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Abstract

A study of symmetrical assembly of three euclidean 4-simplices using classical, Regge and quantum geometry.
We analyze the geometric properties and especially the presence of curvature. We show that classical and Regge’s
geometry of the assembly have curvature, which evolves in function of its boundary parameters. Concerning
quantum geometry, an euclidean version of the EPRL model was used with a convenient value of the Barbero-
Immirzi parameter to define the transition amplitude of the assembly and its components. A C++ code was
designed (Annexes to compute the amplitudes and numerically study the quantum geometry. We show that
classical geometry, with curvature, emerges already at low spin. We also identified the appearance of degenerate
configurations and their effects on the expected geometry.

Résumé frangais

Une étude d’un assemblage symétrique de trois 4-simplex en géomeétrie classique, de Regge et quantique.
Nous étudions les propriétés géométriques et surtout la présence de courbure. Nous montrons que les géométries
classique et de Regge de ’assemblage ont une courbure qui évolue en fonction de ses paramétres de bordure.
Pour la géométrie quantique, une version euclidienne du modéle EPRL est utilisé avec une valeur pratique du
paramétre Barbero-Immirzi pour définir 'amplitude de transition de ’ensemble et de ses composants. Un code C
+-+ est con¢u (Annexes [B)) pour calculer les amplitudes et étudier numériquement la géométrie quantique. Nous
montrons qu’'une géométrie classique, avec une courbure, émerge déja & bas spin. Nous reconnaissons également
I’apparition de configurations dégénérées et de leurs effets sur la géométrie attendue.
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Synthése

Introduction

Dans cette thése nous nous somme intéressé a I’étude de la théorie de la Gravitation Quantique & Boucles, et plus
particuliérement & sa limite semi-classique dans le cadre d’un objet & la géométrie simple possédant classiquement
de la courbure. La Gravitation Quantique & Boucles (Loop Quantum Gravity), abrégé LQG, est une théorie de
quantification non-perturbative de la gravitation visant & décrire, sous un formalisme quantique approprié, les lois
de la gravitation basées sur les principes de la géométrie de ’espace-temps décrit par Einstein au sein de sa théorie
de la Relativité Générale. Elle vise ainsi, en tant qu’ébauche, a outrepasser les limites conceptuelles de la Relativité
Générale et apporter une nouvelle physique qui permettrait de mieux comprendre les phénoménes gravitationnels
A petite échelle : comme les trous noirs, ou les premiers instants de notre univers. L’étude des propriétés de cette
théorie, notamment concernant ses géométries et la présence de courbure, s’avére importante pour infirmer ou
confirmer sa validité avec la réalité physique de notre monde et, si tel est le cas, d’apporter des réponses sur les
grands mystéres cosmologique de notre temps : origine de la constante cosmologique, histoire de la naissance de
I'univers, etc.

L’étude de cette théorie s’est faite, au sein de cette thése, via ’étude d’un assemblage trés simple de trois “atomes
d’espace-temps”. Cet assemblage, comparable & une toute petite parcelle d’espace-temps, posséde a la fois une
interprétation classique en terme d’assemblage d’objets géométriques —trois 4-simplex faisant office d’atomes/piéces
de notre ensemble— et une formulation quantique en termes de graphes et d’états de géométrie au sein du modéle
EPRL issu de la LQG :



Figure 1: En premier, la représentation classique de notre assemblage en termes de 4-simplex et d’arrétes. Ensuite,
les graphes associés a la représentation quantique : Le réseau de spin, chaque lien est le dual d’une face de la
bordure et chaque noeud et le dual d’un tétraédre de la bordure ; La mousse de spin, chaques lignes representent un
tetrahédre (les bleues sont ceux de bordure, les rouges sont ceux internes) et chaque vertex represente un 4-simplex.

Le but principal est d’étudier la dynamique quantique avec courbure de cet assemblage et de la comparer & sa
description classique. Cet assemblage est le cas le plus simple, possédant une représentation classique aisée avec de
la courbure et permettant une dynamique de la géométrie quantique via une unique face interne.

Dans l'interprétation classique, notre assemblage peut étre étudié via de simple outils de géométrie usuels et
posséde la propriété d’avoir une courbure qui évolue en fonction de la longueur de ces arrétes. La présence de cette
courbure est trés importante car, la gravitation étant décrite par Einstein comme une manifestation de la courbure
de P’espace-temps, il est nécessaire de pouvoir I’obtenir pour pouvoir étre en adéquation avec physique actuelle.
Le fait de pouvoir également transcrire notre objet dans le formalisme de la LQG, via le modéle EPRL, permet
ainsi d’en étudier les propriétés, tout en comparant avec son interprétation classique, afin de voir si la courbure est
préservée au sein de la théorie et si 'on retrouve des solutions classiques de la géométrie.

Pour cela, on défini les propriétés classiques de cet assemblage et réécrivons les paramétres usuels de la géométrie
classique en fonction de paramétres qui s’avéreront utiles pour le formalisme quantique. Puis, afin de commencer
& voir si une dynamique de la géométrie existe dans notre assemblage et redonne de la courbure, on adapte notre
objet pour y appliquer les principes du calcul de Regge : principe de géométrie discréte, permettant d’associer
une action et une dynamique & notre assemblage, et dont la théorie de la LQG posséde un lien dans la limite
semi-classique. Enfin, nous définissons notre objet dans le cadre de la géométrie quantique, via le modéle EPRL,
avec tout ses outils, formalisme d’états (cohérents) de géométrie et amplitudes de transitions. On développe un
code pour pouvoir calculer les différentes grandeurs et amplitudes quantiques associés pour, finalement, étudier et



€1

comparer les résultats de la géomeétrie classique et quantique de notre assemblage.

Géométrie classique

Dans cette premiére partie, on se concentre a définir notre assemblage dans une interprétation de géométrie (discréte)
classique ainsi que ces propriétés en fonction de ces paramétres fondamentaux. Nous mettons en avant une bijection
entre les paramétres usuels de géométrie classique, que sont les longueurs des arrétes, et les paramétres de bordure,
que sont les aires et les paramétres de forme associés aux tétraédres vivant sur la bordure 3d de notre assemblage.
Nous exposons simplement les équations et ’évolution de la courbure de notre objet en fonction de ces paramétres

" 24pi- 3*acos(1- T/ )

" 2tpi- 3*acos(1-24hed (3 Ay

Figure 2: Evolution de la courbure de notre objet en fonction d’un paramétre de longeur (& gauche) et d’un
paramétre de forme (a droite)

Nous voyons donc le lien entre la géométrie de la bordure de notre objet, donné par les paramétres de forme,
et la géométrie interne de notre objet, tel la courbure, qui en découle. Nous avons donc une description de
notre assemblage classique, sans dynamique, ou toute la géométrie peut étre décrite en fonction des paramétres de
bordure. Notre objet posséde dans ce cadre de géométrie de la courbure, et elle évolue continument en fonction des
dit paramétres.

Géométrie de Regge

Les géométrie de Regge [1], et plus particuliérement l’action de Regge avec sa dynamique associée, étant une limite
semi-classique de la théorie de la LQG s’avéraient intéressantes & étudier. Elles permettraient ainsi de voir une
premiére approche et définition d’une dynamique au sein de notre objet. Nous avons donc adapté, uniquement dans
cette partie, notre objet pour voir comment la dynamique de Regge s’effectuait. Nous avons donc observé que le
calcul de Regge était parfaitement applicable, et redonnait des solutions avec de la courbure :
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Figure 3: Evolution de la courbure solution des equations de Regge, angle déficient e de la face interne (& gauche)
et courbure de Regge R =) . apep (& droite), en fonction des paramétres de longeurs.

Nous obtenons donc avec succés une dynamique de Regge fonctionnelle qui donne des solutions avec de la
courbure ! Ce qui, outre le fait de renforcer les précédentes études tendant & montrer que le calcul de Regge est un
bon équivalent des équations d’Einstein dans le cadre des géométries discrétes, donne confiance sur la persistance
de la courbure dans la théorie de la LQG.

Géométrie quantique

Fort de ces résultats, nous avons effectué une transcription de notre objet dans le formalisme de la LQG via le
modéle EPRL [2] B]. Nous définissons les différents graphes, ainsi que les états de géométrie qui en découle. Nous
définissons également les amplitudes de transitions associées a la géométrie de notre assemblage. Aprés I’élaboration
d’un code C++ (see Annexes afin de calculer ces différentes grandeurs, nous avons pu étudier les résultats et
les propriétés de la géométrie quantique associée. Meéme si, & I'image de toute théorie quantique et de leurs
principes d’incertitude, une partie de 'information sur la géométrie interne est brouillée, I’étude des amplitudes de
transition permit de reconstruire certaines propriétés semi-classique de la géométrie. La recherche des points cols
et stationnaires des amplitudes et intégrants permit de trouver les valeurs les plus probables de certains parameétres
associés a la géométrie interne. Nous avons donc étudié tout d’abord les propriétés des amplitudes individuelles des
4-simplex de notre assemblage, et retrouvé les géométries classique correspondante tout en retrouvant les résultats
annoncé par Barett dans ses écrits [6, B0]. Ensuite, nous nous somme plus particuliérement interessé a ’amplitude
de transition totale et ses intégrants oil nous avons pu les comparer & leurs équivalent classique attendu :
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Figure 4: Evolution de I’aire d’une face interne (4 gauche) et d’un angle interne (a droite) en fonction d’un paramétre
de forme de la bordure. Les points violets sont les résultats fourni par les amplitude de transition de la théorie
quantique et les courbes vertes représentent ’évolution des paramétres en géométrie classique.

On observe certaines régions ol géométrie classique et quantique sont en accord, essentiellement dans la région ol
le parameétre de forme A € [9.23;13.86], correspondant & des régions ou 'équivalent classique posséde une courbure

1

g5 € [—m;2m — Barccos (§)] : ce qui soutient le fait que la géométrie quantique préserve, au moins dans ces plages
de valeurs, de la courbure. Cependant, méme dans ces régions, ’équivalence n’est pas parfaite ce qui sous-entend
que si il y a courbure elle peut étre légérement différente du cas classique. L’absence de définition d’opérateur
de courbure nous empéche de statuer définitivement sur la valeur de la courbure dans le cas quantique, mais ces
résultats sont un fort indice de ’émergence de la géométrie classique et de ces propriétés au sein de la théorie de
la LQG. Nous remarquons aussi une région divergent fortement du cas classique pour A < 7.69 correspondant &

Iinfluence de géométries purement quantiques.

Conclusion

Nous avons donc au cours de cette thése fournit une contribution a la compréhension de la théorie de la LQG, et plus
particuliérement au modéle EPRL. Nous avons montré que dans le cas d’un petit assemblage, pouvant posséder
de la courbure dans l’interprétation classique, la théorie redonnait des résultats compatibles avec la géométrie
classique. Nous voyons, dans une certaine région de paramétres, I’émergence de la géométrie classique et de sa
courbure associée au sein de la LQG. L’émergence de la géométrie classique avec sa courbure et un bon indice
et encouragement mettant en avant les avantages et intéréts de la LQG comme une bonne théorie quantique de
la gravitation. Nous voyons cependant une région avec I’apparition de géométrie purement quantique qui différe
fortement de la géométrie classique. Cette derniére région, en raison de sa nature et de ’absence d’équivalent
classique, est difficile d’interprétation, mais représente une nouvelle physique apporté avec la théorie apparaissant
a faible échelle. Cette nouvelle physique, pourrais étre la voie, ou du moins une piste, pour tenter de répondre a
certaine questions concernant les trous noirs et les premiers instants de notre monde.
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1 Introduction

Gravitation is a fundamental force of our universe which the quantum description is still unfinished and mysterious.
Gravitation governs the large structure of the cosmos, its deterministic formulation in General Relativity describes
it as a force from the geometry of space-time and has improved the understanding of our universe and its evolution.
The gravitational field is the metric g,, of space-time, and the interaction between the curvature of space-time
and matter is governed by Einstein’s equations. General Relativity also lead to the discovery of new physics
phenomena such as time dilation and space contraction, the expansion of the universe and cosmic acceleration via
the cosmological constant, and peculiar solutions of Einstein’s equations leading to the black hole... etc. Even
if the theory of General Relativity remains the current best model to describe the world at large scale, many
unsolved mysteries remain: The properties of space-time at very small scale, the fundamental sens and origin of
the cosmological constant, the evaporation of black holes... are questions which are outside the domain of validity
of the classical theory.

With the advent of quantum mechanics, accurately describing the world at small scales and its peculiar prop-
erties, that presents new perspectives. Matter is found composed of quanta, namely particles, whose properties
escapes the intuition of the classical world. Particles move following probability waves, whose physical properties
are described by states that can be superpositioned and are governed by probabilistic laws. Quantum mechanics
accurately describes the subatomic world, especially via the uncertainty principle and probabilities, in contradiction
with the determinism of General Relativity. A first unification with Special Relativity have yielded the quantum
field theory and its applications to the world of particles via the Feynman integral and transition amplitude W.
However, gravitation and quantum mechanics should be united in a new theory to draft a model describing the
world at small and large scales. This draft will provide a better understanding of the universe that surrounds us,
to perhaps explain its origin or at least its first moments during which the universe was both very small and dense,
and thus respond to many unanswered questions.

The first approach to describe a discrete space-time was published by T. Regge [I]. He describes, with classic
discrete geometry, a space-time cut into simplices associated with a action Sgegge. The Regge model discretizes
space-time into simplices, equivalent to space-time quanta, whose geometric properties reconstruct its discrete
curvature. Variables appear as the length of the simplex segments, and Regge’s action depends of the geometry
of the assembly. The minimization of this action, via the lengths, provides equations that govern the dynamics
of this discrete space-time geometry. For space-time with dimension 3 or lower, Regge’s action yields the same
physics as General Relativity for vacuum (without matter) in the limit of an infinitesimal discretization. The Regge
model and its associated actions are a first conceptual step for quantify space-time geometry and gravity in terms
of discrete geometry and space-time quanta. However, the Regge model is not a quantum theory, but just a draft
of quantification of geometry with classical objects, i.e., no uncertainties or lost information exists, all geometry is
provided perfectly by the set of lengths.

The Loop Quantum Gravity theory [2], B] involves quantum formalism associated with the concepts of Regge
. The Loop Quantum Gravity theory is a nonperturbative quantification of gravity and geometry. According to
this theory, General Relativity space-time is divided into quanta, “space-time atoms” like Regge, although with
fluctuating, fuzzy and probabilistic geometry such as the particle properties in usual quantum mechanics. The
assembly of these atoms, like puzzle pieces, pave and rebuild space-time with curvature. The deficient angles of the
assembly provide the curvature [4] 5], while the states of “space-time atoms” enable a quantum description of the
assembly’s geometry. Formally, the states of geometry are provided in graphs representing the assembly of space-
time atoms for which links are associated with group elements u. The representations D7 of the group elements
are linked to the physical quantities of the geometry, such as the areas, and yield quantification of the geometry.
The mathematical invariants of these graphs, in group representation theory, correspond to the probability of the
associated geometries. The limit of invariants used in the theory rebuild an exponentiation of Regge’s action. The
group elements from the graphs of the Loop Quantum Gravity theory contain information concerning the geometry,
while their integrations reconstruct the invariants, equivalent to Feynman integral with Regge’s action. In this
sense, the Loop Quantum Gravity theory is consistent with Regge’s physics, and therefore in a certain limits to the
General Relativity, while offering a quantum formulation equivalent of Feynman integrals for geometry:

W = duHDj(u) — /duefiSchgﬁ[“] ~ /Dglweﬂ'SGR[g“”] (1)

graphs
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Indeed, a celebrated theorem published by Barrett et.al. [6] (see also Conrady and Freidel [7]) states that the
vertex amplitude [2] [8, [0, [10] of the Loop Quantum Gravity admits a geometrical interpretation in terms of the
geometry of a 4-simplex, in which the properties are determined by the Regge’s action of this 4-simplex. This
theorem has been extended to the Lorentzian theory [11], to the physical case of positive cosmological constant
[12 03], and is at the basis of many results relating the quantum dynamics of Loop Gravity to classical General
Relativity [4) [, 14, [15] [16], which are at the foundation of the covariant formulation of Loop Quantum Gravity [3].
All these results are derived from the large spin limit, namely under the assumption that the vertex describes (to
low order) a process in a region of space-time large compared to the Planck size.

The idea of this thesis was to take the EPRL model of the Loop Quantum Gravity theory, simplified in the case
of a 4d euclidean space-time, applied to a simple assembly of three 4-simplices. The assembly presented is complex
enough to have curvature and simple enough for analysis in the context of classical geometry, Regge’s geometry and,
finally, with the euclidean EPRL model. To simplify the analysis, we used a convenient “cylindrical” symmetry for
the 4-simplex from the assembly, which renders makes the problem tractable. Geometrically, this corresponds to
studying the assembly where the geometry of all 4-simplices is invariant under cyclic permutations of three of their
tetrahedra. Thus, the main goal was to analyse the assembly to draw conclusions on the persistence and presence
of curvature in the different aspects and theories discussed.

This thesis intermix classical, Regge and quantum geometry with analytic and especially numerical tools, orga-
nized as follows. We first present the object of study from a purely classical perspective. In particular, we express
its geometry in terms of the natural variables in quantum gravity: the areas of the 2d triangles (corresponding to
the spins of Loop Quantum Gravity) and suitable variables to capture the shape of the tetrahedra (corresponding
to the intertwiners of Loop Quantum Gravity). Briefly, before using quantum geometry and the EPRL model, we
adapted our assembly to study the associated Regge’s geometry. We shall see, that the Regge calculus is viable for
this 4d Euclidean assembly ; the Regge’s equations reproduce curvature. Next, we present the spin-network, spin-
foam graphs and express the quantum amplitude of a coherent boundary state with the selected symmetries. The
objective was to study the quantum properties of the amplitude and identify its geometric properties via numerical
analysis. All results of the transition amplitude studies were using a C++ code (Annexes [B)) that we designed.

Our analysis and code have three main limitations. First, the analysis involve euclidean domain instead of the
physically relevant Lorentzian domain, because the Lorentzian vertices appear to be algebraically more complicated.
The euclidean vertices and their assembly can be simply expressed in terms of Wigner n — j symbols, which can be
directly handled (numerically). Second, the euclidean theory has an intrinsic difficulty (absent in the Lorentzian
one), which is that for generic values of the Barbero-Immirzi parameter v the simplicity conditions between (discrete)
spins cannot be satisfied. We have circumvented this obstacle by choosing v = 1/2 and the appropriate closest
discrete values for the spins. Finally, we limited our analysis to (Livine-Speziale [20]) boundary states with the
chosen “cylindrical” symmetry.

In the wake of previous similar results [I7, [18], [19], we found that the mathematically proven results in the limit
j — oo actually hold true at rather small spin j, namely for vertices representing space-time regions of Planckian
size. We found evidence for the emergence of semi-classical geometry behavior already for j ~ 10, i.e., an order of
magnitude above the Planck scale, as previously described in the article [29], which is to say an order of magnitude
above the Planck scale. This might be relevant for instance in cosmology, suggesting that quantum gravitational
effects could be limited to regimes very near Planckian densities.

However, we also observed the appearance of genuine quantum phenomena in the numerical result. These are
first of all the spread of the amplitude around the classical values, i.e., the Heisenberg uncertainty principle. We
also observed the emergence of degenerate geometries, on which we comment in closure.

2 Study object and classical geometry

The assembly studied, see figure [6] it’s a assembly of three flat 4-simplex, sharing a same face. Each individual
4-simplex is a 4d-triangulation of flat space bounded by a 3d surface formed by five 3d-flat tetrahedra matching their
triangle faces. As a generalization of tetrahedra assemblies, where the tetrahedra are glued face-by-face and share
triangular face, each 4-simplex share tetrahedra with their neighbors. In our specific case, each 4-simplex is glued
to their two neighbors by sharing two tetrahedra (one tetrahedron per neighbors) and the all shared-tetrahedra
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share the same triangle base. For summary, this assembly have 1 special triangle, called f, shared between the
three 4-simplices, and is a triangular base of the three shared-tetrahedra which attach the 4-simplex together. By
construction, the triangle f is internal (means inside the bulk of the assembly, not in the 3d boundary) and the
three shared-tetrahedra are internal. The other triangles of the shared-tetrahedra are not internal, but they belong
to the boundary of the assembly. The other triangles and tetrahedra of the assembly shape the boundary.

The properties of the assembly are the following :

- The geometry is given by 15 parameters, which can be taken to be the length of its 15 segments or the triangle
areas and shape variables (we see that below).

- The assembly have 3 (internal) shared-tetrahedra with joint base triangle f, and 9 (external) tetrahedra which
shape the boundary.

- The assembly have 18 boundary triangles, and 1 internal face f

- The parameters of geometry can give curvature around the internal face f

The big interest of this assembly is the last point : the “size” of the 4-simplices given by the geometry parameters
can give curvature around the face f. As described in the article [29], individual tetrahedra geometry can be
expressed in terms of triangle area variable ¢ and the shape variable A, ®. In quantum interpretation of this
assembly, for the boundary tetrahedra we will use coherent state |a, (®, A)) peaked on a given shape (®, A). The
idea is that the boundary quantum geometry can be encoded inside the coherent state |a, (®, A)) of all boundary
tetrahedra, which choose a internal geometry for the shared-tetrahedra and the face f with curvature.

2.1 Geometry of a classical tetrahedron

As the articles [20] 5] and [29] for a tetrahedron in 3d flat space with the area a; of the labeled face i = 1,2,3,4 ,
geometry gives :

Zaiﬁ; =0 (2)

where the n_z are the unit vector normal to the face 7.
Each vector 7, can be expressed in shared coordinate system by the two S? angle parameters (6;, ¢;) € [0, 7] x
[0,27]. And we can define the shape variable ®, A by the relations :

cos® ;= — :
7 A3l 173 A na|
ARZ := a1nf + aond = — (asng + asng) (4)

Where 714 is just a unit vector.

The parameters, with a arbitrary orientation (gauge choice), can be computed from the six parameters (a;, 4, ®).
For example take the orientation (or “gauge’) where (01, ¢1) = (0,0) and ¢ = 0, the others parameters (6;, ¢;) are
just given by the relations and (See the Annexes |A|for the full equations).

For the next, where we will have a lot of tetrahedra which share the same faces, it will be useful to take a
more appropriate notation to distinguish the areas “a” and their normal vectors “777. So for a specific tetrahedron
called 7, we will use the notation ay; for the area of the face shared with a another tetrahedra 7;. Of course, the
notations ar; and a;; are equivalent and represent the same shared area between the tetrahedra 7, and 7;. For the
normal vectors “7” we need to be more precise about the indices : the vector iy will represent the vector of the
tetrahedron 7y, normal to the face of area ay;, outgoing of 7, but in-going the next tetrahedron 7;. Conversely,
the vector 77, represent the vector of the tetrahedron 7;, normal to the same shared area ay;, but outgoing of 7
and in-going to 7. The vectors nn and g, are independent, because the T is only define in the 3d-frame of the
tetrahedron 7 and the 77, only in the 3d-frame of the tetrahedron 7;. Only when the tetrahedra 7, and 7; are
defined in the same 3d-frame, means the two tetrahedra are glued by the face-area ag; in a 3d-flat assembly, we

have the relation n_ﬁ = —ﬁl% . With this notation the closure condition for a classical tetrahedron 7, become just :
— — — — —
Z ARINE] = Akl Nkl, + Qg1 N1y + Qriy Nkl + Qg Nk, =0 (5)

l
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Where we have the sum over the four tetrahedra 7; which share a face with 7. By definition, each unit vector
7 can be expressed by the two S? angle parameters (6, ¢1;) in the shared coordinate system associated to the
3d-frame of the tetrahedron 7. And, from the closure condition of tetrahedron 74, we have the associated shape
variables (Ay, ®x) which are fixed by their usual definition given above :

cos@k:—<m/\m)-<nkl3/\m> (6)
|7kt A 7o | [kt A e, |
Apiia, = apr, gt + iy, = — (Gt Trts, + Qi TR1L ) (7)

2.2 Cylindrical symmetries for the 4-simplices and fundamental parameters

The large number of variables makes the problem hard to analyze. To simplify we will impose symmetry restrictions.
The three 4-simplices used will be identical, and will have a cylindrical symmetry around the face f. With cylindrical
symmetry, as in Figures[5all5b| each 4-simplex can be seen with their two shared-tetrahedra with the same equilateral
base f representing a “invariant plane” of symmetry, and the three other tetrahedra (belonging to the boundary
of the assembly) are around the “invariant plane” of f. The cylindrical 4-simplex is invariant under the discrete
rotation which preserve f, and transform by cyclic permutation the boundary tetrahedra to each others. For more
convenience, we call 7}V the tetrahedron labeled k inside the 4-simplex labeled N. And for all individual 4-simplex
N, we will take k = 4,5 for the shared-tetrahedra and k& = 1,2, 3 for the boundary tetrahedra. In the 4-simplex IV,
we can also define P}Y the vertex opposite to the tetrahedron 77V, and define LY the length of the segment joining
P,gv and PIN .

A5

Ts
P 5 i 4
T2
B, > Iy 1 2 T
/ Ty ng ; M
Py
Ty ju

(a) The cylindrical 4-simplex and its exploded view in tetrahedra (b) Another view of the cylindrical 4-simplex where we
can see the invariant plane of f (given by the red seg-
ments) under the discrete rotation which transform by
cyclic permutation 71 to 72 and 3.

Figure 5: Presentation of the cylindrical symmetric 4-simplex

The cylindrical symmetric 4-simplices, and the condition where the three 4-simplices inside the assembly are
identical, impose that the full geometry is entirely given by three lengths :

Ly=LY% =LY, =L, Lo:=LY, =Ly, =LY, =LY =LY =LY , L.=LY vN (8)

respectively red, black and blue in Figures Lf is just the length of the triangle f segments, Lg is the length
of the segments which shape the shared-tetrahedra faces on f, and L is the length which connect the top of shared-
tetrahedra and close the 4-simplices. Also, the segments of length L form a equator around the internal face f on
the assembly’s boundary. As the following Figure :
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Figure 6: In the left, the study object. In the right, the exploded view of the assembly of the 4-simplices.

The set of the length (L, Lo, Ly) determinate the geometry of the 4-Simplices and, therefore, determinate the
full geometry of the assembly with the cylindrical symmetry. L, Lo and Ly belong to the boundary of the assembly,
and are the fundamental parameters of the geometry in the Regge sens, we will come back about that in the Regge
section for talk about the dynamics of the assembly geometry.

For the quantum section, we need to adapt the fundamental parameters to the area and shape variables. Calling
afc\g the area of the triangle opposite to the segment kl, separating the tetrahedra T,iv and TlN . The symmetries
impose :

ay=aly=a) =a, ay=ady =al, =als =ad =all =ay, aff = a; YN 9)

We have three sort of faces : the isosceles triangles given by two (black) segments of length Ly and one (blue)
segment of length L with the area a ; the isosceles triangles given by two (black) segments of length Lo and one
(red) segment of length L; with the area ag; and the equilateral triangle f given by the segments of length L; with
the area ay. We will respectfully call these faces : f,, fo and (obviously) f. Note, we will call sometimes these faces
. a-faces, ao-faces, ay-face or j-faces, jo-faces, js-face ; for remember explicitly the area or the associated quantum
number of the face in the classical or quantum sections. The faces f, and fy belong to the boundary of the assembly
and the face f is internal (only the face is inside the bulk, because their segments belong to the boundary). Of
course, the different areas can be expressed in terms of their segments length :

a = a(l,Lo)=%,/13- &

/ 2
ap = Qo (Lf,Lo) = % L(Q) — % (10)
af = af (Lf) = @L?

Remember that the geometry of individual tetrahedra can be also express in terms of triangle areas and shape

variables. The geometry of boundary tetrahedra can be given by a, ag and their shape variables (@, AyY), _ , -

The geometry of shared-tetrahedra can be given by ag, ay and their shape variables ((IDQZ , A,ICV ) Always in the

k=4,5"
context of the cylindrical symmetries [29], the three area a, ag, ay can be use to determine the geometry of the
4-simplices and, by assembly constraints, the geometry of the full assembly. Because the cylindrical symmetries

implies :

oY = g VN, k (11)
AN =AY = AV = AVN (12)
AY =AY = A; wN (13)
The geometry of the shared-tetrahedra gives :
LoLy 5, 1,
Ay = 5 = a0+§af (14)
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And the assembly constraints (meaning matching faces of tetrahedra and closure condition for individual euclidean

4-simplex) gives :
LL / 4
A= —Zf = \/QA? -2 A‘]% — §a2afc (15)

Note, the formula for Ay (ag,ay) and A (a,ao,ay) are extended for the all variable set ay € [0;3a0] but give only
classical and physical geometric 4-simplex for A € [0; min (2ag, av/3)].

In this sens, with the symmetries and the assembly constraints, the set (a, ag,as) is also a set of fundamental
parameters of the full geometry of the assembly. We have a bijection between the fundamental length parameters
and the fundamental areas parameters, that can be use for restore the lengths and the shape variables :

(a7a07af)<:>(L7L07Lf) = (A’Af) (16)
2 __ 4
Lf = 73204)"2
2 _ 3agtay
L3 = 2 (17)
L? = 2L%—2\/L{— 4a?

Alternatively, if you give the parameters (a, ag, A), called the boundary parameters, you can compute as by the

classical constraint from geometry :
402 — A2 4
2 20g )
A 4@2 —A2 = ga/f (18)

And also compute the full geometry :

I2 = 924 [4a2—A2

! 4a22_§42 4
L% _ 16a“ag—A (19)
24A4/4a3— A2 /4a?— A%
2 _ 4a2— A2
I = 24,/12=2

That will be important for the quantum section, because we expect that the coherent state of the assembly’s
boundary(a, ap, A) will fix the value of a; and the geometrical properties of the internal face f.
In summary, the classical geometry give for our assembly with cylindrical symmetries three equivalent set of

parameters :
(L,Lo,Ly) < (a,a0,a5) < (a,a0, A) (20)

These are three equivalent classical descriptions of the geometry ; the last one is the most appropriate for the
quantum theory.

2.3 Curvature of the f triangle

The most important thing about our study object, it’s the presence of curvature with the classical interpretation.
When you assembles the 4-simplices around the same triangle f and close the assembly, you create a deficit angle
and curvature around f. And the value of the deficit angle evolve with the size of the equator (defined by the L
segments) compared to the rest of the geometry. Inside our individual 4-simplices, the 4d-space is euclidean and
flat, so we can compute the angle © between two tetrahedra 7¥, 7}V along the sharing face aly, see Figure
The definition of the OF is :

cos 0N —cosON . cosON .,
oS @ﬁ _ (ke)(le) (kl)(kc) (kl)(le) Ve

. : (21)
sin chl)(kc) sin 9%)“0)

Where 0} ), is the (dihedral) angle between the faces aj, and ajy. We can see visual representations of these
angles below :
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Tetrahedron T{"

Face aﬂ"; )

i
¥ )
Tetrahedron TkN
(a) Representation of the angle ©F between the tetrahedra (b) Representation of the dihedral angle Gg\,’w)ac) be-
T;iva TlN of same basis azjx inside the 4-simplex N. tween the faces a,ICVC, a{\g inside the tetrahedron 7V

(belonging to the 4-simplex N).

Figure 7: Angles defined from the 4-Simplex geometry.

In our symmetric case, where kl = 45 correspond to the f triangle, kI = 1,2,3 correspond to the f, triangles,
and the others kl correspond to the fj triangles, we have only three sorts of © angles : ©f, ©, and Oy,. With the
symmetries of the assembly the deficit angle associated to the triangle f is just :

€f:271'*3@f (22)

and we can express all the © angles in the three set of fundamental parameters :
- In terms of fundamental lengths (L, Lo, Ly) :

3 L?
0 f
1 L3
O =-|1—-———"——— 24
cos Oy, 2 ( 4L%L2L?p> ( )
LL
cos Oy, = ! (25)

2\/3L3 - L?\/ALL% — 122

that will be useful for understand the Regge’s geometries, and it’s the most simple way for see the evolution of
the curvature in function of the geometry. For the example (Lo, Ly) = (1,1), we can draw the deficit angle € in
function of the equator length L :
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" oxpi-3*acos(1-35/4) —

0 0.2 0.4 0.6 0.8 1 1.2

Figure 8: Curvature in function of length L for Lo = Ly =1

- In terms of fundamental areas (a,ag,ay) :

3
—4a% + 3\/(3(1(2) + a?) — 12a%a}

9ag — a3

cosOf =

3 2
cosOp, =1— a

2
6a2 — 3af — a} + \/(3@3 + afc) — 12a%a%

2
1 3ag + a7 — \/(3(% + a?) — 12a%a}
cos Oy, = .

1
V2 \/9a% —a} 2
6a? — 3ag — a} + (Sag + a?) — 12a%a}
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that will be useful for connect the classical interpretation with the quantum equivalent where the fundamental

V3 V3

4 4

parameters are the areas. For (ag,as) = (— —), we can draw the deficit angle 7 in function of the area a :

2*pi-B*acos(-o.5+1.5*!‘3qrt(1-4.0*>{*x)) B

1 L L 1 1
0] 01 0.2 0.3 0.4 0.5
Figure 9: Curvature in function of area a for ag = ay = ?
- In terms of boundary parameters (a, ag, 4) :
o . 642 (402 — A?) 9
CORELT 1T 1942 (4a2 — A?) — A2 (4a2 — A2)
1 A?
COSs @fa = 5 (1 - ZM) (30)
A2
cosOy = (31)

V1243 (4a? — A2) — A2 (4a? — A2)

that will be useful for understand the quantum case where the curvature evolve only with the boundary parameters
given by coherent states. That means, if you fix the boundary geometry, by coherent state which give (a,ag, A),
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you will allow curvature inside the assembly. For (ag,a) = (TB, Tg’), you can see the evolution of deficit angle €

in function of A :

' 2%pi-3*acos(1- 2450/ (9-4h) —

A

Nt

Figure 10: Curvature in function of A for ag =a =

Of course in the three descriptions, when the deficit angle € is null we have a 4-dimentional flat assembly, if €
is positive we have positive curvature and when € is negative we have negative curvature. For example, if we take
the most regular case where the all lengths are equal (equivalent to have the all areas equal), the angle ©; give
cos Oy = i and the deficit angle is €y = arccos (—%) ~ 2.329 which correspond to a positive curvature. And if we

have the relation (written in the three set of variables) :

2
“BLA+IP4LE =0 & 3(a—dd) = 2\/(3a3 +a}) 12023 & 4(4a® - A%) (40} — A) = 16afa?— A" (32)

we have a null deficit angle and no curvature. That relation can be seen like the flatness condition of the assembly.
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3 Regge’s geometry with dynamics

The study of our assembly in classical geometry show us the interest of this assembly in term of simplicity and
curvature : the study object (in the context of this symmetries) have only three parameters for describe its full
geometry and have a curvature easily expressible. It will be interesting to see if its curvature it preserved in the
context of Regge calculus. Regge calculus is a simplest way, find by T. Regge [I], for associate a physics action
for a discretized geometry. The main idea of Regge, in its simplest example and interpretation, is to discretizes
the space-time in simplices and associate a action given by the areas and the deficit angles of this discretization.
The fundamental parameters of the Regge’s action will be the length of the “skeleton bones” of the discretization
: in other words, the length of the segments of the simplices. The Regge’s action give the classical solution of
the geometry by its minimization along the segments length ; this process is called Regge calculus. The length of
segments from Regge calculus will be the fundamental variables of the geometry like the metric for the Einsteinian
space-time, and the Regge’s equations, from the minimization of the Regge’s action by the lengths, are the equivalent
of Einstein’s equations from General Relativity. And for a 3d-space-time which is infinitesimally discretized, where
the lengths and size of the simplices used for discretization tends to 0, the Regge calculus give exactly the same
physics of General Relativity theory. In this sens, the Regge calculus is a strong equivalent of General Relativity
for discretized space-time where the Regge’s action is the discretized equivalent of Einstein-Hilbert’s formulation.
For a quantum theory of gravitation and space-time, the Regge formulation is a very interesting starting point for
understand and formalize a discretized space-time in quantas that are the simplices. Moreover, the Loop Quantum
Theory is linked over a group formulation of Regge principle where the transition amplitude reproduce, in a certain
limit, the complex exponentiation of the Regge’s action.

Our goal in this section is to see if the Regge is viable for our study object and give also curvature. The problem
here it’s that our study object does not have Regge’s dynamics, because the all segments belong to the boundary
and the Regge calculus is only viable along segments from the bulk. So, only in this section, we will refine our
object by the splitting of the internal face f to reveal internal segments. That will allow to make Regge calculus on
this new bulk segments without affect too much the boundary data and properties from our study object. We will
show for our study object, in the 4d-euclidean case with this specific splitting, that we can use Regge calculus inside
and its Regge’s equations give solutions with non-null curvature. We will give the definitions of Regge calculus, and
give the process to adapt the calculus to our study object.

3.1 Definition of Regge’s actions and equations

As explain in the classical Sections 2]2:2] the set of lengths give the full geometry of the assembly via the area
and shape parameters, and reciprocally. The Regge’s geometry is given by a triangulation of the part of space in
simplices, with a action associated, where the length of segments are the fundamental parameters. Here, that is
exactly the case. Our study object is a assembly of 4-simplices where the full geometry can be given by the length
of segments and, in the cylindrical symmetry context, by the set of fundamental parameters (L, Lo, L).

3.1.1 4-dimensional Regge’s actions and equations for a non-finite euclidean space

The Regge’s action Spegge for a non-finite 4-dimensional euclidean space (with no boundary) sliced /discretized in
4-simplices with the length L;; for segments “ij” is :

SRegge [LZ]] = Z af [Llj] E€F [LZ]] (33)

Fefaces

We have the sum over the all triangular faces I’ of the area ar and the associated deficit angle e, all function of
the segments length L;;.
The dynamics of the Regge’s geometry is given by the action minimizing by the lengths, and give the Regge’s
equations :
O5Regge (11— L Lij]l=0  Yab 34
I Ll = > erlLijlcotaa r [Lij] = a (34)
ab Fe{facesDLap}
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Where o;; p is the “view angle” of the segments “ab” from the opposite point in the face F' (Figure .

~— Face F 3 L,y with deficit angle g
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Figure 11: For the segment ’ab’ of length L,; (in orange), we have the set of the connected faces F' (which include
the ’ab’ segment) and their associated deficit angle ep and “view angle” aqp p. That picture help to apply the Regge
equation along the segment ’ab’, where you sum the deficit angle e with the cotangent of the “view angle” o
for each connected faces F' O ab.

The Regge’s action and equations are the discretized equivalent of Einstein-Hilbert’s action and equations :

SRegge ~ SEinstein— Hilbert (35)
5SRegge -~ 5SE—H
5Lab 59#1/

In fact, for the 3-dimensional case (where the Regge’s action and equations are different from 4-dimensional case)
we know they describe the same physic for a infinitesimal discretization of space :

(36)

S?%Cégge L..—0 S%dinsteianilbert (37)
ij
553d 5S3d
Regge =e=0 E—H = R° L = 0 (38)
5Lab L;;—0 59#1, we

So Regge formulation is a strong equivalent and interpretation for discretized geometry and gravitation.

3.1.2 4-dimensional Regge’s actions and equations for a finite euclidean space

For a finite 4-dimensional euclidean space, where boundary take a important place, we will rewrite the Regge’s
action in a convenient form :

Skegge [Lij] =27 Y ap(Liyl— > > ap[Ly]OF [Ly] (39)

Fcfaces N esimplices Fe{faces of N}

Here, in the left, we have the sum of “flatness space” from the all faces F' with the area ap. In the right, we have
the sum over the all 4-simplices N of their individual actions, corresponding to the sum of their areas with their
associated angle ©X. The angle O correspond to the angle between the two tetrahedra inside the simplex N
along their shared-face F' (from , see . With these definitions, we have the individual Regge’s action from a
4-simplex N :
Shegge i) = > ar[Ly)OF [Ly) (40)
Fe{faces of N}

Which reproduce the usual Regge’s action definition with their associated deficit angles :

SRegge:27r Z ap — Z Sgegge: Z aQpep (41)

Fefaces N esimplices Fefaces
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ep = 2m — > oy (42)
Ne{simplicesDF'}
This definition is easy to study and understand because we can see the individual effect of each 4-simplices. More,
this definition contain the correct definition of Regge’s action for the internal geometry of assembly, the bulk, and
also the extended definition of Regge’s action for the external geometry of assembly, the boundary. For the all bulk
part, the ep associated to the internal faces are just the deficit angles with exactly the same definition of before.
And for the boundary part, the ep associated to the boundary faces are not a “complete deficit angle” because
it miss the extrinsic curvature. That can be seen as the boundary effect of (missing) extrinsic curvature over the
action and geometry of assembly. This last point are the most important, because the idea is than the geometry of
the boundary will affect the dynamics of the internal geometry, via the Regge equation, and will create curvature :
The boundary properties will affect the internal geometry and curvature.
The corresponding Regge’s equations are given by minimizing Regge’s action over the segment lengths in the
bulk. So for each segments “ab” non-include to the boundary, we have the Regge’s equations :

5‘S’Regge

[Lij] = Z ep [Lij] cot agp p [Lij] =0 Vab € {segments in the bulk} (43)
6Lab '

Fe{facesDLap}

which are the same as usual Regge equation, but only effective for the bulk.

3.2 Adaptation of study object for Regge calculus

We have seen than Regge’s equations take place only for the bulk lengths. The problem it’s our study object have
only one internal face, the all segments belong to the boundary. The set of lengths (L, Lo, Ly) of boundary give the
all geometry, and their values can give classically curvature, but we have no dynamics in the Regge sens ! Even if
the classical geometry give curvature with the appropriate set of (L, Lo, L¢), it will be important and instructive
to see if the Regge’s dynamics can reproduce the same result. But we must adapt our study object for than the
Regge’s equations be effective and physical.

3.2.1 Split objects

To make viable Regge calculus inside our study object the simplest way it’s just to split the internal face f for reveal
internal segments. In agreement with the cylindrical symmetries, we split the segments of the face f (of length L)
by the middle in two segments of length %L ¢ and connect the middles by new internal segments. That will split
the face f in 4 triangles : one in the center, with new internal f-segments of respective lengths L/, L2/, L3, and
three faces around, with 2 segments of length %L r and 1 associated f-segments of length L;}' each. The center face
will be called f’, in reference of the f-segments L}’, L7, L}’ which compose it. The others faces will be called f7,
in ;e{lerence to the f-segment LZ]}’ which compose it with two %L ¢ segments. We can see the splitting of the face f
as follow :

Splitting

Figure 12: The splitting of the face f to make viable Regge calculus.
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The splitting of f, base of the internal tetrahedra, split the faces of internal tetrahedra with new segments and
new tetrahedra with bases f’ and f. The old faces f, (given previously by two [black| Ly and one [red| L) are
split in half with secants passing by the middle of the previousL; segments ; the lengths of the secants segments
will be L{,. We have the new boundary faces given by Lo, L{ and Ly, called f} and the new internal faces given
by two Lj, and one LY segments, called f5. As the Figures :

Splitting

Figure 13: The splitting of the face f and internal tetrahedra. Next, the exploded view of the split internal
tetrahedra.

Splitting

Face fi

(called also ag-face)

Figure 14: The splitting of the faces fy, called also ag-faces, given by the splitting of f.

The splitting of the old faces fy, from shared-tetrahedra, in new faces f{ also split the boundary tetrahedra
which shared these faces. The boundary tetrahedra appear split in half, by the middle of the previous L segments,
and create new faces given by the two L{, and one L segments ; as in the following Figure :
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Figure 15: The splitting of the boundary tetrahedra given by the splitting of f

The new faces, with two (purple) L{ and one (blue) L, will be called f;.
Note, the new internal f-segments lengths L}', L3’, L3’ are not fixed by the boundary data, and their values will

. 2
be given dynamically by the Regge’s equations. The specific case where L}’ = % and L{ = /L3 — % correspond

to the case where the internal face f/ = (Ll’, L%, L‘}’) and the internal facesf? = (L}’, 3Ly, %Lf) are co-planar

and reproduce the equilateral triangular face f with lengths L. But, in general, the new internal faces are not
necessary in the same plane and the contour of the set is not necessary a triangle.

This splitting is really interesting because, in addition to make internal f-segments for viable Regge calculus,
we will see the geometry dynamics of the assembly for our object with boundary parameters which give curvature
in the usual/classical way. The interest is to take classical parameters (L, Lo, L) which give curvature in the usual
assembly and see the preservation of curvature from the internal f-segments and associated Regge’s equations :
our study object will be able to have Regge’s dynamics and non-null curvature within. Moreover, we can reverse
the interpretation and consider our usual study object as a part of a bigger assembly with associated curvature.
Indeed, after the splitting, the central assembly given by the faces f’, f& and (L, L}, L) is like our usual study

object with its parameters <L,L6, ?) and its curvature 4/ inside a bigger object : this central part is exactly

like our usual study object, can have curvature and is contained inside as a solution of Regge’s equations. With
this finding, we can easily imagine our usual study object, with non-null curvature and associated parameters, from
a bigger assembly as a Regge’s solution. So we will see with the proper boundary lengths that our study object
can contain Regge’s solutions with curvature and, by reverse interpretation, can be seen as a solution of Regge’s
equations inside a imaginary bigger assembly.

3.2.2 Parameters and geometric objects

Now, the face f of our original study object is split in 4 triangular faces with new f-segments in the bulk, where
the Regge’s equations will act. We have a new boundary for this assembly formed by the L and L segments, the
split segments of f of length %L 7, and the new secants segments of length Lj introduced by the splitting of f. The
boundary geometry are given by four parameters : L, Ly and Ly, L. The drawing of the symmetrical boundary
with its tetrahedra is below :
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Figure 16: The first picture represent the 3d-boundary of the new assembly, and its exploded view in pieces of
shape of split 4-simplex (The contour from the red segments give no face, it’s the contour of a hole). The second
picture represent the exploded view of shape of one split 4-simplex in new boundary tetrahedra.

As previously, the purple segments have the same length Lj and the red segments have the same length %
The blue and black segments have respectively the length L and Lg. In these pictures, we see the all boundary of
the new object as a assembly of the same sort of tetrahedra. These tetrahedra have their geometry given by the
set (L, Lo, 5Ly, L) and share the faces f, (two purple Lj and one blue L) and f, (two black Lo and one blue L)
for built the shape of split 4-simplex. The three shapes of split 4-simplices share the faces f} (one purple L, one
black Ly and one red %L ) for built the boundary of the all split assembly. The drawing of the full new object,
including the internal (orange) f-segments for Regge calculus and their associated faces f’, f* , is:
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Figure 17: In the left, the split object for the Regge calculus. And its exploded view in terms of assembly of
4-simplices, in the right.
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Figure 18: The exploded view of each assembly of 4-simplices for the Regge calculus object. The f-segments where
we will apply the Regge’s equations appear in orange.

Where we find a internal face with these f-segments in orange. Remember, in the context of Regge calculus, the
length of f-segments are not necessarily equals ! The equality properties of f-segment lengths will be a consequence
of Regge’s action and equations from the cylindrical symmetries of boundary, not a initial constraint.

We can see the “assembly drawing” of the split object via this spin-foam graph :
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Figure 19: Spin-foam of the split assembly dual of Figures The orange and pink edges represents the internal
tetrahedra which come from of shared-tetrahedra splitting (Figure , the light blue edges represents the external
tetrahedra which come from of boundary tetrahedra splitting (Figure , and the purple edges represents internal
tetrahedra needed to complete the splitting and glue the new 4-simplices together. We see the associated pieces of
geometry of the graph in the right.

The split assembly have the following properties :
- 30 segments :
- 3 internal segments : the f-segments in orange, with the lengths L}’, L3’, L}’ which will be given by the
Regge’s equations.
- 27 boundary segments :
- 12 from the boundary tetrahedra of original study object :
- 9 segments of length Ly in black
- 3 segments of length L in blue
- 15 from the splitting :
- 6 segments of length % in red
- 9 segments of length L{ in purple
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- 49 faces :
- 13 internal faces :
- 1 “fully” internal face from the split face f : the face f’ with its three (orange) f-segments.
- 12 “simple” internal faces :
- 3 from the split face f : the faces f* composed by two red segments and one orange each.
- 9 from the split internal tetrahedra : the faces f§ composed by two purple segments and one
orange each.
- 36 boundary faces :
- 27 from the split of boundary tetrahedra :
- 9 composed by two purple segments and one blue segment each.
- 18 composed by one red, black, purple segments each.
- 9 from the boundary tetrahedra : composed by two black segments and one blue segment each.
- 39 tetrahedra :
- 21 internal tetrahedra :
- 12 from the splitting of internal tetrahedra :
- 3 composed with the face f’ and three purple segments each.
- 9 : composed with the by two purple, two red, one black and one orange each.
- 9 from the splitting of boundary tetrahedra : composed with the four purple, one orange and one
blue segments each.
- 18 boundary tetrahedra : composed by two purple, two black, one red and one blue each.
- 12 4-simplices :
- 3 composed by the purple, orange and blue segments.
- 9 composed by the black, purple, red, orange and blue segments.

3.2.3 Equations for deficit angles

In the optics to use Regge’s equations on the f-segments, we need to compute the deficit angle for the all faces
connected to them. In this subsection, we will express the formulas necessary to compute the deficit angle for the
face f, f* and the face fj. After that, the Regge calculus (derived from Subsection [3.1.2) just consist to compute
the quantities :

OSRegge ;1 17 721 731 ;1 17 721 731\ &
oL L, Lo, Ly, 5Ly, Ly, LY, L' ) = > | ercotair | L Lo, Lo, 5Ly, Ly, LY, L' ) i=1,2,3 (44)
Fe{facesDL’j;}
and see for what values of L}', L}, L}’ these quantities becomes nulls.

For the central part, given by the face f’ (see the Figure first picture), the angle between the tetrahedra of
same base f’ are given by :

cos H&C)(lc) — cos 9%)(,@ cos 9%)(

le) ’
cos O = . - for kil = f (45)
sin 0%1)(@) sin Gg\lil)(lc)
With the dihedral angles :
. ALy?—2L% - Ly*
cos 67 = (46)
(ke)(1c) 52
4Ly - Liy
; )2 2 2
| . L L 4 Lh? L
€08 01 (key = €08 0{k1) (1) = /Qf — - — — fk - f — ,fz —
\/4L0 —Lf \/QL}’ Lf’ —|—2L3¢’ Lf’ —|—2Lf’ Lf’ —L;c’ —Lf’ —L)(c’ |
47
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And with the associated deficit angle equal to 5 = 27 — Zle },. In the special case where the lengths L}’, L?’,
L3’ will be equal to the same length L (that will be the solution that we will find in the next) we can reduce the
dihedral and find a simple expression of the deficit angle of the face f’ :

0 L N el S 0 L . (48)
cos Nle) = , COS ¢) = COS ) — T —/— T =
(ke)(ic) 1 L62 _ L}z (k1) (kc) (k1) (i) M L62 B L/fQ V3
3(h? - 4L%) - 1y
2
= cosOp = = ep =21 —30p (49)

2 2
3Ly - L)

For the exterior parts, given by the faces f? (see the Figure second picture), the angle between the tetrahedra
of same base f? are given by the dihedral angle :

. ALy —212— [i/? . , AL+ 12 —412 -2 137
_ f _ _ 0 f 0 f

0SBk = pr e = S0 = N RN T (50)

0 ! o~ by FT by

That can be reduce for the special case L}’ = L?c’ = L?J}’ =L} to:

4Ly —20%— 1,2 ALY+ L2 —4L2 -2 1,7

€08 O(ke)(1e) = ZL’ T2 I cosd (kD) (ke) = €08 O(k1)(1c) = - L = : ! = (51)
— 2
o~ Ly 2/4 1" - 1215 - 1)

Which imply for the faces f :

2
2 2 2 2 2
(L3 np?) (arp® 202 = 157) = (4 1” + L3 - 413 -2 %)

= COS @fv = = Epi = 2 — 3@]01 (52)

a(r2— 02 (am?-?) = (a2 + 12 —ar2—21%)
f f 0 f 0 f 0 f
For the face f¢, composed by 2 purple segments and one orange f-segments, shared between the central part to
the exterior part, we have two type of angles @;Vi : those in the central part ©%;, and those in the exterior parts
0 0

@I}i' The first angles ©%,, defined in the central part connected to the face f’, are given by the dihedral angles :
0

fL7
i ik k12 i 12
oi _ Ly _ Ly + Ly = Ly — cosdi
ke = 4 L' 2 Li/2 \/ i12 732 ir2 1k 312 rki2 ir4 gt krd — Ok he)
\/ o — L} 2Lf Lf +2Lf Lf +2Lf Lf —Lf —Lf —Lf
(53)
. ALy —2L% - Ly? )
COS (kl)(le) — n L62 _ L;/z (5 )
Which give in the special case L}’ = L?’ = L?c’ =L} :
L 1 4Ly —202 - L2
= 08 01y (ke)s COSO(kr)(ic) = (55)

2 2
4Ly’ - L,

€08 (ko) (1) = —F——m—e= —=
(he) 1e) IR
L)L

= cosO% = (56)
fo
‘ 2\/3L'2 L’Q\/4L’2—L’2 JE

The second angles @’J’“, defined in the exterior parts connected to the face f?, are given by the dihedral angles :

4 ALY+ L3 —4L3 -2 L° i . ALyt -2r? - Ly

COS = COS COS

(kc)(lc) (kl)(kc)» (kl)(lc) 2 2
\/4L/2_L/2\/L2 le 4L6 —Lj‘-
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Which give in the special case L}c' = Lfc’ = L‘?c’ =L}

AL+ 12413 -21,° ALy -20? - )2
€08 O(ke)(1e) = s 5 S0t cosbune = —
2\/4 Ly - I \/Lf— r, o f

(58)

2 2 2 2
) (406 + 03 —ard-21,%) L
= cos(afgz (59)

2
o= 27) (13- 157) - (1204 5 -sad -2 1y r = 17

Finally we have the deficit angle of the face f{ :

— a b

3.3 Applications of Regge calculus

In order to compute and study the Regge calculus of the new object, we have designed a C++ code (not included
in this thesis report) for compute the Regge’s action and find the values of the f-segments who minimize it. In the
code we give the boundary lengths L, Lo, L{, 3L as constants. For each set of f-segments lengths Ly, Ly, Ly
which respect the triangle inequalities of the all assembly, the code compute the individual action of each 4-simplex
in function of lengths, and sum the individual actions as define above (see and ([39)). After, the code give the
values of L}c’, L?’ , L?’ which “locally minimize” the full action and the corresponding curvatures ey associated to
the faces from f. Of course, because of numerical limitation, the computed values of L}’, Lfc’ , L?’ are not from a
continuum ; they will be given with a precision 6L’f inherent to the code (and so perfectly defined) and the real
values where the full action is perfectly “locally minimized” are always in the intervals j:(SL}. The precision will be
also given for each computations and cases studied.

3.3.1 Regge computation for unspecified face f

In first, we will study the general cases where the three f-segments, of respective lengths L}, L', L', can be
different and “locally minimize” the action :

8%?’;96 (L,LO,L{M;LﬁL}’,LQ’,Li’c’) =0 fori=1,2,3 (61)

For the special case where Lo = Ly = 1 and Lj = ?, L = /2, corresponding to the flat case in the original
object from the classical geometry, we find obviously the solution :

- L‘:]lc, = L?/ = L?/ = 0.5£0.02 with e4 =0, epi =0, Efp = 0

Which is just the flat solution where the split faces are in the same plane, and the splitting just cut the original
object without no change.

For the special case where Ly = Ly = 1 and L = @, L =1, corresponding to the original object but with
positive curvature induced by a “tight equator” L < /2, we find the solution :

- L}’ = Lfc’ = L?‘/ = 0.711518 + 0.02 with ey = 1.99152, e = 1.53229, e, = —0.421284

For the special case where Ly = Ly = 1 and L = 73, L = 1.5, corresponding to the original object but with
negative curvature induced by a “stretched equator” L > v/2, we find the solution :

- L}’ = Lfc’ = L?’ = 0.421923 + 0.02 with £y = —0.469524, e = —0.422882, £ = 0.118673

For the special case where Ly = Ly =1 and Lj = L = 1, we have the solution :

- L}’ = Lfc’ = L?’ = 0.866 & 0.02 with e = 2.59031, €4 = 2.59031, € = 9.9961 x 1075

Corresponding in fact to the exact solution :

-LY =LY =1¥ = Y3 with ey = e i = 27 — 3arccos (1), =0

Here we have interesting results, because we have already a solution with non-null curvature ! We can see this
solution as the local extremum if we draw the full action Sgegge in function of L} and L? = L?’e :
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Figure 20: Evolution of Regge’s action in function of the L} and L? = L:;’c. Of course we are off-shell of the Regge’s
dynamics, the Regge’s equations correspond just to the extremums of this surface.

So we found several solutions from the Regge’s action minimization : the solutions can have curvature, and
solutions AND curvatures evolve of the boundary lengths L, Lo, Lj, L}.

3.3.2 Regge computation for equilateral face f

As seen previously, the solutions are always the equilateral cases where the f-segments have the same lengths.
Because these solutions preserve the cylindrical symmetries of the original study assembly, will be easily comparable
to the classical/quantum cases studied, and are probably the only physical solutions for cylindrical symmetries.
Because of these results, we will study the simplest cases where the L/, L%/, L‘? are equal in the next.

For the equilateral cases where L;}' = L} Vi, we can study the evolution of solution and its corresponding
curvature in function of the boundary lengths L, Lo, Ly, L}. Because of the size space of configuration, and more
convenience, we take Ly = 1 and Ly = 1. The choice of Ly = 1 is purely arbitrary, that can be understand like just
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a scale choice for the assembly ; the other lengths can be compared to this scale length. The choice of Ly = 1 come
from the choice for confine the f-segments : fundamentally the curvature associated to the face f depend to L, L,
%L ¢ (when the scale Ly = 1 is given) but in fact the curvature induced by the boundary depend to the shape of
boundary tetrahedra and the (non-linear) “ratio” between (Lo, 3Ly) and (L{, L) ; so we can fix Ly = 1 and just
see the evolution of induced curvature by the evolution of (L{, L) compared to (Lo, $Ls) = (1, 3).

So, with (Lo,5Ls) = (1,3) parameters, we can compute the solutions L, and associated curvatures e in
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function of L{, and L. We obtain the following drawings :

resUl_symidu 1233 + 4

18

1.6
1.4
12

0.8
0.6
0.4
0.2

Figure 21: Length L’f from the Regge’s equations solutions in function of L{, and L under different views. The first
and second pictures are the isometric views of the surface of solutions, the third is the top view (in the pane L,
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L), the fourth is the front view (in the plane L’;, Lj) and the fifth is the side view (in the plane L’., L).
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Figure 22: Curvature (deficit angle) ¢ from the Regge’s equations solutions in function of L{, and L under different
views. The first and second pictures are the isometric views of the surface of solutions, the third is the top view (in
the pane Lg, L), the fourth is the front view (in the plane 4/, L) and the fifth is the side view (in the plane ey,
L).

Where the length L} and curvature ¢4 solutions from Regge’s equations evolve continuously in function of the

boundary parameters L{, L. If we look the sections with L{ = V3 we have the following drawing of €/, e4: and

2
€5 in function of L :
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Figure 23: Evolution of ¢y (purple), €;: (green) and e;; (blue) from the Regge’s equations solutions in function of
L.

Where we show the curvatures from Regge’s solutions evolve continuously in function of L for fixed Lo = Ly =1

and L), = ? We recover the expected flat solution for the crosspoint at L = v/2. We show also a discontinuity for

L=2 %, that correspond to the geometrical limit where the split 4-simplices are degenerated flat : means they
are each in a 3d frame, and the length L = 2\/g correspond to the height of two regular tetrahedra with the same

basis with three tetrahedra glued flatly inside. The solutions from L > 2\/g correspond to solutions where three
tetrahedra for each 4-simplex are longer than the height of the two last tetrahedra : means the 4-simplex geometries
are hyperbolic. We see also in the region L € ] %\@, 2\/5[ we have two solutions for the Regge’s geometries, that is

the two possible way to bend the split L ¢-segments : to the “exterior”, means we have a convex boundary geometry,
or to the “interior”, means we have a concave boundary geometry.

We can also draw the evolution of R = > r -}, ;x arep (explicitly R = apep + 3apiey + 9agiep: with the
symmetries) which is the equivalent of the Einstein-Hilbert’s action [, ,, d*2/=gR(g,,) in function of Ly and L :
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Figure 24: R =3 ;. arcr from the Regge’s equations solutions in function of L{ and L under different views.
The first and second pictures are the isometric views of the surface of solutions, the third is the top view (in the
pane Lj, L), the fourth is the front view (in the plane R, L{)) and the fifth is the side view (in the plane R, L).

Again, the results give curvature which evolve with the boundary parameters Lj, L and fixed (Lo, 1Ls) = (1, 3).
For the section where L, = ‘/75 :
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Figure 25: Evolution of R = ;.. arer from the Regge’s equations solutions in function of L.

We find the values of R = )., arer are overall positive, with the flat case at L = V/2 which give R = 0
and the cases 0.82175 < L < /2 which give small negative values.

3.4 Conclusion about Regge calculus

To summarize, in the last two chapters we have studied Regge calculus on two different triangulations. The first,
corresponding to Aj of Figure[6] has a single internal face, but all segments are boundary, thus there are no Regge’s
equations to be satisfied and the dynamics is trivial. The curvature associated to the internal face is then directly
determined by the boundary data. This triangulation defines nonetheless a non-trivial dynamics in spin foams,
because there the fundamental variables are areas instead of lengths, thus there will be internal degrees of freedom
associated with the area and normals of the internal face. To study the classical dynamics in the Regge setting, we
considered a natural refining of As , given by Ay from Figures [17)19] which has 3 internal segments, and thus 3
non trivial dynamical equations to be satisfied. We study the solutions to the equations as a function of simple,
axial-symmetric boundary data, obtaining results consistent with a discretization of general relativity, as expected.
In particular, the curvature obtained from solving the equations varies continuously with the boundary data and
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switches sign as we ‘squeeze’ the configuration moving from a positively curved bulk, to a flat bulk, to a negatively
curved bulk, see Figures and Moreover, in this specific case and refining, the splitting give a assembly
composed by some sub-assemblies which are “like” the study object : so you have no limitation for split again the
structure, or imagine the structure inside a bigger assembly, and built more complex objects where Regge calculus
is always viable and give non-null curvature !

4 Interlude for the quantum geometry

We show the Regge’s geometries of our study object reproduce successfully curvature in function of the boundary
data. In our original object given by three 4-simplices we have curvature, but no Regge’s dynamics. In the
specific refined object, given by twelve 4-simplices, we preserve a equivalent boundary and get Regge’s dynamics
with curvature. But what happen for the quantum geometry ? The need to refine our object in the previous
section come to the fact of the Regge’s dynamics come to the bulk segments, and our original object had no such
segments. Conversely, the quantum geometry and its dynamics is defined by the areas, so we can have quantum
geometry dynamics for our original object, on its internal face f, without any refine. It would be interesting to
get the quantum dynamics of the refined object, and compare it with the Regge’s dynamics, but unfortunately the
associated quantum geometry is too difficult to do analytically and numerically : the associated spin-foam, given by
the Figure is too much complex to adapt for numerical computation. So let us concentrate to do the quantum
definitions of our original study object (Drawing[6] and future spin-network & spin-foam Figures and study
numerically the quantum dynamics of this one.

5 Quantum geometry

We have shown that our study object can be used with the Regge’s formulation and give curvature, this is a first
step for understand and see if the quantum theory of geometry can give the same physic of classical geometry.
But for have more clues if the quantum geometry contain, in a certain part, the usual geometry and the possible
differences we need to apply the Loop Quantum Gravity theory for our object.

The goal of this section it’s define the states and transition amplitude for our study object and give it a
quantum formulation from the euclidean version of Loop Quantum Gravity theory. We will expose the spin-network
formulation, adapt-it for the boundary of our assembly, and give the corresponding proper and coherent states of
the geometry. After, we will give the spin-foam and express the transition amplitude. In the transition amplitude
the Immirzi parameter 7, from the EPRL model, will be taken with the convenient value v = % We make this
choice for obtain correct definitions of intertwiners, coherent with the euclidean version of the EPRL model. We

will introduce in the next subsections.

5.1 Introduction to Loop Quantum Gravity and EPRL model (see [3}, [7, 4, 14}, 15])

In covariant Loop Quantum Gravity, states are defined on the 3d boundary of a space-time region. A basis of
states is given by the spin-network states, that have support on a graph that can be interpreted as the dual of
the 3d discretization of the space. As a dual, the spin-network graph can be seen like a “assembly drawing” of
the 3d boundary : the links are the dual of the geometric faces and the nodes are the dual of the assembly of the
geometric faces in polyhedra. In the context of a triangulation of 3d boundary, the links represent just the triangles
and the nodes represent the tetrahedra. Formally, the quantum states of the boundary will be given as function
of group elements associated at each link of the spin-network graph. The quantum parameters associated to the
representation of the group will be connected to the classical parameters via some operators, as the area-operators.

The theory associates an amplitude to such boundary states. The amplitude can be computed using the spin-
foam expansion: at each order the amplitude is given a by a spin-foam defined on a two-complex whose boundary
is the graph of the boundary state. In particular, the spin-foam can be defined on the dual of a triangulation of the
space-time region. As the spin-network graph for the 3d regions, the spin-foam graph can be seen like a “assembly
drawing” of the 4d pieces of space-time where the edges represent the shared 3d polyhedra and the vertices represent
the space-time pieces. For a triangulation of 4d space-time, the edges are just the tetrahedra and the vertices are
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4-simplices. Finally, the amplitude will be given as integration over the group elements of the spin-foam graph with
its associated spin-network states.

Of course, the all processes define in this introduction of Loop Quantum Gravity will be more explicit when we
will use them for our study object.

5.1.1 Spin-network

From the boundary of a quantum geometry, we have a graph I'" dual to the 3d discretization of this boundary
called the spin-network graph. The nodes, labeled “k”, are the duals of the polyhedra from the boundary of the
geometry. The links, labeled “kl” between the nodes k£ and [, can be seen are the dual of the shared faces between
the polyhedra from k and [. The quantum states associated to the boundary geometry are square integral functions
Y(ug;) of one SU(2) group variable uy; per each link of the spin-network graph I'. A basis in their space is given
by the spin-network functions :

b () — I1 " [ D™ (uw) (62)

nodes & links &t

where jj; are the link spins and {.J}, are the intertwiner spins. The D7* are the j-representations (Wigner’s repre-
sentations) of the SU(2) group elements uy; and, as the intertwiners i{/}, have magnetic indices ; the contraction
is dictated by the topology of the graph. The intertwiner it”}+ associated for each node k and can be obtained
from the group invariance of the node :

AJ} AJ ke j
Z link];’;ymklz...Z'g«kl}lk,nkl?.. = / dngz?ixlclzl Nkl (Qk) Dzﬁ;jz,nkb (gk) s (63)
{7, U

That formula can be interpreted as the invariance of the geometry (like the dipheomorphism invariance) from the
node k, and the intertwiner spins {J}, are the quantum numbers associated to the node and geometry properties
from the associated polyhedra (like projected area, dihedral angle or volume. See the Subsection and [5.2.3)).

The states wff“l’{']}’“ are eigenstates of the area operator ay; of the faces dual to the links “kl” :

PR
%{m{ }k:>

8mYhG  ——
ag = Zg Vi (i + 1) (65)

We chose units where 8myAG/c® = 1 so we do not have to carry over the dimensional factor. The group elements
ug; correspond physically to the parallel transport (on the boundary) from the node & to the node [ ; the conserved
quantity correspond to the area, given by ji;, along the parallel transport. That quantum description have strong
links with the properties from the (usual) geometry dual to the spin-network graph.

Akl

= g [ ) (64)

5.1.2 Spin-foam

From the bulk of quantum geometry, which have a boundary defined by its spin-network graph, we have a graph
T dual to the 4d discretization called spin-foam graph. The vertices, labeled N, are the duals of the 4-polytopes
(4d generalization of polyhedra) and the edges are the duals of polyhedra. By definition, the external edges from a
spin-foam correspond to the boundary polyhedra from its spin-network graph. The faces of the spin-foam, means
loops and external faces (open-loops which are connected to the link from boundary spin-network), are the duals
of geometric faces of the geometry.

For each vertex N, we can define a amplitude as a function of u}; € SU(2) variables :

v = [ vy TT s (viod @) vad) (66)
klCSimplex N
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where we have a integral over the all group elements U, ,iv € G, from the edges connected to the vertex N ; N are just
the number of edges connected to N and thus the number of copies of G. G is the group associated to the vertex
N and correspond to the group of rotations of the space-time region associated to the dual of N : G = SL(2,C)
for Lorentzian space-time, G = SO(4) ~ SU(2)" x SU(2)~ for Euclidean space-time.

The U and UM can be seen as the group elements associated to polyhedra (edges) “k” and “I” from the vertex
N. The u% is the parallel transport element between the polyhedra (edges) “k” and “I”, like in the previous spin-
network subsection. In fact, the u% variables are the spin-network variables from the boundary of the individual
vertex IV ; and the Y is the map between the group elements U,ﬁv € G and the group elements u{c\; € SU(2). The
map Y depend of the definition of G, and glue the group representation of U¥ with the group representation of u}

lj,m) = |vd, g5 3, m) for G = SL(2,C)
YVorq,. . itim g\, B . (67)
lm) = V25 + 13 - ( oo T m) @l mT) j* =152 for G =SO(4)

With the definition of the SU(2)-delta function :
(o) =) (2j+1)T.[D (o)] (68)
J
We have formally :
6 (YTUN (UN) T vl ) =
S Qi 1) oy S DI, (U (UF) ) Dl () for G = SL(2.C)
5 i+ 0P S S B da o w ) < B dw )

+ + -
My My Mkl Mgy Mgy Nk

. N QY - ) b ' s gt = HET'Y]' for G = SO(4)
<ot (o () ) o (T (7)) Dt )
(69)
Here we see the first-fruits of the problem associated to v for the Euclidean case : the j* must be integer or
half-integer, that implies specific values of v and j ; we will talk more about that when we will apply the process
in our study object.
The full transition amplitude Wy from the spin-foam T is given by the integration over the all u,lc\é with SU(2)-

delta functions for glue the all vertices :

WT (ukl) = /du%HAN (u%) H ) H U(]x, H o Uk H Ué\g (70)
N

loopsCY (ab,N)Cloop fexternal CT (ab,N)C fexternal

where we have a product of §-functions for each loops from the spin-foam, that give the delta function of the
oriented product of the ufl\; elements from the loop, and we have a product of d-functions for each external faces
which connect the residual ué\g with the ug; from the boundary.

5.1.3 Transition amplitude

With the state from the spin-network boundary I' and the amplitude of the associated spin-foam T, we can express
the transition amplitude of the geometry state :

<WT|¢%kL’{J}*’> = /dumWr (urr) ]fkl’{J}k (ugr) (71)

which represent the quantum evolution of the geometry state w%’c“{‘]} ¥ from the boundary with the quantum
geometrical constraint inside the definition of W~r. We have the geometric properties associated to the boundary,
via the basis state of spin-network, and the quantum summation over the all possible bulk geometries, via the
spin-foam and its integrals from the vertex amplitudes.
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5.2 spin-network of our objects

Here we consider a simple case, where the 4d triangulation is formed by the assembly of three 4-simplices. Figures
gives respectively the graph of the triangulation of the boundary of 4-simplex and 4-simplices assembly.
Although formally similar, this represents actually the graphs duals to the boundary of these Figures [6]: points
represent tetrahedra and lines represents triangles. The quantum states will be spin-network functions

vy = [T i T D™ (uw) "

nodes & links &t

where ji; are spins and Jj intertwiner spins for 4-valent intertwiners. The group variable ug; can be understood like
the group element to make the parallel transport (on the boundary) of tetrahedron 74 to a tetrahedron 7; through
them shared face of area ax; = v/Jjri (Jrr + 1).

5.2.1 spin-networks for the individual cylindrical 4-simplices

For each individual 4-simplex N, we begin implementing the cylindrical symmetry by choosing boundary states
where, as in (and more especially from @D),

Ji2 =J23 = J31 =1» J1a = J24 = J34 = J15 = J25 = J35 = Jo and Jas = Jf- (73)
The integers or half-integers j, jo, js are the quantum equivalent of the areas a, ag, ay.
Let us now come to the intertwiners. For the intertwiners between four representations ji, ..., j4, we use a basis
defined by
. M ( g1 J2 J JzJgaJ
ivmamgms = V2T 1Y (=1) ( ) ( ) ; (74)
M

my Mo M ms MMy -M

where the ( 7311 7‘7712 75’ ) are the Wigner 3j-symbols defining the 3-valent invariant of SU(2). In the case of
1 2 3

the boundary tetrahedra (we say boundary in the context of the boundary of the full assembly) we pair the faces

with the same area and write
k Ji
S = >0

. . N . . N
ir{gmzﬂlsm4:\/2jlivﬁ21\/[ (_1)JéV—M< J ‘5\1@4 >< JoJo ;]’fw) (for k =1,2,3 and YN)

mi Mo mg My
While for the shared-tetrahedra (which are internal for the full assembly, but belonging to the boundary of
individual 4-simplex), we define the matching and the intertwiners as follows

B

; - N : : N
N Newm [ Jf Jo Jg JoJo I -
@m1m2m3m4 \/2J +1%,, (= ( w1 ma M ) ( s e M ) (for k = 4,5 and VN)

The intertwiners i’* associated to a node determines the quantum geometry of the tetrahedron T,iv . The

number Jk , integer or half—lnteger is the quantum number equivalent of the projected area AN (We can see the
link between the two aspects in the coherent states Subsection [5.2.3). The following graph illustrates the quantum
numbers defining the spin-network and the chosen pairings for the intertwiners :
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Figure 26: Spin-network of individual 4-Simplex with the specification of the spins

Explicitly, the spin-network eigenstates for each individual 4-simplex N are :

P N N
wﬂoda]f;]k (uN) _ 2 :( )Z(JM nki) g i 2]2 Z‘]3 it z‘]5
N kl b niamar —niams P =nazmiz—noamsa P =nszimaz —nzamsz tmsameamsamia ngy—ngs —nsz—ns:
m,n
Jo Jo Jo Jo Jo Jo N
Dm14n14 (u14) Dm24n24 (u24) Dm34n34 ( ) Dm51n51 ( ) Dm52n52 (u52) Dm53n03 (u53) (75)

XDgn12n12 (u12) D£n23ﬂ23 (u23) Dfﬂslnu ( 31) Dgnf54”54 (ué\il)

These states are eigenstates of the area operators of the boundary :

Vi(+1) \Wo’jﬂ’f’*ﬁv> for k,1=1,2,3
af} [y = G GRS 1) [ ) = &Gy G [ ) for ki = 45 (76)
Vio o 1) [piodiars ) else

and satisfy the orthogonality relation :

0

]07]65J7.7/6Jf J%
: H Iy
(250 + 1)° (2 + 1)° (2jr+1)

(77)

3053”35 TR Godidg Y NG aN N N
< 0TS 2031y — ()du Pl d 35T (ui\;)wm,yw, k (ukl>:
SU(2

5.2.2 spin-networks for the boundary of the assembly

For our assembly, the spin-network associated to its boundary depend only of the boundary tetrahedra (without the
shared-tetrahedra) which depend of the j, jo, {Jk } j—12,3 Parameters and corresponding intertwiners. With the

same pairing and definitions of intertwiners than prev10usly, we can use the following graph showing the spin-network
of the boundary from assembly :
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Figure 27: Spin-network of the assembly’s boundary. The black links represents the faces fy with their associated
spin jg, and the blue links represents the faces f, with their associated spin j. We see the associated pieces of

geometry of the graph in the right.

Explicitly, with N = 1,2, 3 for distinguish the 4-simplices, the boundary spin-network eigenstates are

ijo,JN (N NN’ N T . J3 J3
\11]7]07 k (uklauk ) = Zm n(_l)Z(]kl ’ﬂkl) z_l 1 1 _ 1 1 7/_ 1 1 _ 1 1 Z_ 1 1 _ 1 1
’ NiaM3y =Ny M5y —NogM =Ny M5y —MN3g1 M3 N34 M5g
i’ i’ i3
—n3ym3; —nfym3, —n3ymi,—n3,m3, —n3 m3;—n3,mi,
it i’ i3
—n3ymi; —niymd, —n3ymi,—n3,md, —nd mi;—ni,md,
Jo 12 Jo 12 Jjo 12
X misn2, (U3 )Dmézng4 (uQ ) mi ni, ( 1 )
XD]O2 5 (u§3) DJOQ 5 (u§3) 302 (u%3)
M53M34 MzaM24 Mg1M1a
Jo 31 Jo 31 Jo 31
xD u u ui')
mizniy ( 3 ) m3ynby ( 2 ) m3niy ( 1
J 1 1 J 1
xD (u12) D (uz3) (u31)
mianiy 12 mbanb, 23 ming, 31
J 2 J 2 J 2
XD U U ) (u )
miani, ( 12) m3zn3s ( 23 m3n3, 31
J 3 J 3 J 3
x D7 . U ) (u )D : (u )
miynd, ( 12 mizniy 23 m3 3, 31

Where uly are the SU(2) group elements associated to the j-faces in the 4-simplex N, and the u ™" are the SU(2)
group elements of the jg-faces from the shared-tetrahedra between the 4-simplices N and N’. In fact, we can

construct its boundary states ¥ with the states ¢y of the individual 4-simplices :

O; N iN N’
N\ NNy Iy (N NN’ Jf:Jas JakI5k
(1) v Uk, U 5J§J§5J52J25J§J; E

. 2 - N
iy (2.]f+1) kNN’ 2j, T 1
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— ZJ4 7 de5kdU4k wjkl"]k ( Ilcl) Jri i (uil) g%w}g (uil)

U 3“34“3 ) (u32u24u§1) 4 (Uéluiu?)

( 1
5
2 2.3 32
(%3“34“3 ) (Ufzuzwz )5 (%1“14“1 )
3,1 3.1 13
( 53“34“3 ) (Ufzuzwz )5 (%1“14“1 )
X0 (%4“54“54)
Each ¢ states represent the boundary of the individual pieces of the assembly, the Kronecker symbols 6 45 and the
SU(2)-delta function 6 (e) = >, (2j + 1) Tr (D7 (e)] allow to match the shared-tetrahedra and corresponding group
elements between the pieces. These states, by construction, are also eigenstates of area operator of the assembly’s
boundary :

J:30,J] =
o v ) = I G 1) [ ViGHD|w k> for k,1=1,2,3 0
Vo (Jo +1) ‘\I” g0, Ii! > else

And respect the orthogonality relation :

3,3
050,305,5"

4]
1T s

2jo +1)° (25 + 1)” N1y
(81)

Y N7 .. N i N
(w3532 o = / 7T (g N oI (') -
SU(2)

5.2.3 Coherent states

The spin-network states defined in the previous section are eigenstates of the projected area AkN of the tetrahedra,
and are therefore completely spread in the corresponding angles <I>,JCV , which do not commute with AkN . Therefore
they are very non-classical. We are interested, instead, in wave packets that are minimally spread both in A{CV and
in . To this aim, we use the (intrinsic) coherent states defined by Livine and Speziale [20]. These are defined as
follows. The coherent link states are defined by

§70) = R ()13, 4) = Y_ D}y (R()) |, m) (82)
where 7/ is the normal vector to a face of tetrahedron with area j. The group element R (W) is a rotation than

maps the vector %, into the normal vector 77 :
R(W)-u,=7 (83)
For a tetrahedron with vectors 7] associated to its faces, the Livine-Speziale state is:
) = 3 D35 (R (1) Dl (R Dy, (R ) D (R () i ) © Ly mah L) @ s )

(84)
And the projection of this state on the corresponding intertwiner gives:

(i7)jini) szlmzmmDﬁm (R(n1) Dy, (R(75) Dy s, (R (75)) Dy, (R (7)) (85)

Writing W= (cos ¢ sin 8, sin ¢ sin 0, cos #) from the spherical coordinates system, we have
R(T) =R(0,0) =e /20y (86)
Where Jz and Jy are the generators of (usual) rotations. With this choice of R, we can express the j-representation
Dfnj (R(7)) = Dfnj (0,0) = Dznj (e71?zem0) = e_lmqbdinj(e)
(87)

C T e S VR ~ tan (8) et
GrmlG=—m)t " (repy o E=tan(g)e
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Where the d are the little Wigner matrices. The expression of Livine-Speziale state with his intertwiner became :

4

e~ Wit (2j)' ) 4 & Jir—mys
< J|jl > = H 2 _;’L Z{n1m2m3m4 H B ' B ' (88)
e (1 & ) p a2 VG +mi)l(ar —ma)!

Which is physically the distribution of the coherent states of tetrahedron geometry with the normal face-vectors n,
and their associated areas j; over the intertwiner basis i/. This distribution over the intertwiner spin J depend of
the four j-areas and five angles: we have four set of (6, ¢) variables, one for each 77, but with the invariance under
the rotations (gauge ﬁxmg) we can fix three of them If the tetrahedron geometry is classical, that means it respect

_>
the closure condition ), ain, = 0 ~ Z jlnl = 0 we can reduce the angles parameters to the shape parameters
A, ® as in the classical Subsection [2:1] and Annexes Al

In a assembly of tetrahedra, as in our study object, we will take the precise notation for the Livine-Speziale of
the tetrahedron T,iv

~ TN ™
< |jllv\l[nkl errﬁdl MklyMklgz Mkly D#leczja (912\;’ ¢2€) (89)

m l

C . . » NN NN
In the cylindrical symmetric setting, where the tetrahedra respect the closure condition ), apynyy = 0 ~ >, juyngy =
0, we have two types of Livine-Speziale distributions:

H
<i‘]’iv |7, Jo, A, <I>> = <i‘]’iv limmay (AY, <I>kN)> for the boundary tetrahedra (k = 1,2,3) from the 4-simplex N

(90)
H
<i‘7’£v l7¢,d0, Ay, <I>f> = <i‘]’iv LN nd (A]kv, @fc\')> for the shared tetrahedra (k = 4,5) from the 4-simplex N
(91)

These states are peaked around the classical geometry define by the variables (j;, 4, ®) of each tetrahedron. A
example of these distribution over the J parameter can be seen in the next Figure for j, = 8, A = % j =~ 9.24,
® = 7 parameters :

12

" id_interne =8 " U 4 ($1==1 5?08)&&(1&2::1 9404)785110) |

"iad mternej BM u4:(($1==1 5708)&&(152 19404)°$5 c05($6) 1/0) J,»
Nitexp(-(x-A)*2/s)

Xp(-(x-A)*2/s)*cos(xpil2) R

10 +

10 L

Re[<]j,n>]

0 2 4 6 8 10 12 14 16

Figure 28: The norm (in the left) and the real part (in the right) from the Livine-Speziale distribution with j; = 8,
A= %j ~9.24, ® = 7. The points are the exact values of the Livine-Speziale distribution (define only for J € %N,

and here in this special case J € N), and the green lines are the approximation in terms of Gaussian and complex
phase.
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Approximately:

A)2

) _ =
(i |jim; (A, ®)) ~ N (ji, A, @) (=1)7 e7 /P 2760 (92)
These states

»N7AN7(I>N ‘N TN N

YA () = 37 gt (ULVz)H<ZJ’“ Ugn—,@f (A,CN,@,QV)> (93)
Jk k

AT () = ST W (™) T <i"5 AR, (4, @) )> (94)

Jk k,N

approximate the intrinsic classical geometry, respectively, of the 4-simplices and the assembly. The J appear to
be the quantum equivalent of A as well ; the distribution is maximum for J ~ A with the Gaussian part, which
become a delta-function in the limit j — oo.

A interesting feature of the Livine-Speziale distribution is the complex conjugate give the inversion symmetry
of the tetrahedron geometry. That come from the properties of Wigner j-representation :

DI, (R()) =Dl (0,¢) = e™*dl, () = DI, (6, ~9)

(95)
= e MO G (r—0) = e D) (7 — 0,m+ ¢) = e DY (R(= 7))
which give :
<ZJ‘jlnl> = Zm i’r{’blmgmgm4 H?:l D]’n’lllj.,' (R (’I’L_Z)) = Zm iT{’lezmgm4 (_l)zl mi H?zl D%mljl (R (—TL_Z)) (96)

= (D= T DY (R(-T)) = (—1)2 (i — 7))

We have the link between a coherent state to this complex conjugate by the inversion of the vectors : | ]m—f) o'e
(ji — ﬁﬂ That have physical sens, because the complex conjugate correspond to a time inversion. If you have a
sub-region of space which is oriented in space-time, the inversion of time reverse the orientation of the sub-region :
you can see that as the PT symmetry of geometry, where the inversion of time come with a inversion of space.

5.3 Spin-foam and transition amplitude

In LQG, the spin-foam graph will represent how “build” your space-time with the 3d boundary given by the spin-
network. Each external-lines will represent the boundary tetrahedra dual to the nodes from the spin-network
(associated to the boundary, where the boundary states are defined). And each internal-lines will represent the
internal tetrahedra dual to the “intermediate” spin-network states (see [3], [7, [, 14}, [15]). For example, Figure
give the “assembly drawing” of tetrahedra from its boundary (external-lines in blue) with the internal tetrahedra
(internal lines in red) in assembly of 4-simplex. For our simple case, where the vertices represent just 4-simplices,
we have only five-valents vertices for the spin-foam graphs.

The covariant LQG amplitude is a function of SU(2) group elements ug; from the associated boundary spin-
network. In our euclidean 4-dimentional space, we have 5 copies of SO(4) ~ SU(2)* x SU(2)~ for each vertices/4-
simplices amplitude and some integrals over SU(2)-delta function for gluing the vertices and the group elements
ug; from the spin-networks. We will describe these steps in the following.

5.3.1 Spin-foam for the individual 4-simplices an specific value of ~

We now construct the amplitude of one individual 4-simplex associated to its boundary state constructed above.
This is given by a single vertex, five edges (See Figure and ten faces.
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Figure 29: Spin-foam for one individual 4-simplex. The red edges will correspond to shared-tetrahedra, and blue
edges to boundary tetrahedra.

The red edges correspond to the shared-tetrahedra (internal in the full assembly, but belonging to the boundary
of the individual 4-simplex) and the blue edges are the boundary tetrahedra (in the context of the full assembly) ;
they are connected at single the 4-simplex vertex.

The covariant LQG 4-simplex amplitude is a function of an SU(2) group element u, per each face shared between
the tetrahedra 7V, 7/ in the 4-simplex N. It is defined as an integral over 5 copies of SO(4) ~ SU(2)" x SU(2)~

as follows:
dUN||<5 y+tuXN (UM _IY N 97
/(50(4))5 * Kl ( ’ ( l ) um) e

Where U} are the SO(4) group elements associated to edges and their dual tetrahedra, § the SU(2)-delta function,
and Y the map between the SO(4) ~ SU(2)* x SU(2)~ bulk variables and the SU(2) boundary variables :

L
Y o:lim)=v2i+1 > (hjﬁ - gl)‘j+)m+>®]j_,m_> (98)

mt,m—

With j* = %(1 +)j given by the Immirzi parameter v, which be taken equal to % That choice is justified by
the fact that if you take v = % and a even number for j, the values of j& become integer or half-integer ! That
remove the problem of the map, but need to use even number for j. For the case where j can be not even, as in the
sum over the j; in the full transition amplitude , we choose to take for jT and j~ the integers or half-integers
closest, to the theoretical values li?"’ with the constraint j+ + j~ = j. We don’t know how bad this choice is, but
the reader (because the properties of the Wigner 3j-symbols) can choose to consider that the corresponding math
objects are nulls in these cases.

Like in the article [29] vertices amplitude parts give :
1 ) ) N KN
Loy 2 T (2 @) voit) = 3 (T4 0)) Sl b1 ) o
(SO#)® Kkl N \ ki KN

With the SO(4) 15j-symbols :

N
NN =0 (k) (K00 0) T s e s G (100)
K* k

Given by the SU(2) 15j-symbols (K}, jri) and the fusion coefficients Z5, . (ja) :

(K, jrt) = Z(_l)zkl(m—pm)im e 5 iKa K (101)

5
—P12P13—P14P15  —P23P12 —P24P25 —P13P23 —P34P35 P45P24P34P14  —P45 P25 P35 P15
p
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m,mt m=— a=1
(102)
We have the amplitude of a individual 4-simplex express in terms of its boundary eigenstates 1/1““ and

SO(4) 155- symbols That really important because we have a quantum definition of geometry with its geometries
Kk

Ky

states given by 1/)3’” and their weight given by the SO(4) 15j-symbols [Kk Jkl} That physically contains some

information about the geometry, in terms of areas given by akl = jkl (jkl + 1), and their probabilities to appears

with [KD,jN]°.

5.3.2 Spin-foam for the assembly

We construct the spin-foam amplitude associated to our assembly and its boundary state. In our case the spin-foam
is given by three vertices, with five edges and ten faces each, and interconnected by a loop of three shared edges (see
Figure . The blue edges correspond to the boundary tetrahedra and the red edges are the shared-tetrahedra.
Each face from spin-foam is the dual of the triangle from assembly : the faces given by two blue-edges (in same
vertex) are the boundary j-triangles, the faces given by two blue-edges connected by one red-edge are the boundary
jo-triangles, and the red-loop is the dual of the internal triangle f.

75

Figure 30: Spin-foam of the assembly. The red edge represents the shared-tetrahedra 7}¥ (: v />, and the blue
edge represents the boundary tetrahedra. We see the associated pieces of geometry of the graph in the right.

Here the amplitude will be given as a function of SU(2) group elements u}, and uj NN'from the faces. The upy
just come from of the boundary faces of the 4-simplices (who are also in the boundary of the full assembly for
k,01=1,2,3). The u,iv N come from the boundary faces of the 4-simplices they share between them via the shared
internals tetrahedra. For the amplitude, we have integrals over 15 copies of SO(4) ~ SU(2)" x SU(2)~ (5 copies
per each vertices) from the 4-simplices amplitude, and integrals of SU(2)-delta function for gluing the vertices. The
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amplitude function W can be written :
w (ulk\;, uf;’ N /)

-1
= fSU(z) dusiduy [y {f(50(4))5 du;y 10 <Y+UI£V (UZN) Y“%)} 0 (U%4“§4“?54) Hk,NN’ 0 (“é\éculi\g “iv N)
(103)
With the previous definitions from the amplitude for individual 4-simplex, the covariant LQG amplitude of the full
assembly is :

N , NN’
T/V(u,cl,u,C )

= Jsuoy dustduat T [Sn (T 2kt 1)) S [0 30 08 RE ()| Tl 8 (1ol ™) 8 (uhyuids)
(104)
And the gluing parts allow to rewrite the amplitude in terms of boundary states ¥ :

N , NN’
W(ukl,uk )

, ey SN N
=>; <HN,kl (2777 + 1)) Z” (2;;;415)2 >r 1w B 5] Wik K (upgs ut™) Ty 6KéVKiV’ [le.nvn 27;‘317;”’{

= (HN,kl;é45 (27 + 1)) D K KoK (ij (275 +1) >k, ks Ln [Kljcvvjljc\l]]jﬁ):jf [Inne 5K§’Ki\")

KUK (N uNN)

(105)
The amplitude of a spin-network state is just given by :
Wikl = <W|‘I’j’z‘\§"]’y> = Jsu () dunW (“kz’ upN’ ) T (uljf\;’ukNN )
(106)
= 2, 2+ 1) (ZK [ (72 B2 K250 [35 = dr]] T 5K§’K§’)
And finally give for our cylindrical symmetric boundary assembly :
N N - N . .. .
WJklek- = <W|\I]]7.707Jk > :ij (2_]f+1) (ZK4,K5 HN [Jév,KiV,KéV;j,jo,]f] HNN’ 6K§’Kﬁ”) ( )
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= X, @i+ 1) (Zk, [ K5 K255 do,dg] [JR K3 K5 . dos gy ] [Ji K3 K43 . oy dr])
The mathematical structure of the amplitude of spin-network state is really interesting and have links with classical
geometry :
- Each SO(4) 15j-symbols [K},j}y] represent 4-simplices and depend of the area parameters jjj and the
quantum equivalent of shape parameters —and projected area— K ,JCV
- The Kronecker symbols § KNKD glue the 4-simplices together and share the tetrahedra by summation over

K} and K&
4 an 5
- The summation over jf correspond to the quantum summation over the all possible area associated to f.

5.3.3 Coherent transition amplitude

With the Livine-Speziale coherent states for the quantum tetrahedra, we can construct coherent transition amplitude
for the individual 4-simplex and the assembly. For the full assembly, we have the coherent transition amplitude :

W (4, 4o, A, %) = <W| ®sz w (AN, @) )> Z <W\‘I’j’j°"]’]y> H <iJ’iv s (A,]X,<I>ﬁ)> (108)

N,kl JN )

That will be reduce with the cylindrical symmetries to :

W (4, jo, A, @) =Y (2jf + 1) wy (4, jo, df, A, @) (109)
Jf
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k=1,2,3 and YN (110)

where wy are the amplitude associated to the spin-network with a specific area js-representation for the internal
face f :

wf (j7j0ajf’A’(I)) = Z (Z I:J]%’Ki7K4%7j7]07jf} [J%’KZ%’KEL.%]O;]JC] [Jg’K27Ki7]7]Oajf]> H <ZJ£V |jaj07A7(P>
JN O\ Ky N,k
(111)
It physically represent, in a certain sens, the three 4-simplices “interacting” together for a specified face f with j
given.
The summation over the K, which glue the 4-simplex together, can be expressed in terms of coherent states
from the shared-tetrahedra. In fact, the Kronecker symbols § KNKY from can be expressed as below :

—
4 N
. . dny, KN ? N
Opn N = (23f+1)(2.70+1)3]—[/—47’;’ <zK4 15> Josnfs [A}V@}V]><z g, jo,n [A @N}> (112)
=1

where the <iKi]5 |jf,j0,7@ {A]fv, @;V}> are the Livine-Speziale coherent state associated to the shared-tetrahedra

(Subsection [5.2.3) :

N K5 VA
sl - Sl g
‘ . 1 =Jf
b .N . .
-KNS Ji = Jf fOI“Z:273,4
= Zm 2m§h2m3m4 iDJZ (05”\71’ ?{z) {A}V’ (I)]fv:|
(113)
N

These states depend of the face-vectors ny,; associated to the faces of the corresponding shared-tetrahedra and

—
implicitly of the feasible shape parameters AN <I>N But, only when the normal face vectorn®. 7. respect the closure
condition (2) these states are reduced to the coherent states from the Subsection

— i N N =
< KN |]N N [AN (I)N]>' — <Z'K’]“V|jf,jo,Af,¢’f> with (A ,<I>f) = (A;, @y) (114)
>, iNn! 2N_T from the cylindrical symmetries

Note also the interesting property from (96) :
—> N ) —
< ‘]f ]Oanfz |:A (I)Ni|> <ZK5 |jfv‘707_n§‘\f7, [AN7®}V]> (115)

With these relations, we can express the wy amplitude in function of the integration over the all geometries of
the shared-tetrahedra :

L . . 3 174 an?, S T a1 a1 2 &2

wy (j,jo, i, A, @) =TIy ((23f+1)(2jo+1) [Ti-s 47’?) <01\J,Jo,yf7A7‘1>”fi{A ‘I’} [A ‘I)]

<OQ|J Jo,js, A, @ nfl [AQ @2} n%z [Ad @3]

x { 03lj A, 03 | 43, 3 T>Al<1>1
3]7.707]f> > >nf,i P PE Ty,

(116)

@\/\/\/

where we have the coherent amplitude transition for each 4-simplex of the assembly :

<ON|J Jordps A, @ n; [AN ‘I’N} nis {A}V/"I’}Vlw
N JoN jeN.i o 2V [kN 1 N [ AN @N N AN N 3 N
= Z,]N,KN [‘]k; 7K4 ’K5 7]7]0a]f] <Z 4 |]f7]0anf’i |:Af 7(I)f:|> { K3 |.]f ]Oanfz |:A (b ] Hk:l <Z k |jaJOaA7(I)>

(117)
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For summarize, the coherent amplitude transition describes the quantum geometry of our study object with the
boundary tetrahedra whose the geometries are given by the coherent states<i"liv |7, 4o, A, <I>>. We can rewrite the

coherent transition amplitude in terms of product of coherent 4-simplex amplitude where we sum (quantumly) over
the all possible geometries of shared-tetrahedra :

W(j,j07Aa (I)) = Z <W‘\Ilj7‘70“]év> H<ZJ]£\] |j,jo,A,¢’>
— JN ~—_—— N,k
cohe?e.nt — transition amplitude
transition sum over contains the all [quantum, coherent states for the
amplitude the ( classical] possible geometries ) boundary tetrahedra
coherent
states

= S @i+ D wr (o, A ®)

Jf

~— transition amplitude of the
sum over  '"interacting" 4-simplices
the all with the js-area for f
possible
area of f
d—]\f> —_—
n A 7
Jf N i N
. coherent transition amplitude of
sum over sum over the geometries of one individual d-simplex
the all one shared-tetrahedron P
possible ) transition amplitude of the three
area of f sum over the geometries of (disjoint) 4-simplices

all shared-tetrahedra

(118)

The amplitudes contains the information about the geometry boundary and have the quantum summation over the
all possible geometries. In this sens, we see the equivalence with a path integral formulation for the geometry :

v N/ bulk < 7 / Dy e 5 1000] (119)
geometries amplitude of
geometries

The next will be to study the properties of W, w; and of the other amplitudes, for find specific values and their
corresponding geometries, especially classical solutions, and see how it contributes.

6 Numerical analysis of amplitude

Now we have the transition amplitudes and mathematical objects that describe the quantum geometry of our
assembly, we will just compute them with a designed C++ code of our conception (Annexes and study the
results. Of course, the computation of the all transition amplitudes and quantum objects are not enough for
understand the quantum geometry. So we will also compute and give many interpretations and exploitations from
the results for find the internal geometry of our object. The idea is, as in the classical interpretation where the
choice of boundary parameters (a,ao, A) fix the all geometry by assembly and classical constraints ((18),(I4) and
(119)), the transition amplitude computed for (j, jo, A, ®) will reproduce the full quantum geometry and its study
will give some information about. First, we will compute and study the individual 4-simplex amplitude and show
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that we find the classical geometry properties for the shared-tetrahedra when the coherent states of boundary are
given. Next, we will compute the value of transition amplitude W in function of coherent states given by the
shape variables (A, ®) for fixed value of j and j, and study its properties and integrants (wy, product of coherent
4-simplices...) for restore the full geometry information. Even if the developed code can be used for arbitrary values
of j and jg (< 10), we do the all computations for the case j = jo = 8.

6.1 Transition amplitude for individual 4-simplex

Barrett et al’s theorem [6] (see also Conrady and Freidel [7]) states that the vertex amplitude for a coherent
boundary state is exponentially suppressed in the large spin limit (ji; > 1) unless the shapes of the boundary
tetrahedra are those determined non-locally by the classical flat geometry of 4-simplex, in terms of the areas of the
faces, namely by the ji; themselves. In the cases we are considering, this means that the shape variables Ay, @y
must take the “classical values”, functions of j, jo, js for the amplitude not to be suppressed.

We have studied these classical values in Section @ For the angles, they are ®, = 7 for all k. For the Ay
variables, they are given by the functions Ag(j, jo,js) defined by the constraint for K = 1,2,3 and by the
constraint for k = 4,5 (in the sense of the areas (a,ao,ar) ~ (J, jo,js) in the spin-network state, see Section
[-2.1). Thus, fixing large values of the spins j, jo, j¢, we expect the 4-simplex amplitude (0|7, jo, jr, Ak, Pk), seen
as a function of the A and the ®, to be peaked on the classical values ®; = 7 and Ay = Ax(j,jo,jr). We are
interested to explore what happens for small spins.

To this aim, we have designed a C++ program that computes the amplitude (O|j, jo, jf, Ak, ) (derived from
the (117)). Ideally, we would like to fix the spins and study the peakedness properties of the real function of ten
variables f;, ;i (Ag, ®x) = [(OlJ, Jo, js, Ak, Pr)|. However, the ten dimensional space Ay, ®; is too large to explore
numerically. So, we study it gradually by exploring some of its sections.

6.1.1 Sections of the space of shapes

To start with, we fix all the angles and all the boundary projected areas to their classical values given respectively
by ®; = 7 and by equation . This defines a function of two variables, the projected areas of the two shared-
tetrahedra :

f(A47A5) = fj07jajf (A(j07j7jf)7A(j0aj7jf)7A(jOajvjf)aA45A5a 77777 (120)

A typical result from the numerical calculation is given in the left panel of Figure [31], where this function is plotted
for j = jo = j; = 8.

54



T T “Af_peakld’ ul3  +
"Amplitude_Ad,A5_A=0. 280" U 3:4:6  + Al Moﬂgﬁag‘nﬁtﬁgg
.
.
14 L #
018 +
016 |
014 |
012 +
Norm Ot T < 12 | *
Amplitucft’ao8 N . it *
o EERIEL L >
pRE 10 b o
6 ,/’
‘/y‘ *
A
, P
-
8 "
16 1 1 1 L
0 5 10 15 20
It
Figure 31: Left: f(A4, As) for j = jo = j; = 8. Right: The position of the peak as j; varies (crosses), compared
with the classical value (line) and the analytic continuation of the classical value (dotted line).

The amplitude clearly peaks on a value of A4 = A5 = Ay, which is easily recognized precisely on the classical
value Ay = Af(jo,j,jr). We can track the position of this peak as we change j; and compare it with the classical
value of Ay (or its analytic continuation when the triangular conditions are not respected). The result of this
numerical analysis is given in the right panel of Figure [31] which shows that the peaks of the amplitude computed
numerically (crosses) follow the classical value. This shows that, quite remarkably, the peakedness properties on
the classical values already appears at small spins j ~ 10. This pattern is quite general.
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Figure 32: f(®4, ®5) (Left) and f(Af, @f) (Right), for j = jo = jr = 8.

Next, we can reverse the role of the A’s and the ®’s. That is, we fix all the A’s to their classical value and we
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compute the amplitude as a function of &, and ®5. That is :
.. L .. . .. T T T
f((b4, ¢5) = ijJ;jf (A(]Oa],.jf>7 A(]07]7Jf)a A(jo»ja]f)a Af(]07jf)7 Af(j07.7f)7 57 57 5) (I)4; (I)5) (121)
The numerical result is given in the left panel of Figure We also give the transverse section defined by :
L S . T T
f(Af7 (Ef) = fjo,j,jf (A(]07j7]f)7A(jO7j7jf)7 A(JOu]a]f)u Afa Af7 57 57 57 (I)f7 (I)f) (122)

The corresponding numerical result is given in the right panel of Figure Again we see the peak of the amplitude
on the classical values.

The last of these figures shows also that there seem to be an increase of the amplitude away from the classical
values for low angles and low projected areas. To study this effect it is convenient to move away from the classical
region. It is instructive to see what happens if we take a non-classical value of the projected area A = A; = Ay = Ay
of the boundary tetrahedra. The numerical amplitude is given in Figure with different values of A (the classical
one is the fourth). That is, Figure [33| plots :

™ T
f(Af’(I)f|A):fjo,j,jf (AﬂA7A7Af7Af7 a§7§;®f;q)f) (123)

oy
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Figure 33: f(Af, ®f|A), always for j = jo = j; = 8.
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Here we see an interesting phenomenon: there is large peaks for small areas and angles, which is not accounted
for by the classical limit geometry. It is clearly an effect of degenerate geometries, as evident from the fact that it
is at the angles ®; ~ 7 + 7 and/or at the shape parameter A ~ {0,2min(j, jo)}. As A increases and get closer to
its classical value, the peak at the classical values ®; ~ 7 and Ay ~ Ay(jo,js) emerges. If the value of A increase
more, the peak become more “clean” around the classical values (Af, ®¢) = (Af(jo,jf), 5) but the value of the
height of the summit decrease : we assumed that it’s a trace of the presence of the classical peak for all possible
value of A, but it become maximum when A get closer to its classical value. For small value of A, the classical peak

is probably always present, but is completely drown in the degenerate geometries.

6.1.2 Phases and actions of individual 4-simplices

Besides the properties of the norms, which appears to be peaked around the classical geometry which fit the values
given by the j-areas representations, it will be important to find inside the definition of the mathematical object the
trace of the 4d-geometry parameters. So we will look the evolution of one 4-simplex amplitude with coherent states
and see if we can find the 4-dimentional properties of the geometry, and more particularly if we find the definition
of Regge’s action. For a set of j-areas parameters, which fix the areas, we have only one set of coherent state which
perfectly fit the corresponding classical geometry. As the classical geometry of the 4-simplex, the choice of the j-
areas give non-locally via the 4d-geometry constraints the specific values of shape variables A (j, jo,js) ,® = 5 and
Ay (jo,jy), @y = 5 given earlier (see Subsection . The idea will be to study the values of 4-simplex amplitude
with the coherent states given by the shape variables “on-shell of the 4d-geometry” A (j,jo,Jf), Af (Jo,Jjf) and
¢ = &y = 7 in function of the j-areas parameters. We will fix j, jo and see the evolution of the transition
amplitude in function of j¢. The expression of the 4-simplex amplitude with the coherent states previously defined
is just :

<ON.77]07]f7A(]7]07]f)3ganiv [Af(]()ajf)a%]v*niv [Af(]07]f)772r]>

:ZJN7KN [J]iV7KiV?KéV7]7.707ij| <ZK4 |.]f7.]07Af (.]07.7f)7%> <ZKE{V|]f7JO7Af (.]07.7f)7%>

NG N
X HZ:l <ZJk |]a.70a A (jaJOa]f) 3 §>
(124)

which are always real, and the drawing of this amplitude for j = jo = 8 in function of j; is :
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Figure 34: In the left, the 4-simplex amplitude with “on-shell 4d-geometry” coherent states for the each j; quantumly
possible : j; € [0;3jo]. In the right, the same but only for the j; which have classical equivalent : j; € [O; %jo].
The j, jo parameters are equal to 8.

The goal is to find a formula which approximate the results and contains inside its definition the Regge’s action.
As in the article [30], the integral I of the SU(2) 4-simplex transition amplitude are connected to Regge’s action

by the stationary phase points approximation :

f(SU(2))5 dh Ty D7 (hichy ") >k (K jit)?

I(]kl) — :ZK’<OSU(2)U7j07jf7Ki>|2 =
(125)

~ M(Z P (o) cos (34 (2jm +1)Op (0) +xF)) + D

We find the connection between the 15j-symbol (K}, jii) for the SU(2) 4-simplex and the twice of Regge’s action :

Z (2jk1 + 1) Okt = 2SRegge [Jki, Okl (126)
el

for Sgegge [Jki Oki] (127)

. 1
=> (]kl + 2> Okt ~ SRegge [art, Opi] = Z kOl

kl

We have the result for coherent transition amplitude <OSO(4) |7k1, Ak, (I>k> that is a combination of 15j-symbol from

the 51 and j—
(Oso@)|irs Ak, Pr) = Z [Kk, ] H (i%* o, Ak, i) (128)
K
[Kkvjkl] = Z (Kk a.]k;l k Jkl H K+K‘ Jkl (129)
K+
And the 15j-symbols are, in a certain sens, connected to the square-root of the integral I :
2 2 —\ |
YK (Kk ajkz) = D ’ZKi k kaz) <Z k |j(k)l’ (k)z>’

(130)

=T~ =31 (X x PE(0F) cos (34 (245 + 1) O3 (0F) +xFF)) + D*
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The postulate is you can express the coherent 15j-symbols as a expression in terms of Regge’s action for the
corresponding coherent geometry :

Z [Kk ?]kl] H <lKki |-7(ik)l’ 7%;> {N cos (S;Eque []l;tl’ Ofl] + ai) + Dli} o+ x (131)

K+ k UOIRAOY
Which give in first approximation for the coherent SO(4) transition amplitude :

(Oso) |jlcl_7;4k, ‘1352 .
+ = . . - T —
= [ B (ZK+ (K 3] Hkﬁj' lj (+) (k)l>) <ZK (K il TT <2Kk |J(k)l’n(k)l>)
x [ (EK;,K;,Kk <j(2)lv”z%)z‘2 ; > <-7(k)l’ Myl > II((JFK (we) 5+ L 17Ak7¢’k>) (132)

~ {1V cos (SHyge i O] + ™) 08 (Siegye L O1] +07) + D'}
Ik Ak, Pk

So we will try to approximate the results of the coherent transition amplitude of 4-Simplex with the formula :

= —
<ON|j7]07]f7A(j .707.]f)7 5, [Af (]07]f)a 2] ni\f [Af (JOajf)7g]>
= N cos (SJr [ ,]O,jf,GJr oF @ﬂ +a+) cos (Sﬁegge [j’,j&,jf,@;,@&,@;} +of>+C

Regge

(133)

Where the actions SRe gge and the angles ©F are given by classical 4-simplex geometry from j*’s and j~’s part
with the same symmetries of the classical 4-simplex from the j’s :

41 L1 L1
s;gegge[ . iF 0%, eF, @ﬂ - <Jj£+2> @jf+6<gg—“+2) @§+3(gi+2> oF (134)

@i _ 6A:l:2(4aj:27Aj:2)
sy = 1205 (4at2— A%2)— A£2 (4057 — AE2)
2

+ _ A
cos Oy = /12052 (4042 — A+2)— A%2 (403 % - A+2) (135)

1 +2
cos O = 3 (1 - W)

4 1
A* = \/2Aj52 =2 [AFt - gaR2a? AT =\ [af? + 2af” (136)

=i, ey =Jy , ay =j7 (137)
The best fit between the results and the postulate formula is given by the following Figure :

60



0.4

I "coherent_W(jID_iO:SJ:S.D{t" u 1!($3*cos($6)) +I
‘coherent W(f)_Approx_j0=8_j=8tut"u 1.2 ¥
_I_
0.3 |
= %
= .
2 +
o2 | ¢ A X
<
=
=
— 0.1 L
=
<f._ +
= Py
2 +
= 0L >
S
3 "
5 X
E_-O.l - ¥
E
)
V
0.2
X
-0.3 ! 1 ! ! 1 ! + !
0 2 4 6 8 10 12

T

Figure 35: In purple, the points of the computed coherent 4-simplex amplitude for j = jo = 8 in function of jy
(for the region of j; which give possible/physical classical geometries). In green, the points from the postulate

formula (133 which fit the results. The postulate formula fit very well the results with the parameters N = 0.285,
at = 257611, o~ = 2.89027 and C' = —0.022.

We have nice results, because the approximate function are really close to the real computation from coherent
transition amplitude. The biggest differences between the fit and the computation are for the extremum values of
jr:jr=0and j; = % jo = 12 where the corresponding classical geometry are really degenerated with very flat and
elongated tetrahedra. For these extremum values, the usual definitions of Regge’s action, which are classical, are
wrong and give bad approximation because the results are strongly quantum. But for the others values, the Regge’s
action give very good approximation for the quantum action from transition amplitude, and that start already the
scale j ~ 10!

But for the transition amplitude of the assembly, we will lose the information about the value of j;, it will be
useful to check the efficiency of the approximate formula in the variable space A. Because the transition amplitude
of the assembly is express in terms of boundary coherent states |7, jo, 4, ®), if we want restore the internal geometries
with its action and curvature we need to study the corresponding approximate formula and corresponding action for
these geometries states. With the equivalent reasoning of previously, the choice of j, jg, A and ® give “non-locally”
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in classical geometry the value of f area and shape variables Ay, ®; : that fix the full geometry of individual
4-simplex. Of course in the quantum gravity, the f area is quantified with the js-area parameter unlike the classical
case where the f area evolve continuously with the values of (j, jo, A). So for express the evolution of the transition
amplitude in function of A we will choose the quantum value of j; closest to the classical f area given by classical

geometry :

V3, 442 — A2 V3 452 — A2
= Ay 2 i (A)~ AL 1
o= N oz 7 AR T e (138)

The shape variables ® and ®; will be taken to 7 in agreement with cylindrical symmetries, and the variable A

can be expressed in term of (j, jo, A) via its definition with j; (4, jo, 4) :

. . 1., ..

With this approximation for the value of j, we can express the transition amplitude of 4-simplex in function of
variables set (j,jo, A) :

L doriss A Zom [As (rjos A) ], —n [A A),x
ON|]7]0a]fa ) 3 1 [ f(j7]07 ) 2] % [ f(j .]Oa )72]
- Z]N KN [Jk aK4 aK5 7.] JOa.]f .] .]07 < |]f .7 jOaA)ajOaAf (j)jOvA)7g> <ZKéV‘.]f (j?.jOvA)ajOaAf (j7j07A)7g>

gN L x
X Hi:l <ZJIC |]aj07Aa §>
(140)

and draw this evolution in function of A for j = jo =8 :
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Figure 36: Amplitude transition of 4-simplex “on-shell 4d-geometry” in function of A for j = j, = 8 and the
approximation j¢ (4, jo, A)

The many discontinuities of the Figure come from the approximation of j;, because the non-null values of
transition amplitude are given for quantum value of j; and compatible values of jjf and j, from the map inside the
definition of the SO(4) transition amplitude. These discontinuities are non-physical and are purely the artifacts of
the j; approximation, for a fixed j; the transition amplitude are perfectly continuous as the previous figures in the
“space of shapes” Section Now if we take our approximate formula define above, but with the definition of

Ay (4,70, A) and the quantum approximate value js (7, jo, A) as in the transition amplitude, we have the following
Figure :
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Figure 37: In purple, the points of the computed coherent transition amplitude for j = jo = 8 in function of A. In
green, the points from the postulate formula with the Regge’s action. The postulate formula (133) fit the results
as well with the parameters N = 0.285, a™ = 2.57611, a~ = 2.89027 and C = —0.022.

Again the approximate formula (133)) fit very well the true results from the 4-simplex amplitude ! The region
where the fit is the best are for A € [5.4902; 11.451] corresponding to a region where the corresponding geometry
parameters are susceptible to give curvature for the next.

6.1.3 Short conclusion for the individual 4-simplex amplitude

The quantum geometry of a individual coherent 4-simplex is determined by the values of the areas of the tri-
angles and the shape variables of the tetrahedra. Under cylindrical symmetry, the independent variables are
J»30.3f, Ap, @r, A, @ and, in the limit of large areas, the modulus square of the amplitude is peaked on the expected
classical values of Ay, ® for given A, . Here we have studied numerically the peakedness properties of the modulus
square of the amplitude for small values of the spins, up to j ~ 10. We have found that the classical behaviour
already emerges. In particular, the modulus of the amplitude appear to clearly peaked on the classical values of
Ay, @y (Figures . The peak in A is disturbed by the presence of high amplitude values around degenerate
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configurations (Figures for small-volume 4-simplices. Moreover, the study of the norm of the individual coherent
4-simplex amplitude in function of j; show results (Figures [35l37) where we found the Regge’s action as expected
by Barrett [6, 30].

6.2 Transition amplitude for the assembly

Now that the properties of individual 4-simplex amplitude are studied, we will study the transition amplitude of
the full assembly. We will briefly, look the norm and phase of the transition amplitude W, for fixed value of (3, jo),
in the space (A4, ®). In the all next, the value of j and jy will be fixed to 8.

6.2.1 Full transition amplitude

So, for j = jo = 8, we can compute the full coherent transition amplitude W (j, jo, 4, ®) in the function of A and
® and look the peakedness properties of its norm. The drawing of the norm is :

"coherent W(A,Fhi) j0=8 j=8.txt"u 1:2:3

0.12
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012 .
01 0.08
0.08 0.06
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Figure 38: Drawing of the norm of W (4, jo, A, ®) in the space variables (A, ®) for j = jo = 8

So, with just the properties of raw data, the transition amplitude seem to choose very degenerate geometry. We
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have two high peak for (A, ®) = (0, 5 * g) corresponding geometrically to completely flat boundary tetrahedra.

That can be explain by the summation of all internal geometries, classical and quantum, and volume effect given by

the norm of the states used. If we look the properties of transition amplitude in the cylindrical case, where & = 7,
we have :

0.00005 | |

"coherent W(A,Phi) jO=8 j=8.txt" u 2:(($1==1.5708)7$3:1/0) —
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Figure 39: Drawing of the norm of W (j,jo, A, 5) in function of A for j = jo =8

Again we see that the transition amplitude is peaked on the degenerate geometry A = 0. So for j, jo fixed, the
transition amplitude is not classical and priority choose completely flat boundary. But that make sens with the
volume effect of the states, because the parameters j, jo and ® are not enough for fix the full geometry. Indeed, in
classical geometry the choice of a and ag (® = 7 is imposed by cylindrical symmetry) don’t fix the full geometry,
so we have no preferential value of A : the choice of A is arbitrary and cause all geometries from A are possible.
In quantum geometries, because the volumes effects from the coherent states and intertwiners (see ) grow up
for degenerated case, that maximize naturally the transition amplitude for degenerate geometries and make them
dominant in the raw data of transition amplitude.

Now, if we draw the real and imaginary part of the phase from transition amplitude :
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Figure 40: Real part of the phase from the transition amplitude R <%) in function of (A4,®) under

different views. The first is a isometric views of the surface, the second is the top view (in the pane A, ®), the third

is the front view (in the plane R, ®) and the fourth is the side view (in the plane R, A).
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Figure 41: Imaginary part of the phase from the transition amplitude Z (M) in function of (A, ®) under

W (5.50,4,®)]
different views. The first is a isometric views of the surface, the second is the top view
is the front view (in the plane Z, ®) and the fourth is the side view (in the plane Z, A

—

in the pane A, ®), the third
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We show that really oscillating in the space (A,®) ! In fact, the most stable part seem to be for & = 7,
corresponding again to the cylindrical symmetries. If we look more precisely what happen for the cases where

3.5x10°°
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Figure 42: Drawing of real (in the left) and imaginary (in the right) parts of the phase W7o Ay 1 function of

Afor ® = § and j = jo =8

We see the real parts are dominant with just a sign change for A > 10.1961 and the imaginary parts are
really small and erratic. At this point, it assumes that the transition amplitude is probably real for the cylindrical
symmetry ® = 7, and the discontinuities of the imaginary part just from some error in the computations. But these
computation errors are relative errors of transition amplitude with the magnitude order of 107 : that are really
weak, so we can consider that the computations are really precise. If we look, at A fixed (for example A = 6.11765),

the evolution of the imaginary part :
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Figure 43: Drawing of the imaginary parts of the phase % in function of ® for A = 6.11765 and j = jo = 8

we have no more ambiguities : the appearing central symmetry of the imaginary part, at the point (®,7) =
(g, O), has a proof of the realness of the transition amplitude for ® = 7.

The result where the (correct) coherent state applied over the transition amplitude give real coherent transition
amplitude is in agreement with the past studies of these objects [6]. The Barrett study suggests that when you put
the correct associated coherent geometry to the 4-simplex you have a real results: the realness of coherent amplitude
means the coherent tetrahedra states are on-shell the correct geometry. The study of the amplitudes, especially
their real parts, will give essential information about the quantum geometry and if they are peaked around their
(correct) classical equivalent.

6.2.2 Transition amplitude for j;-representation

For study more the results from the full transition amplitude, we will see, for j = jo = 8, the properties of wy in
the phase space (A, ®) in function of the possible value of j;. We will draw the norms and phase of wy for several
value of jy, look their properties with specifying the corresponding classical values, and discuss about the results.
The drawings of the norms for the j;, and their classical expected value of A (Aclassical — %af for j = jo), are the

following :

70



jf =0 (Acla,ssical — 0)

jf —4 (Aclassz'(zal ~ 462)

coherent \W(FAPh)_J0=8_j<6. u 2:3:(312-0)254:110) “coherent W(FARRI_J0<6_j<8 " u 2:3(81==4)234:110)
8x10°0
7%10°°
8100 6x10°°
x10 : 5x10°9
axiz N 4x10°0
5x
3x10°0
Wik 210
3x10°° N
210 b0
1x10°¢ o
0
s classical S Aclassical
Jjr=8(A ~ 9.2 Jr =12 ~ 13.
Coherent_ WA P 1058 <6, U 23:($1=6)7$4:10) Conerent (1 AFN) 108 =8 U 231($1==
1.2x10 — Mx10°%
10 4 35x10
1.2x10°® ~ 4x10°® 3108
1%10°6 8x10 35x102 2,5x10
’ 3x10 3
7 6x10°7 2108
o0 ’ 25310 1510
W™ a0 [Wilpra97 %10
, 7 1.5¢10°¢
4x10 2x10 e 5x109
2x107 0 5%10°° o
0 0
conerent W(LAFN_[06 =8 " U 23:($1==16)$4:10) Conerent W(H AFh) 10 =8 " u 23:($1==
3.5x10 — 3x107
3x10°®
3.5x10°® 3x107 2.5x10
N 25x10 10
3x10 1o 25107
5 .
2.5¢10 : et 107 15%10
x10 .
W, |2 - s 1 11077
IWylisa6 %10 \VV’(ELQ({ .
1x10°® 5x10°9 1x10° 5x10°
5x10°¢ 0 5x10°% 0
0 0

jr=24

0.0025

0.002
|W ?.0015
Mg

0.0005

‘coherent (A Fhi)_j0= j=8.bd" u 23

0.0025

0.002

0.0015

0.001

0.0005
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We see interesting results, because we have a transition of the global shape over a critical value j; = 12 ; call this

specific value j]cfmc“l. For value of j; close to j]cc””cal or smaller we see the transition amplitude are really peaked

around the solution (A, ®) = (O, g) For j; = 0 we have also some degenerated cases around (A, ®) ~ (14, 5+ %),
but that not relevant because the case j; = 0 is highly degenerated and quantum in itself : the corresponding
classical geometry give infinitely elongated tetrahedra. For j; bigger of j]%””ml the transition amplitude tends to

take the very degenerate cases (A4, ®) = (O, = g)

The first results from the values j; < j]‘imical is interesting for two reasons : Primo, we find than the transition
amplitude reproduce the cylindrical symmetries with ® = 7, that means the symmetries of j-parameters reproduce
the classical cylindrical symmetries. Secondo, the transition amplitude don’t take the expected classical value for
A. Classically, give the j, jo and j; parameters fix all geometrical properties of the 4-simplex and should be give
a specific value A (4, jo,jr) as in classical geometry, but that not the value selected by the transition amplitude.
Probably because the coherent state are not normalized, we have volumes terms given by the norm of coherent
state over the intertwiner subspace Y, [(i%|{j, ﬁ)}>|2 # 1, and we don’t have renormalization rules for the for
the spin-foam part. We have probably some kind of normalization, from the spin-network states and spin-foam,
which affect the evolution of the norm of transition amplitude and don’t give a clear understanding of physical
properties of our quantum geometries. For exploit the physics of the data, and also determine the properties of
internal geometries of the assembly, we need to study more the norm AND the phase of the transition amplitude
to try to restore the spread/encrypted information. We do that in the next section.

The second results from the values j; > jjcfmc“l is also interesting, because we see the effect of degenerate
geometry reproduce the full transition amplitude. In fact, the degenerate geometry from the case j; = 24 reproduce
virtually alone the full transition amplitude. Indeed, if you take the maximum of the degenerated peak from the full
coherent transition amplitude W (4, jo, 0, § & %) & 0.109236 it is composed to 97.35% from the transition amplitude
[(ij + 1) wy (j,jo,jf,O, T* %)L‘f:zzi ~ (2 x 24+ 1) x 0.00217203 ~ 0,10634127. That clearly show the weight

dominance of the degenerate geometries in the full transition amplitude.

For finish, we will talk about the physical sens of j]%”“a” : it seem to be the classical maximum value of j; for
classical geometry. Because, if you take the classical condition for the existence of a 4-simplex with the areas a, ag,
ay and A, classical constraints say the classical equivalent exist only for A € [0;min (2ag,av/3)] (See Subsection
. But, the classical link between A and ay is A4/ iﬁ%ﬁ; = %af (from ) ; that implies for the case j = jo = 8
(meaning a = ag) the maximum value of j; : JFer = @Am‘” = %j = 12. So for j; bigger of jjcfmc“l = 12 we
have no more equivalent classical geometries, only dominate quantum geometry that explain the beginning of the
degeneracy from transition amplitude.

Now if we look the real part of the phase from transition amplitude for several values of j; in the (A, ®) space :
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for some value of j;, always for j = jo = 8.
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We have, as the full transition amplitude, very oscillating results except for the cases ® = 7 where the transition
amplitudes are real regardless the value of j;. So we can conclude that the most stable part of the transition
amplitudes wy are also given for ® = 7 and preserve, in this sens, the cylindrical symmetries.

6.2.3 Conclusion about the first study of the full transition amplitude

For conclude briefly, the full transition amplitude give a predominance for the very degenerate geometries. Because
the non-constrained geometry from j and jo promotes the degenerate geometries via the volume effects. The full
transition amplitude are, for the scale studied j = jo = 8, produced essentially from the pure quantum cases where
we have no classical equivalent of the geometry :

W (j.jo. A, ®) = > (25 + 1wy (j, jo js: A, ®) =~ 49wy (5, jo, 24, A, D) (141)
Jf
But from the maximum of the wy norms, for j; < j§°* and from the stability region of its phase, for all j¢, we

recover the cylindrical symmetry constraint ® = 5 where the transition amplitude become real. That reality values
from the transition amplitude from ® = 7 are in agreement with the limit and the choice of correct coherent states
for 4-simplex as in the Barrett paper [6].

6.3 Internal geometry

If you let free the transition amplitude, for the set of j ~ 10, it peak always on the degenerate cases. Because
the quantum geometries of degenerate cases are dominant with volumes terms which become bigger. But for a
given boundary states, where the j and the shape (A, ®) parameters are fixed, what internal geometry is selected
? For that we need methods for restore the lost information inside the transition amplitude. So we will study the
problem via the integrants of the transition amplitude W : because we can express the full amplitude in terms of
sum and integrals over intermediate transition amplitudes, like wy, which contain information about the internal
geometry of our study object. In the optic to get the most probabilistic internal geometries, given the transition
amplitude of the assembly, we will talk about quantum conditional probabilities ([24] 25]) and show the physical
link with the intermediate transition amplitude. Of course, the quantum probabilities that we will expose are not a
strict definitions or introduction to quantum conditional probabilities, just a talk and a physical meaning about the
information we try to reproduce from the transition amplitude. After, we will study the norms of these transition
amplitude for look if we find classical results.

6.3.1 Quantum conditional probability and transition amplitude for geometry

The conditional probabilities in quantum theories are difficult to define, because their definitions are not unique and
give some problem for interpretation. One of these definition come from the extension of Bayes rules to quantum
world where the probabilities are define by quantum projector. If you have a system in the state |¥), the probability
to measure the quantity a associated to the state |a) is given by :

Py (a) = [{al®)” = (¥|Proj(a)| ¥) (142)

With the projector associated to a : X
Proj(a) = |a) {al (143)

Of course, the corresponding probability is real and positive (because the hermitian properties of projector) and
the sum of the all possible value of a (given by the integral over the state |a) in the Lebesgue sens and Lebesgue
measure du (a)) is equal to 1 :

J @ P @ = w1 ([ (@)l al) 19y = o1 1w) =1 (144)
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In classical probability, the Bayes definitions of conditional probability to have A given B is just :

P(A|B) = Pf;(l]’;)m , P(B)=) P(A,B) (145)
A

Where P(A, B) is the joint probability to have A and B, and P(B) the probability to have B which must be the
sum of all possible probabilities to have B for each compatible A. The most simplest way to extend Bayes rules to
quantum with projector are :

Pq/ (a,b)

Py (a,b) = (¥ ’Prof(a,b)‘ v) } = ooy = 28D (146)

Py (b) = [dp(a) Py (a,b)

At this step, we have a specific aspect of quantum conditional probability : the definition of joint probability
in term of projector are not necessary real ! But the sum of all probabilities to measure b for each measure
a compatlble glve the correct definition of Py (b) ! For example, if in the specific cases where you can express

Proy(a b) = Proj(a)Proj(b) we have :

Py (a,b)" = <\1/ ’ (Pm}'(a)Pr(Jj(b))T‘ q/> - <\1/ ‘Praj(b)Pm}(a)‘ q/> (147)
Py (a,b) = Py (a,b) e R if Protj(a), Pr(;j(b) commute
- {Pq, (b,a) = Py (a,b) € C if not (148)
/du (a) Py (a,b) = <\1/ ' </ dyu () |a) <a> Prc;j(b)’ \1/> - <x11 ’]IPrc;j(b)’ \1/> — Py (b) (149)

So the quantum conditional probability Py (a|b) with this projector definition are in general complex, and the
sum over a of these probabilities give 1. Complex number for probability seem nonphysical, but remember than
the quantum mechanics are described by wave functions which can be complex. In quantum mechanics, physical
measures is given by the expectation values, so the complexeness of probability itself doesn’t matter : only the
expectation value —sum over these probabilities— have physical sens. But, we can study the evolution of these
conditional probability distributions, in terms of norm, real part, etc... for understand if we have specific value
chosen by the system.

In the optics to define conditional p_rc;bability in our case, we will adapt the previous methodology. The internal

geometry are given by the states ‘ Jriny, Z> associated to the internal tetrahedra which have the normal face-vectors

—
nfl and their areas j¥ 7.4, and the external geometry is given by the states ’ GNn! N (A, <I>]> defined above for the

coherent spin-network. The quantum geometry state is given by |W) and contain the sum over the all possible
geometries. So the conditional probability to have a internal geometry given external geometry can be expressed
as :

P, (J n IJN_A?[A <1>}> < ‘PTOJ(JN’;Z’L A(I))’W> (150)
Wl Jriltfi < ‘Proy (JZ- n; [ANv(I)N])’W>

Where the corresponding projector are “like” :

Pioj (il 14.0]) ~ @W@? (it @ ® i i 1a.0) (¥ (4,0 1\ (151)
Pioj (il 14,0]) ~ @ ol (a0l ) (50 (4.9 (152)

Nkl

We say “like” because the definition of the action of these states, especially the internal states, on the geometry state
|W) are not clearly defined. The Livine-Speziale coherent states, which define the | jﬁ), act on the distribution of
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the spin-networks states ¥ and ¢y (define in the spin-network section ,) which act_o)n the spin-foam, in

the transition amplitude sens, given by W (remember Figure [30). The internal states j}\fini}f ;) can be rewritten

N _ N
<J§V,z‘ R

, o the projectors of internal states become :
— — — —
‘N N NN N N N
‘]fyinf,i> <Jf',i”f,i x <Jf',i Ny <Jf,i”f,z'

correspond to the coherent states associated to a internal tetrahedron from a 4-simplex, and

(153)

—

The state <]}V1n}\’z
—

N _ N
<Jf,i M

. . H
is reversed ! In other words, <]]]ch — n%

correspond to the coherent states associated to the same tetrahedron but in another 4-simplex where it

—

‘N N
<Jf,i”f,z'
coupled to the state of this tetrahedron going in a another 4-simplex ! The projector of joint probability of internal

and external geometry become :
—
ol a0 ® {<j}ﬂ- A

PTOj (]fznfzvjyﬁ[ ]) N®
N,k N

The left action of the projector contain only the geometry of the assembly’s boundary, and the right action of the

projector contain the geometry of the assembly’s boundary and the internal geometry. In fact, the right action of the

projector correspond to the product of individual geometry of 4-simplex boundary. With this physic interpretation,

we have the joint probability :

represent the state of the internal tetrahedron from a 4-simplex

® (il [A,cm\} (154

kl

Py (j}ﬂn—ﬁc\fz,jfvn_f‘}[fl,@]> = < ‘PTOJ (Jfﬂ?ia]z n; A,fb)’W>
W@ |0 14,8)) [@ { (32— | (37| @ (580 14, ][ }] W)
—
~ <W|®N,kl]£{ n kl (A7(I))>HN <ON|]7]0anaAa(I)an—f;7_n}V/

We postulate the conditional probability :

<ww®NMjaﬁacm@>nN<onmJﬁA@%$¢2ﬁ>
|<W\(8&>MJ 7 2 (4.2))[° (156)
HN<ON|j7jOajf Aend, —nl,
(WI @ iy T 1 (A4,2))
in accord of the internal coherent structure of W ( and ) and the definition of conditional probability. Py,

can be seen as a (complex) probability density function over the ny; variables, where the sum over the all internal
geometry of these conditional probability reproduce 1 :

—
dn¥,
>, @ir+n]] (2jf+1)(2j0+1)3H/?f’1 Py (yfa%ﬂ_ﬁm @])

—
Py (j}ﬂn%\jﬁ N [A,<I>])

if N
. " itional ility" to have:
sum over the sum over the geometries of conditional probabi 1tyN to_Nfuve
all possible one shared-tetrahedron internal geometries j;';, ny;
area for f given (157)

sum over the geometries of
all shared-tetrahedra

—

_ 27 + 1) 27+ 1)(2 dnf HN< l”“’Jqu”?’ i

—ij( Jf + HN ( Jf + )(2jo +1 H f (W1 @1 1 7 11 (A,2))
>

. wy(4,50,5¢,4,P) _
28+ D) W@y st R A

external geometries j.¥, 7;? [A, D]

jf(
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Of course, the definition of Py, (y PNy z| JNnIV (A, <I>]> is in fact the (renormalized) transition amplitude to have the

—
three 4-simplices given by the parameters (j, jo, 4, ®), (jf, 70, n%) and is like the quantum conditional probability

to have internal tetrahedra with the normal face-vectors n’ ; and the area ]}VZ = (47, jo, Jo, jo) given the boundary
parameters A, ® and j» = (4,7, jo,jo). We can define more conditional probabilities, which are just parts from
transition amplitudes, whose properties will give us information about the internal geometries.

So we want compute these transition amplitudes and study their properties : peakedness of the norms, evolution
of the complex phase... etc. The idea is to extract some information about the chosen internal geometry : for
example, in the case where the conditional probability Py (a|b) is purely real, that means we can physically measure
a and b regardless without no quantum interaction between them. In this special case, the norm of this probability
(which is just the absolute value) can be interpreted as a classical conditional probability : so the most probabilistic
value of a given b is just the value of @ which maximize | Py (a|b)|. For the general case, where Py (a|b) is complex,
you need to study also the complex phase in addition to the norm : because the complex phase contain a part of
the action, and the minimization of this action give the classical evolution of probabilities and classical value of a.
Simply, transition amplitudes and quantum conditional probability Py (a|b) can be seen like :

- <W\a,b> B |<W|a,b>|eiarg(W|a,b) B —zSW[ab fDae—iSW[a,b] B
w el = Ty = i emsem - e~ f Pofw ) = maam— =1 (159)

With the quantum action Sy [a,b] € C which are minimized for the classical evolution of geometries with a and b in
the Feynman integrals sens. So the special value of a where %SW [a,0] =0 <— B%PW (alb) = 0 correspond to the
most probabilistic/contributory value of the integral and, by definition, the classical value. Of course for the case
where Py (alb) is real, means Sw [a,b] — Sw [b] € iR, we recover the classical case as the maximum of |Py (a|b)].
Briefly, the study of the norms and phase of transition amplitude integrants will give us the most “probabilistic”
internal geometry for given boundary parameter.

6.3.2 Prelude and used conditional probabilities for the amplitude analysis

Let us recall that we have 6 internal parameters for the shared-tetrahedra that are being summed over in the path
integral for build the transition amplitude: the area of the bulk face, j and 5 angles 6,¢. The latter characterize a
configuration of 4 unit vectors up to a global rotation used to align one of them with the z axis, and a second one
to lie on the Greenwich meridian (plane Ozz). If the model has the correct semi-classical behaviour, we expect the
amplitudes to be peaked on configurations satisfying the classical conditions: first of all, it should be peaked on a
closed configuration of the four vectors, which then represents a flat tetrahedron characterized by the areas and two
angles; by symmetry assumptions, the internal tetrahedra 6 are equal and described by the same data; then, the
remaining two angles and the area js should be peaked on the Regge configurations determined by the boundary
data as studied in Sections 2.2 and given by equilateral tetrahedra.

We will study the peakedness in three different ways, which can be seen via the decomposition in quantum sum
from transition amplitude: (118). First (6.3.3)), we keep the sums over j¢, and keep the 5 angles free. Requiring
that both real and imaginary parts of the amplitudes are maximal, we will find that the chosen configuration indeed
corresponds to the classical equilateral one, where the three 6 are equal, and the two ¢’s are 3 T and 4” ; furthermore
it gives the right classical geometric value for boundary data which are far from degenerate conﬁguratlons
Second , we will study the reverse, keeping j; free and integrate over the five internal angles. In this case we
have again a region where the classical geometry appears, but the disparities and the degenerate geometries region
are bigger. Third , we consider a more off-shell amplitude where we assume that the three shared-tetrahedra
are equilateral with their 6 equal (the ¢ are fixed by the equilateral geometry) and we allow it to vary together with
Jjf ; we have no more integration and have just the product of the three amplitude with just this specific case of
symmetries for shared-tetrahedra. In this last case, we observe that the amplitude reproduce very well the classical
geometry, but degenerate region is always present.

The corresponding probabilities and amplitudes which will be studied will be the following :

e P (ns;|A,®) in the Subsection
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— Which define the probability to have the 5 parameters (652,05 3¢¢3,04¢5.4) for the all shared-terahedra
given the boundary shape parameters (A4, ®) for j = jo = 8. The probability is defined as :

1
<W|j7.j07 Aa q)>

P (774, @) = > (25 +1) (Qljsjo.dps A @, g s, — g ) (159)

Iy
with the definitions for the coherent 4-simplex :

<O|j7j07.jf7A7 (I)7n—f,;a —'I’L—f’;>

L . T T — 13 Tl 160
:Z,]’K [Jk;K47K5;¢77.707.7f] <lK4|jf7307m> <ZK5|.7f,]07nf,i> Hk:l <2Jk|]aJ07Aaq)> ( )

and the coherent states for shared-tetrahedra :
(10 ps) = D 18 mamy Do o (0.2,0) D2 (0.3, 65.3) DI (05,4, 61.4) (161)

which come from and can be off-shell of the tetrahedron geometry (closure condition not necessarily
respected).

e P(6y]A) in the Subsection [6.3.4]

— Which define the probability to have parameters 6 for the all shared-tetrahedra given the boundary
shape parameter A for j = jo = 8. The probability is defined as :

1 ‘ S 7r 3
P (05]4) = > >~ @iy + 1) (Ol dosirs A, 5 [05], 7 105]) (162)

<W|j7jOaA7g if
with the definitions for the coherent 4-simplex :

(Olddo. gy, A 5, mpi (0], ~pi O7]) .
=3y [In K, K533, Jo, 35) (854, do, g [051) (551555 G0, g 04)) TTeey (474155905 A, 5)

and the coherent states for shared-tetrahedra :

; ; 27 ; 4
(o 72 107]) = 3 B D, 0000 Dl (07,55 ) Dl (00 57) a6

(163)

which come from and can be off-shell of the tetrahedron geometry if cos 0 # — Is

E-
e P(jf|A) in the Subsection [6.3.4]

— Which define the probability to have parameter j; for the internal face f given the boundary shape
parameter A for j = jo = 8. The probability is defined as :

(2js + Dwy (4.50,5: A )
(Wljjo, A 5)

with the wy from (116) which represent the quantum summation over the shared-tetrahedra geometry
for given jy.

e P(js,0¢|A) in the Subsection [6.3.6]

P(j5lA) = (165)

— Which define the probability to have parameters jr and 6; for the all shared-tetrahedra given the
boundary shape parameter A for j = jo = 8. The probability is defined as :

(2jr +1) < o
Tii71 . - A wN\ O|]7.707.] 7A7
<W|ja]05A7§> !

™

P(js,0¢|A) = 5

s, o) (166)
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with the definitions :

(0. o,y A, 707 [05], 7 [0¢])

TP . : Tl 167
= 3 Wi K K . os ) (54 g o 072 1051 T don g ) Lo (7% livdos A,0) (107
and the coherent states for shared-tetrahedra :
(5 gs dos i [051) =Y ik o omms D2 o (07.2,0) DI (05,3, 07.3) DI (054, b1.0) (168)
which come from and can be off-shell of the tetrahedron geometry if cos; # —3%
6.3.3 Numerical result for P (7;}|A, ®)
We are interested to :
1 . .. 3
P (nfi|A,®) = 2 > (255 + 1) (O, o, s A, @, 00, =g 169
(ns,i|A, @) <W|]7]07A7©>Z( r+ 10| f s —Tf) (169)

s
which is linked to the transition amplitude of the three 4-simplices from the assembly, with the quantum summation
over the all possible area j; for the face f, but don’t have the quantum summation over the face-vectors ﬁ from
shared-tetrahedra (see the link with ) In this context, the all shared-tetrahedra have the same geometry given
by the ﬁ vectors and their five parameters (62,07 3¢73,074054). For a set of j,jo and A, ® given, we want
compute P (77 }|A, ®) and see what 717 are chosen.

The main reason of this interest and simplification is because the space of variables in the general case is really

huge ! In the general case, each face-vectors ng of shared-tetrahedra are given by two parameters (Q}V i qb?{ 2) (see
coherent states Subsection , that give 5 parameters for each shared-tetrahedron with their 4 face-vectors :
you can use gauge fixing to set (95){1@%) = (0,0) and ¢}, = 0. Give a total of 15 parameters for the three
shared-tetrahedra. Because the individual 4-simplex sections shoifome clues that the transition amplitude

for the 4-simplices are peaked around the symmetric cases, where the ni}’ , are the same for all internal tetrahedra,
we will reduce the number of parameters and just compute this probability density function to the five parameters
(0f.2,053073,074054) from n; = {n71(0,0),7155(052,0),775(073053), nya(0ra¢sa)}. That give the definition
of the coherent 4-simplex used :

j7j0ajf7 sy PN, —Nfs
(o] A D ngy, —ngs)

Lo . .. T T —y . .. 170
:ZJ7K [JkaK4aK5;ja]0ajf] <ZK4|]fa.703n.f,;> <ZK5‘Jfa]07nf,i> Hi:l <ZJk|j7]03A>(p> ( )
and the associated coherent states for shared-tetrahedra :
(515 J0 g0y = D 18 o imamy Do o (07.2,0) Do (0.3, 6.3) Die o (05,4, 67.4) (171)
m

In this first approach, we want find some symmetry properties between the parameters ¢ ;, ¢ ; for reduce
again the parameters and try to get the maximum of precision for the calculus. So, for fixed j,jo, and each shape
parameters A, ® we will compute P (n7;|A,®) and take the value of (0f.2,05365.3,05405.4) which maximize its
norm. We can draw the “chosen” values of (0f2,0¢ 30 3,0¢4¢¢4) in function of the shape parameters A, ® :
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Figure 46: Value of 074, 03, 04, ¢¢3 and ¢4 which maximize the norm of P (n—f,ﬂA, ®) in function of A, ®. We
see appearing the equilateral symmetry 6¢; = 05 and ¢53 = %’T, Pfa= 4?“.

The precision of the chosen values (02,0307 3,0¢4¢¢4) is not really good, because the number of parameters
and the limitation of computer impose to have a incertitude of 75 (+9.1%), but we can clearly see that the cases
where the 0 ; are equal and ¢ 3 = %’r, Pfa= %’T are the main solutions. Except for the very degenerate geometries

from the regions (A, @) ~ (O, = %), we obtain the equilateral symmetries properties for the shared-tetrahedra as
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in the classical equivalent. That reinforces the idea where the cylindrical symmetries of the boundary impose only
the equilateral cases for the geometry of the shared-tetrahedra, with a equilateral face f for base and same isosceles
triangle for the jo-faces. Note, the regions of degenerate geometries where the equilateral face is not preserved are
the same as those from the individual 4-simplex amplitude study (Subsection Figures [32]33).

Because the symmetries between the 6 ; (see Figures, we can do the same computation with more precision
for the restricted equilateral geometries where 0¢; = 0y and ¢35 = 2?“, Pra = 4T S0 we can draw the specific

3
values of 6y which maximize the norm of P (m [0f] |A, @) for the equilateral cases in function of A, ® :

"Max_WI(t2JAPhD) _j0=8_ =8 txt" U 2:1(($6==1)7$3:1/0) & & «

3.5

2.5

1.5

0.5

Figure 47: Value of §; which maximize |P (iiy} [0;] |A, ®)| for the equilateral cases (6;; = 0f;¢73 = Z;¢sa = 4T)
in function A, ®.

Now, with more precise data, we can draw and look the evolution of P (ﬁ [0f] |A, @) in function of 0, for fixed
A D
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Figure 48: Norm (purple, in the left) and real & imaginary (purple & green, in the right) parts of P (77} [6] |A, ®)
in function of 0y, for A =9.2549 and ¢ = 7.
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Figure 49: Norm (purple, in the left) and real & imaginary (purple & green, in the right) parts of P (77} [6] |A, ®)
in function of 0y, for A = 9.2549 and ¢ = 1.6324.

We have two interesting type of results, the first from the Figure 8] correspond to the geometry with the

cylindrical symmetries ® = 7, and the second from the Figure correspond to a geometry without cylindrical
symmetries.
The first result from & = % (Figure 48), as the previous results from the Subsection and the Figures

@243l give P (17} [0f]|A, ®) real. By virtue of the talk about quantum conditional probabilities in Subsection
6

3.1] the realness of P (ny;[0;]|A, ®) allow to understand this probability “like” a classical probability : the
maximum values of the norm give the most probabilistic result chosen by the quantum geometry. So we have
two peak from the norm, corresponding to the two most probabilistic solution of 6 : the first, which is the
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higher, is for 6y ~ 1.7402, the second is for 8y ~ 1.9558, which are very close to the classical expected value
9?“5”“‘1 = arccos (—% . ﬁ) =~ 1.9113. The classical geometry is found in the quantum geometry via this second
peak and correspond here to a classical solution with curvature ! Indeed, from the classical equations and
we can express the angle between two shared-tetrahedra :

A2 2
cosfly —cos® O (1 - ﬁ) — cos” 0y
1 —cos? 6y o 1 — cos? by

cos Oy = ~ 0.2209 (172)

and the deficit angle of f :
ey =2m — 30 ~ 2,2392 rad (173)

But the main solution, given by the first peak, is a priory not a classical solution. Note, if you suppose that the
formula given by and can be extended to the quantum geometry, we find again a solution with curvature.
That a not a proof, because the formula is used beyond this validity domain in this case, but it’s maybe a clue of
the presence of curvature.

The second result from ® = 1.6324 (Figure give P (ny} [04] | A, ®) complex, so it’s more difficult to determi-
nate what is the “classical solution chosen” by the amplitude. By the norm, we have again two peak which almost
the same of the Figure that is normal because the value of ® are close to the cylindrical/classical case 7. The
most interesting part is given by the real and imaginary parts of P (7y; [4] |A, ®), because we show that the both
give a same local extremum for the solution 6 ~ 1.7402 but differ for the solution 6 ~ 1.9558. So if like in
the section we define the classical solution as the specific solutions where %PW (ald) = 0, the corresponding
selected solution is the first peak of the norm where the real and imaginary parts have the same local extremum.
The second peak of the norms come with the local extremum of the real part, but no extremum for the imaginary
part. We don’t know exactly what to think, but it’s important to reveal these particularities.

6.3.4 Numerical results for P (0¢|A)

Guided by the previous results, where the symmetric shared-tetrahedra with 6y ; = 67 and (¢53, ¢f4) = (%”, %’T) are
dominant, we will study more precisely the properties of the conditional probability P (6;|A) = P (@ [0r] 14, g)
In this equilateral case, with the cylindrical symmetry ® = 7, the all results will be real so we can just study the
norms of P (07| A). We can draw precisely the values of 0, in function of A, with a color for indicate if it correspond
to a maximum or not for the fixed value of A. We have the colored drawing and chosen values of 8; given by the

following Figures :
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Figure 50: Representation of 6y values in function of A for & = 7 ; the yellow correspond to the values
which maximize |Py (07]A)| for the given A. The green line represent the expected solution of 9?“””‘” (A) =

1., A

arccos (*ﬁ . 2ao) from classical geometry. We show the classical solution chla“ical fit the quantum results in the

region A € 19.2376; 13.8564].

We notice that the parameter 0y associated to the shared-tetrahedra and internal geometry evolve in the same

way of the value 6 (A) = arccos (—% . %) from the classical geometry. The evolution of 6 in function of A are

approximately the same in the region A € ]9.2376; 13.8564[. We see some level for the value, like a quantification of
the 67, which are around the usual solution of classical geometry except for extreme geometries (as for A < 9.2376
or A > 13.8564). In the region A € ]9.2549;13.86], the value of §; given by the quantum probabilities are around to
the classical solution : this region correspond in the classical interpretation to a assembly between the case where
the all tetrahedra are regular (most symmetrical case possible, which contain curvature with A = %a ~ 9.2376,

07 = arccos (—3) ~ 1.910 and 5 = 27 — 3arccos () ~ 2.3288) and the case where the assembly is extremum

hyperbolic (with A = v/3a ~ 13.8564, 0y = arccos (—%) = %’“ and €5 = —m). Maybe it’s a clue to say the quantum
geometry have the same properties of classical geometry but for “moderate curvature” (|e¢| < 7). For A < 9.2376
we see a huge divergence between the results and the classical geometry, that difference can be explain by the
influence of degenerate geometries (see Figures .. For A > 13.8564, we have no more classical equivalent for the
geometry, the physics is given only by quantum geometry.

A this step we can conclude some properties : the transition amplitude of the full assembly, with the cylindrical
constrains on this boundary, choose the geometry of shared-tetrahedra in agreement with cylindrical constraints.
We will have internal tetrahedra with a equilateral base f, and isosceles jo-faces as the classical geometry where the

2r 4w

0F; = 05 YN,i and (¢f3,¢54) = (%, 7). The evolution of f is approximately the same that classical geometry
2

for the region A € } 73 \/ga[ which classically give curvature, but we have some divergence with the extremum
cases and quantum regions.

6.3.5 Numerical result for P (j;|A)

As the previous section, we can try to get the most probabilistic value of j; chosen by the transition amplitude.
Similarly, we have the definition of :

(2j5 + Dwy (4,Jo, jf, A, 5)

P(jflA) =

(174)
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which is linked to the transition amplitude of the three 4-simplices from the assembly, with the quantum summation
only over the all possible shared-tetrahedra geometries (see the link with ) We want to compute it for look
what the values of j; are selected for given A. With the cylindrical symmetries, ® = 7, the P (j|A) are real so we
just need to study the norm of it.

If we draw the j; in function of A with a colored view which indicate if the values j; maximize |P (js|A)| for
given A, that give the Figure :

"Max_W(fA P _jo=8_j=8 bd" u 2:(($1==1'5708)2$3:/0)6 Il 25 ' ' "Max_W(fAPD_jo=8_j=8 bd" u 2:(($1==1'5708)2$3:/0)6 Il
P 1Y) e

Figure 51: Representation of j; values in function of A for ® = 7 ; the yellow correspond to the values which maxi-
mize | Py (j|A)| for the given A. The green line represent the expected solution of j§***7* (A) = 3 A from classical
geometry. We show the classical solution jj‘il““ic‘” fit the quantum results in the region A € |10, 4745; 13.8564].

Here we see a “similar” evolution of the value of j; and the classical expected value jjila“ic‘” (4) = @A from
the classical constraint ; the disparity is more important here. The region where the quantum and classical
geometry give the same results, is for A € ]10,4745;13.8564[, that more small that previously. The lower bound,

A ~ 10,4745 probably correspond to the case where the classical O is equal to § (for A = 2\/;1 with and

); that give the deficit angle e; = 7 in the classical equivalent. The region A € ] 2\/§a; V3a [, where the classical
and quantum geometry are in agreement, correspond to the curvature region with e; € ]g, —7r[. For A > v/3a, we

have no more classical geometry, so the j; are given only by the quantum geometries. For A € }6.4314; 2\/§a[ we

have a moderate divergence, which become bigger beyond A < 6.4314. We assumes that the differences come from
the degenerate geometries, but we don’t know the physical meaning of the value A = 6.4314.

For summarize, overall the evolution of the quantum and classical geometry is the same in the region where
curvature exist classically and is moderate. but we have a important differences for the quantum regions and small
values of expected jjccl“”ic“l.

6.3.6 Numerical result for P (j;,0¢|A)

For try to get more information about the internal geometries, we will study the probability to have a specific value
of j; and 0 given the coherent states A and ® = 7 :

_ 255+ 1 L
P(js,0¢|A) = (247 +1) ><OIJ,Jo,Jf,A,

3
— —
0], —n 10 175
(Wi jo A, npilfr), —nypi f]> (175)

oy
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As in the decomposition (118), that linked to the transition amplitude of the three (disjoint) 4-simplex with the
same face f and their coherent data given by j,jo,4 and 0;. Again, if we look just the norm of the probability, and
take the couple of values (j¢,0¢) which maximize the norm for each given A, we have the evolution of j; and 6 in

function of A :

MEX_WATLZIAPN] 08 j=8.04" U 2:(($1==1 5708) 8&(§7==1)783L/0) =
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Figure 52: Representation (purple points) of the selected couple j; (left Figure), 6; (right Figure) values

which maximize |P (j¢,0¢|A)| in function of A. The green lines are the expected solutions (j;6;

1 A

0 )classical o

(gA; arccos (—— —)) from classical geometry. We show the classical solutions fit very well, in the both data,

V3 2ao0

the quantum results in the region A € |7.6862;13.8564].

We see a important evolution here, because the difference between the computation and the classical expectation
over j¢ and 6y have less disparities of before ! The classical case seem emerge from the quantum transition amplitude
in the maximum of the probability. The matching region of the classical and quantum geometry is restored for

Ae } %a; V3a [, which classically correspond to geometry with moderate curvature. In fact, the value A =

12

139

correspond to the case where the deficit angle, from and , is €4 = 7 ; the matching region thus correspond

to the curvature interval ey € |—m; w[. We assume that the degenerate region A < %a is the source of the biggest

differences between the quantum and classical geometry for the previous Figures

6.4 Conclusion about the results

Overall, we see in the study of the transition amplitude properties that we find classical solutions in the region
A € [7.69;13.86] (Figure . That region correspond, in the classical equivalent, to geometry with curvature
ef € [—m; 7] ;it’s a good indication that the euclidean Loop Quantum Gravity contain curvature. The specific region
where the all transition amplitudes are in agreement with the classical geometry is more precisely for A € [9.23;13.86)
, corresponding to the curvature region ey € [77r; 2m — 3 arccos (%)] Naively, this could be understood
as the manifestation that quantum geometry prefer negative curvature. But in presence of some classical solutions
with positive curvature, and the fact where the corresponding j; become bigger and close to the classical expected
value with the increasing of A, its probably just a influence of quantum effect of geometry from low value of j.
Although we have no explicit expressions of the curvature in the context of quantum theory, it is reasonable to
assume that the curvature is found in the EPRL model. For the region A > av/3 ~ 13.86, we have no equivalent of

classical geometry, so the results come from the pure quantum geometry. The region A < a4/ % ~ 7.69, equivalent
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to jjccl‘””ml < 7, are just dominated by degenerate geometry and their volumes effects.

7 Conclusion

In this study, we investigated a simple assembly of 4-simplices with classical, Regge, and quantum geometry to
identify differences and similarities between these aspects and theories. Our assembly was formed by three 4-
simplices, sharing tetrahedra with a unique internal face f, in which the symmetries were devised to simplify the
study.

We studied the classical geometry of the assembly and showed that the complete geometry could be restored from
the lengths of its segments. We highlighted the bijection between the lengths of the segments, natural variables of
geometry, and the areas and shape parameters from the boundary. We show that the assembly possessed curvature
around the face f which evolved continuously in function of the lengths or, via the bijection, in function of the
boundary parameters.

To investigate whether if the curvature was preserved through the Regge’s geometries, we adapted the assembly
by cutting it via the split of the face f. The split of f generate new segments where we have Regge’s dynamics,
while retaining a similar boundary structure to our study object. We then show that the Regge calculus was viable
in our object and reproduced the curvature, which evolved in function of the segments length from the boundary.

Based on the Regge calculus that reproduces curvature in the context of our object, it was interesting to see
what happened in the case of quantum geometry. The EPRL model dynamics, which is defined on the areas and
especially the face f, was perfectly applicable to our assembly without any modification. In the context of quantum
geometry, we defined the graphs and boundary states of our assembly. We expressed the transition amplitudes
of the 4-simplices and their union to numerically analyze their properties. We therefore developed a C++ code
(Annexes to compute the various mathematical objects and numerically construct the amplitudes.

Any amplitudes previously calculated for a small scale (j = 8) were studied from their norms and phase, as
conducted in typical studies of field theory for which “classical” solutions are provided by the stationary points
from the amplitudes and their integrants. After identifying these stationary points from transition amplitudes and
integrants, we have found some solutions in agreement with classical geometry.

From the 4-simplex amplitude, we identified a great emergence of the classical geometry far away the degenerate
region. Moreover, the 4-simplex amplitude well reproduced the semi-classical limit predicted by Barrett [6l [30] with
the corresponding Regge’s action.

From the full transition amplitude, we found also solutions in agreement with classical geometries that have
curvature. Some classical solutions therefore possess parameters in agreement with classical geometry and are likely
to have curvature as their classical equivalent. The regions where classical solutions appear were obtained for
parameters intervals around to the full regular case and which would give moderate curvature. Thus, in the context
of our assembly, the Loop Quantum Gravity theory is in agreement with classical geometry regarding the moderate
curvature regions.

In addition to a few expected geometry results, we also highlighted the influence of degenerate geometry states.
These degenerate solutions greatly affect certain geometric properties that therefore diverge from classical solutions
and yield regions for which quantum and classical geometry differs. These regions correspond to geometries for
which the classical equivalents would be very extreme (very elongated tetrahedra, tetrahedra nearly flat and high
curvature), which mainly occur in intervals of parameters that typically yield a low associated spin to f. The
geometry of these regions is purely quantum and corresponds to a new physics that is not included in classical or
Regge geometry. This new physics would therefore be interesting to study, because it opens a door to possible novel
insights into physics phenomena for which curvature is high and possibly quantum, such as black holes and the first
instants of the universe.
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A Tetrahedron geometry

For a classical tetrahedron with this four areas a; and their face-vectors ﬁz which respect the closure condition
_>

> aing = ﬁ, we express the unit normals 7l in polar coordinates as = (0, ®;), meaning = (cos ¢; sin ;, sin ¢; sin 0;, cos ;).
We choose the orientation of the tetrahedron by (gauge) fixing (61, ¢1) = (0,0), ¢2 = 0 and ¢3 € [0, 7], ¢4 € [7, 27].
By using these relations (and more especially , straigthforward geometry gives:

01 =0 $1 =0

A?—q?—q2
cosfly = W ¢ =0

dajazA? cos B3 = cos <I>\/2A2 (a2 + a2) — (a2 — a2)” — A‘l\/QA2 (a2 + a2) — (a2 — a2)” — A4
— (A% + (a3 — a})) (A% + (] — a))

dajayg A% cosy = — cos <I>\/2A2 (a2 + a2) — (a2 — a2)” — A4\/2A2 (a2 + a2) — (a2 — a3)” — A4
= (A + (af - a})) (47 + (af - a3))

2 2 2 ;2 2 .02
aj sin® 64—aj sin” 3 —ajg sin” 03

cos ¢3 = 2az a3 sin f3 sin 03

2 2 2 ;2 2 2
__ azsin® @3—ajsin” f2—aj sin” 04
. cos ¢4 - 2asa4 sin 02 sin 04
with the shape parameters of the tetrahedron A and .

In the case of cylindrical symmetry (& = ay = az = a, azg = a4 = agp), these relations simplify. For the
boundary tetrahedra, we have:

us
2

0, =0 $1=0
costz%—l ¢2 =0

A2 _ —AV4a2—A2
cos s = Taas cos ¢3 = tbaraioat
0y =03 ¢4 =21 — @3
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B The C+-+ code

In the optics to present and attest the validity of the results, we will show a brief review of the C++ code and
process designed and used for the computation. In this section, we will expose (some) code parts, explain the tricks
used and how the code compute the different quantities. We can show a brief sketch (functional organizational
chart) of the code as below :

Libraries (B.1 Main (B4} -~
Definitions of j_face for boundary faces §, fy
#include <fstream= ~—
#include <iostream> -
#include <sstreatn> Computation of the 3j-symbols for the boundary tetrahedra
#Hinclude <string= -
#define TUSE_MATH DEFIMEs || Boundary
#include <cmath> components Computation of intertwiners for the boundary tetrahedra
Hinclude <stdlib he (B.41) |
gﬂjﬁg: zz:nr;péiﬁ Computation of the fusion coefficient for the boundary tetrahedra
1 L
Arrays (B2) \ Computation of the coherent states for the boundary tetrahedra
- Arrays of the faces (B2.1) LL
- Arrays for the 3j-symbols VP
B22) _ .
- Arrays for the intertwiners Definitions of j_face for intemal face fr
B2 _Ir'-—"ll_
- Arrays of the 15j_-symbols ——
o4 Computation of the 3{-symbols for the shared tetrabedra
B2d4) P -8
- Array_s for the fusion =
coefficients (B25) ] ] ]
- Arrays for the 13j-S004)- Computation of intertwiners fnrr_‘t_kf shated tetrahedra
symhals (B.2.6) ]
- futrays for the coberent Computation of the fusion coefficient for the shared tetrahedra
ults (B2, —
results (B2.7) — =
Internal Computation of the 157 %-symbols Loap
Global functions (B3) components 7 aver all
(B.42) —_- _
- Call functions for the areays Computation of the 15j-50(4)-symbols Jr values
B -
-3 ful functi
i UsE Fhnns Computation of the coherent states for the shared tetrabedra
BaZ el
- Function for the 3j-symbols - L
B33 . " .
. Function for the intertwiners Computation of the coherent t;t'ig_mj}itwn amplitude for the 4-
(B34
- Function for the 15j-symbols Computation of the coherent transition amplitude for the assembly
-8y
(B35) |
- Funiction for the iDroit
(B35)
- Function for the fusion-
coefficients (B3.T) s
- Funietion for 15§-3004)- | Wiiting of the full coherent t.ra::fjhiun amplitude W
symbols (B3 8) __I___#L__
- Function for the Writing of coherent transition amplitude wy
representation D'.\I‘f.l' (6, ¢ . f—t
B39 Writing the J [
- Function for load the 15§- results < Writing of {W|f. fy, 4, @, 8z}
SO¢)-symbols File (B3.10) (BA43) |1
Writing of {W|f. fy. jr. A. &, 6;)
i R
Writing of the individual 4 simplex amplitude
\_ = fr P
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Where the all parts are describe more precisely in the next.

B.1 Library used

The first of all, we need to explicit the libraries that we use :

#include <fstream> //Library for open/close files

//(and some reading/writing operations)
#include <iostream> //Library for read/write stream
#include <sstream> //Library providing string stream classes
#include <string> //Library for strings
#define USE MATH DEFINES //Define some math constants, like pi
#include <cmath> //Library for use the math—functions : cos, sqrtl...
#include <stdlib .h> //Library for use unix commands in the code
#include <complex> //Library for define and use the complex numbers
#include <omp.h> //OpenMP library for parallelization
using namespace std; //For more convenience ,

//allows to not necessarily locally —define the std—functions

The stream-libraries are for allow to read/write results in some files and, with the <string> and <cmath>, are
the standard libraries in a lot of C++ code. The most important libraries for the computation in itself are the
<complex> and the <omp.h>. The complex-library will provide to use complex numbers, that of course necessary
for the computation of coherent states and all coherent transition. The omp-library refer to a optimized libraries, the
OpenMP library, for use parallelization for the computation, that will be very useful for compute more effectively
some big tables of values. Indeed, to store the large tables of values, from the 15j-symbols for example, we will
have a lot of “for”-loops in the code ; the OpenMP library automatically allow to cut the loops in sub-loops which
are computed simultaneously over the available processors of the machine when you use the line-code “#pragma
omp parallel for”.

B.2 Definitions of arrays, tables and links with the math elements

Now, for the all functions can use the intermediate results during the computation process we will define the different
arrays and tables. The following arrays and tables will be defined just after the libraries and out of the “main()”,
that will allow all the tables available for the all code but impose to fix (manually in the code) the maximum size
of the corresponding arrays.

float j_ face[11][3];

long double trois_j_ type_t[11][22][61][21];
long double trois_j_plusmoins_t[4][61][61];

long double intertwiner t[7][22][61][21][21];

long double function_15j plus_t[22][22][22][22][22];
long double function_15j_moins_t[22][22][22][22][22];

long double iDroit typel t[22][22][21][21][21];
long double iDroit type2 t[22][22][61][21][21];

long double iCourbe_typel t[22][22][22];
long double iCourbe_type2_ t[22][22][22];
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long double function_ 15j_sod_t[22][22][22][22][22];

long double t15j_so4 _loaded[22][22][22][22][22];
bool t15j so4_ present[22][22][22][22][22];

complex<long double> so4semicoherent [51][51][22][22];
complex<long double> so4coherent [31][51][51][51][51];
complex<long double> w_coherent f[31][51][51];

The indices of tables and arrays, in accordance with the represented math objects, will depend of the intertwiner
representations (the J and K parameters) and the magnetic indices (the m parameters). Because of the symmetries
of the math objects, the J, K parameters will be always positive integer so we can use them directly as array indices.
But the magnetic indices m can be integer or half-integer (same type as their corresponding j-representation) and
can be negative, so for the array indices we will use the trick to replace the m by them =m+3j =0,1,2,...,2j+1.
With these indices, the maximum size of the array for a given j is for the J, K and m parameters [2j + 1] ; that
means for a max scale with j = 10 we have the size for the arrays equal to [21] (except for the m indices linked
to js € [0;3jo] which need to have the size [2j}**+1]|=[61]). For more visibility, the tables and arrays are defined
with the size [21] for the (usual) m indices, the size [61] for m indices from jy ,jfi , and the size [22] for the J, K
indices. The others size are given by the indices which allow to select the type of math objects we want, we will
specify that in the following. For the coherent-objects tables, the size come from the arbitrary resolution selected
for : we take a resolution with 51 points for the coherent variables ; of course these objects will be defined and
presented in their respective subsections.

B.2.1 Arrays of the faces

The first of all is the table of the j-representations for the faces : j face[][]. This table will contain the values of
the corresponding j for the intertwiners. The element j face[n][p] of the table will have the j-values of the face
number “p” from the 3j-symbol “n” :

(176)

j_face[n][1] j_face[n][2] J)
mq mao M

3j-symbol of type "n": (

Because, because of symmetries of our object and our will to save computing time, all the future intertwiners can
be written with a type of intertwiner “n” and their corresponding face “p”. The corresponding mapping between the
real math objects and the n,p variables for identify the faces is the following :

93



’ type of 3j-symbol (n) \ 3j-symbol — associated j _face[n][p] ‘
T J_Tacel1][1] =/
1 < my mg M - { j_face[1][2] = j
o F F ¥
gtogt j_face[2][1] = j
2 < m{ mi M+ ) - { j_face[2][2] = it
- g JT j_face[3|[1] = j~
3 ( my my; M-~ > - { j_face[3][2] = 5~
jo  Jo J j_face[4][1] = jo
4 ( my mg M - { j_face[4][2] = jo
o F T —F
Jo Jo J J face[S][l] =Jo
o ( m{ mi M+ ) - { j_face[5][2] = jd
Jo Jo J° j_face[6][1] = jy
6 ( my mg, M~ ) - { j_face[6][2] = 75
. Jjr do J j_facel7][1] = jf
my1p Mo M face[?] [2] = jo
T F
JrJo J .] _face[8][1] = ]f
8 < m{ mi M+ ) _ { j_face[8][2] = jd&
9 i Jo JT j_face9][1] = j¢
my m, M-~ j_face[9][2] = j,

B.2.2 Arrays for the 3j-symbols

After the definition of the j face[][], we have the corresponding definition of the tables for the 3j-symbols. For the
table trois_j_type_t[][][][], the element trois_j_type_ t[n][J][ma][mb] will contain the value of the corresponding
3j-symbols “n” :

my = ma-j_face[n|[1]
> ; mg =mb-j face[n][2] (177)
M = —mi — M2

trois_j_type_t[n][J][ma][mb] = ( j_fa:;fl[n][l] j_face[n][2] J

mao M

Next we have the table definition of the specific 3j-symbol : trois_j plusmoins t[|[][]. It correspond to the 3j-
symbol for the fusion coefﬁcients that link the j7 x j~ with their corresponding 5, so we will use a specific notation
for designate these {j*j~j}-symbols. Slmllarly to the other 3j-symbols, we will use a “n” (valid only in the context
of this table) for label the corresponding {j7j7j}-symbols in the table. We have the mapping :

| type of {j*j~j}-symbols (n) [ trois_j_plusmoins_t[n][ma][mb] \

1 trois _j plusmoins_t[1][ma][mb] = ( majj - mb]— i i mi b )
.+ . — .

2 trois_j plusmoins_ t[2][ma][mb] = ( majg it mbjg i e nz; . )
A

3 trois_j_plusmoins_t[3][ma|[mb] = ( e ij;_ b i i - m; b )

The trois_j type_t[|[][][] and trois_j plusmoins_t[][][] tables contain the all values of the all 3j-symbols we
need for built the all intertwiners and next math objects necessary.
B.2.3 Arrays for the intertwiners

The next defined table, intertwiner t[][|[][][], will contain the all values of the all intertwiners needed. In the same
way, we have a number “n” for specify the type of the intertwiner you consider, and the other parameters give the
corresponding values :
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type of
intertwiner (n) | intertwiner_t[n][J][ma][mb][mc]

1 intertwiner t[1][J][ma][mb][mc] —z(ma — j)(mb—j)(me—jo)(2j+jo—ma—mb—me) (4,7, Jo,Jo)

2 intertwiner _t[2][J][ma][mb][mc] = (ma ) (b ) (me—ji ) (23 457 ~ma—mb-—me) (%40 .07)

3 intertwiner _t[3][J][ma][mb][mc] = Z(mafj*)(mbfj*)(mcfjo_)(Qj*+j0_ —tma—mbne) (G777 d0 +Jo)

4 intertwiner _t[4][J][ma][mb][mc| = iJ

(ma—3 ) (mb—jo) (me— o) ( +2jo—ma—mb—me) (I 0, Jo; Jo)
5 intertwiner _t[5][J][mal[mb|[mc| =7 5H) (mb— ) (me—5 ) (5 +25¢ —ma—mb—me) (j?,jo*,jo*,jo*)

6 intertwiner _t[6][J][ma][mb][mc] = ¢

I~ |~

ma— j )(mb Jo )(mc—j&)(j;-‘er(; —ma—mb—mc) (‘7]?"70_"70_"70_)

With the definition of intertwiners :

Z:r]n1m2m3m4 (]1a.]23.]37.]4) =V 2J + 12 (_1)J M ( J1 J2 ) ( J3 Ja ) (178)
M

mi; Mmoo M m3z Mgy —M

Inside the definition of the intertwiners, we can see the contribution of the 3j-symbol previously presented ; of
course, the method for compute the value of the intertwiners table in function of the 3j-symbols table will be given
later via the associated code.

B.2.4 Arrays of the 15j*-symbols

Next, we have the 155 -symbols and 15;5~-symbols table. At this point, the j-representation are implicitly given in
the definition of the objects : the table will only depend of the intertwiners parameter J. So we have just the map :

fonction 15j plus_t[J1p][J2p][I3p][T4p][I5p] = (le,J2p,J3p,J4p,J5p;j,jl) =
Zp(_l)zkz(nﬁ—mz) J1p :J2p -J3p Jap -J5p (j+) (179)

—P12P13 P14P157'—P23P12 P24;D252—P13P23 P34P352P45PQ4P34P14 —P45—P25—P35—P15 kl

fonction_15j_moins_ t[J1m][J2m][J3m][J4m][J5m] = (J1m,J2m,J3m,J4m,J5m; j,;) =

S (71)Zkz(j,;7pu) J1im :J2m ;3m ;J4m ;I5m () (180)
p —P12P13 P14P15 " —P23P12 —P24P25  —P13P23 —P34P35 'P45P24P34P14 —P45—P25 P35 P15 jkl

B.2.5 Arrays for the fusion coefficients

We will have the definition of a table for construct the future fusion coefficients :

iDroit_typel t[Jp][Jm][ma][mb][mc] =

.+ «— .
Zm*,m i;]rrl)+m+m+m+ (‘j+’j 7‘70 ;,70) mimy mymy <‘j_7‘j_’ja’ja) H?:l V2 +1 ( gril"' ]l_ o >
mi =ma—j (181)
me =mb — j
ms :mC—jo

(ma=-37 m)

with :

iDroit_type2_t[Jp][Jm][ma][mb][mc] =
.+ - .
J PR 4 - J J Ji
2ot = Gt (Jf »Jo 90 »Jo) B s s (Jf ,Jo +Jo +Jo ) Il V2 +1 ( ””if - )
mi =ma— jy (182)
mo = mb — j()
m3 = mc — jo

(ma=—30mi)

where the intertwiners and the {j*j~j}-symbols appear. And, obviously, a table for the fusion coefficients :

with

iCourbe type]— t[Jp][‘]m][‘]] Jme (j7j7j07j0) (183)
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iCourbe_ type2_t[Jp|[Jm|[J] = Z3, 3 (i jo- Jo, Jo) (184)

B.2.6 Arrays for the 15j-50(4)-symbols

Finally, we have the table for the last important computation : the function 15j so4_t[|[][|[][] table to store the
values of the 15j-SO(4)-symbols :

fonction 15j sod_t[J1|[J2|[I3][J4][T5] = [J1,J2,3,4,35; ju] =
ZKJr’Kf (K]j,]]:rl) (Klgvj];l)l.}zh Ky (] ] jOajO)IKz-F Ky (] ] JOaJO)IK-F Ky (jajijij) (185)
xTode o (i, Jos Jos J0) Tyls 4o (i Jos o Jo)

The two next table correspond to a temporary storage for load in memory previous values of 15j-SO(4)-symbols
computed. Because the time part for compute the 15j-SO(4)-symbols is very long, we have a part of the code for
write the symbols computed, and load the values already given. The t15j so4 loaded[][][][][] will correspond to the
temporary storage in memory of the read values, and the t15j_so4_ present[][][][][] to a Boolean table for check if
the values are already read/computed or not.

B.2.7 Arrays for the coherent results

Finally, the last three (complex) tables correspond to the coherent results, where :

3
sodsemicoherent[n[t][J4I[35] = Y [Ji, 4,354, jo. i) H ™15, jo, An] , @ [t])
J1,J2,J3 k=1
sodcoherent|(int) (5 )] [n][t][n2][t2] = Z[Jsz;,K&s;j,jo,jf] <iK4|ij7¥V>[Af [n2]a¢f[t2]]>

T K
— 3 N
(8 nd (Ay 2] o2 ) TT (7 1o Al 1)
k=1

w_coheren_f[(int)(js)|[n]lt] = wy (4,750,457, A], ®[t])

That will give all the raw data we need to compute all the probabilities and study the properties of transitions
amplitudes. The exact process for the computation of these quantities and the parameters “n”, “t”, “n2”, “t2”
associated to the coherent states will be defined in their section of code respectively.

B.3 Definitions of global functions

Before to process to the main of the code, we need to define all the global functions we will use. The all functions
necessary to compute and store the tables will be expressed and (briefly) explained below.

B.3.1 Call-functions for the arrays and tables

In the context of the code development, we have defined some functions for call the tables. The interest of this call-
functions is just to give the corresponding value of the tables, in this sens the call-functions are no more necessary
because you can just take the value from the tables directly. But if you want check the number of time the tables
are called, or if you want add some intermediate calculation when you call a value of a table without affect the
table, the user can add some code in the call-functions. That is the old interest to define these functions : look if
the code compute exactly the good value and check if the process of the code is going well.

[T 7)) = Call of the tables —///////////1]1]1]/]/111]1]1]]]]

long double trois j plusmoins(int type, int ma, int mb) {

96



// The type here correspond to one of these 3j—symbols
// 1—> (j+7j_7j)7 2 —=> (J0+7J0_7J0) et 3 — (.]f+7.]f_7-]f)
return trois_j plusmoins_ t[type][ma][mb];

}

long double trois j type(int type, int K, int ma, int mb) {

// The type here correspond to one of the 9 cases of 3j—symbols
return trois_j type t[type]|[K][ma][mb];

}

long double intertwiner mem (int typelnter, int K, int ma, int mb, int mc){

// The typelnter here correspond to one of the 6 cases of intertwiners
return intertwiner t[typelnter |[K][ma][mb][mc];

}

long double function 15j moins mem(int K1, int K2, int K3, int K4, int K5) {
return function_15j_moins_t[K1][K2][K3]|[K4][K5];
}

long double function 15j plus mem(int K1, int K2, int K3, int K4, int K5) {
return function_ 15j plus_t[KI1][K2][K3][K4][K5];
}

long double iDroit typel mem(int kplus,int kmoins, int ma, int mb, int mc) {
return iDroit_typel t[kplus][kmoins]|[ma][mb][mc];
}

long double iDroit type2 mem(int kplus,int kmoins, int ma, int mb, int mc) {
return iDroit type2 t[kplus]|[kmoins|[ma][mb][mc];
}

long double iCourbe typel mem(int kplus,int kmoins, int k) {
return iCourbe_typel_t[kplus]|[kmoins]|[k];
}

long double iCourbe type2 mem(int kplus,int kmoins, int k) {
return iCourbe_type2_ t[kplus|[kmoins][k];
}

long double function 15j so4 mem(int Kl,int K2, int K3, int K4, int K5){
return function_15j_ so4 t[KI1][K2][K3][K4][K5];
}

B.3.2 Some useful functions

Of course, for the next functions and many parts of the code, that will be useful to define some basic functions, as
the maximum, minimum and factorial functions.

float max(float e,float f) ///Maximum function///

{
if (ex>=f)
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{return e;
}

else
{return f;

}
}

float min(float e,float f) ///Minimum function///

if (e<=f)
{return e;
}

else
{return f;

}
}

long double fact(long double j) ///Factorial function///

if ((J<0)[]((j—(long int)(j))!=0) )
{cout << " problem" << j << endl;

}

if ((i==1I1(i==0))
{return 1;

telse{
return fact (j—1)xj;
}

}

The factorial here, for more convenience with the precision from the rest of the code, is define with numbers which
have long double precision. For check if no errors occur with the used values in the factorial, because whatever the
precision of the number it must be physically a integer, we have a line where the code check if the number can be
expressed as a integer. If not, the code give the error message “problem”, that give the information to the user that
some values for the factorial from the code are not consistent : that means we have a error in the code. Of course,
in the all simulations done, this error message never appear : that means the values used/computed are right and
(probably) this check-line is no more useful.

For the future definition of the jT, with the constraint j* ~ H—V j, we need to introduce a function which give
the integer or half-integer closest to the exact value 1? 7. This functlon is the following :

float jp_approx(float Immirzi,float jf, 6 float j type) //Approximation function for j+

float jfp theorique=0.5%(int)((1.0+Immirzi)=*jf);

float jfm theorique=jf—jfp theorique;

if (fabs (jfp_theorique*(1.0 —Immirzi)—jfm_theoriquex(1.0+Immirzi))

<fabs ((jfp _theorique+0.5)*(1.0 —Immirzi)—(jfm theorique —0.5)%(1.04+ Immirzi)))
{return jfp theorique;

if (fabs (jfp_theorique*(1.0 —Immirzi)—jfm_theoriquex(1.04+Immirzi))
::fabs ((jfp_theorique+0.5)*(1.0 —Immirzi)—(jfm theorique —0.5)*(1.0+ Immirzi)))
{if ((jfp _theorique —(int )(jfp theorique))==(j type—(int)(j type)))
{return jfp_ theorique;

}
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else
{return jfp theorique+0.5;

}

if (fabs (jfp theorique*(1.0 —Immirzi)—jfm theoriquex(1.0+Immirzi))

>fabs ((jfp _theorique+0.5)*(1.0 —Immirzi)—(jfm theorique —0.5)*(1.04+ Immirzi)))

{return jfp theorique+0.5;

}
}

14~

So the jp_approx(v,js,jeype) return the integer or half-integer closest to —57j;. If the exact value HT” Jjs is in the
middle of the closest integer and half-integer, the function return the closest value which have the same type (integer

or half-integer) of the arbitrary jiype-

B.3.3 Function for the 3j-symbols

We have the function for a 3j-symbol given by :

long double trois j sans m3(float j1, float j2, float j3, float ml, float m2) {

long double norme=0 ;
long double somme=0 ;

if (((j14+§2+4§3)==(int)(j1+j2+j3))&&(abs (ml+m2)<=j3) ){
norme=( pow(—1.0, (int)(jl1—j2-+ml+m2) )

xsqrtl (fact (j1+j2—j3)xfact (j1+j3—j2)*xfact (j2+j3—j1)/(fact (j1+j2+j3+1.0)))

xsqrtl (fact (jl-aml)xfact (jl—ml))
xsqrtl (fact (j2-+m2)xfact (j2—m2))
xsqrtl (fact (j3—ml-m2)*fact (j3+ml+m2) ) );

for (int k=0; k < (int)(jl1+j2—j3+1.0); k++ ) {

P (((j1-ml-k)>—0)&&((j21m2-k)>—0)&&((j3—j2ml+k)>—0)&&((j3—j1 -m2+k) >—0)){

somme += pow(—1.0, k)/(fact (k)xfact(jl+j2—j3—k)*fact (jl—-ml-k)xfact (j2-+m2-k)

xfact (j3—j2+ml+k)«fact (j3—jl-m2+k) );

}
}
}
return normes*somme;
}
Which compute the ( i J2 I3 ) symbol in agreement with its constraint :
mi; Mmoo —Mp — M2

J1+72+73e€N, |mp+ma| <js

The formula used for the computation of that is the Racah formula :

J1 e Js = (1) irtmitm2 (J1+52—33)! (J1+43 —j2)1 (2 + 53 — j1)!]?
miy Mg —My — Mo (J14+ 752+ 43+1)!

[N

x [(J1 +m1)! (J1 — ma)! (o + m2)! (2 — m2)! (43 +m3)! (j3 — m3)!]

(-1

Xzk:k!(j1+j2—j3—k)!(j1—m1—k)!(j2+m2—k)!(j3—j2+m1+k)!(j3—j1—m2+k)!
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B.3.4 Function for the intertwiners

We have the function for compute a intertwiner :

long double intertwiner (int typel, int type2, int K, int ma, int mb, int mc) {
long double inter temp=0;

float jl=j_face[typel][1
float j2=j_face[typel][2
float j3=j_face[type2][1
float j4=j face[type2][2

E
E
E
E

if ( abs(31+32+J3—ma—mb—mc) <= j4 ) {

inter _temp = pow(—1, (int)(Ktmatmb-j1—j2) )xsqrtl(2.0xK+1.0)
xtrois _j type (typel ,K,ma,mb)
xtrois_j type(type2 ,K,mc,(int)(jl+j2+j3+j4—ma—mb-mc));

}

return inter temp;
}

Where we specify the typel and type2 for choose the correct 3j-symbols, and their associated j-parameters, in there
corresponding tables. The code return explicitly :

intertwiner (typel,type2,K,ma,mb,mc) .
o K+ma+mb—j; —ja J1 = J_fa‘ce[typel] [1]
=V2K +1(-1) . .

Jjz = j_face[type2|[1]
ja =j_face[type2][2]

xtrois_j_type_t[typel|[K][ma][mb] ;
xtrois_j_type_ t[type2][K][mc][(int)(j1+]j2+j3+j4-ma-mb-mc)]

_ K . . . .
- Z(ma—j1)(mb—jg)(m(‘,—jg,)(zjq,—nzla—mb—mc) (]1’]2’j37j4)

B.3.5 Function for the 15j*-symbols

For the function of 15j%-symbols, we have the same sort of code. For the 15;j"-symbols, we have the following
function :

long double function 15j plus(int K1, int K2, int K3, int K4, int K5) {

float j12=j face[2][1];
float j13=j_face[2][2];
float jl4=j_face[5][1];
float j15=j_face[5][2];
float j23=j_face[2][1];
float j24=j_ face[5][1];
float j25=j_face[5][2];
float j34=j_face[5][1];
float j35=j_face[5][2];
float j45=j_face[8][1];

int A=(int)(j14+j24+j34+j45);
int B=(int)(j45—j14—j24—j34);
int C=(int)(j12—j13+j14+j15);
int D=(int)(j23—j12+j24+j25);
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int

int
int
int
int
int
int
int
int
int
int

int
int
int
int
int
int

E—(int)(j13—j23+j34+j35);

deuxjl12=(int)(2%j12);
deuxj13=(int )(2%j13);
deuxjld=(int)(2+j14);
deuxjl5=(int )(2xj15);
deuxj23=(int)(2%j23);
deuxj24=(int ) (2%j24);
deuxj25=(int )(2%j25);
deuxj34=(int)(2%j34);
deuxj45=(int )(2%j45)
)

(deuxjl2+deuxjl3+deuxjld+deuxj23+deuxj24+deuxj34
+ j15+j25+j35+j45));

signe=pow(—1.0,(int

signel =1;
signe2 =1;
signe3d =1;
signed =1;
signed =1;
signe6 =1;

long double temp=0;

for

(int mab=0; mab<=deuxjl12; mab++) {

int deuxjl2moinsmab=deuxjl2—-mab;
signe2=signel;
for (int mac=0; mac<=deuxjl3; mac++) {

signe3—=signe?2;
for (int mad=0; mad<=deuxjl4; mad++) {
signed=signed;

long double intertwinl
=intertwiner mem (2 ,K1,deuxjl2moinsmab ,mac, deuxjl4—mad);

if ((intertwinl!=0) && (C-mabt+mac—mad>=0) && (C—mab+mac—mad<=deuxjl5)){
for (int mbc=0; mbe<=deuxj23; mbc++) {
signeb=signe4;
for (int mbd=0; mbd<=deuxj24; mbd++) {
signeb=signes ;

long double intertwin?2
=intertwiner mem (2,K2, deuxj23 —mbc,mab, deuxj24 —mbd)
xintertwinl ;

if ((intertwin2!=0) && (D-mbctmab—mbd>=0) && (D-mbctmab—mbd<—deuxj25)){
for (int med=0; mcd<=deuxj34; mcd++) {
if ( (A-mad—mbd—mecd >=0) && (A-mad-mbd-mcd <= deuxj45) ) {

long double intertwin4b

=intertwiner mem (5 ,K4, A—-mad—mbd—mcd ,mbd, med)

xintertwiner mem (5 ,K5,B+mad+mbd+med , D-mbctmab—mbd , E-mac+mbc—med ) ;
if (intertwind5!=0){

temp += signe6xintertwin2
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xintertwiner mem (2,K3, deuxjl3—mac,mbc, deuxj34—mecd)
*intertwindb ;
}
}
signe6x——1;
}
}
signedx=—1;
}
signedx=—1;
}
}
signedx=—1;
}
signe2x=—1;
}

signelx=—1;

}

return tempxsigne;

}

Which return the sum :

function 15j plus(K1,K2,K3,K4,K5) =

S (—1)Zwa(d—me) K1 K2 K3 K4 K> ()
V4 7m12m13 M14M15 " —M23M12—M24M25  —M13MM23 —1M34M35 M45M24M34M 14~ —M45 —M25 —MM35 —M15 kl

(191)
Of course, because of the properties of the intertwiners (which are null if Z?:l m; # 0), we don’t need to proceed
the all sum over the my; ; so we can save more time-calculation just by the sum over six of them. This function do
it, with the associated set of variables and notations :

mig <> mab , Moz <> mbc y e (192)

mab = mis + j12, mbc = mogz + jo3, . - . (193)

The part of code for the function function 15j moins(int K1, int K2, int K3, int K4, int K5), which give the
corresponding 155 ~-symbols, is the same except obviously for the mapping of the j-faces and associated intertwiners
: the type of face and intertwiner are changed for their associated j~-elements.

B.3.6 Function for the iDroit

We have the following code for compute the future fusion coefficient associated to the boundary tetrahedra
(j7j7j07j0) :

long double iDroit typel(int kplus,int kmoins, int ma, int mb, int mc) {

float jl=j_ face[1][1];
float j2=j face[1l][2];
float j3=j_face[4][1];
float j4=j face[4][2];
float jlplus=j face[2
float j2plus=j face[2
float j3plus=j face[5
float j4plus=j face[5
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float jlmoins=j face[3][1
float j2moins=j face[3][2
1
2

E
E
E
]

)

float j3moins=j face[6]]
float j4moins=j face[6]]

int deuxjl=(int)(2x*j1);

int deuxj2=(int)(2%j2);

int deuxj3=(int)(2xj3);

int deuxj4:(int)(2>k34)

int deuxjlplus=(int)(2xjlplus);
int deuxj2plus=(int)(2xj2plus);
int deuxj3plus=(int)(2xj3plus);
int deuxj4plus=(int)(2xjdplus);
int deuxj4moins=(int)(2xj4moins);

,(deuxjl —2xjlmoins—ma
euxjlplus, (deuxjl-ma

int minmaplus=max
int maxmaplus=min

(0 ;
(
int minmbplus=max (0
(
(0
(

))

d ))s

,(deuxj2 —2«j2moins—mb));

int maxmbplus=min deuxﬂplus, (deuxj2—mb))

int minmcplus=max(0,(deuxj3 —2*xj3moins—mc))

int maxmecplus=min(deuxj3plus, (deuxj3—mc))
long double temp=0;

)
)

I’

for (int maplus=minmaplus; maplus<= maxmaplus ; maplus++){
int deuxjlmoinsmaplus=(int)(deuxjl—maplus—ma);
for (int mbplus=minmbplus; mbplus<= maxmbplus; mbplus++){
int deuxj2moinsmbplus=(int ) (deuxj2—mbplus—mb);
for (int mcplus=minmcplus; mcplus<= maxmcplus; meplus++){
int A=(int)(jlplus+j2plus+j3plus+j4plus —maplus—mbplus—mecplus);
int B=(int )(maplustmbplus+mcplus + matmbt+mc
+ jlmoins+j2moins+j3moins+j4moins —deuxjl—deuxj2—deuxj3d);
it ( (A>=0)&&B>=0)&&(A<=deuxjdplus)&&(B<=deuxj4moins) ){
int deuxj3moinsmcplus=(int )(deuxj3—mcplus—mc);
tempt=intertwiner mem (2, kplus ,maplus,mbplus, mcplus)
xintertwiner _mem (3 ,kmoins ,deuxjlmoinsmaplus ,deuxj2moinsmbplus , deuxj3moinsmcplus)
xtrois _j plusmoins (1,maplus,deuxjlmoinsmaplus)
xtrois_j plusmoins (1 ,mbplus,deuxj2moinsmbplus)
xtrois_j plusmoins (2,mcplus,deuxj3moinsmcplus)
xtrois_j plusmoins(2,A,B);
}
}
}
}
return tempxsqrtl( (deuxjl+1)*x(deuxj2+1)*(deuxj3+1)*(deuxjd+1) );

}
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Which return :
iDroit_ typel(kplus,kmoins,ma,mb,mc) =
.+ «— B
Zm*,m* Zm;rm;rm;rmzr (‘7 »J 5 Jo 5 Jo ) znl:llowlrlgmgmg (‘] ) 5Jo s Jo ) Hl:l 2‘71 +1 ( mlJr mf my
mp =ma — j (194)
mo =mb — j
m3 = mc — jo

(ma=->71m;)

The code for the shared-tetrahedra (j¢, jo, jo, jo) is the same, with the appropriate type for the j_face, intertwiners
and {j1,j~,j}-symbols, and define the iDroit type2(int kplus, int kmoins, int ma, int mb, int mc) function.

with :

B.3.7 Function for the fusion-coefficients

The fusion-coeflicients of boundary tetrahedra (3, j, jo, jo) will be computed by the following function :

long double iCourbe typel(int kplus,int kmoins, int k) {

float jl=j face[1l][1];
float j2=j face[1l][2];
float j3=j_face[4][1];
float j4=j_ face[4][2];
int deuxjl=(int)(2xj1
int deuxj2=(int)(2xj2
int deuxj3=(int)(2xj3
int deuxj4=(int)(2x*j4
long double temp=0;

)
)
).
)

)

Y

for (int ma=0; ma<= deuxjl; ma++){
for (int mb=0; mb<= deuxj2; mb++){
for (int mc=0; mec<= deuxj3; mc++){
temp+=iDroit typel mem (kplus ,kmoins,ma,mb,mc)*intertwiner mem (1,k,ma,mb,mc);

}
}
}
return temp;

}

Which will associate the corresponding iDroit (iDroit typel) result with the corresponding intertwiner. Again, the
code for the fusion-coefficient of shared-tetrahedra (jy, jo, jo,jo) is the same with the associated remapping of the
type of iDroit and intertwiners. The two code return :

iCourbe_typel(kplus,kmoins,k) = Illzplus,kmoins (j7j7.j07j0) (195)
iCourbe_ type2(kplus,kmoins k) = Ilk‘plus’kmoins (3£ Jo, Jo, o) (196)

B.3.8 Function for 15j-SO(4)-symbols

Now we have a function for the computation of SO(4) equivalent of 15j-symbols. The function will be combined
the results given by the 15j%-symbols functions and the fusion-coefficients functions and return the value of the
corresponding 15j-SO(4)-symbol as below :
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long double function 15j so4(int Kl,int K2,int K3, int K4, int K5){

// coeffs plus
float jl2plus=j face[2]]
float jl13plus=j_face[2]]
float jldplus=j_face[5]]
float jlbplus=j_face[5]]
float j23plus=j face[2]]
float j24plus=j face[5]]
float j25plus=j_face[5]]
float j34plus=j_face[5]]
float j35plus=j_face[5]]
float j45plus=j face[8]]
//moins

float jl2moins=j_face [3][1]
float j13moins=j_face[3][2]
float jl4moins=j_face[6][1]
float jl5moins=j face[6][2];
float j23moins=j_ face[3][1];

|

I

I

I

|

?
?

?

?

1]
2]
1]
2]
1];
1];
2]
1]
2]
1]

)

)

?

?

)

)

?

?

float j24moins=j face[6][1
float j25moins=j face[6][2
float j34moins=j face[6][1
float j35moins=j face[6][2
float j45moins=j face[9][1

//
float maxKlplus=2.0xmin(j12plus ,jldplus);

float maxKd4plus=jl4plus+min(jl4plus ,jd45plus);

float minK4plus=(int)abs(j45plus—jl4plus);

float maxKlmoins=2.0%min(jl12moins ,jl4moins);

float maxK4moins=(int)(jl4moins+min(jl4moins ,j45moins));
float minK4moins=(int)abs(j45moins—jl4moins);

long double result=0;

)

Y

?

?

)

for (int Klm=0; Klm<=maxKlmoins; Klm++){
for (int K2m=0; K2m<=maxKlmoins; K2m++){
for (int K3m—0; K3m<—maxKlmoins; K3m++){
for (int Kdm=minK4moins; K4m<=maxK4moins; Kdm++){
for (int Kim—minK4moins; Kbm<=maxK4moins; Kbm++){

long double symbol 15jm = function 15j moins mem (Klm,K2m, K3m,K4m, Kom);
if (symbol_15jm != 0){ // <—— if symbol_15jm non null

long double sum=0;
for (int K2p=0; K2p<=maxKlplus; K2p-++){

long double i K2pK2mK2 = iCourbe typel mem (K2p,K2m,K2);
if (i_K2pK2mK2 != 0){ // <—— if i_K2pK2mK2 non null !

long double sum_ temp=0;
for (int Klp=0; Klp<=maxKlplus; Klp++){
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for (int K4p—=minKd4plus; Kdp<=maxK4plus; Kdp++){

long double temp2=0;
for (int K3p=0; K3p<Klp; K3p++){
long double temp=0;
for (int K5p=minK4plus; Kbp<Kdp; Kdp++){
temp += function 15j plus mem (Klp,K2p,K3p,K4p,K5p)
x( iCourbe type2 mem (K4p,K4m,K4)«iCourbe type2 mem (K5p,Kom,K5)
+ pow(—1.0,K14+K2+K3)*iCourbe type2 mem (K4p,Kdm,K5)*iCourbe type2 mem (K5p,K5sm,K4) );
}
temp2 +—= temp
x( iCourbe typel mem (Klp,Klm,K1)*iCourbe typel mem (K3p,K3m,K3)
+ pow(—1.0,K14+K2+K3+K4+K5) *iCourbe typel mem (Klp,Klm,K3)*iCourbe typel mem (K3p,K3m,K1) );
}

// temp2 = sum_ K5+<K44 sum_ K3H<K1+ of 15j+ * I

long double temp3=0;
for (int K3p=0; K3p<Klp; K3p-++){
temp3 += function 15j plus mem (Klp,K2p,K3p,K4p,Kdp)
*( iCourbe typel mem (Klp,Klm,K1)*iCourbe typel mem (K3p,K3m,K3)
+ pow(—1.0,KI+K2+K3+K4+K5) *iCourbe typel mem (Klp,Klm,K3)*iCourbe typel mem (K3p,K3m,K1) );
}
temp3 x= iCourbe type2 mem (K4p,K4m,K4)xiCourbe type2 mem (K4p,Ksm,K5);
// temp3 = sum K3+<Kl+ of 15j+ % I

long double temp4=0;
for (int K5p=minK4plus; Kbp<Kdp; Kbdp++){
temp4 += function 15j plus mem (Klp,K2p,Klp,K4p,K5p)
*( iCourbe type2 mem (K4p,K4m, K4)«iCourbe type2 mem (K5p,Kom,K5)
+ pow(—1.0,K14+K2+K3)*iCourbe type2 mem (K4p,Kdm,K5)*iCourbe type2 mem (K5p,Ksm,K4) );
}
temp4 x= iCourbe typel mem (Klp,Klm,K1)*iCourbe typel mem (Klp,K3m,K3);
// temp4d = sum_K5+<K4+ of 15j+ x I

sum_temp += temp2 + tempd + temp4
+ function 15j plus mem (Klp,K2p,Klp,K4p,Kdp)
xiCourbe typel mem (Klp,Klm, K1)
xiCourbe typel mem (Klp,K3m,K3)
*iCourbe type2 mem (K4p,K4m, K4)
*iCourbe type2 mem (K4p ,K5m,K5)
// sum_temp = sum_ K3+ sum K5+ of 15j+ % I
}
}
sum += sum_tempx*i_ K2pK2mK2;
} /) <— end if i_K2pK2mK2 non null !

)

result += symbol 15jms*sum;
} // <— end if symbol 15jm non null !
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}

return result ;

}

Here, we needed to be very clever and found a tricky way for compute the value of function 15j so4(K1,K2 K3,K4,K5),
because the number of steps is huge and the calculation is very long. Indeed, we need to compute the object :

fonction _15j_so4(K1,K2,K3,K4,K5) = [K1,K2,K3,K4,K5; j, jo, jf| =
+. .+ —. =) 7K1 C e\ K2 S TN K3
ZK—*—)K— (Kk 7]kl) (Kk; 7.7];{[2 IK;,K; ('7"]"]07']0)KIK2+,K;(J’J’jo’jO)IK;,K; (.]a.]7.707.]0) (197)
XIih g (g dosdos jo) Tik e (igs Jos Jos o)
which have ten sums, and each sums have the approximate size of 25 + 1 ! So the number of steps is of the order

of (2j+1)'"” ~ 10" for j ~ 10 ! For simplify the computation and save a lot of time-calculation, we use the
symmetries properties inside the 15j-SO(4)-symbols. In our definition of 15j-symbols, we have the symmetries :

(K1, Ko, K3, K1, K535, jo, jy) = (—1) Bt Rt fe (g, Ko Ky, Ka, K539, Jos j )

L (198)
= (_1)K4+K5 (K?n K2a Kla K57 K4;]7]07Jf)
And from the fusion coefficients : N
Kt4+K- K
(1) i I;((Jr,K* = (-1 I;((tz(f (199)
So, the symmetry properties of the 15j%-symbols are transmitted to the 15j-SO(4)-symbols :
[K17K27K3uK47K5;j>jO7jf] = (_1)K1+KZ+K3+K4+K5 [K37K27K17K47K5;j7j07jf] (200)

= (~1)" T Ky, Ko, K, Ks, Kas j, o, jy]

We will use the properties of the 15;j%-symbols and fusion-coefficients to rewrite in a more light way (in the sens of
machine resources and time) the 15j-SO(4)-symbols :

[K17K27K37K47K5;j7j07jf] = N
B KKy LK K K K
Y- (K Ky K3 Ky Kg3 5, jo, Jy) Yol Xkiky {(KYK;KTKIKIUJOW)IK},K;IK;,K;IKE,K;IKE,K;

K Ks ‘et rctet et s s K, Ks _1)\K1+K2+K3 7Ks K
ok s ik ey Do anct (KUK KRS 3,50, 35) | Do - Tk ey + (51) Tt e Tt e

K. Ks el el ol N K, K3 _1) K1t Ke+ K+ Kat Ks 7K K
FI TR S ent (KRS KKK o, i) [IKT,KIIK;K; + (1) IKT’K;IK;KS_}

KK
K K K1+ Ky + Ks+Ka+ K5 7K. K
> T3 '3 -1 7’3 T’k
+ K§<Kf4{ kLt T K KT TKS RS

s any (KT KT K KF RS Ggosdr) [Tat  Tie  +(-pfotietions g ]
(201)
And it’s exactly this formula which are coded in the function 15j sod(K1,K2K3,K4,K5). With it’s way, the
time for compute just one 15j-SO(4)-symbol (with the tables of the 15;jF-symbols and fusion-coefficient already in
memory) for j ~ 10 is to the order of 1 second.

B.3.9 Function for the representation Dfnj (0, 9)

For the coherent states we need to compute the representation Dfn]- (0, ¢) associated to a arbitrary j-face. So we
have the d(ma,deuxj,theta,phi) function as follow :

complex<long double> d(int ma, int deuxj,float theta, float phi)

{

complex<long double> phase d(cos(phi*(deuxj/2.0—-ma)),sin(phix(deuxj/2.0—ma)));
float costemp=cos(theta /2.0);
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float sintemp=sin(theta /2.0);

if (((costemp==0)&&ma==0))||((sintemp==0)&&(ma=—=deuxj))){
return phase d;
telse{
complex<long double> norm_d( sqrt(fact (deuxj)/(fact(ma)*fact (deuxj—ma)))
xpow (costemp ,ma)*pow (sintemp , deuxj—ma) , 0 );
return phase dsxnorm d;
}
}

Which return the associated value from the Wigner representation matrices :

d(ma,2j,0.6) = Dip. s (0:0)
j —10J —10J —(ma—1 j
= Dipa_jy; (79777 ) = e j)¢dana—jn

(2])' —1(ma—j)¢ . Q e . Q (mma)
mal (2j — ma)e 2 S 2

B.3.10 Function for load the 15j-SO(4)-symbols file

For save more time, if some values of 15j-SO(4)-symbols are precalculated, it will be useful to have a save-load
system for get the previous values from a past execution of the code. So we define the load_15j so04(j,j0,77)
function for load the 15j-SO(4)-symbols values from a data file called “simplex_ walking jO0=jo_j=j_jf=j.txt” :

[P Loading: function for the 15j_sod table////////////)//]]/]]]]]

void load 15j so4(int j, int jO, int jf) {
ostringstream jOs, js, jfs;//create a stringstream
jOs << jO0;//add number to the stream

js << j;

jfs << jf;

string name = "simplex walking jOo=";

name += jOs.str ();

name += " _j=";

name += js.str ();

name += " _jf=";

name += jfs.str ();

name += ".txt";

ifstream results_so4_w(name.c_str(), ios::in); //open the 15j so4 file in read

int K1,K2,K3,K4,K5:
// initialization of Boolean table
int Klmax=(int)(2+min(j0,j));
int K4max=(int )(jO4+min(j0,jf));
for (K1=0; Kl<=Klmax; Kl++) {
for (K2=0; K2<=Klmax; K2++) {
for (K3=0; K3<=K1; K3++) {
for (K4=0; K4<=K4max; K4++) {
for (K5=0; K5s<=K4; K5++) {
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t15j_sod4_present [K1][K2][K3][K4][K5]=false;

// we load the file directly !
long double v15j so4;
if (results sod w) {
string ligne;
while (getline (results so4 w, ligne)) {
results so4 w>>Kl1;
results sod w>>K2;
results sod w>>K3;
results sod w>>K4;
results so4d w>>Kbj;
results so4 w>>v15j so4;
t15j so4 loaded [K1][K2][K3][K4][K5]=v15] so4;
t15j _so4 _present [K1][K2][K3][K4][K5]=true;
}
}

results_sod_w.close (); //close the 15j so4 file
}

For the specified value of j, jo and j¢ the code recreates the name of the corresponding file “simplex_ walking j0=jo_j=j_jf=js.tx
and call the data-file with this name. The data-file is open for reading, and we use some loops to put beforehand

the Boolean t15j_so4_present[][][][][] table to “false” : that “false” table means the values of 15j-SO(4)-symbols

are not already loaded, and the code is ready for get the values from the file. We have a loop over the lines from

the file, and we get for each line the corresponding K parameter and its corresponding value of 15j-SO(4)-symbol

from the file ; we store the value in the t15j so4 loaded[K1]|[K2][K3][K4][K5] table box and put the associated
t15j_so4_present[K1[[K2][K3][K4]|[K5] table box to “true” : that will means for the rest of the code that the value

of 15j-SO(4)-symbol are store in its table box.

B.4 Main code

The all arrays and the all functions are defined, now we will expose and explain the main code. The main() will
compute the all coherent objects before write the all results in data-files.

B.4.1 Boundary components

The first steps are to compute the boundary elements which not depend of j;. We will define and construct the all
objects needed for the boundary tetrahedra and associated coherent states. The results computed will be stored in
the corresponding arrays and tables for the next steps dedicated to the transition amplitude computation.

Beginning of the main and definitions of j face for boundary faces j, jo In the starting of the main, we
will define and give the value of j, jo and Immirzi parameter that are the base for the boundary definition. With
the help of the jp_approx function define above we compute the corresponding j+, jgﬁ and stock the all values in
the j face[][] tables. The code is :

[T T —CODE MAINQ =/ /[ /[ 1] 1]117177171771717711717
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int main(){

cout << "\n Starting of the main ! "<< endl;
float jO=8;
float j=8;

int maxJ=(int)(2+min(j0,j));
float Immirzi=0.5;

float jOplus=jp approx(Immirzi,jo,1);
float jOmoins=j0—jOplus;

float jplus=jp_ approx(Immirzi,j,1);
float jmoins=j—jplus;

// definition des j face
j_face[1][1]=];

i “face [1][2]
j_face[2][1]=jplus;
j_face[2][2]=jplus;
j_face[3][1]=jmoins;
j_face[3][2]=]jmoins;
j _face[4][1]=0;
j_face[4][2]=j0;
j_face[5][1]=jOplus;
j_face[5][2]=j0plus;
j_face[6][1]=jOmoins;
j_face[6][2]=jOmoins;
j_face[7][2]=]0;
j_face[8][2]=jOplus;
j_face[9][2]=jOmoins;

The jp_approx(Immirzi,j,1) return the integer or half-integer closest to the % j value and, in case of ambi-

guity (see the properties of the function), the parameter “1” return the closest integer. So the all j for the boundary
faces are stocked in the j face tables, we will be able to compute the other math objects from them.

Computation of the 3j-symbols for the boundary tetrahedra Now that the boundary j are available, we
have the section of the code for compute the all corresponding 3j-symbols :

// populating of 3j—type arrays
cout << "populating of 3j—type arrays"<< endl;

for (int type=1;type<=6;type++) {
float jl=j face[type][1l];
float j2=j face[type][2];
float mamax=2+j face|type]|[1l];
float mbmax=2xj face|[type][2];
float minK=abs(j_face[type][l] —j_face[type][2]);
float maxK=(j_face[type][l]+j_face[type][2]);
for (int K=minK; K<=maxK; K++) {

for (int ma=0; ma<=mamax; ma++) {
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float ml=ma—j1;

for (int mb=0; mb<=mbmax; mb++) {
trois_j_type_t[type][K][ma][mb]=trois_j_sans m3(jl,j2,K,ml,mb-j2)

}

}

)

}
}

// populating of (j+,j—,j)—symbols arrays
cout << "populating of (j+,j—,j)—symbols arrays"<< endl;
//type 1 —> calculation with j
float mamax=2xjplus;
float mbmax=2xjmoins;
for (int ma=0; ma<=mamax; mat+) {
float ml=ma—jplus;
for (int mb=0; mb<=mbmax; mbt+) {
trois _j plusmoins t[1][ma][mb]=trois j sans m3(jplus ,jmoins,j,ml,mb—jmoins);
}
}

// type 2 —> calculation with jO
mamax=2x%j0plus ;
mbmax=2%j0moins ;
for (int ma=0; ma<=mamax; ma++) {
float ml=ma—jOplus;
for (int mb=0; mb<=mbmax; mbt+) {

trois_j_plusmoins_t[2][ma][mb]=trois_j_ sans_ m3(jOplus ,jOmoins,jO ,ml,mb—jOmoins);

}
}

In the first block, for build the 3j-symbols for the future (boundary) intertwiners, we have a loop over the type of 3j-
symbols. This loop, for the type 1 to 6, will build the six 3j-symbols from the j, 77, j~, jo, jo and j; respectively.
For each type, we have a temporary definition of the values of faces from the j face[][] and a computation of
corresponding boundaries for the K parameter. After, we call the trois j sans m3 function and stock the result
in the trois_j_typel[|[][][] table for the all possible indices. The next block of this part of code have the same logic
and utility but for generate the {jT,;~, j}-symbols and the {j, j; , jo }-symbols.

Computation of intertwiners for the boundary tetrahedra Like the previous part, we will call the corre-
sponding functions and generate the values for the intertwiners :

// populating of intertwiners arrays
cout << "populating of intertwiners arrays"<< endl;

// type 1 —> 3j type 1 et 4:
mamax=2x%] _face [1][1];
mbmax—2xj face [1][2];
float mcmax=2%j face[4][1];
float Kmax=min(j face[l][1]+]j face[1][2],j face[4][1]+j_ face[4][2]);
float Kmin=abs(j_face[1l][1] —j_face[1][2]);
for (int K=Kmin; K<=Kmax ;K++) {
for (int ma=0; ma<=mamax; ma++) {
for (int mb=0; mb<=mbmax; mb++) {
for (int mc=0; mc<=mcmax; mc++){
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intertwiner t[1][K][ma][mb][mc|=intertwiner (1,4 ,K,ma,mb,mc);
}

}
}

// type 2 —> 3j type 2 et 5:
mamax=2xj face [2][1];
mbmax=2xj face [2][2];
mcmax=2xj face [5][1];
Kmax=min (j_face[2][1]+]j_face[2][2],]_face[5][1]+]j_face[5][2]);
Kmin—abs (j face[2][1] —j face[2][2]);
for (int K=Kmin; K<=Kmax ;K++) {
for (int ma=0; ma<=mamax; ma++) {
for (int mb=0; mb<=mbmax; mb++) {
for (int mec=0; me<=mcmax; mc++){
intertwiner t[2][K][ma][mb][mc]=intertwiner (2,5 ,K,ma,mb,mc);
}
}
}
}
// type 3 —> 3j type 3 et 6:
mamax—2xj face [3][1];
mbmax=2xj face [3][2];
mcmax=2xj face [6][1];
Kmax=min (j face[3][1]+j face[3][2],j face[6][1]+]j_ face[6][2]);
Kmin=abs (j face[3][1] —j face[3][2]);
for (int K=Kmin; K<=Kmax ;K++) {
for (int ma=0; ma<=mamax; ma++) {
for (int mb=0; mb<=mbmax; mb++) {
for (int mc=0; me<=mcmax; mc++){
intertwiner t[3][K][ma][mb]|[mc]=intertwiner (3,6,K,ma,mb,mc);
}
}
}
}

The code create and stock successively the boundary intertwiners i€ (4, 5, 5o, jo), 1% (j*,j*, j0+,j6r) and i (j’,j’,ja,ja)
in the intertwiner t[1][K][][][], intertwiner t[2][K][][][] and intertwiner t[3][K][][][] tables. For each type of inter-
twiners, the code use the corresponding intertwiner() function with the corresponding parameter for select the type

of 3j-symbols needed : intertwiner t[1] — intertwiner(1,4,...), intertwiner t[2] — intertwiner(2,5,...) etc.

Computation of the fusion coefficient for the boundary tetrahedra Here we will have the part for compute
the iDroit _typel terms and, after, compute the fusion-coefficients for the boundary tetrahedra :

// Let’s go for the iDroit:
cout << "Generating the iDroit"<< endl;

float maxKplus=2.0*xmin(jplus ,jOplus);
float maxKmoins=2.0%min(jmoins ,jOmoins);
int deuxj=(int)(2.0%j);

int deuxjO=(int)(2.0%j0);
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for (int Kplus=0; Kplus<= maxKplus; Kplus++){
for (int Kmoins=0; Kmoins<= maxKmoins; Kmoins++){
for (int ma=0; ma<=deuxj; mat+){
for (int mb=0; mb<=deuxj; mb++){
for (int mc=0; me<=deuxj0; mec++){
if ( abs(matmbtmc—deuxj—j0)>j0 ) {
iDroit _typel _t[Kplus][Kmoins]|[ma][mb][mc]=0;

} else {

iDroit_typel t[Kplus][Kmoins]|[ma][mb][mc]=iDroit_typel (Kplus,Kmoins,ma,mb,mc);

// And the fusion—coefficients
cout << "And the fusion—coefficients"<< endl;

maxKplus=2.0xmin (jplus ,jOplus);
maxKmoins=2.0*min (jmoins , j0moins );
float maxK=2.0+«min(j,j0);
for (int Kplus=0; Kplus<= maxKplus; Kplus++){
for (int Kmoins=0; Kmoins<= maxKmoins; Kmoins++){
for (int K=0; K<= maxK; K++){
iCourbe typel t[Kplus][Kmoins][K]=iCourbe typel(Kplus,Kmoins,K);
}
}
}

We have the definitions of the K+, K—, K boundaries in terms of corresponding j and call the functions for store
the fusion-coefficients tables.

Computation of the coherent states for the boundary tetrahedra It remains the states for finally get the
all boundary elements, prelude to the calculation over the shared-tetrahedra and the internal geometries. For the
coherent states from the boundary tetrahedra, we need to do the calculus :

(i'|jint) = i Dl

mimemama’T myj1

(R (n1) Dy

maja2

(R (n%)) Dy,

msjs

(R (n%)) Dy,

maja

(R (7}))

= Z i;]nlvrzgmgm4Dz}L1j1 (01’ d)l) Dfim (92’ ¢2) Dz;;gj_g (03’ ¢3) Dz;i4j4 (945 ¢4)

Which is simply with the gauge choice (61, ¢1) = (0,0), ¢2 = 0 and the closure condition ), jing = 6> :

(i713,50, A ®) =Y 1) s mgma Doz, (02,0) D2 - (03, ¢) D2 . (04, 64) [4, Jo, A, ] (202)

113



A?
0, = arccos —2— >

D) (/452 — A2vlﬂA2fP>

3 = arccos —
’ < 4550

—cos (D) /452 — A2\/452 — A2 — A2>

0, = arccos
4770

sin? 6, — sin? 65 — sin? 03
¢3 = arccos - :
2 sin 6 sin 65

sin? 03 — sin? @5 — sin? 6,
2sin 69 sin 6,

¢4 = 27 — arccos (

But, obviously, we cannot compute that for the all continuum, that make no sens for the machine ! So we will
define a resolution for the continuous parameters A € [0;2min (j,jo)] and ® € [0;7] and just compute them for
discrete value given by two code parameters n and ¢ :

_1+2n

100 x 2min (j, jo) for n=0,1,...,50 (203)
142¢

= f =0,1,... 204
109 xmfort=0,1,...,50 (204)

We will have 51 points uniformly distributed for each variables A and ® which include the middle cases (A =
min (7, jo) for n = 25 or ® = 7 for ¢ = 25) and exclude the extreme cases (A = 0, min (j, jo) or ® = 0,7 ). So we
will have a good resolution for the data, without the full degenerated cases where the classical geometry give absurd
results in the context of the numerical calculus : tetrahedra infinitely elongated or completely flat which give some
annoying “division by zero” for the machine. The associated code is :

cout << "Next, the coherent boundary states"<< endl;

complex<long double> iJd_externe [maxJ+1][51][51];
ofstream resultInter ("iJd externe.txt", ios::out | ios::trunc);

for (int t=0;t<=50;t++){
float PHI=(1+42x*t)+«M _PI/102.0;
//Dissymmetry parameter — angle between (nl,n2)"(n3,n4) — partner variable of K
for (int n=0;n<=50;n++){
float A=(1+42%n)+maxJ/102.0;
float theta2=acos(A*A/(2.0xj*j)—1.0);
float theta3=acos ((cos(PHI)*sqrt (4.0%xjO+jO—AxA)*sqrt (4.0%j*]—AxA) — AxA)
/(4.0%j%j0));
float thetad=acos((—cos(PHI)*xsqrt (4.0%xjOxjO—-AxA)*xsqrt (4.0%jxj—AxA) — AxA)
J(4.0%§%§0));
float phi3=acos((pow(sin (thetad),2) — pow(sin(theta2),2) — pow(sin(theta3),2))
/(2.0xsin (theta2)xsin (theta3)));
float phi4=2.0«+M _ PI
—acos ((pow(sin (theta3),2) — pow(sin(theta2),2) — pow(sin(thetad) ,2))
/(2.0xsin (theta2)xsin (thetad)));

// Creation of the iJd externe
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long double norm iJd externe=0;
for (int K=0;K<=maxJ;K++){
iJd _externe [K][n][t]=0;
for (int mb=0;mb<=deuxj ;mb++){
for (int mc=0;me<=deuxjO0 ;mc++){
int md=deuxjO—mb—mc;
if (md>=0){
iJd _externe [K][n][t] += intertwiner_mem (1,K, deuxj ,mb,mc)
xd (mb, deuxj , theta2 ,0)
xd (mc, deuxj0 , theta3d ,phi3)
xd (md, deuxj0 , thetad ,phid);
}
}
}

norm_iJd externet=abs(iJd externe[K]|[n][t])*abs(iJd externe[K][n][t]);

}

if (norm_iJd_externe!=0){
for (int K=0;K<=maxJ;K++){
complex<long double> temp ((deuxj+1.0)x(deuxjo+1.0),0);
//complex<long double> temp(1.0/sqrt(norm iJd externe) ,0);
iJd externe[K][n][t]*=temp;
resultInter <<PHI<<" "<<A<<"\t"<<norm _iJd_externe<<"\t"<<K<<"\t"
<<abs (iJd _externe [K][n][t])<<" "<<arg(iJd_externe[K][n][t])<<endl;
}

resultInter <<endl;

}
}

resultInter <<endl;

}

resultInter.close ();

We define the array iJd_externe[maxJ+1][51][51] which will contain the coherent tetrahedra state ; remember that
the maxJ = 2min (4, jo) correspond to the maximum boundary of the J parameter and the two [51] are for the all
points given for n and ¢. After, we have the definition of the file “iJd_externe.txt” (open for writing) for write, in
parallel to the calculation, the results from the coherent states of boundary tetrahedra.

We have the two loops over the t and n, for range the all space (®, A). For each step for given ¢ and n, we
compute the corresponding classical variables (6;, ¢;) and compute from them the coherent state with the associated
intertwiner from table and the d(m;,27;,0;,¢;) functions. We store, temporarily, the iJd_externel[][] table with
the coherent state :

iJd_ externe[K][n][t] = (i¥|3, jo, A[n], ®[t]) (205)

and compute, on the fly, the norm of the state : norm_iJd_externe = ) ’<iK|j,j0, Aln], @[t]>’2. The next step
consist just to renormalize the non-null states (norm iJd_externe # 0) with the j-representation and store the the
iJd_externe[][][] with this renormalization :

iJd_externe[K][n][t] — iJd_externe[K][n][t] = (25 + 1) (2jo + 1) (i3, jo, A[n], [t]) (206)

So we have normalized coherent states in the iJd_externe[][][] in the sens of orthogonality relations :

dn; ,
H/ 47; \/m<2‘]ljm_i> X H (2j; + 1) (i |jing) = 677 (207)
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In the renormalization part, we have a commented line corresponding to a another possible renormalization. If
you uncomment this line, compile and execute the code, you will process to the following renormalization :

<ZK|ja jOv A[n]7 (I)[t]>
Yk [ 15, jo, Aln], @[t])[?

iJd_externe[K][n][t] = (208)

B.4.2 Loop for the face f and internal components

At this point, the all boundary objects are define and in the machine memory. We will start to expend the process
for the shared object given for each compatible j; € [0;3jy] and compute the objects for obtain the transition
amplitudes. The corresponding process will be given by a loop over the all available j; where will we compute the
3j-symbols, intertwiners, fusion-coefficients, 15j%-symbols, 15j-SO(4)-symbols and coherent transition amplitudes
which depend of the js-representation. For each jr the computed results will be stored in their arrays and tables,
and full coherent transition amplitude will be done progressively for the next files-writing and study code part.

Start of the f-loop and definition of the j face for f Now we will start the loop over the all compatible
values of j; to get the math elements from shared-tetrahedra :

//Loop over the jf
cout << "////START jf-LOOP////"<< endl;
float jf=0;
for (jf=j0—(int ) (jO);jf<=3%j0;jf++){ //jf=j0—(int)(jO) implies that jf same type as jO
//otherwise the elements are nulls
float jfplus=jp approx(Immirzi,jf 1);
float jfmoins=jf—jfplus;
if ((jfplus —(int)(jfplus))==(jOplus —(int)(jOplus))) { //Check if jf+ same type as jO+
//=> Calculation required
// definition of j face for jf

j_face[7][1]=jf;

j_face[8][1]=jfplus;

j_face[9][1]=jfmoins;

cout << "——— Case jf="<<jf<<" (jf—="<<jfmoins <<",jf+="<<jfplus <<") ——"<< endl;

The starting jf value for the loop is define with jO-(int)(jO) because the non-nulls elements happen when jo and
jr are the same type ; the value jO-(int)(jO) term return 0 or 3 if the jO is integer or half-integer. The other jf
values will be obtained by simple incrementation of the loop from this starting value. For each value of j; given by
the loop, the code compute the j;ﬁ' and Jr values (with the jp_approx function) in the optics to check if they are
compatible ; because the non-nulls elements from the jfjE are given for j]'ﬁ' (and ]]T) which is same type as j(')|r (and
Jo )- So, after the definition of jJ%L, we have a if-condition for check the type of j;{ : jfplus-(int) (jfplus) will return
0 or 1 if j;* integer or half-integer and jOplus-(int)(jOplus) will return 0 or 3 if ji integer or half-integer, the two
results are equal only if 57 and jg~ have the same type.

At the level of the if-condition the j; value, and its jf, is compatible for non-nulls elements. We have filtered
the non-compatible values of j; which would have given automatically null elements, so we can store the values of
j_face[][] for the calculus and proceed to the next.

Computation of the 3j-symbols for the shared-tetrahedra With the values of j_face[][] containing the j
and jjjf we can, as the boundary part, compute the 3j-symbols :

// peuplement des tableaux des 3jtype (WITH jf !I!)
cout << "peuplement des tableaux des 3jtype (WITH jf !!l)"< < endl;
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for (int type=7;type<=9;type++) {
float jl=j_face[type][1];
float j2=j_ face[type][2];
float mamax—=2x+j face[type][1];
float mbmax=2xj face|[type]|[2];
float minK=abs(j face[type][1l]—j face[type][2]);
float maxK=(j face[type|[l]+j face[type][2]);
for (int K=minK; K<=maxK; K++) {
for (int ma=0; ma<=mamax; mat+) {
float ml=ma—j1;
for (int mb=0; mb<=mbmax; mb++) {
trois _j type t[type]|[K][ma][mb]=trois j sans m3(jl,j2,K,ml,mb-j2) ;
}
}
}
}
//peuplement des tableaux des troisjplusmoins (WITH jf !!!)
cout << "peuplement des tableaux des troisjplusmoins (WITH jf !l)"< < endl;
//type 3 : on calcule avec jf
mamax=2xjfplus ;
mbmax—2xjfmoins ;
for (int ma=0; ma<=mamax; ma++) {
float ml=ma—jfplus;
for (int mb=0; mb<=mbmax; mbt+) {
trois_j_plusmoins_t [3][ma][mb]=trois_j_sans m3(jfplus ,jfmoins,jf ,ml,mb—jfmoins);
}
}

The first block compute and store the trois_j_type_t[|[][][] table with the trois_j_sans_m3() function for the
3j-symbols of the type 7 to 9 (dependent of jy, j; and j;). The next block give the {5, j; ,js}-symbols.

Computation of intertwiners for the shared-tetrahedra As the boundary part, the code compute the
intertwiners for the shared-tetrahedra (which depend of j) :

// Populating of intertwiners arrays (WITH jf !!!)
cout << "Populating of intertwiners arrays (WITH jf !!l)"< < endl;

// type 4 —> 3j type 7 et 4:
mamax—2x+j face[7][1];
mbmax=2x+j face[7][2];
mcmax=2x] face[4][1];
Kmax=min (j_face[7][1]+j_face[7][2],j_face[4][1]+j_face[4][2]);
Kmin—=abs (j face[7][1] —j face[T7][2]);
for (int K=Kmin; K<=Kmax ;K++) {
for (int ma=0; ma<=mamax; ma++) {
for (int mb=0; mb<=mbmax; mb++) {
for (int mc=0; me<=mcmax; mc++){
intertwiner_ t[4][K][ma][mb][mc]|=intertwiner (7,4 ,K,ma,mb,mc);

}
}
}
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}
// type 5 —> 3j type 8 et 5:
mamax=2xj face [8][1];
mbmax=2xj face [8][2];
mcmax=2xj face [5][1];
Kmax=min (j_face[8][1]+j_face[8][2],j_face[5][1]+]j_face[5][2]);
Kmin=abs (j_face[8][1] —j_face [8][2]);
for (int K=Kmin; K<=Kmax ;K++) {
for (int ma=0; ma<=mamax; mat+) {
for (int mb=0; mb<=mbmax; mbt+) {
for (int mc=0; mc<=mcmax; mc++){
intertwiner _t [5][K][ma][mb][mc]=intertwiner (8,5 ,K,ma,mb,mc);
}

}
}
}
// type 6 — 3j type 9 et 6:
mamax=2+j face[9][1];
mbmax=2xj face [9][2];
mcmax=2x] face[6][1];
Kmax=min(j face[9][1]+]_ face[9][2],j face[6][1]+]j face[6][2]);
Kmin=abs (j_face[9][1] —j_face[9][2]);
for (int K=Kmin; K<=Kmax ;K++) {
for (int ma=0; ma<=mamax; ma++) {
for (int mb=0; mb<=mbmax; mbt+) {
for (int mc=0; me<=mcmax; mc++){
intertwiner _t [6][K][ma][mb][mc]=intertwiner (9,6 ,K,ma,mb,mc);
}

}
}
}

Again, for each block the computation of the intertwiners associate and call the intertwiner() function with their cor-
responding 3j-symbols type parameter : intertwiner t[4] — intertwiner(7,4,...), intertwiner t[5] — intertwiner(8,5,...)
etc.

Computation of the fusion coefficient for the shared-tetrahedra We have the computation of the fusion-
coefficients :

// Let’s go for the iDroit (WITH jf !!!):
cout << "generating the iDroit (WITH jf !'I)" << endl;

int deuxjf=(int)(2.0%jf);
maxKplus=jOplus+min(jfplus ,jOplus);
maxKmoins=j0moins+min (jfmoins ,jOmoins );
float minKplus=abs(jfplus—jOplus);
float minKmoins=abs (jfmoins—jOmoins);

for (int Kplus=minKplus; Kplus<= maxKplus; Kplus++){
for (int Kmoins=minKmoins; Kmoins<= maxKmoins; Kmoins++){
for (int ma=0; ma<=deuxjf; ma++){
for (int mb=0; mb<=deuxj0; mb++){
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for (int mc=0; mc<=deuxj0; mc++){
if (abs(matmb+me—jf—deuxj0)>j0)
iDroit_type2 t[Kplus][Kmoins]|[ma][mb][mc]=0;
} else {

iDroit_type2 t[Kplus]|[Kmoins|[ma][mb][mc]=iDroit_type2(Kplus,Kmoins,ma,mb,mc)

// And the fusion—coefficients (WITH jf !!!)
cout << "And the fusion—coefficients (WITH jf !Il)"<< endl;

maxKplus=jOplus+min(jfplus ,jOplus);
maxKmoins=jO0moins+min (jfmoins , jOmoins );
maxK=j0+min (jf ,j0);

minKplus=abs (jfplus—jOplus);
minKmoins=abs (jfmoins —jOmoins );
float minK=abs(jf—j0);
for (int Kplus=minKplus; Kplus<= maxKplus; Kplus++){
for (int Kmoins=minKmoins; Kmoins<= maxKmoins; Kmoins++){
for (int K=minK; K<= maxK; K++){
iCourbe type2 t[Kplus]|[Kmoins][K|=iCourbe type2(Kplus,Kmoins,K);
}
}
}

The first block use the iDroit type2() function for create the iDroit for the shared-tetrahedra, and store them in
the iDroit_type2 t[][][|[][] table. The second block use the previously computed iDroit_type2 t[][|[][][] values and
compute the fusion-coefficients in the iCourbe _type2_t[][][] array.

Computation of the 15j%-symbols Now we have the all intertwiners, from boundary and internal quantum
geometry for a specific value of j;, so we can compute the 15j%-symbols :

// Let’s go for the 15]
cout << "Let’s go for the 15j plus "<< endl;

maxKplus=2.0+min (jplus ,jOplus);

float maxK4plus=jOplus+min(jfplus ,jOplus);
float minK4plus=abs(jfplus—jOplus);

int intmaxKplus=(int )(maxKplus);

#pragma omp parallel for
for (int K2=0; K2<=intmaxKplus; K2++){
for (int K1=0; Kl<=maxKplus; KIl++){
for (int K3=0; K3<K1; K3++){
for (int K4=minK4plus; Ki4<=maxK4plus; K4++){
for (int K5—minK4plus; K5<K4; K5++){
function_15j plus_t[K1][K2][K3][K4][K5]
=function 15j plus(K1,K2,K3,K4,K5);
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function_15j plus_t[K1][K2][K3][K5][K4]
=pow ( —1.0,K1+K2+K3)*function_15j_plus_t[K1][K2][K3][K4][K5];
function_ 15j_plus_t[K3][K2][K1][K4][K5]
=pow ( —1.0 ,KI+K24+K3+K4+K5) « function 15j plus_t [K1][K2][K3][K4][K5];
function_15j_plus_t[K3][K2][K1][K5][K4]
=pow ( —1.0,K4+K5)* function_15j plus_t[K1][K2][K3][K4][K5];
}

function _15j _plus_t[K1]|[K2][K3][K4][K4]
=function 15j plus(K1,K2,K3,K4,K4);
function_15j_plus_t[K3]|[K2][K1][K4][K4]
=function_15j_ plus_t[K1][K2][K3][K4][K4];
}

}
for (int K4=minKd4plus; K4<=maxKd4plus; Kd++){
for (int K5=minK4plus; K5<K4; K5++){
function 15j plus t[K1|[K2][K1][K4]|K5]
=function 15j plus(K1,K2,K1,K4,K5);
function _15j_plus_t[K1][K2][K1][K5][K4]
—pow(—1.0,K2)«function_15j_ plus_t[K1][K2][K1][K4][K5];
}

function 15j_plus_t[K1][K2][K1][K4][K4]
—=function 15j plus(K1,K2,K1,K4,K4);
}

}
}

#pragma omp parallel for
for (int K2=0; K2<=intmaxKplus; K2++){
for (int K1=0; Kl<=maxKplus; Kl++){
for (int K3=0; K3<=K1; K3++){
for (int K4=minK4plus; Kd<=maxKdplus; Kd++){
for (int K5=minK4plus; K5<=K4; Kb5++){
if (abs(function 15j plus t[K1][K2][K3][K4][K5]) <1.0e—20){
function_15j plus_t[K1][K2][K3][K4][K5]=0;
function_15j plus_t[K1][K2][K3][K5][K4]=0;
function 15j plus_ t|K3]|K2]||K1]||K4]||[K5]=0;
function_15j_ plus_t[K3][K2][K1][K5][K4]=0;

cout << "Let’s go for the 15j minus "<< endl;
maxKmoins=2.0*min (jmoins , j0moins );

float maxK4moins=jO0moins+min(jfmoins ,jO0moins);
float minK4moins=abs (jfmoins—jOmoins);

int intmaxKmoins=(int ) (maxKmoins);

#pragma omp parallel for

120



for (int K2=0; K2<=intmaxKmoins; K2++){
for (int K1=0; Kl<=maxKmoins; KIl++){
for (int K3=0; K3<K1; K3++){
for (int K4=minK4moins; K4<=maxK4moins; K4++){
for (int K5=minK4moins; K5<K4; Kb5++){
function_15j moins_t [K1][K2][K3][K4][K5]
=function 15j moins (K1,K2,K3,K4,K5);
function_15j moins_t [K1][K2][K3][K5][K4]
=pow ( —1.0,K1+K2+K3) «function _15j moins_ t[K1][K2][K3][K4][K5];
function_15j moins_t[K3][K2][K1][K4][K5]
=pow ( —1.0,KI+K2+K3+K4+K5) « function _15j moins_t [K1][K2][K3][K4][K5];
function_15j moins_t [K3][K2][K1][K5][K4]
=pow (—1.0,K4+K5)*function 15j moins_t [K1][K2][K3][K4][K5];
}

}
}

for (int K4=minK4moins; K4<=maxK4moins; K4++){
for (int K5—minK4moins; K5<K4; K5++){
function_15j moins_t[K1][K2][K1][K4][K5]
=function 15j moins(K1,K2,K1,K4,K5);
function_15j moins_t[K1][K2][K1][K5][K4]
=pow(—1.0,K2)*function_15j_ moins_t [K1][K2][K1][K4][K5];
}
function_15j_moins_t[K1][K2][K1][K4][K4]
=function 15j moins (K1,K2,K1,K4,K4);
}

}
}

#pragma omp parallel for
for (int K2=0; K2<=intmaxKmoins; K2++){
for (int K1=0; Kl<=maxKmoins; K1++){
for (int K3=0; K3<=K1; K3++){
for (int K4=minK4moins; K4<=maxK4moins; K4++){
for (int K5—minK4moins; K5<=K4; K5++){
if (abs(function_15j moins_t[K1]|[K2][K3][K4][K5]) <1.0e—20){
function_ 15j moins_t[K1][K2][K3][K4][K5]=0;
function 15j moins_t[K1][K2][K3][K5][K4]=0;
function_15j moins_t [K3][K2][K1][K4][K5]=0;
function_15j moins_t [K3][K2][K1][K5][K4]=0;

The first block compute the 15;5%-symbols, the second compute the 155 ~-symbols. For each we have two parts :
The first compute the corresponding the 15j-symbols using the function 15j function and the symmetry prop-
erties :
S K1+ Ko+ K3+ K4+Ks S
(K17K2aK37K47K5;j7]03]f) :(71) vHRzt Rt Rt (K37K27K13K4;K5;]aj07]f)

L 209
(_1)K4+K5 (K37K27K17K57K4;]>]O7jf) ( )
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for store the all function 15j table without going through all the set of K parameter and save more calculation
time.

The second part take the values of the table which are smaller than 1.0 x 1072° and replace them by 0, because
they correspond in reality to null values. That was found in the development of the code, where several methods
was used for compute the 15j-symbols, and show that the values from different methods was very precisely the
same except when they are smaller than 1.0 x 1072° (in these cases the values was always the same size order and
similar, but not equal). So we can conclude that these values are nulls, and that the code have a precision at least
1.0 x 10720 for the values of the 15j-symbols.

To save more calculation time, we use the parallelization library OpenMP with the “#pragma omp parallel for”
lines for the loops of each parts, that will allow to make the computation of the all 15j-symbols over the all processor
of the machine.

Computation of the 15j-SO(4)-symbols At this point, we have the all objects needed for compute the 15j-
SO(4)-symbols | The code will load the values of 15j-SO(4)-symbols from data-file (if it exist) and compute the
missing 15j-SO(4)-symbols values before to store them in the memory and in the data-file :

// remains only the 15jso4
cout << "Remains only the 15jso4" << endl;

maxK=2.0*min (j0 ,j);
float maxK4=jO+4min(jO,jf);
float minK4=abs(jf—j0);

ostringstream jOs, js, jfs;//create a stringstream
jOs << jO0;//add number to the stream

s << j;

jfs << jf;

load 15j so4(j,j0,jf);

string name = "simplex walking jOo=";

name += jOs.str ();

name += " j=";

name += js.str ();

name += " _jf=";

name += jfs.str ();

name += ".txt";

ofstream results so4 w(name.c_ str(), ios::out|ios::app); //open the 15j so4 file

results_so4_w.precision (64);
omp lock t writelock;
omp _init_lock(&writelock );
int intmaxK=(int ) (maxK);
#pragma omp parallel for
for (int K2—0; K2<—intmaxK; K2++){
for (int K1=0; Kl<—maxK; Kl++){
for (int K3=0; K3<K1; K3++){
for (int K4=minK4; K4<=maxK4; K4++){
for (int K5=minK4; K5<K4; K5++){
if ( t15j_so4_present [K1][K2][K3][K4][K5] == true ) {
function_15j_so4 _t[K1][K2][K3][K4][K5]
=t15j_so4 _loaded [K1][K2][K3]|[K4][K5];
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} else {

function_15j_so4 _t[K1][K2][K3][K4][K5]
=function 15j so4(K1,K2,K3,K4,K5);
if (abs(function_15j_so4 t[K1][K2][K3][K4][K5])<1.0e—20)

{function 15j so4 t[K1][K2][K3][K4][K5]=0;}
omp _set_lock(&writelock );
results sod w<<Kl<<" "<<K2<<" "<<K3<<" "<<Ka<<" "<<Kh<<"\t"
<<function_15j_so4_t[K1][K2][K3][K4][K5]<<endl;

omp_unset lock(&writelock );
}
function 15j so4 t[K1][K2][K3][K5][K4]
=pow ( —1.0,K14+K2+K3)*function 15j so4 t[K1][K2][K3][K4][K5];
function 15j so4 t[K3|[K2][K1][K4][K5]
=pow ( —1.0,K1+K2+K3+K4+K5) « function 15j so4 t[K1][K2][K3][K4][K5];
function 15j so4 t[K3][K2][K1][K5][K4]
=pow ( —1.0,K4+K5)*function 15j so4 t[K1][K2][K3][K4][K5];
}
if ( t15j_so4_present [K1]|[K2][K3][K4][K4] = true ) {
function 15j so4 t[K1][K2][K3][K4][K4]
=t15j _so4_loaded [K1]|[K2][K3][K4][K4];
} else {
function_15j_so4_t[K1][K2][K3][K4][K4]
=function 15j so4(K1,K2,K3,K4,K4);
if (abs(function_15j_so4 t[K1][K2][K3][K4][K4]) <1.0e—20)
{function 15j so4 t[K1][K2][K3][K4][K4]=0;}
omp_set lock(&writelock);
results  sod w<<Kl<<" "<<K2<<" "<<K3<<" "<<K4<<" "< K4<<"\ t"
<<function_15j_sod_t[K1][K2][K3][K4][K4]<<endl;
omp _unset_lock(&writelock );
}
function 15j so4 t[K3][K2][K1][K4][K4]
=function 15j so4 t[KI1][K2][K3][K4][K4];
}
}

for (int K4=minK4; Ki<=maxK4; Kd4++){
for (int K5=minK4; K5<K4; K5++){
if ( t15j_so4_present [K1][K2][K1][K4][K5] == true ) {
function_15j_so4_t[K1][K2][K1][K4][K5]
=t15j_so4 _loaded [K1][K2][K1][K4][K5];
} else {
function 15j so4 t[K1][K2][K1][K4][K5]
=function 15j so4(K1,K2,K1,K4,K5);
if (abs(function_15j_so4 t[K1][K2][K1][K4][K5]) <1.0e—20)
{function_15j_ sod_t[K1][K2][K1][K4][K5]=0;}
omp _set_lock(&writelock );
results sod w<<Kl<<" "<<K2<<" M<Kl "acK4<<" "c<Kh<<"\ 1"
<<function_15j_ sod4 t[K1][K2][K1][K4][K5]<<endl;

omp _unset lock(&writelock);

}
function _15j_sod4_t[K1][K2][K1][K5][K4]
=pow(—1.0,K2)«function_15j_ sod_t|[K1][K2][K1][K4][K5];
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if ( t15j_so4_present [K1][K2][K1][K4][K4] = true ) {
function _15j_sod4_t[K1][K2][K1][K4][K4]
=t15j _so4 _loaded [K1][K2][K1][K4][K4];
} else {
function 15j so4 t[K1][K2][K1][K4][K4]
—=function 15j so4 (K1,K2,K1,K4,K4);
if (abs(function_15j_so4 t[K1][K2][K1][K4][K4]) <1.0e—20)
{function_15j_sod_t[K1][K2][K1]|[K4][K4]=0;}
omp_set lock(&writelock);
results sod w<<Kl<<" "<<K2<<" "cKl<<" "cKA<<" "c<K4<< "\t "
<<function_15j_sod t[K1][K2][K1][K4][K4]<<endl;
omp _unset_lock(&writelock );

}
}
}
}

omp _destroy lock(&writelock);
results_sod_w.close(); //close the 15j sod file

After create the name of the hypothetical 15j-SO(4)-symbols data-file in function of the specific value of (j, jo
and) jr, “simplex walking jO=jo_j=j_jf=js.txt”, the code use the load_15j so04(j,jO,jf) function for get the
precalculated values from the data-file (via the t15j so4 loaded[][][][][] table inside the loading function) and get
the list of them (via the t15j_so4_ present[][][][][] Boolean table). As the 15j-symbols parts, we use the same tricks
and logic for compute the 15j-SO(4)-symbols with the symmetries :

(K1, K, K5, K, Ksi o, i) = (=) Pt (16, Ko Ky, Ky, K3 oy i) (210)
= (—1)" " Ky, Ko, Ky, K, Kas §, oy ]

Here is really important, because the execution of each function 15j are long (" 1sec for j ~ 10), so the use of these
functions for all the set of K (7(25 + 1)5 steps) are VERY long ! Of course, for each set of K, before to compute the
15j-SO(4)-symbol associated, the code check if we have already the computed value in the t15j_so4_loaded[|[][][]]
table (due to the t15] _so4_ present|K1][K2][K3|[K4][K5] == true condition) and use it if that is the case. The loops
over the K parameter get the all 15j-SO(4)-symbols and store them in the function 15j so4 t table. Again, we use
the OpenMP library line “#pragma omp parallel for” for parallelize the process, and use the specific omp _set lock()
and omp unset lock() functions for write correctly the missing 15j-SO(4)-symbols in the data-file.

Computation of the coherent states for the shared-tetrahedra For the shared-tetrahedra, with the gauge
choice and closure condition, we have to compute the quantities :

<Z.J|jf’j07 ef’ (I)f> = Z ilj]lmgm3m4D3;izj2 (025 0) Diigjg (037 ¢3) Djﬂilbzkal (047 ¢4) [ja.jOy ef’ (I)f] (211)

with :
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0, = 0, = (Af = \/jg+j§+2jojfcos9f)

2
9 cos (@) /473 - Ai\/ 243 (734 33) - (73— 73) —Ab— Ay (4342 - 3)
3 = arccos —
4jrjoAy
2
— cos (@) /43 - Ai\/ 243 (73+33) = (73 - 73) —Ab— 4y (43+33-32)
0, = arccos —
4jrjoAy
8 sin? 6, — sin? 65 — sin? 03
= arccos
3 2 sin 6 sin 65
" 5 sin? 03 — sin? 65 — sin? 6,
= 27 — arccos
4 2sin 69 sin 6,

As the coherent states part for boundary tetrahedra, we use the same sort of code for the internal tetrahedra states

cout << "Next, the coherent shared states (WITH jf !l!)"< < endl;

complex<long double> iJd interne|(int)(jO+min(jO,jf)+1.0 51|[51];
P g _ [(int)(] (j0,j ;

name = "iJd interne jf=";

name += jfs.str ();

name += ".txt";

ofstream results3 (name.c_str(), ios::out | ios::trunc);

for (int t2=0;t2 <=50;t2++){
float PHIf=(1+2%t2)*xM_PI/102.0;
//facteur disymeétrie — angle entre (nl,n2)"(n3,n4) — variable partenaire de K
for (int n2=0;n2<=50;n2++){
float theta2=M PIx(1+2xn2)/102.0;
float Af=sqrt (jOxjO+jf+jf+2.0%xjOxjf*cos(theta2));
float theta3=acos((cos(PHIf)xsqrt (4.0%j0xj0—Af«xAf)xsqrt (2.0x AfxAfx(jf+jf+j0xj0)
—pow (jEfxjf—j0xj0,2) —Afx Afx AfxAf) — Afx(AfxAf+jfxjf—jO%jO)
)/ (4.0xAfxjOxjf));
float thetad—acos((—cos (PHIf)*xsqrt (4.0%xj0+j0—AfxAf)xsqrt (2.0« AfxAfx(jf«jf+jO%j0)
—pow (jfxjf—jO0%j0,2) — Afx Afx AfxAf) — Afx(AfxAf+jf«jf—j0*j0)
)/ (4.0xAfxjO*jf));
float phi3=acos ((pow(sin (thetad),2) — pow(sin(theta2),2) — pow(sin(thetad) ,2))
/(2.0xsin (theta2)xsin (theta3)));
float phi4d=2.0«xM PI
—acos ((pow(sin (theta3),2) — pow(sin(theta2),2) — pow(sin(thetad),2))
/(2.0xsin (theta2)xsin (thetad)));

// Creation of the iJd externe (WITH jf I!!)

long double norm iJd interne=0;

for (int K=minK4;K<=maxK4;K++){
iJd_interne[K][n2][t2]=0;
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for (int mb=0;mb<=deuxj0 ;mb++){
for (int mc=0;me<=deuxj0 ;mec++){
int md=3.0%j0—jf —mb-mc;
if ((md>=0)&&(md<=deuxj0)){
iJd _interne [K][n2][t2] += intertwiner mem (4 ,K, deuxjf ,mb,mc)
xd (mb, deuxj0 , theta2 ,0)
xd (mc, deuxj0 , theta3 ,phi3)
*d (md, deuxj0 , thetad ,phid);
}
}
}
norm_iJd internet=abs(iJd interne[K][n2][t2])+abs(iJd interne[K][n2][t2]);
}

if (norm iJd interne!=0){
for (int K=minK4;K<=maxK4;K++){
complex<long double> temp(sqrt ((deuxjf+1.0)*(deuxj0+1.0))
//complex<long double> temp(1.0/sqrt(norm_iJd_interne) ,0)
iJd _interne [K][n2][t2]«=temp;
results3 <<PHIf<<" "<<theta2 <<"\t"<<norm iJd interne<<"\t"<<K<<"\t"
<<abs(iJd interne[K][n2][t2])<<" "<<arg(iJd interne[K][n2][t2])<<endl;

*(deuxjo+1.0),0);

}

results3 <<endl;

}

results3 <<endl;

results3.close ();

We define the iJd_ interne|(int) (j0+min(j0,jf)+1.0)|[51][51] array and the “iJd_interne jf—js.txt” data-file which
will contain the coherent tetrahedra results. We have the loops over the two discretized parameters :

14 2t

;= 1022><7rfort2:0,1,...,50 (212)
142

0y = 102"2 x 7 for na = 0,1,...,50 (213)

(Af - \/jg + 52 + 2jojy cosaf) (214)

We store, temporarily, the iJd_interne[|[][] table with the coherent state :

iJd_interne[K][n2][t2] = (i |j¢, jo, 0 [n2], ®[t2]) (215)

and compute, on the fly, the norm of the state : norm_iJd_interne = Y [(i¥ |y, jo, 0 [n2], @ [t2]>’2. The next
step consist just to renormalize the non-null states (norm iJd interne # 0) with the j-representation and store
the the iJd_internel][][] with this renormalization :

iJd_interne[K][n2][t2] — iJd_interne[K][n2][t2] = \/(2jf +1) (2jo +1)° (i%14¢, jo, 07 m2], ®¢[t2]) (216)

We have also a commented line that you can uncomment if you would the another possible renormalization :

("4 Jo, 0 [n2], ®f[t2])
VS [ g o, 05n2], @ 62

iJd_interne[K][n2][t2] = (217)
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Computation of the coherent transition amplitude for the 4-simplices We have the all objects for create
the coherent 4-simplex :

// Computation of the 15j so4 semi—coherent
cout << "Créations des 4—simplex semi—cohérent (WITH jf !!!)"< < endl;
complex<long double> interm1 (0,0);
complex<long double> interm2 (0,0);
complex<long double> interm3 (0,0);
for (int t=0; t<=50; t++){
for (int n=0; n<=50; n++){
for (int K4—minK4; Kd<—maxK4; K4++){
for (int K5—minK4; Kb<—maxK4; K5++){
complex<long double> resultat (0,0);
for (int K3=0; K3<=maxJ; K3++){
interm3=iJd _externe[K3][n][t];
for (int K2—0; K2<—maxJ; K2++){
interm2=interm3xiJd externe[K2]|[n][t];
for (int K1=0; Kl<=maxJ; Kl++){
resultat+=function_15j so4 mem (K1,K2,K3,K4,K5)«interm2*iJd_externe [K1][n][t

}
} }
sodsemicoherent [n][t][K4][K5]=resultat ;
}
}
}
}

// Computation of the 15j so4 coherent
cout << "Créations des 4—simplex cohérent (WITH jf !'I)" << endl;
for (int t=0; t<=50; t++){
//float PHI=(1+42xt)*M_PI/102.0;
for (int n=0; n<=50; n++){
//float A=2.0%(1+2%n)*min(j0,j)/102.0;
for (int n2=0;n2<=50;n2++){
for (int t2=0; t2<=50; t2++){
complex<long double> resultatl (0,0);
for (int K4=minK4; K4<=maxK4; K4++){
for (int K5=minK4; Kb5<=maxK4; K5++){
resultatl4+=sodsemicoherent [n][t][K4][K5]*iJd interne[K4][n2][t2]*conj(iJd int
}
}
sodcoherent [(int)(jf)][n][t][n2][t2]=resultatl;
}
}
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The first block will combine the boundary tetrahedra coherent states with the 15j-SO(4)-symbols for built the
semi-coherent, 4-simplex :

sodsemicoherent[n|[t|[K4|[K5] = (0|4, jo.jf, A[n], ®[t]; i)
3
= ) [KLK2K3K4K5:j jo, ] [T (25 + 1) (2o + 1) (#**1j. jo, Aln], ®[t]))
K1,K2,K3 k=1

And the second block will combine the previous results with the shared-tetrahedra coherent states for built the
coherent 4-simplex :

sodcoherent|(int) (jp)l[n][t]n2][t2] = > (04, jo, jf, Aln], ®[t]; i455) (i¥4if, jo, 07 [n2], @ [£2]) (5, Jo, O 2], @ £ [t2])
K4,K5
(218)

Computation of the coherent transition amplitude for the assembly and end of the f-loop Finally,
we can compute the coherent transition amplitude wy (4, jo, jf, A, ®) from the semi-coherent 4-simplex table before
end the loop over the j; values :

// Computation of coherent wf !!!!
cout << "Computation of coherent wf (WITH jf !)"< < endl;

for (int t=0; t<=50; t++){
for (int n—=0; n<=50; n++){
complex<long double> temp (0,0);
complex<long double> result (0,0);
for (int Kl=minK4;Kl<=maxK4;K1++){
for (int K2=minK4;K2<=maxK4;K2++) {
for (int K3=minK4;K3<=maxK4;K3++) {
temp += so4dsemicoherent|[n][t][K1
xsodsemicoherent [n][t][K2
3

|[K2]
| [K3]
xsodsemicoherent [n][t][K3][K1]

)

}
}
}
result=temp;
w_coherent_f[(int)(jf)][n][t]=result; /[<———— Storage in memory of the result
}
}
} //<—— end of the if—condition for check if jf+ same type as jO+
} //<—— end of the jf loop

cout << "////END jf-LOOP////"<< endl;

We have the loops over the shared K parameter for compute and store the sum :

w_coherent_f[(int)(j5)|[nllt] = wy (4, Jo 57, Aln], @[t])

3
> T (onlidosds, A, ®[t]; )

K1,K2,K3 N=1
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B.4.3 Writing the results

At the end of the loop over j; we have the all coherent objects in the memory, so the results writing part of the
code can be start. In this section we will expose the write parts of code.

Writing of the full coherent transition amplitude W The first step is to write the results from the full
coherent amplitude W of our assembly, but in memory we have just the coherent amplitude wy. So we need to take
the stored values of wy and sum them over the compatibles j; for built the amplitude W :

[T D)) ) Writing: coherent data//////)/////)1]]/]11111]1111]]

cout << "Writing coherent W(A,Phi)"<< endl;

ostringstream jOs, js;//create a stringstream
jOs << j0;//add number to the stream

js << j;

string name = "coherent W (A,Phi) jo=";

name += jOs.str ();

name 4= " _j=";

name += js.str ();

name +— ".txt";

ofstream results4 (name.c str(), ios::out | ios::trunc); //open the amplitude file

complex<long double> w_coherent [51][51];
for (int t=0; t<=50; t++){
float PHI=(1+2xt)«M_PI/102.0;
for (int n—0; n<=50; n++){
float A=2.0%(1+2*n)*min(j0,j)/102.0;
w_coherent [n ][ t]=0;
for (jf=j0—(int)(jO); jf<=3%j0; jf++){
float jfplus=jp approx(Immirzi,jf 1);
if ((jfplus —(int)(jfplus))==(jOplus —(int)(jOplus))) { //checks if jf+ same type as jO+
//=> calculation required
complex<long double> djf(2.0xjf+1.0,0);
w_coherent [n][t][+=djf+xw_coherent f[(int)(jf)][n][t];
}
}

resultsd <<PHI<<" "<<A<<"\t"<<abs(w_coherent [n][t])<<" "<<arg(w_coherent[n][t])<<endl;

}

results4 <<endl;

}

results4.close ();

We create the W data-file with the specification of the j : “coherent W(A,Phi) jOo=j, j=j.txt”. We define the
w_coherent|[][] table which will contain the values of W in case of subsequent calculation, and fill it with the
computed values :

w_coherent|n][t]

W (. jo, Afn], @[t])
> (24 + ) wy (4, jos j, Aln], @[t])

Jf

In the code we have the two loops over the parameter “n” and “t”, which correspond to the (A, ®) shape variables,
and for each pair we have a loop over the compatibles j¢ (given by the if-condition) for perform the summation.
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For each j; we get the stored value of w; from w_ coherent f[(int)(j;)][n][t], multiply it by the factor djf = 25 +1,
and increments the value of w_ coherent[n][t]. After the j; summation, the w_ coherent|n|[t] table box contain the
associated value W (§, jo, A[n], ®[t]) and is written in the data-file.

Writing of w¢-coherent In this section we will write the amplitude of wy in function of j; and given boundary
shape parameter (A, ®). The corresponding table will written in the data-file “coherent  W(jf,A,Phi) jO=j, j=j.txt”

cout << "Writing coherent wf(jf ,A Phi)"<< endl;

name = "coherent_ W (jf ,A,Phi)_jo=",
name += jOs.str ();

n

name += "_j=";

name += js.str ();

name += ".txt";

ofstream results5 (name.c_str(), ios::out | ios::trunc); //open the amplitude file

for (jf=j0—(int)(jO);jf <=3xjO;jf++) {
float jfplus=jp approx(Immirzi,jf 1);
if ((jfplus —(int)(jfplus))==(jOplus —(int)(jOplus))) { //checks if jf+ same type as jO+
//=> calculation required
for (int t=0; t<=50; t++){
float PHI=(1+42x*t)+«M _PI/102.0;
for (int n=0; n<=50; n++){
float A=2.0%(142%n)*min(jO,j)/102.0;
if (abs(w_coherent[n][t])>0){ //check if |w_coherent[n][t]|>0
//=> means that the values exist
//jf Phi A "wf(jf,A,Phi)" "P(jf|A,Phi)"
resultsb <<jf <<"\t"<<PHI<<" "<<A<<"\t"
<<abs(w_coherent _f[(int)(jf)][n][t])

<<” n
<<arg(w_coherent_f[(int)(jf)][n][t])
<<U\t”
< <(1.0+2.0xjf)«xabs(w_coherent f[(int)(jf)][n][t])/abs(w_coherent[n][t])
<<U n
<<arg(w_coherent_f[(int)(jf)][n][t]) —arg(w_coherent[n][t])<<endl;
}else{
results) <<jf <<"\t"<<PHI<<" "<<A<<"\t0 0\t0 0"<<endl;
}
}
resultsh <<endl;
}
resultsbd <<endl;

}
}
resultsb . close ();

For each cases, we write the j value, the ®[t], the A[n] and the associated wy (4, jo,jf, A[n], ®[t]) (norm and phase)

with also the normalized (2j; + 1) w{,[(,](j‘;ojgﬁlgnéi][)t]) (norm and phase). That useful if the user want study the raw

or normalized values of wy in terms of norms and phases.

Writing of (W|j, jo, A, ®,0f) Similarly to previously, we compute and write the (W|j, jo, A, ®,0¢) data :
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cout << "Writing coherent W(t2,A,Phi) cohérent

name = "coherent_ W (t2 ,A,Phi)_jo="
name += jOs.str ();

name += " _j=";

name += js.str ();

name += ".txt";

ofstream results6 (name.c str(), ios::out | ios::trunc); //open the amplitude file

complex<long double> w_thetaf_ coherent [51][51][51];
for (int t=0; t<=50; t+-+){
float PHI=(1+2xt)+«M PI/102.0;
for (int n=0; n<=50; n++){
float A=2.0%(14+2*n)*min(j0,j)/102.0;

for (int n2=0;n2<=50;n2++){
float theta2=M PIx(1+2%n2)/102.0;

w_thetaf coherent[n][t][n2]=0;
for (jf=jO0—(int)(jO);jf<=3xj0;jf++) {ls
float jfplus=jp approx(Immirzi,jf ,1);
if ((jfplus —(int)(jfplus))==(jOplus —(int)(jOplus))){ //checks if jf+ same type jO+
//=> calculation required
complex<long double> w _thetaf coherent temp
=pow (sodcoherent [(int)(jf)][n][t][n2][25],3.0);
if (abs(w_thetaf coherent_temp)>=0) {
complex<long double> djf(1.0+2.0%jf ,0);
w_thetaf coherent[n]|[t][n2] += djfxw_thetaf coherent temp;
}
}
}
// Phi A  theta2 '"W(t2,A,Phi)"  "P(t2|A,Phi)"
results6 <<PHI<<" "<<A<<"\t"<<theta2 <<"\t"
<<abs(w_thetaf_coherent[n]|[t][n2])
<<" "
<<arg(w_thetaf coherent[n][t][n2])
<M
<<abs(w_thetaf _coherent[n]|[t][n2])/abs(w_coherent[n][t])
<<" "
<<arg(w_thetaf coherent[n]|[t][n2])—arg(w_coherent|[n][t])<<endl;

}

results6 <<endl;

}

results6 <<endl;

}

results6.close ();

As in the writing code section of W, we have the loops over (n,t) for browse the all cases of boundary coherent
state, the loop over the n2 for the discrete values of 6;[n2], and we have a loop over the compatibles j; for make
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the sum :

(W1j, jo, Aln], B[t], 6;[n2]) ZH<ON|HO,Jf, ], @[t), A7 (62), 5 ) (219)

jr N=1

For each case, in the file “coherent W(t2,A,Phi)_j0=jo_j=j.txt”, the code write the values of ®[t], A[n|, 0[n2]

<W|j7j07A[n]7(1)[t]a0f)

and their associated (W|j, jo, A[n], ®[t], 0¢[n2]) (norm and phase) with also the normalized o AR elT - (norm

and phase).

Writing of (W7, jo,js, A, ®,0;) We have the same for the (W|j, jo,j¢, A, ®,0f) :

cout << "Writing coherent W(jf ,t2,A, Phi)"<< endl;

name = "coherent_ W (jf ,t2,A,Phi) _jo=";
name += jOs.str ();

name 4= " j=";

name +— js.str ();

name += ".txt";

ofstream results7 (name.c_str(), ios::out | ios::trunc); //open the amplitude file

for (int t=0; t<=50; t++){
float PHI=(1+2xt)«M_PI/102.0;
for (int n—=0; n<=50; n++){
float A=2.0%(1+2*n)*min(j0,j)/102.0;
for (jf=j0—(int)(jO);jf <=3%j0; jf++) {
float jfplus=jp approx(Immirzi,jf 1);
if ((jfplus —(int)(jfplus))==(jOplus —(int)(jOplus))){ //checks if jf+ same type as jO+
//=> calculation required
float maxK4=j0-+min(j0,jf);
float minK4=abs(jf—j0);
for (int n2=0;n2<=50;n2++){
float theta2=M PIx(14+2%n2)/102.0;

results7? <<PHI<<" "<<A<<"\t"<<jf <<"\t"<<theta2 <<"\t"

<<abs(so4coherent [(int)(jf)][n][t][n2][25])

<<U n

<<arg(so4coherent [(int)(jf)][n][t][n2][25])

<<”\t”

<<pow (abs (sodcoherent [(int)(jf)][n][t][n2][25]),3.0)
/abs (w_coherent [n][t])

<<U n

<<3.0xarg (sodcoherent [(int)(jf)][n][t][n2][25])
—arg(w_coherent[n][t])

<<||\t”
<<pow (abs (sod4coherent [(int)(jf)][n][t][n2][25]),3.0)
/abs (w_coherent f[(int)(jf)][n][t])
<<” n
<<3.0xarg (sodcoherent [(int)(jf)][n][t][n2][25])
—arg(w_coherent f[(int)(jf)][n][t])<<endl;
}
results7 <<endl;

}
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}

results? <<endl;

}

results? <<endl;

}

results7.close ();

where we write in the data-file “coherent_ W (jf,t2,A,Phi) _j0=jo_j=j.txt” the values of ®[t], An], jr, 6;[n2] and
<W|j7j0ajf7‘4[n]7q>[ﬂ79f [n2]>
wy (4,J0,5f,Aln], 2[t])

their associated (W|j, jo, js, An], ®[t], #¢[n2]) (norm and phase) with the normalized (norm

and phase).

Writing of (Ox|j, jo,js, A, @, A, ®¢)and end of the main Finally we write the amplitude transition of indi-
vidual coherent 4-simplex :

cout << "eériture des W(jf ,Phif t2 A Phi) cohérent"<< endl;

name = "coherent W (jf ,Phif t2,A,Phi) jOo=";
name += jOs.str ();

name 4= " _j=";
name += js.str ();

name += ".txt";

ofstream results8 (name.c_str(), ios::out | ios::trunc); //open the amplitude file

for (jf=j0—(int)(jO);jf<=3xjO;jf++) {
float jfplus=jp approx(Immirzi,jf 1);
if ((jfplus —(int)(jfplus))==(jOplus —(int )(jOplus))){ //checks if jf+ same type as jO+
//=> calculation required
for (int t=0; t<=50; t++){
float PHI=(1+42x*t)+«M _PI/102.0;
for (int n=0; n<=50; n++){
float A=2.0%(14+2*n)*min(jO,j)/102.0;
for (int n2=0;n2<=50;n2++){
float theta2=M PIx(1+2%n2)/102.0;
float Af=sqrt (jOxjO+jf*jf+2.0xjOxjf*xcos(theta2));
for (int t2=0; t2<=50; t2++){
float PHIf=(1+2xt2)«M_PI/102.0;
results8 << jf <<"\t"<<PHI<<" "<<A<<"\t"<<theta2 <<"\t"<<Af<<" "<<PHIf<<"\t"
<<abs(so4coherent [(int)(jf)][n][t][n2][t2])
<<" n
<<arg(sodcoherent [(int)(jf)][n][t][n2][t2])<<endl;

}

results8 <<endl;

}

results8 <<endl;

}

results8 <<endl;

}

results8 <<endl;

}
}

results8.close ();
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} //<—— END of the MAIN

in the data-file “coherent W (jf,Phif,t2,A Phi) jO=j,_j=j.txt” with the values of j;, ®[t], An], 0¢[n2], A; (6;)
(A priory redundant, but useful if you want draw some graphic in function of Ay),®;[t2], and their associated
(Ol7, jo, jf. An], @[t], Af (65n2]), &¢[t2]) (norm and phase).
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