.5)∗(1.0+ Immirzi)))

{ i f ((j fp_theor ique −(i n t) (j fp_theor ique))==(j_type−(i n t) (j_type)))
{ re turn j fp_theor ique ;
}

98

e l s e
{ re turn j fp_theor ique +0.5 ;
}

}
i f (f abs (j fp_theor ique ∗(1.0− Immirzi)− j fm_theorique ∗(1.0+ Immirzi))
>fabs ((j fp_theor ique +0.5)∗(1.0− Immirzi)−(j fm_theorique −0.5)∗(1.0+ Immirzi)))
{ re turn j fp_theor ique +0.5 ;
}

}

So the jp_approx(γ,jf ,jtype) return the integer or half-integer closest to 1+γ
2 jf . If the exact value

1+γ
2 jf is in the

middle of the closest integer and half-integer, the function return the closest value which have the same type (integer
or half-integer) of the arbitrary jtype.

B.3.3 Function for the 3j-symbols

We have the function for a 3j-symbol given by :

long double trois_j_sans_m3 (f l o a t j1 , f l o a t j2 , f l o a t j3 , f l o a t m1, f l o a t m2) {
long double norme=0 ;
long double somme=0 ;

i f (((j 1+j2+j3)==(in t) (j 1+j2+j3))&&(abs (m1+m2)<=j3)){
norme=(pow(−1.0 , (i n t) (j1−j 2+m1+m2))

∗ s q r t l (f a c t (j 1+j2−j 3)∗ f a c t (j 1+j3−j 2)∗ f a c t (j 2+j3−j 1)/ (f a c t (j 1+j2+j3 +1.0)))
∗ s q r t l (f a c t (j 1+m1)∗ f a c t (j1−m1))
∗ s q r t l (f a c t (j 2+m2)∗ f a c t (j2−m2))
∗ s q r t l (f a c t (j3−m1−m2)∗ f a c t (j 3+m1+m2))) ;

f o r (i n t k=0; k < (i n t) (j 1+j2−j 3 +1 .0) ; k++) {
i f (((j1−m1−k)>=0)&&((j2+m2−k)>=0)&&((j3−j 2+m1+k)>=0)&&((j3−j1−m2+k)>=0)){
somme += pow(−1.0 , k)/ (f a c t (k)∗ f a c t (j 1+j2−j3−k)∗ f a c t (j1−m1−k)∗ f a c t (j 2+m2−k)

∗ f a c t (j3−j 2+m1+k)∗ f a c t (j3−j1−m2+k)) ;
}

}
}
return norme∗somme ;

}

Which compute the

(
j1 j2 j3
m1 m2 −m1 −m2

)
symbol in agreement with its constraint :

j1 + j2 + j3 ∈ N , |m1 +m2| ≤ j3 (186)

The formula used for the computation of that is the Racah formula :(
j1 j2 j3
m1 m2 −m1 −m2

)
= (−1)

j1−j2+m1+m2

[
(j1 + j2− j3)! (j1 + j3− j2)! (j2 + j3− j1)!

(j1 + j2 + j3 + 1)!

] 1
2

(187)

× [(j1 +m1)! (j1 −m1)! (j2 +m2)! (j2 −m2)! (j3 +m3)! (j3 −m3)!]
1
2 (188)

×
∑
k

(−1)
k

k! (j1 + j2− j3− k)! (j1−m1− k)! (j2 +m2− k)! (j3− j2 +m1 + k)! (j3− j1−m2 + k)!
(189)

99

B.3.4 Function for the intertwiners

We have the function for compute a intertwiner :

long double i n t e r tw in e r (i n t type1 , i n t type2 , i n t K, i n t ma, i n t mb, i n t mc) {
long double inter_temp=0;

f l o a t j 1=j_face [type1] [1] ;
f l o a t j 2=j_face [type1] [2] ;
f l o a t j 3=j_face [type2] [1] ;
f l o a t j 4=j_face [type2] [2] ;

i f (abs (j 1+j2+j3−ma−mb−mc) <= j4) {
inter_temp = pow(−1 , (i n t) (K+ma+mb−j1−j 2))∗ s q r t l (2 . 0∗K+1.0)

∗ tro is_j_type (type1 ,K,ma,mb)
∗ tro is_j_type (type2 ,K,mc , (i n t) (j 1+j2+j3+j4−ma−mb−mc)) ;

}

re turn inter_temp ;
}

Where we specify the type1 and type2 for choose the correct 3j-symbols, and their associated j-parameters, in there
corresponding tables. The code return explicitly :

intertwiner(type1,type2,K,ma,mb,mc)
=
√

2K + 1 (−1)
K+ma+mb−j1−j2

×trois_j_type_t[type1][K][ma][mb]
×trois_j_type_t[type2][K][mc][(int)(j1+j2+j3+j4-ma-mb-mc)]

= iK(ma-j1)(mb-j2)(mc-j3)(
∑
ji-ma-mb-mc) (j1, j2, j3, j4)

;

j1 = j_face[type1][1]
j2 = j_face[type1][2]
j3 = j_face[type2][1]
j4 = j_face[type2][2]

(190)

B.3.5 Function for the 15j±-symbols

For the function of 15j±-symbols, we have the same sort of code. For the 15j+-symbols, we have the following
function :

long double funct ion_15j_plus (i n t K1, i n t K2, i n t K3, i n t K4, i n t K5) {

f l o a t j12=j_face [2] [1] ;
f l o a t j13=j_face [2] [2] ;
f l o a t j14=j_face [5] [1] ;
f l o a t j15=j_face [5] [2] ;
f l o a t j23=j_face [2] [1] ;
f l o a t j24=j_face [5] [1] ;
f l o a t j25=j_face [5] [2] ;
f l o a t j34=j_face [5] [1] ;
f l o a t j35=j_face [5] [2] ;
f l o a t j45=j_face [8] [1] ;

i n t A=(in t) (j14+j24+j34+j45) ;
i n t B=(i n t) (j45−j14−j24−j 34) ;
i n t C=(i n t) (j12−j 13+j14+j15) ;
i n t D=(in t) (j23−j 12+j24+j25) ;

100

i n t E=(i n t) (j13−j 23+j34+j35) ;

i n t deuxj12=(i n t) (2∗ j 12) ;
i n t deuxj13=(i n t) (2∗ j 13) ;
i n t deuxj14=(i n t) (2∗ j 14) ;
i n t deuxj15=(i n t) (2∗ j 15) ;
i n t deuxj23=(i n t) (2∗ j 23) ;
i n t deuxj24=(i n t) (2∗ j 24) ;
i n t deuxj25=(i n t) (2∗ j 25) ;
i n t deuxj34=(i n t) (2∗ j 34) ;
i n t deuxj45=(i n t) (2∗ j 45) ;
i n t s i gne=pow(−1.0 ,(i n t) (deuxj12+deuxj13+deuxj14+deuxj23+deuxj24+deuxj34

+ j15+j25+j35+j45)) ;
i n t s i gne1 =1;
i n t s i gne2 =1;
i n t s i gne3 =1;
i n t s i gne4 =1;
i n t s i gne5 =1;
i n t s i gne6 =1;
long double temp=0;

f o r (i n t mab=0; mab<=deuxj12 ; mab++) {
i n t deuxj12moinsmab=deuxj12−mab ;
s i gne2=s igne1 ;
f o r (i n t mac=0; mac<=deuxj13 ; mac++) {

s i gne3=s igne2 ;
f o r (i n t mad=0; mad<=deuxj14 ; mad++) {

s i gne4=s igne3 ;

long double in t e r tw in1
=intertwiner_mem (2 ,K1, deuxj12moinsmab ,mac , deuxj14−mad) ;

i f ((i n t e r tw in1 !=0) && (C−mab+mac−mad>=0) && (C−mab+mac−mad<=deuxj15)){
f o r (i n t mbc=0; mbc<=deuxj23 ; mbc++) {

s i gne5=s igne4 ;
f o r (i n t mbd=0; mbd<=deuxj24 ; mbd++) {

s i gne6=s igne5 ;

long double in t e r tw in2
=intertwiner_mem (2 ,K2, deuxj23−mbc ,mab , deuxj24−mbd)
∗ i n t e r tw in1 ;

i f ((i n t e r tw in2 !=0) && (D−mbc+mab−mbd>=0) && (D−mbc+mab−mbd<=deuxj25)){
f o r (i n t mcd=0; mcd<=deuxj34 ; mcd++) {

i f ((A−mad−mbd−mcd >=0) && (A−mad−mbd−mcd <= deuxj45)) {

long double in t e r tw in45
=intertwiner_mem (5 ,K4,A−mad−mbd−mcd ,mbd,mcd)
∗ intertwiner_mem (5 ,K5,B+mad+mbd+mcd ,D−mbc+mab−mbd,E−mac+mbc−mcd) ;

i f (i n t e r tw in45 !=0){
temp += s igne6 ∗ i n t e r tw in2

101

∗ intertwiner_mem (2 ,K3, deuxj13−mac ,mbc , deuxj34−mcd)
∗ i n t e r tw in45 ;

}
}
s i gne6 ∗=−1;

}
}
s i gne5 ∗=−1;

}
s i gne4 ∗=−1;

}
}
s i gne3 ∗=−1;

}
s i gne2 ∗=−1;

}
s i gne1 ∗=−1;

}
re turn temp∗ s i gne ;

}

Which return the sum :

function_15j_plus(K1,K2,K3,K4,K5) =∑
p(−1)

∑
kl(j

+
kl−mkl)iK1

−m12m13−m14m15
iK2
−m23m12−m24m25

iK3
−m13m23−m34m35

iK4
m45m24m34m14

iK5
−m45−m25−m35−m15

(
j+
kl

)
(191)

Of course, because of the properties of the intertwiners (which are null if
∑4
i=1mi 6= 0), we don't need to proceed

the all sum over the mkl ; so we can save more time-calculation just by the sum over six of them. This function do
it, with the associated set of variables and notations :

m12 ↔ mab , m23 ↔ mbc , . . . (192)

mab = m12 + j12,mbc = m23 + j23, . . . (193)

The part of code for the function function_15j_moins(int K1, int K2, int K3, int K4, int K5), which give the
corresponding 15j−-symbols, is the same except obviously for the mapping of the j-faces and associated intertwiners
: the type of face and intertwiner are changed for their associated j−-elements.

B.3.6 Function for the iDroit

We have the following code for compute the future fusion coe�cient associated to the boundary tetrahedra
(j, j, j0, j0) :

long double iDroit_type1 (i n t kplus , i n t kmoins , i n t ma, i n t mb, i n t mc) {

f l o a t j 1=j_face [1] [1] ;
f l o a t j 2=j_face [1] [2] ;
f l o a t j 3=j_face [4] [1] ;
f l o a t j 4=j_face [4] [2] ;
f l o a t j 1p l u s=j_face [2] [1] ;
f l o a t j 2p l u s=j_face [2] [2] ;
f l o a t j 3p l u s=j_face [5] [1] ;
f l o a t j 4p l u s=j_face [5] [2] ;

102

f l o a t j1moins=j_face [3] [1] ;
f l o a t j2moins=j_face [3] [2] ;
f l o a t j3moins=j_face [6] [1] ;
f l o a t j4moins=j_face [6] [2] ;

i n t deuxj1=(i n t) (2∗ j 1) ;
i n t deuxj2=(i n t) (2∗ j 2) ;
i n t deuxj3=(i n t) (2∗ j 3) ;
i n t deuxj4=(i n t) (2∗ j 4) ;
i n t deuxj1p lus=(i n t) (2∗ j 1 p l u s) ;
i n t deuxj2p lus=(i n t) (2∗ j 2 p l u s) ;
i n t deuxj3p lus=(i n t) (2∗ j 3 p l u s) ;
i n t deuxj4p lus=(i n t) (2∗ j 4 p l u s) ;
i n t deuxj4moins=(i n t) (2∗ j4moins) ;

i n t minmaplus=max(0 , (deuxj1−2∗ j1moins−ma)) ;
i n t maxmaplus=min (deuxj1plus , (deuxj1−ma)) ;
i n t minmbplus=max(0 , (deuxj2−2∗ j2moins−mb)) ;
i n t maxmbplus=min (deuxj2plus , (deuxj2−mb)) ;
i n t minmcplus=max(0 , (deuxj3−2∗ j3moins−mc)) ;
i n t maxmcplus=min (deuxj3plus , (deuxj3−mc)) ;
long double temp=0;

f o r (i n t maplus=minmaplus ; maplus<= maxmaplus ; maplus++){
i n t deuxj1moinsmaplus=(i n t) (deuxj1−maplus−ma) ;
f o r (i n t mbplus=minmbplus ; mbplus<= maxmbplus ; mbplus++){

i n t deuxj2moinsmbplus=(i n t) (deuxj2−mbplus−mb) ;
f o r (i n t mcplus=minmcplus ; mcplus<= maxmcplus ; mcplus++){

i n t A=(in t) (j 1p l u s+j 2p l u s+j 3p l u s+j4p lus−maplus−mbplus−mcplus) ;
i n t B=(i n t) (maplus+mbplus+mcplus + ma+mb+mc

+ j1moins+j2moins+j3moins+j4moins −deuxj1−deuxj2−deuxj3) ;
i f ((A>=0)&&(B>=0)&&(A<=deuxj4p lus)&&(B<=deuxj4moins)){

i n t deuxj3moinsmcplus=(i n t) (deuxj3−mcplus−mc) ;
temp+=intertwiner_mem (2 , kplus , maplus , mbplus , mcplus)

∗ intertwiner_mem (3 , kmoins , deuxj1moinsmaplus , deuxj2moinsmbplus , deuxj3moinsmcplus)
∗ tro i s_j_plusmoins (1 , maplus , deuxj1moinsmaplus)
∗ tro i s_j_plusmoins (1 ,mbplus , deuxj2moinsmbplus)
∗ tro i s_j_plusmoins (2 , mcplus , deuxj3moinsmcplus)
∗ tro i s_j_plusmoins (2 ,A,B) ;

}
}

}
}
return temp∗ s q r t l ((deuxj1+1)∗(deuxj2+1)∗(deuxj3+1)∗(deuxj4+1)) ;

}

103

Which return :

iDroit_type1(kplus,kmoins,ma,mb,mc) =∑
m+,m− i

kplus

m+
1 m

+
2 m

+
3 m

+
4

(
j+, j+, j+

0 , j
+
0

)
ikmoins

m−1 m
−
2 m
−
3 m
−
4

(
j−, j−, j−0 , j

−
0

)∏4
l=1

√
2jl + 1

(
j+
l j−l jl
m+
l m−l ml

)
with :

m1 = ma− j
m2 = mb− j
m3 = mc− j0(

m4 = −
∑3
i=1mi

)


(194)

The code for the shared-tetrahedra (jf , j0, j0, j0) is the same, with the appropriate type for the j_face, intertwiners
and {j+, j−, j}-symbols, and de�ne the iDroit_type2(int kplus, int kmoins, int ma, int mb, int mc) function.

B.3.7 Function for the fusion-coe�cients

The fusion-coe�cients of boundary tetrahedra (j, j, j0, j0) will be computed by the following function :

long double iCourbe_type1 (i n t kplus , i n t kmoins , i n t k) {

f l o a t j 1=j_face [1] [1] ;
f l o a t j 2=j_face [1] [2] ;
f l o a t j 3=j_face [4] [1] ;
f l o a t j 4=j_face [4] [2] ;
i n t deuxj1=(i n t) (2∗ j 1) ;
i n t deuxj2=(i n t) (2∗ j 2) ;
i n t deuxj3=(i n t) (2∗ j 3) ;
i n t deuxj4=(i n t) (2∗ j 4) ;
long double temp=0;

f o r (i n t ma=0; ma<= deuxj1 ; ma++){
f o r (i n t mb=0; mb<= deuxj2 ; mb++){

f o r (i n t mc=0; mc<= deuxj3 ; mc++){
temp+=iDroit_type1_mem(kplus , kmoins ,ma,mb,mc)∗ intertwiner_mem (1 , k ,ma,mb,mc) ;

}
}

}
return temp ;

}

Which will associate the corresponding iDroit (iDroit_type1) result with the corresponding intertwiner. Again, the
code for the fusion-coe�cient of shared-tetrahedra (jf , j0, j0, j0) is the same with the associated remapping of the
type of iDroit and intertwiners. The two code return :

iCourbe_type1(kplus,kmoins,k) = Ikkplus,kmoins (j, j, j0, j0) (195)

iCourbe_type2(kplus,kmoins,k) = Ikkplus,kmoins (jf , j0, j0, j0) (196)

B.3.8 Function for 15j-SO(4)-symbols

Now we have a function for the computation of SO(4) equivalent of 15j-symbols. The function will be combined
the results given by the 15j±-symbols functions and the fusion-coe�cients functions and return the value of the
corresponding 15j-SO(4)-symbol as below :

104

long double function_15j_so4 (i n t K1, i n t K2, i n t K3, i n t K4, i n t K5){

// c o e f f s p lus
f l o a t j 12p lu s=j_face [2] [1] ;
f l o a t j 13p lu s=j_face [2] [2] ;
f l o a t j 14p lu s=j_face [5] [1] ;
f l o a t j 15p lu s=j_face [5] [2] ;
f l o a t j 23p lu s=j_face [2] [1] ;
f l o a t j 24p lu s=j_face [5] [1] ;
f l o a t j 25p lu s=j_face [5] [2] ;
f l o a t j 34p lu s=j_face [5] [1] ;
f l o a t j 35p lu s=j_face [5] [2] ;
f l o a t j 45p lu s=j_face [8] [1] ;

//moins
f l o a t j12moins=j_face [3] [1] ;
f l o a t j13moins=j_face [3] [2] ;
f l o a t j14moins=j_face [6] [1] ;
f l o a t j15moins=j_face [6] [2] ;
f l o a t j23moins=j_face [3] [1] ;
f l o a t j24moins=j_face [6] [1] ;
f l o a t j25moins=j_face [6] [2] ;
f l o a t j34moins=j_face [6] [1] ;
f l o a t j35moins=j_face [6] [2] ;
f l o a t j45moins=j_face [9] [1] ;

//
f l o a t maxK1plus=2.0∗min(j12p lus , j 1 4p lu s) ;
f l o a t maxK4plus=j14p lu s+min (j14p lus , j 4 5p lu s) ;
f l o a t minK4plus=(i n t) abs (j45p lus−j 1 4p lu s) ;
f l o a t maxK1moins=2.0∗min(j12moins , j14moins) ;
f l o a t maxK4moins=(i n t) (j14moins+min (j14moins , j45moins)) ;
f l o a t minK4moins=(i n t) abs (j45moins−j14moins) ;
long double r e s u l t =0;

f o r (i n t K1m=0; K1m<=maxK1moins ; K1m++){
f o r (i n t K2m=0; K2m<=maxK1moins ; K2m++){

f o r (i n t K3m=0; K3m<=maxK1moins ; K3m++){
f o r (i n t K4m=minK4moins ; K4m<=maxK4moins ; K4m++){

f o r (i n t K5m=minK4moins ; K5m<=maxK4moins ; K5m++){

long double symbol_15jm = function_15j_moins_mem(K1m,K2m,K3m,K4m,K5m) ;
i f (symbol_15jm != 0){ // <−−− i f symbol_15jm non nu l l

long double sum=0;
f o r (i n t K2p=0; K2p<=maxK1plus ; K2p++){

long double i_K2pK2mK2 = iCourbe_type1_mem(K2p ,K2m,K2) ;
i f (i_K2pK2mK2 != 0){ // <−−− i f i_K2pK2mK2 non nu l l !

long double sum_temp=0;
f o r (i n t K1p=0; K1p<=maxK1plus ; K1p++){

105

f o r (i n t K4p=minK4plus ; K4p<=maxK4plus ; K4p++){

long double temp2=0;
f o r (i n t K3p=0; K3p<K1p ; K3p++){

long double temp=0;
f o r (i n t K5p=minK4plus ; K5p<K4p ; K5p++){
temp += function_15j_plus_mem (K1p ,K2p ,K3p ,K4p ,K5p)

∗(iCourbe_type2_mem(K4p ,K4m,K4)∗ iCourbe_type2_mem(K5p ,K5m,K5)
+ pow(−1.0 ,K1+K2+K3)∗ iCourbe_type2_mem(K4p ,K4m,K5)∗ iCourbe_type2_mem(K5p ,K5m,K4)) ;

}
temp2 += temp

∗(iCourbe_type1_mem(K1p ,K1m,K1)∗ iCourbe_type1_mem(K3p ,K3m,K3)
+ pow(−1.0 ,K1+K2+K3+K4+K5)∗ iCourbe_type1_mem(K1p ,K1m,K3)∗ iCourbe_type1_mem(K3p ,K3m,K1)) ;

}
// temp2 = sum_K5+<K4+ sum_K3+<K1+ of 15 j+ ∗ I

long double temp3=0;
f o r (i n t K3p=0; K3p<K1p ; K3p++){
temp3 += function_15j_plus_mem (K1p ,K2p ,K3p ,K4p ,K4p)

∗(iCourbe_type1_mem(K1p ,K1m,K1)∗ iCourbe_type1_mem(K3p ,K3m,K3)
+ pow(−1.0 ,K1+K2+K3+K4+K5)∗ iCourbe_type1_mem(K1p ,K1m,K3)∗ iCourbe_type1_mem(K3p ,K3m,K1)) ;

}
temp3 ∗= iCourbe_type2_mem(K4p ,K4m,K4)∗ iCourbe_type2_mem(K4p ,K5m,K5) ;
// temp3 = sum_K3+<K1+ of 15 j+ ∗ I

long double temp4=0;
f o r (i n t K5p=minK4plus ; K5p<K4p ; K5p++){
temp4 += function_15j_plus_mem (K1p ,K2p ,K1p ,K4p ,K5p)

∗(iCourbe_type2_mem(K4p ,K4m,K4)∗ iCourbe_type2_mem(K5p ,K5m,K5)
+ pow(−1.0 ,K1+K2+K3)∗ iCourbe_type2_mem(K4p ,K4m,K5)∗ iCourbe_type2_mem(K5p ,K5m,K4)) ;

}
temp4 ∗= iCourbe_type1_mem(K1p ,K1m,K1)∗ iCourbe_type1_mem(K1p ,K3m,K3) ;
// temp4 = sum_K5+<K4+ of 15 j+ ∗ I

sum_temp += temp2 + temp3 + temp4
+ function_15j_plus_mem (K1p ,K2p ,K1p ,K4p ,K4p)
∗ iCourbe_type1_mem(K1p ,K1m,K1)
∗ iCourbe_type1_mem(K1p ,K3m,K3)
∗ iCourbe_type2_mem(K4p ,K4m,K4)
∗ iCourbe_type2_mem(K4p ,K5m,K5) ;

// sum_temp = sum_K3+ sum_K5+ of 15 j+ ∗ I
}

}
sum += sum_temp∗i_K2pK2mK2 ;

} // <−−− end i f i_K2pK2mK2 non nu l l !
}
r e s u l t += symbol_15jm∗sum ;

} // <−−− end i f symbol_15jm non nu l l !
}

}
}

}

106

}
return r e s u l t ;

}

Here, we needed to be very clever and found a tricky way for compute the value of function_15j_so4(K1,K2,K3,K4,K5),
because the number of steps is huge and the calculation is very long. Indeed, we need to compute the object :

fonction_15j_so4(K1,K2,K3,K4,K5) = [K1,K2,K3,K4,K5; j, j0, jf] =∑
K+,K−

(
K+
k ; j+

kl

) (
K−k ; j−kl

)
IK1

K+
k ,K

−
k

(j, j, j0, j0) IK2

K+
2 ,K

−
2

(j, j, j0, j0) IK3

K+
3 ,K

−
3

(j, j, j0, j0)

×IK4

K+
4 ,K

−
4

(jf , j0, j0, j0) IK5

K+
5 ,K

−
5

(jf , j0, j0, j0)
(197)

which have ten sums, and each sums have the approximate size of 2j + 1 ! So the number of steps is of the order
of (2j + 1)

10 ∼ 1013 for j ∼ 10 ! For simplify the computation and save a lot of time-calculation, we use the
symmetries properties inside the 15j-SO(4)-symbols. In our de�nition of 15j-symbols, we have the symmetries :

(K1,K2,K3,K4,K5; j, j0, jf) = (−1)
K1+K2+K3+K4+K5 (K3,K2,K1,K4,K5; j, j0, jf)

= (−1)
K4+K5 (K3,K2,K1,K5,K4; j, j0, jf)

(198)

And from the fusion coe�cients :
(−1)

K++K− IKK+,K− = (−1)
K IKK+,K− (199)

So, the symmetry properties of the 15j±-symbols are transmitted to the 15j-SO(4)-symbols :

[K1,K2,K3,K4,K5; j, j0, jf] = (−1)
K1+K2+K3+K4+K5 [K3,K2,K1,K4,K5; j, j0, jf]

= (−1)
K4+K5 [K3,K2,K1,K5,K4; j, j0, jf]

(200)

We will use the properties of the 15j±-symbols and fusion-coe�cients to rewrite in a more light way (in the sens of
machine resources and time) the 15j-SO(4)-symbols :

[K1,K2,K3,K4,K5; j, j0, jf] =∑
K−

(
K−1 K

−
2 K

−
3 K

−
4 K

−
5 ; j, j0, jf

)∑
K+

2
I
K+

2 K
−
2

K2

∑
K+

1 K
+
4

{(
K+

1 K
+
2 K

+
1 K

+
4 K

+
4 ; j, j0, jf

)
IK1

K+
1 ,K

−
1

IK3

K+
1 ,K

−
3

IK4

K+
4 ,K

−
4

IK5

K+
4 ,K

−
5

+IK1

K+
1 ,K

−
1

IK3

K+
1 ,K

−
3

∑
K+

5 <K
+
4

(
K+

1 K
+
2 K

+
1 K

+
4 K

+
5 ; j, j0, jf

) [
IK4

K+
4 ,K

−
4

IK5

K+
5 ,K

−
5

+ (−1)
K1+K2+K3 IK5

K+
4 ,K

−
4

IK4

K+
5 ,K

−
5

]
+IK4

K+
4 ,K

−
4

IK5

K+
4 ,K

−
5

∑
K+

3 <K
+
1

(
K+

1 K
+
2 K

+
3 K

+
4 K

+
4 ; j, j0, jf

) [
IK1

K+
1 ,K

−
1

IK3

K+
3 ,K

−
3

+ (−1)
K1+K2+K3+K4+K5 IK3

K+
1 ,K

−
1

IK1

K+
3 ,K

−
3

]
+
∑
K+

3 <K
+
1

[
IK1

K+
1 ,K

−
1

IK3

K+
3 ,K

−
3

+ (−1)
K1+K2+K3+K4+K5 IK3

K+
1 ,K

−
1

IK1

K+
3 ,K

−
3

]
×
∑
K+

5 <K
+
4

(
K+

1 K
+
2 K

+
3 K

+
4 K

+
5 ; j, j0, jf

) [
IK4

K+
4 ,K

−
4

IK5

K+
5 ,K

−
5

+ (−1)
K1+K2+K3 IK5

K+
4 ,K

−
4

IK4

K+
5 ,K

−
5

]}
(201)

And it's exactly this formula which are coded in the function_15j_so4(K1,K2,K3,K4,K5). With it's way, the
time for compute just one 15j-SO(4)-symbol (with the tables of the 15j±-symbols and fusion-coe�cient already in
memory) for j ∼ 10 is to the order of 1 second.

B.3.9 Function for the representation Dj
mj (θ, φ)

For the coherent states we need to compute the representation Dj
mj (θ, φ) associated to a arbitrary j-face. So we

have the d(ma,deuxj,theta,phi) function as follow :

complex<long double> d(i n t ma, i n t deuxj , f l o a t theta , f l o a t phi)
{
complex<long double> phase_d (cos (phi ∗(deuxj /2.0−ma)) , s i n (phi ∗(deuxj /2.0−ma))) ;
f l o a t costemp=cos (theta / 2 . 0) ;

107

f l o a t sintemp=s in (theta / 2 . 0) ;

i f (((costemp==0)&&(ma==0)) | | ((sintemp==0)&&(ma==deuxj))) {
re turn phase_d ;

} e l s e {
complex<long double> norm_d(sq r t (f a c t (deuxj)/ (f a c t (ma)∗ f a c t (deuxj−ma)))

∗pow(costemp ,ma)∗pow(sintemp , deuxj−ma) , 0) ;
r e turn phase_d∗norm_d ;
}

}

Which return the associated value from the Wigner representation matrices :

d(ma,2j,θ,φ) = Dj
(ma−j)j (θ, φ)

= Dj
(ma−j)j

(
e−ıφJZe−ıθJY

)
= e−ı(ma−j)φdj(ma−j)j

=

√
(2j)!

ma! (2j −ma)
e−ı(ma−j)φ

[
cos

(
θ

2

)]ma [
sin

(
θ

2

)](2j−ma)

B.3.10 Function for load the 15j-SO(4)-symbols �le

For save more time, if some values of 15j-SO(4)-symbols are precalculated, it will be useful to have a save-load
system for get the previous values from a past execution of the code. So we de�ne the load_15j_so4(j,j0,jf)
function for load the 15j-SO(4)-symbols values from a data �le called �simplex_walking_j0=j0_j=j_jf=jf .txt� :

/////////////////////// Loading func t i on f o r the 15 j_so4 tab l e ///////////////////////

void load_15j_so4 (i n t j , i n t j0 , i n t j f) {
o s t r ing s t r eam j0s , j s , j f s ; // c r e a t e a s t r ing s t r eam
j 0 s << j0 ;// add number to the stream
j s << j ;
j f s << j f ;

s t r i n g name = "simplex_walking_j0=";
name += j0 s . s t r () ;
name += "_j=";
name += j s . s t r () ;
name += "_jf=";
name += j f s . s t r () ;
name += " . txt " ;
i f s t r e am results_so4_w (name . c_str () , i o s : : in) ; //open the 15 j so4 f i l e in read

i n t K1,K2,K3,K4,K5 ;
// i n i t i a l i z a t i o n o f Boolean tab l e
i n t K1max=(i n t) (2∗min(j0 , j)) ;
i n t K4max=(i n t) (j 0+min (j0 , j f)) ;
f o r (K1=0; K1<=K1max ; K1++) {

f o r (K2=0; K2<=K1max ; K2++) {
f o r (K3=0; K3<=K1; K3++) {

f o r (K4=0; K4<=K4max ; K4++) {
f o r (K5=0; K5<=K4; K5++) {

108

t15j_so4_present [K1] [K2] [K3] [K4] [K5]= f a l s e ;
}

}
}

}
}

// we load the f i l e d i r e c t l y !
long double v15j_so4 ;
i f (results_so4_w) {

s t r i n g l i g n e ;
whi l e (g e t l i n e (results_so4_w , l i g n e)) {

results_so4_w>>K1;
results_so4_w>>K2;
results_so4_w>>K3;
results_so4_w>>K4;
results_so4_w>>K5;
results_so4_w>>v15j_so4 ;
t15j_so4_loaded [K1] [K2] [K3] [K4] [K5]=v15j_so4 ;
t15j_so4_present [K1] [K2] [K3] [K4] [K5]= true ;

}
}

results_so4_w . c l o s e () ; // c l o s e the 15 j so4 f i l e
}

For the speci�ed value of j, j0 and jf the code recreates the name of the corresponding �le �simplex_walking_j0=j0_j=j_jf=jf .txt�
and call the data-�le with this name. The data-�le is open for reading, and we use some loops to put beforehand
the Boolean t15j_so4_present[][][][][] table to �false� : that �false� table means the values of 15j-SO(4)-symbols
are not already loaded, and the code is ready for get the values from the �le. We have a loop over the lines from
the �le, and we get for each line the corresponding K parameter and its corresponding value of 15j-SO(4)-symbol
from the �le ; we store the value in the t15j_so4_loaded[K1][K2][K3][K4][K5] table box and put the associated
t15j_so4_present[K1][K2][K3][K4][K5] table box to �true� : that will means for the rest of the code that the value
of 15j-SO(4)-symbol are store in its table box.

B.4 Main code

The all arrays and the all functions are de�ned, now we will expose and explain the main code. The main() will
compute the all coherent objects before write the all results in data-�les.

B.4.1 Boundary components

The �rst steps are to compute the boundary elements which not depend of jf . We will de�ne and construct the all
objects needed for the boundary tetrahedra and associated coherent states. The results computed will be stored in
the corresponding arrays and tables for the next steps dedicated to the transition amplitude computation.

Beginning of the main and de�nitions of j_face for boundary faces j, j0 In the starting of the main, we
will de�ne and give the value of j, j0 and Immirzi parameter that are the base for the boundary de�nition. With
the help of the jp_approx function de�ne above we compute the corresponding j±, j±0 and stock the all values in
the j_face[][] tables. The code is :

//////////////////////////////−CODE MAIN()−//////////////////////////////

109

i n t main (){
cout << "\n Sta r t i ng o f the main ! "<< endl ;

f l o a t j 0 =8;
f l o a t j =8;

i n t maxJ=(i n t) (2∗min(j0 , j)) ;

f l o a t Immirzi =0.5 ;

f l o a t j 0p l u s=jp_approx (Immirzi , j0 , 1) ;
f l o a t j0moins=j0−j 0 p l u s ;
f l o a t j p l u s=jp_approx (Immirzi , j , 1) ;
f l o a t jmoins=j−j p l u s ;

// d e f i n i t i o n des j_face
j_face [1] [1]= j ;
j_face [1] [2]= j ;
j_face [2] [1]= j p l u s ;
j_face [2] [2]= j p l u s ;
j_face [3] [1]= jmoins ;
j_face [3] [2]= jmoins ;
j_face [4] [1]= j0 ;
j_face [4] [2]= j0 ;
j_face [5] [1]= j 0p l u s ;
j_face [5] [2]= j 0p l u s ;
j_face [6] [1]= j0moins ;
j_face [6] [2]= j0moins ;
j_face [7] [2]= j0 ;
j_face [8] [2]= j 0p l u s ;
j_face [9] [2]= j0moins ;

The jp_approx(Immirzi,j,1) return the integer or half-integer closest to the 1±Immirzi
2 j value and, in case of ambi-

guity (see the properties of the function), the parameter �1� return the closest integer. So the all j for the boundary
faces are stocked in the j_face tables, we will be able to compute the other math objects from them.

Computation of the 3j-symbols for the boundary tetrahedra Now that the boundary j are available, we
have the section of the code for compute the all corresponding 3j-symbols :

// populat ing o f 3 j−type ar rays
cout << "populat ing o f 3 j−type ar rays"<< endl ;

f o r (i n t type=1; type<=6;type++) {
f l o a t j 1=j_face [type] [1] ;
f l o a t j 2=j_face [type] [2] ;
f l o a t mamax=2∗ j_face [type] [1] ;
f l o a t mbmax=2∗ j_face [type] [2] ;
f l o a t minK=abs (j_face [type] [1] − j_face [type] [2]) ;
f l o a t maxK=(j_face [type] [1]+ j_face [type] [2]) ;
f o r (i n t K=minK ; K<=maxK; K++) {

f o r (i n t ma=0; ma<=mamax ; ma++) {

110

f l o a t m1=ma−j 1 ;
f o r (i n t mb=0; mb<=mbmax; mb++) {

trois_j_type_t [type] [K] [ma] [mb]=trois_j_sans_m3 (j1 , j2 ,K,m1,mb−j 2) ;
}

}
}

}

// populat ing o f (j +, j−, j)−symbols a r rays
cout << "populat ing o f (j +, j−, j)−symbols a r rays"<< endl ;
// type 1 −> ca l c u l a t i o n with j
f l o a t mamax=2∗ j p l u s ;
f l o a t mbmax=2∗ jmoins ;
f o r (i n t ma=0; ma<=mamax ; ma++) {

f l o a t m1=ma−j p l u s ;
f o r (i n t mb=0; mb<=mbmax; mb++) {
trois_j_plusmoins_t [1] [ma] [mb]=trois_j_sans_m3 (jp lu s , jmoins , j ,m1,mb−jmoins) ;

}
}
// type 2 −> ca l c u l a t i o n with j0
mamax=2∗ j 0 p l u s ;
mbmax=2∗ j0moins ;
f o r (i n t ma=0; ma<=mamax ; ma++) {

f l o a t m1=ma−j 0 p l u s ;
f o r (i n t mb=0; mb<=mbmax; mb++) {
trois_j_plusmoins_t [2] [ma] [mb]=trois_j_sans_m3 (j0p lus , j0moins , j0 ,m1,mb−j0moins) ;

}
}

In the �rst block, for build the 3j-symbols for the future (boundary) intertwiners, we have a loop over the type of 3j-
symbols. This loop, for the type 1 to 6, will build the six 3j-symbols from the j, j+, j−, j0, j

+
0 and j−0 respectively.

For each type, we have a temporary de�nition of the values of faces from the j_face[][] and a computation of
corresponding boundaries for the K parameter. After, we call the trois_j_sans_m3 function and stock the result
in the trois_j_type[][][][] table for the all possible indices. The next block of this part of code have the same logic
and utility but for generate the {j+, j−, j}-symbols and the

{
j+
0 , j

−
0 , j0

}
-symbols.

Computation of intertwiners for the boundary tetrahedra Like the previous part, we will call the corre-
sponding functions and generate the values for the intertwiners :

// populat ing o f i n t e r tw i n e r s a r rays
cout << "populat ing o f i n t e r tw i n e r s a r rays"<< endl ;

// type 1 −> 3 j type 1 et 4 :
mamax=2∗ j_face [1] [1] ;
mbmax=2∗ j_face [1] [2] ;
f l o a t mcmax=2∗ j_face [4] [1] ;
f l o a t Kmax=min(j_face [1] [1]+ j_face [1] [2] , j_face [4] [1]+ j_face [4] [2]) ;
f l o a t Kmin=abs (j_face [1] [1] − j_face [1] [2]) ;
f o r (i n t K=Kmin ; K<=Kmax ;K++) {

f o r (i n t ma=0; ma<=mamax ; ma++) {
f o r (i n t mb=0; mb<=mbmax; mb++) {

f o r (i n t mc=0; mc<=mcmax ; mc++){

111

i n t e r tw iner_t [1] [K] [ma] [mb] [mc]= in t e r tw i n e r (1 , 4 ,K,ma,mb,mc) ;
}

}
}

}
// type 2 −> 3 j type 2 et 5 :
mamax=2∗ j_face [2] [1] ;
mbmax=2∗ j_face [2] [2] ;
mcmax=2∗ j_face [5] [1] ;
Kmax=min (j_face [2] [1]+ j_face [2] [2] , j_face [5] [1]+ j_face [5] [2]) ;
Kmin=abs (j_face [2] [1] − j_face [2] [2]) ;
f o r (i n t K=Kmin ; K<=Kmax ;K++) {

f o r (i n t ma=0; ma<=mamax ; ma++) {
f o r (i n t mb=0; mb<=mbmax; mb++) {

f o r (i n t mc=0; mc<=mcmax ; mc++){
inte r tw iner_t [2] [K] [ma] [mb] [mc]= in t e r tw i n e r (2 , 5 ,K,ma,mb,mc) ;

}
}

}
}
// type 3 −> 3 j type 3 et 6 :
mamax=2∗ j_face [3] [1] ;
mbmax=2∗ j_face [3] [2] ;
mcmax=2∗ j_face [6] [1] ;
Kmax=min (j_face [3] [1]+ j_face [3] [2] , j_face [6] [1]+ j_face [6] [2]) ;
Kmin=abs (j_face [3] [1] − j_face [3] [2]) ;
f o r (i n t K=Kmin ; K<=Kmax ;K++) {

f o r (i n t ma=0; ma<=mamax ; ma++) {
f o r (i n t mb=0; mb<=mbmax; mb++) {

f o r (i n t mc=0; mc<=mcmax ; mc++){
inte r tw iner_t [3] [K] [ma] [mb] [mc]= in t e r tw i n e r (3 , 6 ,K,ma,mb,mc) ;

}
}

}
}

The code create and stock successively the boundary intertwiners iK (j, j, j0, j0), iK
(
j+, j+, j+

0 , j
+
0

)
and iK

(
j−, j−, j−0 , j

−
0

)
in the intertwiner_t[1][K][][][], intertwiner_t[2][K][][][] and intertwiner_t[3][K][][][] tables. For each type of inter-
twiners, the code use the corresponding intertwiner() function with the corresponding parameter for select the type
of 3j-symbols needed : intertwiner_t[1]→ intertwiner(1,4,...), intertwiner_t[2]→ intertwiner(2,5,...) etc.

Computation of the fusion coe�cient for the boundary tetrahedra Here we will have the part for compute
the iDroit_type1 terms and, after, compute the fusion-coe�cients for the boundary tetrahedra :

// Let ' s go f o r the iDro i t :
cout << "Generating the iDro i t"<< endl ;

f l o a t maxKplus=2.0∗min(jp lu s , j 0p l u s) ;
f l o a t maxKmoins=2.0∗min(jmoins , j0moins) ;
i n t deuxj=(i n t) (2 . 0∗ j) ;
i n t deuxj0=(i n t) (2 . 0∗ j 0) ;

112

f o r (i n t Kplus=0; Kplus<= maxKplus ; Kplus++){
f o r (i n t Kmoins=0; Kmoins<= maxKmoins ; Kmoins++){

f o r (i n t ma=0; ma<=deuxj ; ma++){
f o r (i n t mb=0; mb<=deuxj ; mb++){

f o r (i n t mc=0; mc<=deuxj0 ; mc++){
i f (abs (ma+mb+mc−deuxj−j 0)> j0) {
iDroit_type1_t [Kplus] [Kmoins] [ma] [mb] [mc]=0;

} e l s e {
iDroit_type1_t [Kplus] [Kmoins] [ma] [mb] [mc]= iDroit_type1 (Kplus , Kmoins ,ma,mb,mc) ;

}
}

}
}

}
}

// And the fus ion−c o e f f i c i e n t s
cout << "And the fus ion−c o e f f i c i e n t s "<< endl ;

maxKplus=2.0∗min(jp lu s , j 0p l u s) ;
maxKmoins=2.0∗min(jmoins , j0moins) ;
f l o a t maxK=2.0∗min(j , j 0) ;
f o r (i n t Kplus=0; Kplus<= maxKplus ; Kplus++){

f o r (i n t Kmoins=0; Kmoins<= maxKmoins ; Kmoins++){
f o r (i n t K=0; K<= maxK; K++){

iCourbe_type1_t [Kplus] [Kmoins] [K]= iCourbe_type1 (Kplus , Kmoins ,K) ;
}

}
}

We have the de�nitions of the K+, K−, K boundaries in terms of corresponding j and call the functions for store
the fusion-coe�cients tables.

Computation of the coherent states for the boundary tetrahedra It remains the states for �nally get the
all boundary elements, prelude to the calculation over the shared-tetrahedra and the internal geometries. For the
coherent states from the boundary tetrahedra, we need to do the calculus :〈

iJ |ji−→ni
〉

=
∑
m

iJm1m2m3m4
Dj1
m1j1

(R (−→n1))Dj2
m2j2

(R (−→n2))Dj3
m3j3

(R (−→n3))Dj4
m4j4

(R (−→n4))

=
∑
m

iJm1m2m3m4
Dj1
m1j1

(θ1, φ1)Dj2
m2j2

(θ2, φ2)Dj3
m3j3

(θ3, φ3)Dj4
m4j4

(θ4, φ4)

Which is simply with the gauge choice (θ1, φ1) = (0, 0), φ2 = 0 and the closure condition
∑
i ji
−→n1 =

−→
0 :〈

iJ |j, j0, A,Φ
〉

=
∑
m

iJj1m2m3m4
Dj2
m2j2

(θ2, 0)Dj3
m3j3

(θ3, φ3)Dj4
m4j4

(θ4, φ4) [j, j0, A,Φ] (202)

113

θ2 = arccos

(
A2

2j2
− 1

)
θ3 = arccos

(
cos (Φ)

√
4j2

0 −A2
√

4j2 −A2 −A2

4jj0

)

θ4 = arccos

(
− cos (Φ)

√
4j2

0 −A2
√

4j2 −A2 −A2

4jj0

)

φ3 = arccos

(
sin2 θ4 − sin2 θ2 − sin2 θ3

2 sin θ2 sin θ3

)
φ4 = 2π − arccos

(
sin2 θ3 − sin2 θ2 − sin2 θ4

2 sin θ2 sin θ4

)
But, obviously, we cannot compute that for the all continuum, that make no sens for the machine ! So we will
de�ne a resolution for the continuous parameters A ∈ [0; 2 min (j, j0)] and Φ ∈ [0;π] and just compute them for
discrete value given by two code parameters n and t :

A =
1 + 2n

102
× 2 min (j, j0) for n = 0, 1, . . . , 50 (203)

Φ =
1 + 2t

102
× π for t = 0, 1, . . . , 50 (204)

We will have 51 points uniformly distributed for each variables A and Φ which include the middle cases (A =
min (j, j0) for n = 25 or Φ = π

2 for t = 25) and exclude the extreme cases (A = 0,min (j, j0) or Φ = 0, π). So we
will have a good resolution for the data, without the full degenerated cases where the classical geometry give absurd
results in the context of the numerical calculus : tetrahedra in�nitely elongated or completely �at which give some
annoying �division by zero� for the machine. The associated code is :

cout << "Next , the coherent boundary s t a t e s"<< endl ;

complex<long double> iJd_externe [maxJ+ 1] [5 1] [5 1] ;
o f s tream r e s u l t I n t e r (" iJd_externe . txt " , i o s : : out | i o s : : trunc) ;

f o r (i n t t=0; t<=50; t++){
f l o a t PHI=(1+2∗ t)∗M_PI/102 . 0 ;
//Dissymmetry parameter − ang le between (n1 , n2)^(n3 , n4) − partner v a r i a b l e o f K
f o r (i n t n=0;n<=50;n++){

f l o a t A=(1+2∗n)∗maxJ/102 . 0 ;
f l o a t theta2=acos (A∗A/(2 .0∗ j ∗ j) −1 .0) ;
f l o a t theta3=acos ((cos (PHI)∗ s q r t (4 . 0∗ j 0 ∗ j0−A∗A)∗ s q r t (4 . 0∗ j ∗ j−A∗A) − A∗A)

/(4 . 0∗ j ∗ j 0)) ;
f l o a t theta4=acos ((− cos (PHI)∗ s q r t (4 . 0∗ j 0 ∗ j0−A∗A)∗ s q r t (4 . 0∗ j ∗ j−A∗A) − A∗A)

/(4 . 0∗ j ∗ j 0)) ;
f l o a t phi3=acos ((pow(s i n (theta4) , 2) − pow(s i n (theta2) , 2) − pow(s i n (theta3) , 2))

/ (2 . 0∗ s i n (theta2)∗ s i n (theta3))) ;
f l o a t phi4=2.0∗M_PI

−acos ((pow(s i n (theta3) , 2) − pow(s i n (theta2) , 2) − pow(s i n (theta4) , 2))
/ (2 . 0∗ s i n (theta2)∗ s i n (theta4))) ;

// Creat ion o f the iJd_externe

114

long double norm_iJd_externe=0;
f o r (i n t K=0;K<=maxJ ;K++){

iJd_externe [K] [n] [t]=0;
f o r (i n t mb=0;mb<=deuxj ;mb++){

f o r (i n t mc=0;mc<=deuxj0 ;mc++){
i n t md=deuxj0−mb−mc;
i f (md>=0){
iJd_externe [K] [n] [t] += intertwiner_mem (1 ,K, deuxj ,mb,mc)

∗d(mb, deuxj , theta2 , 0)
∗d(mc, deuxj0 , theta3 , phi3)
∗d(md, deuxj0 , theta4 , phi4) ;

}
}

}
norm_iJd_externe+=abs (iJd_externe [K] [n] [t]) ∗ abs (iJd_externe [K] [n] [t]) ;
}

i f (norm_iJd_externe !=0){
f o r (i n t K=0;K<=maxJ ;K++){

complex<long double> temp ((deuxj +1.0)∗(deuxj0 +1 . 0) , 0) ;
//complex<long double> temp (1 . 0/ sq r t (norm_iJd_externe) , 0) ;
iJd_externe [K] [n] [t]∗=temp ;
r e s u l t I n t e r <<PHI<<" "<<A<<"\t"<<norm_iJd_externe<<"\t"<<K<<"\t "

<<abs (iJd_externe [K] [n] [t])<<" "<<arg (iJd_externe [K] [n] [t])<<endl ;
}
r e s u l t I n t e r <<endl ;

}
}
r e s u l t I n t e r <<endl ;

}
r e s u l t I n t e r . c l o s e () ;

We de�ne the array iJd_externe[maxJ+1][51][51] which will contain the coherent tetrahedra state ; remember that
the maxJ = 2 min (j, j0) correspond to the maximum boundary of the J parameter and the two [51] are for the all
points given for n and t. After, we have the de�nition of the �le �iJd_externe.txt� (open for writing) for write, in
parallel to the calculation, the results from the coherent states of boundary tetrahedra.

We have the two loops over the t and n, for range the all space (Φ, A). For each step for given t and n, we
compute the corresponding classical variables (θi, φi) and compute from them the coherent state with the associated
intertwiner from table and the d(m(i),2ji,θi,φi) functions. We store, temporarily, the iJd_externe[][][] table with
the coherent state :

iJd_externe[K][n][t] =
〈
iK|j, j0, A[n],Φ[t]

〉
(205)

and compute, on the �y, the norm of the state : norm_iJd_externe =
∑

K

∣∣〈iK|j, j0, A[n],Φ[t]
〉∣∣2. The next step

consist just to renormalize the non-null states (norm_iJd_externe 6= 0) with the j-representation and store the the
iJd_externe[][][] with this renormalization :

iJd_externe[K][n][t]→ iJd_externe[K][n][t] = (2j + 1) (2j0 + 1)
〈
iK|j, j0, A[n],Φ[t]

〉
(206)

So we have normalized coherent states in the iJd_externe[][][] in the sens of orthogonality relations :

∏
i

∫
d−→ni
4π

√∏
i

(2ji + 1)
〈
iJ |ji−→ni

〉
×
√∏

i

(2ji + 1)〈iJ′ |ji−→ni〉 = δJ,J
′

(207)

115

In the renormalization part, we have a commented line corresponding to a another possible renormalization. If
you uncomment this line, compile and execute the code, you will process to the following renormalization :

iJd_externe[K][n][t] =

〈
iK|j, j0, A[n],Φ[t]

〉√∑
K' |〈iK'|j, j0, A[n],Φ[t]〉|2

(208)

B.4.2 Loop for the face f and internal components

At this point, the all boundary objects are de�ne and in the machine memory. We will start to expend the process
for the shared object given for each compatible jf ∈ [0; 3j0] and compute the objects for obtain the transition
amplitudes. The corresponding process will be given by a loop over the all available jf where will we compute the
3j-symbols, intertwiners, fusion-coe�cients, 15j±-symbols, 15j-SO(4)-symbols and coherent transition amplitudes
which depend of the jf -representation. For each jf the computed results will be stored in their arrays and tables,
and full coherent transition amplitude will be done progressively for the next �les-writing and study code part.

Start of the f-loop and de�nition of the j_face for f Now we will start the loop over the all compatible
values of jf to get the math elements from shared-tetrahedra :

//Loop over the j f
cout << "////START j f−LOOP////"<< endl ;

f l o a t j f =0;
f o r (j f=j0−(i n t) (j 0) ; j f <=3∗ j 0 ; j f ++){ // j f=j0−(i n t) (j 0) imp l i e s that j f same type as j 0

// otherwi s e the e lements are nu l l s
f l o a t j f p l u s=jp_approx (Immirzi , j f , 1) ;
f l o a t j fmo ins=j f−j f p l u s ;
i f ((j f p l u s −(i n t) (j f p l u s))==(j0p lus −(i n t) (j 0p l u s))) { //Check i f j f+ same type as j0+

//=> Calcu la t i on r equ i r ed
// d e f i n i t i o n o f j_face f o r j f

j_face [7] [1]= j f ;
j_face [8] [1]= j f p l u s ;
j_face [9] [1]= j fmo ins ;
cout << "−−− Case j f="<<j f <<" (j f−="<<jfmoins <<", j f+="<<j f p l u s <<") −−−"<< endl ;

The starting jf value for the loop is de�ne with j0-(int)(j0) because the non-nulls elements happen when j0 and
jf are the same type ; the value j0-(int)(j0) term return 0 or 1

2 if the j0 is integer or half-integer. The other jf
values will be obtained by simple incrementation of the loop from this starting value. For each value of jf given by
the loop, the code compute the j+

f and j−f values (with the jp_approx function) in the optics to check if they are
compatible ; because the non-nulls elements from the j±f are given for j+

f (and j−f) which is same type as j+
0 (and

j−0). So, after the de�nition of j±f , we have a if-condition for check the type of j+
f : jfplus-(int)(jfplus) will return

0 or 1
2 if jf+ integer or half-integer and j0plus-(int)(j0plus) will return 0 or 1

2 if j+
0 integer or half-integer, the two

results are equal only if j+
f and j+

0 have the same type.
At the level of the if-condition the jf value, and its j±f , is compatible for non-nulls elements. We have �ltered

the non-compatible values of jf which would have given automatically null elements, so we can store the values of
j_face[][] for the calculus and proceed to the next.

Computation of the 3j-symbols for the shared-tetrahedra With the values of j_face[][] containing the jf
and j±f we can, as the boundary part, compute the 3j-symbols :

// peuplement des tableaux des 3 j type (WITH j f ! ! !)
cout << "peuplement des tableaux des 3 j type (WITH j f !! !)" << endl ;

116

f o r (i n t type=7; type<=9;type++) {
f l o a t j 1=j_face [type] [1] ;
f l o a t j 2=j_face [type] [2] ;
f l o a t mamax=2∗ j_face [type] [1] ;
f l o a t mbmax=2∗ j_face [type] [2] ;
f l o a t minK=abs (j_face [type] [1] − j_face [type] [2]) ;
f l o a t maxK=(j_face [type] [1]+ j_face [type] [2]) ;
f o r (i n t K=minK ; K<=maxK; K++) {

f o r (i n t ma=0; ma<=mamax ; ma++) {
f l o a t m1=ma−j 1 ;
f o r (i n t mb=0; mb<=mbmax; mb++) {

trois_j_type_t [type] [K] [ma] [mb]=trois_j_sans_m3 (j1 , j2 ,K,m1,mb−j 2) ;
}

}
}

}
//peuplement des tableaux des t r o i s j p l u smo i n s (WITH j f ! ! !)
cout << "peuplement des tableaux des t r o i s j p l u smo i n s (WITH j f !! !)" << endl ;
// type 3 : on c a l c u l e avec j f
mamax=2∗ j f p l u s ;
mbmax=2∗ j fmo ins ;
f o r (i n t ma=0; ma<=mamax ; ma++) {

f l o a t m1=ma−j f p l u s ;
f o r (i n t mb=0; mb<=mbmax; mb++) {

trois_j_plusmoins_t [3] [ma] [mb]=trois_j_sans_m3 (j f p l u s , j fmoins , j f ,m1,mb−j fmo ins) ;
}

}

The �rst block compute and store the trois_j_type_t[][][][] table with the trois_j_sans_m3() function for the
3j-symbols of the type 7 to 9 (dependent of jf , j

+
f and j−f). The next block give the {j+

f , j
−
f , jf}-symbols.

Computation of intertwiners for the shared-tetrahedra As the boundary part, the code compute the
intertwiners for the shared-tetrahedra (which depend of jf) :

// Populat ing o f i n t e r tw i n e r s a r rays (WITH j f ! ! !)
cout << "Populat ing o f i n t e r tw i n e r s a r rays (WITH j f !! !)" << endl ;

// type 4 −> 3 j type 7 et 4 :
mamax=2∗ j_face [7] [1] ;
mbmax=2∗ j_face [7] [2] ;
mcmax=2∗ j_face [4] [1] ;
Kmax=min (j_face [7] [1]+ j_face [7] [2] , j_face [4] [1]+ j_face [4] [2]) ;
Kmin=abs (j_face [7] [1] − j_face [7] [2]) ;
f o r (i n t K=Kmin ; K<=Kmax ;K++) {

f o r (i n t ma=0; ma<=mamax ; ma++) {
f o r (i n t mb=0; mb<=mbmax; mb++) {

f o r (i n t mc=0; mc<=mcmax ; mc++){
inte r tw iner_t [4] [K] [ma] [mb] [mc]= in t e r tw i n e r (7 , 4 ,K,ma,mb,mc) ;

}
}

}

117

}
// type 5 −> 3 j type 8 et 5 :
mamax=2∗ j_face [8] [1] ;
mbmax=2∗ j_face [8] [2] ;
mcmax=2∗ j_face [5] [1] ;
Kmax=min (j_face [8] [1]+ j_face [8] [2] , j_face [5] [1]+ j_face [5] [2]) ;
Kmin=abs (j_face [8] [1] − j_face [8] [2]) ;
f o r (i n t K=Kmin ; K<=Kmax ;K++) {

f o r (i n t ma=0; ma<=mamax ; ma++) {
f o r (i n t mb=0; mb<=mbmax; mb++) {

f o r (i n t mc=0; mc<=mcmax ; mc++){
inte r tw iner_t [5] [K] [ma] [mb] [mc]= in t e r tw i n e r (8 , 5 ,K,ma,mb,mc) ;

}
}

}
}
// type 6 −> 3 j type 9 et 6 :
mamax=2∗ j_face [9] [1] ;
mbmax=2∗ j_face [9] [2] ;
mcmax=2∗ j_face [6] [1] ;
Kmax=min (j_face [9] [1]+ j_face [9] [2] , j_face [6] [1]+ j_face [6] [2]) ;
Kmin=abs (j_face [9] [1] − j_face [9] [2]) ;
f o r (i n t K=Kmin ; K<=Kmax ;K++) {

f o r (i n t ma=0; ma<=mamax ; ma++) {
f o r (i n t mb=0; mb<=mbmax; mb++) {

f o r (i n t mc=0; mc<=mcmax ; mc++){
inte r tw iner_t [6] [K] [ma] [mb] [mc]= in t e r tw i n e r (9 , 6 ,K,ma,mb,mc) ;

}
}

}
}

Again, for each block the computation of the intertwiners associate and call the intertwiner() function with their cor-
responding 3j-symbols type parameter : intertwiner_t[4]→ intertwiner(7,4,...), intertwiner_t[5]→ intertwiner(8,5,...)
etc.

Computation of the fusion coe�cient for the shared-tetrahedra We have the computation of the fusion-
coe�cients :

// Let ' s go f o r the iDro i t (WITH j f ! ! !) :
cout << " genera t ing the iDro i t (WITH j f ! ! !)" << endl ;

i n t deux j f=(i n t) (2 . 0∗ j f) ;
maxKplus=j 0p l u s+min (j f p l u s , j 0p l u s) ;
maxKmoins=j0moins+min (j fmoins , j0moins) ;
f l o a t minKplus=abs (j f p l u s−j 0 p l u s) ;
f l o a t minKmoins=abs (j fmoins−j0moins) ;

f o r (i n t Kplus=minKplus ; Kplus<= maxKplus ; Kplus++){
f o r (i n t Kmoins=minKmoins ; Kmoins<= maxKmoins ; Kmoins++){

f o r (i n t ma=0; ma<=deux j f ; ma++){
f o r (i n t mb=0; mb<=deuxj0 ; mb++){

118

f o r (i n t mc=0; mc<=deuxj0 ; mc++){
i f (abs (ma+mb+mc−j f−deuxj0)> j0) {
iDroit_type2_t [Kplus] [Kmoins] [ma] [mb] [mc]=0;

} e l s e {
iDroit_type2_t [Kplus] [Kmoins] [ma] [mb] [mc]= iDroit_type2 (Kplus , Kmoins ,ma,mb,mc) ;

}
}

}
}

}
}
// And the fus ion−c o e f f i c i e n t s (WITH j f ! ! !)
cout << "And the fus ion−c o e f f i c i e n t s (WITH j f !! !)" << endl ;

maxKplus=j 0p l u s+min (j f p l u s , j 0p l u s) ;
maxKmoins=j0moins+min (j fmoins , j0moins) ;
maxK=j0+min (j f , j 0) ;

minKplus=abs (j f p l u s−j 0 p l u s) ;
minKmoins=abs (j fmoins−j0moins) ;
f l o a t minK=abs (j f−j 0) ;
f o r (i n t Kplus=minKplus ; Kplus<= maxKplus ; Kplus++){

f o r (i n t Kmoins=minKmoins ; Kmoins<= maxKmoins ; Kmoins++){
f o r (i n t K=minK ; K<= maxK; K++){

iCourbe_type2_t [Kplus] [Kmoins] [K]= iCourbe_type2 (Kplus , Kmoins ,K) ;
}

}
}

The �rst block use the iDroit_type2() function for create the iDroit for the shared-tetrahedra, and store them in
the iDroit_type2_t[][][][][] table. The second block use the previously computed iDroit_type2_t[][][][][] values and
compute the fusion-coe�cients in the iCourbe_type2_t[][][] array.

Computation of the 15j±-symbols Now we have the all intertwiners, from boundary and internal quantum
geometry for a speci�c value of jf , so we can compute the 15j±-symbols :

// Let ' s go f o r the 15 j :
cout << "Let ' s go f o r the 15 j p lus "<< endl ;

maxKplus=2.0∗min(jp lu s , j 0p l u s) ;
f l o a t maxK4plus=j 0p l u s+min (j f p l u s , j 0p l u s) ;
f l o a t minK4plus=abs (j f p l u s−j 0 p l u s) ;
i n t intmaxKplus=(i n t) (maxKplus) ;

#pragma omp p a r a l l e l f o r
f o r (i n t K2=0; K2<=intmaxKplus ; K2++){

f o r (i n t K1=0; K1<=maxKplus ; K1++){
f o r (i n t K3=0; K3<K1 ; K3++){

f o r (i n t K4=minK4plus ; K4<=maxK4plus ; K4++){
f o r (i n t K5=minK4plus ; K5<K4 ; K5++){

function_15j_plus_t [K1] [K2] [K3] [K4] [K5]
=funct ion_15j_plus (K1,K2,K3,K4,K5) ;

119

function_15j_plus_t [K1] [K2] [K3] [K5] [K4]
=pow(−1.0 ,K1+K2+K3)∗ function_15j_plus_t [K1] [K2] [K3] [K4] [K5] ;

function_15j_plus_t [K3] [K2] [K1] [K4] [K5]
=pow(−1.0 ,K1+K2+K3+K4+K5)∗ function_15j_plus_t [K1] [K2] [K3] [K4] [K5] ;

function_15j_plus_t [K3] [K2] [K1] [K5] [K4]
=pow(−1.0 ,K4+K5)∗ function_15j_plus_t [K1] [K2] [K3] [K4] [K5] ;

}
function_15j_plus_t [K1] [K2] [K3] [K4] [K4]
=funct ion_15j_plus (K1,K2,K3,K4,K4) ;

function_15j_plus_t [K3] [K2] [K1] [K4] [K4]
=function_15j_plus_t [K1] [K2] [K3] [K4] [K4] ;

}
}
f o r (i n t K4=minK4plus ; K4<=maxK4plus ; K4++){

f o r (i n t K5=minK4plus ; K5<K4 ; K5++){
function_15j_plus_t [K1] [K2] [K1] [K4] [K5]
=funct ion_15j_plus (K1,K2,K1,K4,K5) ;

function_15j_plus_t [K1] [K2] [K1] [K5] [K4]
=pow(−1.0 ,K2)∗ function_15j_plus_t [K1] [K2] [K1] [K4] [K5] ;

}
function_15j_plus_t [K1] [K2] [K1] [K4] [K4]
=funct ion_15j_plus (K1,K2,K1,K4,K4) ;

}
}

}
#pragma omp p a r a l l e l f o r
f o r (i n t K2=0; K2<=intmaxKplus ; K2++){

f o r (i n t K1=0; K1<=maxKplus ; K1++){
f o r (i n t K3=0; K3<=K1; K3++){

f o r (i n t K4=minK4plus ; K4<=maxK4plus ; K4++){
f o r (i n t K5=minK4plus ; K5<=K4; K5++){

i f (abs (function_15j_plus_t [K1] [K2] [K3] [K4] [K5]) <1.0 e−20){
function_15j_plus_t [K1] [K2] [K3] [K4] [K5]=0;
function_15j_plus_t [K1] [K2] [K3] [K5] [K4]=0;
function_15j_plus_t [K3] [K2] [K1] [K4] [K5]=0;
function_15j_plus_t [K3] [K2] [K1] [K5] [K4]=0;

}
}

}
}

}
}

cout << "Let ' s go f o r the 15 j minus "<< endl ;

maxKmoins=2.0∗min(jmoins , j0moins) ;
f l o a t maxK4moins=j0moins+min (j fmoins , j0moins) ;
f l o a t minK4moins=abs (j fmoins−j0moins) ;
i n t intmaxKmoins=(i n t) (maxKmoins) ;

#pragma omp p a r a l l e l f o r

120

f o r (i n t K2=0; K2<=intmaxKmoins ; K2++){
f o r (i n t K1=0; K1<=maxKmoins ; K1++){

f o r (i n t K3=0; K3<K1 ; K3++){
f o r (i n t K4=minK4moins ; K4<=maxK4moins ; K4++){

f o r (i n t K5=minK4moins ; K5<K4 ; K5++){
function_15j_moins_t [K1] [K2] [K3] [K4] [K5]
=function_15j_moins (K1,K2,K3,K4,K5) ;

function_15j_moins_t [K1] [K2] [K3] [K5] [K4]
=pow(−1.0 ,K1+K2+K3)∗ function_15j_moins_t [K1] [K2] [K3] [K4] [K5] ;

function_15j_moins_t [K3] [K2] [K1] [K4] [K5]
=pow(−1.0 ,K1+K2+K3+K4+K5)∗ function_15j_moins_t [K1] [K2] [K3] [K4] [K5] ;

function_15j_moins_t [K3] [K2] [K1] [K5] [K4]
=pow(−1.0 ,K4+K5)∗ function_15j_moins_t [K1] [K2] [K3] [K4] [K5] ;

}
}

}
f o r (i n t K4=minK4moins ; K4<=maxK4moins ; K4++){

f o r (i n t K5=minK4moins ; K5<K4 ; K5++){
function_15j_moins_t [K1] [K2] [K1] [K4] [K5]
=function_15j_moins (K1,K2,K1,K4,K5) ;

function_15j_moins_t [K1] [K2] [K1] [K5] [K4]
=pow(−1.0 ,K2)∗ function_15j_moins_t [K1] [K2] [K1] [K4] [K5] ;

}
function_15j_moins_t [K1] [K2] [K1] [K4] [K4]
=function_15j_moins (K1,K2,K1,K4,K4) ;

}
}

}
#pragma omp p a r a l l e l f o r
f o r (i n t K2=0; K2<=intmaxKmoins ; K2++){

f o r (i n t K1=0; K1<=maxKmoins ; K1++){
f o r (i n t K3=0; K3<=K1; K3++){

f o r (i n t K4=minK4moins ; K4<=maxK4moins ; K4++){
f o r (i n t K5=minK4moins ; K5<=K4 ; K5++){

i f (abs (function_15j_moins_t [K1] [K2] [K3] [K4] [K5]) <1.0 e−20){
function_15j_moins_t [K1] [K2] [K3] [K4] [K5]=0;
function_15j_moins_t [K1] [K2] [K3] [K5] [K4]=0;
function_15j_moins_t [K3] [K2] [K1] [K4] [K5]=0;
function_15j_moins_t [K3] [K2] [K1] [K5] [K4]=0;

}
}

}
}

}
}

The �rst block compute the 15j+-symbols, the second compute the 15j−-symbols. For each we have two parts :
The �rst compute the corresponding the 15j-symbols using the function_15j function and the symmetry prop-

erties :
(K1,K2,K3,K4,K5; j, j0, jf) = (−1)

K1+K2+K3+K4+K5 (K3,K2,K1,K4,K5; j, j0, jf)

= (−1)
K4+K5 (K3,K2,K1,K5,K4; j, j0, jf)

(209)

121

for store the all function_15j table without going through all the set of K parameter and save more calculation
time.

The second part take the values of the table which are smaller than 1.0× 10−20 and replace them by 0, because
they correspond in reality to null values. That was found in the development of the code, where several methods
was used for compute the 15j-symbols, and show that the values from di�erent methods was very precisely the
same except when they are smaller than 1.0× 10−20 (in these cases the values was always the same size order and
similar, but not equal). So we can conclude that these values are nulls, and that the code have a precision at least
1.0× 10−20 for the values of the 15j-symbols.

To save more calculation time, we use the parallelization library OpenMP with the �#pragma omp parallel for�
lines for the loops of each parts, that will allow to make the computation of the all 15j-symbols over the all processor
of the machine.

Computation of the 15j-SO(4)-symbols At this point, we have the all objects needed for compute the 15j-
SO(4)-symbols ! The code will load the values of 15j-SO(4)-symbols from data-�le (if it exist) and compute the
missing 15j-SO(4)-symbols values before to store them in the memory and in the data-�le :

// remains only the 15 j s o4
cout << "Remains only the 15 j s o4 " << endl ;

maxK=2.0∗min(j0 , j) ;
f l o a t maxK4=j0+min (j0 , j f) ;
f l o a t minK4=abs (j f−j 0) ;

o s t r ing s t r eam j0s , j s , j f s ; // c r e a t e a s t r ing s t r eam
j 0 s << j0 ;// add number to the stream
j s << j ;
j f s << j f ;

load_15j_so4 (j , j0 , j f) ;

s t r i n g name = "simplex_walking_j0=";
name += j0 s . s t r () ;
name += "_j=";
name += j s . s t r () ;
name += "_jf=";
name += j f s . s t r () ;
name += " . txt " ;
o f s tream results_so4_w (name . c_str () , i o s : : out | i o s : : app) ; //open the 15 j so4 f i l e
results_so4_w . p r e c i s i o n (6 4) ;
omp_lock_t wr i t e l o ck ;
omp_init_lock(&wr i t e l o ck) ;
i n t intmaxK=(in t) (maxK) ;
#pragma omp p a r a l l e l f o r
f o r (i n t K2=0; K2<=intmaxK ; K2++){

f o r (i n t K1=0; K1<=maxK; K1++){
f o r (i n t K3=0; K3<K1 ; K3++){

f o r (i n t K4=minK4 ; K4<=maxK4 ; K4++){
f o r (i n t K5=minK4 ; K5<K4 ; K5++){

i f (t15j_so4_present [K1] [K2] [K3] [K4] [K5] == true) {
function_15j_so4_t [K1] [K2] [K3] [K4] [K5]
=t15j_so4_loaded [K1] [K2] [K3] [K4] [K5] ;

122

} e l s e {
function_15j_so4_t [K1] [K2] [K3] [K4] [K5]
=function_15j_so4 (K1,K2,K3,K4,K5) ;
i f (abs (function_15j_so4_t [K1] [K2] [K3] [K4] [K5]) <1.0 e−20)
{ function_15j_so4_t [K1] [K2] [K3] [K4] [K5]=0;}

omp_set_lock(&wr i t e l o ck) ;
results_so4_w<<K1<<" "<<K2<<" "<<K3<<" "<<K4<<" "<<K5<<"\t "

<<function_15j_so4_t [K1] [K2] [K3] [K4] [K5]<<endl ;
omp_unset_lock(&wr i t e l o ck) ;

}
function_15j_so4_t [K1] [K2] [K3] [K5] [K4]
=pow(−1.0 ,K1+K2+K3)∗ function_15j_so4_t [K1] [K2] [K3] [K4] [K5] ;

function_15j_so4_t [K3] [K2] [K1] [K4] [K5]
=pow(−1.0 ,K1+K2+K3+K4+K5)∗ function_15j_so4_t [K1] [K2] [K3] [K4] [K5] ;

function_15j_so4_t [K3] [K2] [K1] [K5] [K4]
=pow(−1.0 ,K4+K5)∗ function_15j_so4_t [K1] [K2] [K3] [K4] [K5] ;

}
i f (t15j_so4_present [K1] [K2] [K3] [K4] [K4] == true) {
function_15j_so4_t [K1] [K2] [K3] [K4] [K4]
=t15j_so4_loaded [K1] [K2] [K3] [K4] [K4] ;

} e l s e {
function_15j_so4_t [K1] [K2] [K3] [K4] [K4]
=function_15j_so4 (K1,K2,K3,K4,K4) ;
i f (abs (function_15j_so4_t [K1] [K2] [K3] [K4] [K4]) <1.0 e−20)
{ function_15j_so4_t [K1] [K2] [K3] [K4] [K4]=0;}

omp_set_lock(&wr i t e l o ck) ;
results_so4_w<<K1<<" "<<K2<<" "<<K3<<" "<<K4<<" "<<K4<<"\t "

<<function_15j_so4_t [K1] [K2] [K3] [K4] [K4]<<endl ;
omp_unset_lock(&wr i t e l o ck) ;

}
function_15j_so4_t [K3] [K2] [K1] [K4] [K4]
=function_15j_so4_t [K1] [K2] [K3] [K4] [K4] ;

}
}
f o r (i n t K4=minK4 ; K4<=maxK4 ; K4++){

f o r (i n t K5=minK4 ; K5<K4 ; K5++){
i f (t15j_so4_present [K1] [K2] [K1] [K4] [K5] == true) {
function_15j_so4_t [K1] [K2] [K1] [K4] [K5]
=t15j_so4_loaded [K1] [K2] [K1] [K4] [K5] ;

} e l s e {
function_15j_so4_t [K1] [K2] [K1] [K4] [K5]
=function_15j_so4 (K1,K2,K1,K4,K5) ;
i f (abs (function_15j_so4_t [K1] [K2] [K1] [K4] [K5]) <1.0 e−20)
{ function_15j_so4_t [K1] [K2] [K1] [K4] [K5]=0;}

omp_set_lock(&wr i t e l o ck) ;
results_so4_w<<K1<<" "<<K2<<" "<<K1<<" "<<K4<<" "<<K5<<"\t "

<<function_15j_so4_t [K1] [K2] [K1] [K4] [K5]<<endl ;
omp_unset_lock(&wr i t e l o ck) ;

}
function_15j_so4_t [K1] [K2] [K1] [K5] [K4]
=pow(−1.0 ,K2)∗ function_15j_so4_t [K1] [K2] [K1] [K4] [K5] ;

}

123

i f (t15j_so4_present [K1] [K2] [K1] [K4] [K4] == true) {
function_15j_so4_t [K1] [K2] [K1] [K4] [K4]
=t15j_so4_loaded [K1] [K2] [K1] [K4] [K4] ;

} e l s e {
function_15j_so4_t [K1] [K2] [K1] [K4] [K4]
=function_15j_so4 (K1,K2,K1,K4,K4) ;
i f (abs (function_15j_so4_t [K1] [K2] [K1] [K4] [K4]) <1.0 e−20)
{ function_15j_so4_t [K1] [K2] [K1] [K4] [K4]=0;}

omp_set_lock(&wr i t e l o ck) ;
results_so4_w<<K1<<" "<<K2<<" "<<K1<<" "<<K4<<" "<<K4<<"\t "

<<function_15j_so4_t [K1] [K2] [K1] [K4] [K4]<<endl ;
omp_unset_lock(&wr i t e l o ck) ;

}
}

}
}
omp_destroy_lock(&wr i t e l o ck) ;
results_so4_w . c l o s e () ; // c l o s e the 15 j so4 f i l e

After create the name of the hypothetical 15j-SO(4)-symbols data-�le in function of the speci�c value of (j, j0
and) jf , �simplex_walking_j0=j0_j=j_jf=jf .txt�, the code use the load_15j_so4(j,j0,jf) function for get the
precalculated values from the data-�le (via the t15j_so4_loaded[][][][][] table inside the loading function) and get
the list of them (via the t15j_so4_present[][][][][] Boolean table). As the 15j-symbols parts, we use the same tricks
and logic for compute the 15j-SO(4)-symbols with the symmetries :

[K1,K2,K3,K4,K5; j, j0, jf] = (−1)
K1+K2+K3+K4+K5 [K3,K2,K1,K4,K5; j, j0, jf]

= (−1)
K4+K5 [K3,K2,K1,K5,K4; j, j0, jf]

(210)

Here is really important, because the execution of each function_15j are long (~1sec for j ∼ 10), so the use of these
functions for all the set of K (~(2j + 1)

5 steps) are VERY long ! Of course, for each set of K, before to compute the
15j-SO(4)-symbol associated, the code check if we have already the computed value in the t15j_so4_loaded[][][][][]
table (due to the t15j_so4_present[K1][K2][K3][K4][K5] == true condition) and use it if that is the case. The loops
over theK parameter get the all 15j-SO(4)-symbols and store them in the function_15j_so4_t table. Again, we use
the OpenMP library line �#pragma omp parallel for� for parallelize the process, and use the speci�c omp_set_lock()
and omp_unset_lock() functions for write correctly the missing 15j-SO(4)-symbols in the data-�le.

Computation of the coherent states for the shared-tetrahedra For the shared-tetrahedra, with the gauge
choice and closure condition, we have to compute the quantities :〈

iJ |jf , j0, θf ,Φf
〉

=
∑
m

iJj1m2m3m4
Dj2
m2j2

(θ2, 0)Dj3
m3j3

(θ3, φ3)Dj4
m4j4

(θ4, φ4) [j, j0, θf ,Φf] (211)

with :

124

θ2 = θf ⇒
(
Af :=

√
j2
0 + j2

f + 2j0jf cos θf

)

θ3 = arccos

cos (Φ)
√

4j2
0 −A2

f

√
2A2

f

(
j2
f + j2

0

)
−
(
j2
f − j2

0

)2

−A4
f −Af

(
A2
f + j2

f − j2
0

)
4jf j0Af



θ4 = arccos

− cos (Φ)
√

4j2
0 −A2

f

√
2A2

f

(
j2
f + j2

0

)
−
(
j2
f − j2

0

)2

−A4
f −Af

(
A2
f + j2

f − j2
0

)
4jf j0Af


φ3 = arccos

(
sin2 θ4 − sin2 θ2 − sin2 θ3

2 sin θ2 sin θ3

)
φ4 = 2π − arccos

(
sin2 θ3 − sin2 θ2 − sin2 θ4

2 sin θ2 sin θ4

)
As the coherent states part for boundary tetrahedra, we use the same sort of code for the internal tetrahedra states
:

cout << "Next , the coherent shared s t a t e s (WITH j f !! !)" << endl ;

complex<long double> iJd_interne [(i n t) (j 0+min (j0 , j f) + 1 . 0)] [5 1] [5 1] ;

name = " iJd_interne_j f =";
name += j f s . s t r () ;
name += " . txt " ;
o f s tream r e s u l t s 3 (name . c_str () , i o s : : out | i o s : : trunc) ;

f o r (i n t t2=0; t2<=50; t2++){
f l o a t PHIf=(1+2∗ t2)∗M_PI/102 . 0 ;
// f a c t eu r d i symét r i e − ang le ent re (n1 , n2)^(n3 , n4) − va r i ab l e pa r t ena i r e de K

f o r (i n t n2=0;n2<=50;n2++){
f l o a t theta2=M_PI∗(1+2∗n2) / 1 0 2 . 0 ;

f l o a t Af=sq r t (j 0 ∗ j 0+j f ∗ j f +2.0∗ j 0 ∗ j f ∗ cos (theta2)) ;
f l o a t theta3=acos ((cos (PHIf)∗ s q r t (4 . 0∗ j 0 ∗ j0−Af∗Af)∗ s q r t (2 . 0∗Af∗Af ∗(j f ∗ j f+j0 ∗ j 0)

−pow(j f ∗ j f−j 0 ∗ j0 ,2)−Af∗Af∗Af∗Af) − Af ∗(Af∗Af+j f ∗ j f−j 0 ∗ j 0)
) / (4 . 0∗Af∗ j 0 ∗ j f)) ;

f l o a t theta4=acos ((− cos (PHIf)∗ s q r t (4 . 0∗ j 0 ∗ j0−Af∗Af)∗ s q r t (2 . 0∗Af∗Af ∗(j f ∗ j f+j0 ∗ j 0)
−pow(j f ∗ j f−j 0 ∗ j0 ,2)−Af∗Af∗Af∗Af) − Af ∗(Af∗Af+j f ∗ j f−j 0 ∗ j 0)
) / (4 . 0∗Af∗ j 0 ∗ j f)) ;

f l o a t phi3=acos ((pow(s i n (theta4) , 2) − pow(s i n (theta2) , 2) − pow(s i n (theta3) , 2))
/ (2 . 0∗ s i n (theta2)∗ s i n (theta3))) ;

f l o a t phi4=2.0∗M_PI
−acos ((pow(s i n (theta3) , 2) − pow(s i n (theta2) , 2) − pow(s i n (theta4) , 2))

/ (2 . 0∗ s i n (theta2)∗ s i n (theta4))) ;

// Creat ion o f the iJd_externe (WITH j f ! ! !)
long double norm_iJd_interne=0;
f o r (i n t K=minK4 ;K<=maxK4 ;K++){

iJd_interne [K] [n2] [t2]=0;

125

f o r (i n t mb=0;mb<=deuxj0 ;mb++){
f o r (i n t mc=0;mc<=deuxj0 ;mc++){

i n t md=3.0∗ j0−j f−mb−mc;
i f ((md>=0)&&(md<=deuxj0)){

iJd_interne [K] [n2] [t2] += intertwiner_mem (4 ,K, deuxj f ,mb,mc)
∗d(mb, deuxj0 , theta2 , 0)
∗d(mc, deuxj0 , theta3 , phi3)
∗d(md, deuxj0 , theta4 , phi4) ;

}
}

}
norm_iJd_interne+=abs (iJd_interne [K] [n2] [t2]) ∗ abs (iJd_interne [K] [n2] [t2]) ;
}

i f (norm_iJd_interne !=0){
f o r (i n t K=minK4 ;K<=maxK4 ;K++){

complex<long double> temp(sq r t ((deux j f +1.0)∗(deuxj0 +1.0))∗ (deuxj0 +1 .0) , 0) ;
//complex<long double> temp (1 . 0/ sq r t (norm_iJd_interne) , 0) ;
iJd_interne [K] [n2] [t2]∗=temp ;
r e s u l t s 3 <<PHIf<<" "<<theta2<<"\t"<<norm_iJd_interne<<"\t"<<K<<"\t "

<<abs (iJd_interne [K] [n2] [t2])<<" "<<arg (iJd_interne [K] [n2] [t2])<<endl ;
}
r e s u l t s 3 <<endl ;

}
}
r e s u l t s 3 <<endl ;

}
r e s u l t s 3 . c l o s e () ;

We de�ne the iJd_interne[(int)(j0+min(j0,jf)+1.0)][51][51] array and the �iJd_interne_jf=jf .txt� data-�le which
will contain the coherent tetrahedra results. We have the loops over the two discretized parameters :

Φf =
1 + 2t2

102
× π for t2 = 0, 1, . . . , 50 (212)

θf =
1 + 2n2

102
× π for n2 = 0, 1, . . . , 50 (213)(

Af :=
√
j2
0 + j2

f + 2j0jf cos θf

)
(214)

We store, temporarily, the iJd_interne[][][] table with the coherent state :

iJd_interne[K][n2][t2] =
〈
iK|jf , j0, θf [n2],Φf [t2]

〉
(215)

and compute, on the �y, the norm of the state : norm_iJd_interne =
∑

K

∣∣〈iK|jf , j0, θf [n2],Φf [t2]
〉∣∣2. The next

step consist just to renormalize the non-null states (norm_iJd_interne 6= 0) with the j-representation and store
the the iJd_interne[][][] with this renormalization :

iJd_interne[K][n2][t2]→ iJd_interne[K][n2][t2] =

√
(2jf + 1) (2j0 + 1)

3 〈
iK|jf , j0, θf [n2],Φf [t2]

〉
(216)

We have also a commented line that you can uncomment if you would the another possible renormalization :

iJd_interne[K][n2][t2] =

〈
iK|jf , j0, θf [n2],Φf [t2]

〉√∑
K' |〈iK'|jf , j0, θf [n2],Φf [t2]〉|2

(217)

126

Computation of the coherent transition amplitude for the 4-simplices We have the all objects for create
the coherent 4-simplex :

// Computation o f the 15 j so4 semi−coherent
cout << "Créat ions des 4−s implex semi−cohérent (WITH j f !! !)" << endl ;
complex<long double> interm1 (0 , 0) ;
complex<long double> interm2 (0 , 0) ;
complex<long double> interm3 (0 , 0) ;
f o r (i n t t=0; t<=50; t++){

f o r (i n t n=0; n<=50; n++){
f o r (i n t K4=minK4 ; K4<=maxK4 ; K4++){

f o r (i n t K5=minK4 ; K5<=maxK4 ; K5++){
complex<long double> r e s u l t a t (0 , 0) ;
f o r (i n t K3=0; K3<=maxJ ; K3++){

interm3=iJd_externe [K3] [n] [t] ;
f o r (i n t K2=0; K2<=maxJ ; K2++){

interm2=interm3 ∗ iJd_externe [K2] [n] [t] ;
f o r (i n t K1=0; K1<=maxJ ; K1++){

r e s u l t a t+=function_15j_so4_mem (K1,K2,K3,K4,K5)∗ interm2 ∗ iJd_externe [K1] [n] [t] ;

}
}

}
so4semicoherent [n] [t] [K4] [K5]= r e s u l t a t ;

}
}

}
}

// Computation o f the 15 j so4 coherent
cout << "Créat ions des 4−s implex cohérent (WITH j f !! !)" << endl ;
f o r (i n t t=0; t<=50; t++){

// f l o a t PHI=(1+2∗ t)∗M_PI/102 . 0 ;
f o r (i n t n=0; n<=50; n++){

// f l o a t A=2.0∗(1+2∗n)∗min(j0 , j) / 1 0 2 . 0 ;
f o r (i n t n2=0;n2<=50;n2++){

f o r (i n t t2=0; t2<=50; t2++){
complex<long double> r e s u l t a t 1 (0 , 0) ;
f o r (i n t K4=minK4 ; K4<=maxK4 ; K4++){

f o r (i n t K5=minK4 ; K5<=maxK4 ; K5++){
r e s u l t a t 1+=so4semicoherent [n] [t] [K4] [K5]∗ iJd_interne [K4] [n2] [t2]∗ conj (iJd_interne [K5] [n2] [t2]) ;

}
}
so4coherent [(i n t) (j f)] [n] [t] [n2] [t2]= r e s u l t a t 1 ;

}
}

}
}

127

The �rst block will combine the boundary tetrahedra coherent states with the 15j-SO(4)-symbols for built the
semi-coherent 4-simplex :

so4semicoherent[n][t][K4][K5] =
〈
D|j, j0, jf , A[n],Φ[t]; iK4iK5

〉
=

∑
K1,K2,K3

[K1,K2,K3,K4,K5; j, j0, jf]

3∏
k=1

(
(2j + 1) (2j0 + 1)

〈
iKk|j, j0, A[n],Φ[t]

〉)
And the second block will combine the previous results with the shared-tetrahedra coherent states for built the
coherent 4-simplex :

so4coherent[(int)(jf)][n][t][n2][t2] =
∑

K4,K5

〈
D|j, j0, jf , A[n],Φ[t]; iK4iK5

〉 〈
iK4|jf , j0, θf [n2],Φf [t2]

〉
〈iK5|jf , j0, θf [n2],Φf [t2]〉

(218)

Computation of the coherent transition amplitude for the assembly and end of the f-loop Finally,
we can compute the coherent transition amplitude wf (j, j0, jf , A,Φ) from the semi-coherent 4-simplex table before
end the loop over the jf values :

// Computation o f coherent wf ! ! ! !
cout << "Computation o f coherent wf (WITH j f !! !)" << endl ;

f o r (i n t t=0; t<=50; t++){
f o r (i n t n=0; n<=50; n++){

complex<long double> temp (0 , 0) ;
complex<long double> r e s u l t (0 , 0) ;
f o r (i n t K1=minK4 ;K1<=maxK4 ;K1++){

f o r (i n t K2=minK4 ;K2<=maxK4 ;K2++) {
f o r (i n t K3=minK4 ;K3<=maxK4 ;K3++) {
temp += so4semicoherent [n] [t] [K1] [K2]

∗ so4semicoherent [n] [t] [K2] [K3]
∗ so4semicoherent [n] [t] [K3] [K1] ;

}
}

}
r e s u l t=temp ;

w_coherent_f [(i n t) (j f)] [n] [t]= r e s u l t ; //<−−−−−−Storage in memory o f the r e s u l t
}

}

} //<−− end o f the i f−cond i t i on f o r check i f j f+ same type as j0+
} //<−− end o f the j f loop

cout << "////END j f−LOOP////"<< endl ;

We have the loops over the shared K parameter for compute and store the sum :

w_coherent_f[(int)(jf)][n][t] = wf (j, j0, jf , A[n],Φ[t])

=
∑

K1,K2,K3

3∏
N=1

〈
DN |j, j0, jf , A[n],Φ[t]; iKkiKk'

〉

128

B.4.3 Writing the results

At the end of the loop over jf we have the all coherent objects in the memory, so the results writing part of the
code can be start. In this section we will expose the write parts of code.

Writing of the full coherent transition amplitude W The �rst step is to write the results from the full
coherent amplitude W of our assembly, but in memory we have just the coherent amplitude wf . So we need to take
the stored values of wf and sum them over the compatibles jf for built the amplitude W :

//////////////////////////////Writing coherent data //////////////////////////////

cout << "Writing coherent W(A, Phi)"<< endl ;

o s t r ing s t r eam j0s , j s ; // c r e a t e a s t r ing s t r eam
j 0 s << j0 ;// add number to the stream
j s << j ;
s t r i n g name = "coherent_W(A, Phi)_j0=";
name += j0 s . s t r () ;
name += "_j=";
name += j s . s t r () ;
name += " . txt " ;
o f s tream r e s u l t s 4 (name . c_str () , i o s : : out | i o s : : trunc) ; //open the amplitude f i l e

complex<long double> w_coherent [5 1] [5 1] ;
f o r (i n t t=0; t<=50; t++){

f l o a t PHI=(1+2∗ t)∗M_PI/102 . 0 ;
f o r (i n t n=0; n<=50; n++){

f l o a t A=2.0∗(1+2∗n)∗min(j0 , j) / 1 0 2 . 0 ;
w_coherent [n] [t]=0;
f o r (j f=j0−(i n t) (j 0) ; j f <=3∗ j 0 ; j f ++){

f l o a t j f p l u s=jp_approx (Immirzi , j f , 1) ;
i f ((j f p l u s −(i n t) (j f p l u s))==(j0p lus −(i n t) (j 0p l u s))) { // checks i f j f+ same type as j0+

//=> ca l c u l a t i o n r equ i r ed
complex<long double> d j f (2 . 0∗ j f +1 .0 , 0) ;
w_coherent [n] [t]+=d j f ∗w_coherent_f [(i n t) (j f)] [n] [t] ;

}
}
r e s u l t s 4 <<PHI<<" "<<A<<"\t"<<abs (w_coherent [n] [t])<<" "<<arg (w_coherent [n] [t])<<endl ;

}
r e s u l t s 4 <<endl ;

}
r e s u l t s 4 . c l o s e () ;

We create the W data-�le with the speci�cation of the j : �coherent_W(A,Phi)_j0=j0_j=j.txt�. We de�ne the
w_coherent[][] table which will contain the values of W in case of subsequent calculation, and �ll it with the
computed values :

w_coherent[n][t] = W (j, j0, A[n],Φ[t])

=
∑
jf

(2jf + 1)wf (j, j0, jf , A[n],Φ[t])

In the code we have the two loops over the parameter �n� and �t�, which correspond to the (A,Φ) shape variables,
and for each pair we have a loop over the compatibles jf (given by the if-condition) for perform the summation.

129

For each jf we get the stored value of wf from w_coherent_f[(int)(jf)][n][t], multiply it by the factor djf = 2jf + 1,
and increments the value of w_coherent[n][t]. After the jf summation, the w_coherent[n][t] table box contain the
associated value W (j, j0, A[n],Φ[t]) and is written in the data-�le.

Writing of wf -coherent In this section we will write the amplitude of wf in function of jf and given boundary
shape parameter (A,Φ). The corresponding table will written in the data-�le �coherent_W(jf,A,Phi)_j0=j0_j=j.txt�
:

cout << "Writing coherent wf (j f ,A, Phi)"<< endl ;

name = "coherent_W(j f ,A, Phi)_j0=";
name += j0 s . s t r () ;
name += "_j=";
name += j s . s t r () ;
name += " . txt " ;
o f s tream r e s u l t s 5 (name . c_str () , i o s : : out | i o s : : trunc) ; //open the amplitude f i l e

f o r (j f=j0−(i n t) (j 0) ; j f <=3∗ j 0 ; j f++) {
f l o a t j f p l u s=jp_approx (Immirzi , j f , 1) ;
i f ((j f p l u s −(i n t) (j f p l u s))==(j0p lus −(i n t) (j 0p l u s))) { // checks i f j f+ same type as j 0+

//=> ca l c u l a t i o n r equ i r ed
f o r (i n t t=0; t<=50; t++){

f l o a t PHI=(1+2∗ t)∗M_PI/102 . 0 ;
f o r (i n t n=0; n<=50; n++){

f l o a t A=2.0∗(1+2∗n)∗min(j0 , j) / 1 0 2 . 0 ;
i f (abs (w_coherent [n] [t]) >0){ // check i f | w_coherent [n] [t] | >0

//=> means that the va lue s e x i s t
// j f Phi A "wf (j f ,A, Phi)" "P(j f |A, Phi)"
r e s u l t s 5 <<j f <<"\t"<<PHI<<" "<<A<<"\t "

<<abs (w_coherent_f [(i n t) (j f)] [n] [t])
<<" "
<<arg (w_coherent_f [(i n t) (j f)] [n] [t])
<<"\t "
<<(1.0+2.0∗ j f)∗ abs (w_coherent_f [(i n t) (j f)] [n] [t]) / abs (w_coherent [n] [t])
<<" "
<<arg (w_coherent_f [(i n t) (j f)] [n] [t])− arg (w_coherent [n] [t])<<endl ;

} e l s e {
r e s u l t s 5 <<j f <<"\t"<<PHI<<" "<<A<<"\t0 0\ t0 0"<<endl ;

}
}
r e s u l t s 5 <<endl ;

}
r e s u l t s 5 <<endl ;

}
}
r e s u l t s 5 . c l o s e () ;

For each cases, we write the jf value, the Φ[t], the A[n] and the associated wf (j, j0, jf , A[n],Φ[t]) (norm and phase)

with also the normalized (2jf + 1)
wf (j,j0,jf ,A[n],Φ[t])
W (j,j0,A[n],Φ[t]) (norm and phase). That useful if the user want study the raw

or normalized values of wf in terms of norms and phases.

Writing of 〈W |j, j0, A,Φ, θf 〉 Similarly to previously, we compute and write the 〈W |j, j0, A,Φ, θf 〉 data :

130

cout << "Writing coherent W(t2 ,A, Phi) cohérent

name = "coherent_W(t2 ,A, Phi)_j0=";
name += j0 s . s t r () ;
name += "_j=";
name += j s . s t r () ;
name += " . txt " ;
o f s tream r e s u l t s 6 (name . c_str () , i o s : : out | i o s : : trunc) ; //open the amplitude f i l e

complex<long double> w_thetaf_coherent [5 1] [5 1] [5 1] ;
f o r (i n t t=0; t<=50; t++){

f l o a t PHI=(1+2∗ t)∗M_PI/102 . 0 ;
f o r (i n t n=0; n<=50; n++){

f l o a t A=2.0∗(1+2∗n)∗min(j0 , j) / 1 0 2 . 0 ;

f o r (i n t n2=0;n2<=50;n2++){
f l o a t theta2=M_PI∗(1+2∗n2) / 1 0 2 . 0 ;

w_thetaf_coherent [n] [t] [n2]=0;
f o r (j f=j0−(i n t) (j 0) ; j f <=3∗ j 0 ; j f++) { l s

f l o a t j f p l u s=jp_approx (Immirzi , j f , 1) ;
i f ((j f p l u s −(i n t) (j f p l u s))==(j0p lus −(i n t) (j 0p l u s))) { // checks i f j f+ same type j0+

//=> ca l c u l a t i o n r equ i r ed
complex<long double> w_thetaf_coherent_temp

=pow(so4coherent [(i n t) (j f)] [n] [t] [n2] [2 5] , 3 . 0) ;
i f (abs (w_thetaf_coherent_temp)>=0) {
complex<long double> d j f (1 .0+2.0∗ j f , 0) ;
w_thetaf_coherent [n] [t] [n2] += d j f ∗w_thetaf_coherent_temp ;

}
}

}
// Phi A theta2 "W(t2 ,A, Phi)" "P(t2 |A, Phi)"
r e s u l t s 6 <<PHI<<" "<<A<<"\t"<<theta2<<"\t "

<<abs (w_thetaf_coherent [n] [t] [n2])
<<" "
<<arg (w_thetaf_coherent [n] [t] [n2])
<<"\t "
<<abs (w_thetaf_coherent [n] [t] [n2]) / abs (w_coherent [n] [t])
<<" "
<<arg (w_thetaf_coherent [n] [t] [n2])− arg (w_coherent [n] [t])<<endl ;

}
r e s u l t s 6 <<endl ;

}
r e s u l t s 6 <<endl ;

}
r e s u l t s 6 . c l o s e () ;

As in the writing code section of W , we have the loops over (n,t) for browse the all cases of boundary coherent
state, the loop over the n2 for the discrete values of θf [n2], and we have a loop over the compatibles jf for make

131

the sum :

〈W |j, j0, A[n],Φ[t], θf [n2]〉 =
∑
jf

3∏
N=1

〈
DN |j, j0, jf , A[n],Φ[t], Af (θf [n2]) ,

π

2

〉
(219)

For each case, in the �le �coherent_W(t2,A,Phi)_j0=j0_j=j.txt�, the code write the values of Φ[t], A[n], θf [n2]

and their associated 〈W |j, j0, A[n],Φ[t], θf [n2]〉 (norm and phase) with also the normalized 〈W |j,j0,A[n],Φ[t],θf 〉
〈W |j,j0,A[n],Φ[t]〉 (norm

and phase).

Writing of 〈W |j, j0, jf , A,Φ, θf 〉 We have the same for the 〈W |j, j0, jf , A,Φ, θf 〉 :

cout << "Writing coherent W(j f , t2 ,A, Phi)"<< endl ;

name = "coherent_W(j f , t2 ,A, Phi)_j0=";
name += j0 s . s t r () ;
name += "_j=";
name += j s . s t r () ;
name += " . txt " ;
o f s tream r e s u l t s 7 (name . c_str () , i o s : : out | i o s : : trunc) ; //open the amplitude f i l e

f o r (i n t t=0; t<=50; t++){
f l o a t PHI=(1+2∗ t)∗M_PI/102 . 0 ;
f o r (i n t n=0; n<=50; n++){

f l o a t A=2.0∗(1+2∗n)∗min(j0 , j) / 1 0 2 . 0 ;
f o r (j f=j0−(i n t) (j 0) ; j f <=3∗ j 0 ; j f++) {

f l o a t j f p l u s=jp_approx (Immirzi , j f , 1) ;
i f ((j f p l u s −(i n t) (j f p l u s))==(j0p lus −(i n t) (j 0p l u s))) { // checks i f j f+ same type as j 0+

//=> ca l c u l a t i o n r equ i r ed
f l o a t maxK4=j0+min (j0 , j f) ;
f l o a t minK4=abs (j f−j 0) ;
f o r (i n t n2=0;n2<=50;n2++){

f l o a t theta2=M_PI∗(1+2∗n2) / 1 0 2 . 0 ;

r e s u l t s 7 <<PHI<<" "<<A<<"\t"<<j f <<"\t"<<theta2<<"\t "
<<abs (so4coherent [(i n t) (j f)] [n] [t] [n2] [2 5])
<<" "
<<arg (so4coherent [(i n t) (j f)] [n] [t] [n2] [2 5])
<<"\t "
<<pow(abs (so4coherent [(i n t) (j f)] [n] [t] [n2] [2 5]) , 3 . 0)

/abs (w_coherent [n] [t])
<<" "
<<3.0∗arg (so4coherent [(i n t) (j f)] [n] [t] [n2] [2 5])

−arg (w_coherent [n] [t])
<<"\t "
<<pow(abs (so4coherent [(i n t) (j f)] [n] [t] [n2] [2 5]) , 3 . 0)

/abs (w_coherent_f [(i n t) (j f)] [n] [t])
<<" "
<<3.0∗arg (so4coherent [(i n t) (j f)] [n] [t] [n2] [2 5])

−arg (w_coherent_f [(i n t) (j f)] [n] [t])<<endl ;
}
r e s u l t s 7 <<endl ;

}

132

}
r e su l t s 7 <<endl ;

}
r e s u l t s 7 <<endl ;

}
r e s u l t s 7 . c l o s e () ;

where we write in the data-�le �coherent_W(jf,t2,A,Phi)_j0=j0_j=j.txt� the values of Φ[t], A[n], jf , θf [n2] and

their associated 〈W |j, j0, jf , A[n],Φ[t], θf [n2]〉 (norm and phase) with the normalized 〈W |j,j0,jf ,A[n],Φ[t],θf [n2]〉
wf (j,j0,jf ,A[n],Φ[t]) (norm

and phase).

Writing of 〈DN |j, j0, jf , A,Φ, Af ,Φf 〉and end of the main Finally we write the amplitude transition of indi-
vidual coherent 4-simplex :

cout << " é r i t u r e des W(j f , Phif , t2 ,A, Phi) cohérent"<< endl ;

name = "coherent_W(j f , Phif , t2 ,A, Phi)_j0=";
name += j0 s . s t r () ;
name += "_j=";
name += j s . s t r () ;
name += " . txt " ;
o f s tream r e s u l t s 8 (name . c_str () , i o s : : out | i o s : : trunc) ; //open the amplitude f i l e

f o r (j f=j0−(i n t) (j 0) ; j f <=3∗ j 0 ; j f++) {
f l o a t j f p l u s=jp_approx (Immirzi , j f , 1) ;
i f ((j f p l u s −(i n t) (j f p l u s))==(j0p lus −(i n t) (j 0p l u s))) { // checks i f j f+ same type as j 0+

//=> ca l c u l a t i o n r equ i r ed
f o r (i n t t=0; t<=50; t++){

f l o a t PHI=(1+2∗ t)∗M_PI/102 . 0 ;
f o r (i n t n=0; n<=50; n++){

f l o a t A=2.0∗(1+2∗n)∗min(j0 , j) / 1 0 2 . 0 ;
f o r (i n t n2=0;n2<=50;n2++){

f l o a t theta2=M_PI∗(1+2∗n2) / 1 0 2 . 0 ;
f l o a t Af=sq r t (j 0 ∗ j 0+j f ∗ j f +2.0∗ j 0 ∗ j f ∗ cos (theta2)) ;

f o r (i n t t2=0; t2<=50; t2++){
f l o a t PHIf=(1+2∗ t2)∗M_PI/102 . 0 ;
r e s u l t s 8 <<j f <<"\t"<<PHI<<" "<<A<<"\t"<<theta2<<"\t"<<Af<<" "<<PHIf<<"\t "

<<abs (so4coherent [(i n t) (j f)] [n] [t] [n2] [t2])
<<" "
<<arg (so4coherent [(i n t) (j f)] [n] [t] [n2] [t2])<<endl ;

}
r e s u l t s 8 <<endl ;

}
r e s u l t s 8 <<endl ;

}
r e s u l t s 8 <<endl ;

}
r e s u l t s 8 <<endl ;

}
}
r e s u l t s 8 . c l o s e () ;

133

} //<−−− END of the MAIN

in the data-�le �coherent_W(jf,Phif,t2,A,Phi)_j0=j0_j=j.txt� with the values of jf , Φ[t], A[n], θf [n2], Af (θf)
(A priory redundant, but useful if you want draw some graphic in function of Af),Φf [t2], and their associated
〈D|j, j0, jf , A[n],Φ[t], Af (θf [n2]) ,Φf [t2]〉 (norm and phase).

134

	Introduction
	Study object and classical geometry
	Geometry of a classical tetrahedron
	Cylindrical symmetries for the 4-simplices and fundamental parameters
	Curvature of the f triangle

	Regge's geometry with dynamics
	Definition of Regge's actions and equations
	4-dimensional Regge's actions and equations for a non-finite euclidean space
	4-dimensional Regge's actions and equations for a finite euclidean space

	Adaptation of study object for Regge calculus
	Split objects
	Parameters and geometric objects
	Equations for deficit angles

	Applications of Regge calculus
	Regge computation for unspecified face f
	Regge computation for equilateral face f

	Conclusion about Regge calculus

	Interlude for the quantum geometry
	Quantum geometry
	Introduction to Loop Quantum Gravity and EPRL model (see key-14,key-2,key-10,key-11,key-12)
	Spin-network
	Spin-foam
	Transition amplitude

	spin-network of our objects
	spin-networks for the individual cylindrical 4-simplices
	spin-networks for the boundary of the assembly
	Coherent states

	Spin-foam and transition amplitude
	Spin-foam for the individual 4-simplices an specific value of
	Spin-foam for the assembly
	Coherent transition amplitude

	Numerical analysis of amplitude
	Transition amplitude for individual 4-simplex
	Sections of the space of shapes
	Phases and actions of individual 4-simplices
	Short conclusion for the individual 4-simplex amplitude

	Transition amplitude for the assembly
	Full transition amplitude
	Transition amplitude for jf-representation
	Conclusion about the first study of the full transition amplitude

	Internal geometry
	Quantum conditional probability and transition amplitude for geometry
	Prelude and used conditional probabilities for the amplitude analysis
	Numerical result for P(|A,)
	Numerical results for P(f|A)
	Numerical result for P(jf|A)
	Numerical result for P(jf,f|A)

	Conclusion about the results

	Conclusion
	Tetrahedron geometry
	The C++ code
	Library used
	Definitions of arrays, tables and links with the math elements
	Arrays of the faces
	Arrays for the 3j-symbols
	Arrays for the intertwiners
	Arrays of the 15j-symbols
	Arrays for the fusion coefficients
	Arrays for the 15j-SO(4)-symbols
	Arrays for the coherent results

	Definitions of global functions
	Call-functions for the arrays and tables
	Some useful functions
	Function for the 3j-symbols
	Function for the intertwiners
	Function for the 15j-symbols
	Function for the iDroit
	Function for the fusion-coefficients
	Function for 15j-SO(4)-symbols
	Function for the representation Dmjj(,)
	Function for load the 15j-SO(4)-symbols file

	Main code
	Boundary components
	Loop for the face f and internal components
	Writing the results

