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Introduction

Machine learning originates from Artificial Intelligence’s quest to re-
produce what is arguably one of the core features of an intelligent be-
havior: the ability to be taught. That is, more than the ability to repeat
mindlessly a lesson, to learn complex concepts from limited experience
and examples alone. In doing so, Machine Learning rapidly outgrew
the field of Artificial Intelligence, which was focused on other, wider,
problems, to become a scientific field of its own. The (short) history of
Machine Learning is exhilarating and a topic worth discussing in itself
although here is not the place to recount it. Suffices to say that in the
absence of any formal definition of human learning, Machine Learning
established itself at the crossroad between a diverse scientific fields in-
terested in uncovering and generalizing patterns from data. Through-
out the years, Machine Learning has never ceased to be fueled by theory
and results from many scientific fields from Mathematics and Computer
Science. As such, modern Machine Learning is a particularly heteroge-
neous topic with strong influences from multiple fields such as but not
limited to Computational Statistics, Signal Processing, Language Process-
ing, Neuro-Computing, Computer Vision, Convex and non-Convex Opti-
mization, Linear Programming, Data Mining, Information Retrieval and
of course Theoretical Computer Science through Computational Learning
Theory.

More concretely, Machine Learning is interested in devising systems
that are able after observing a particular behaviour in various situation to
accurately mimic said behaviour on a previously unseen environment. If
we refer to the environment as input and the behaviour as output, the task
of learning is thus to correctly predict the outputs associated with some
new inputs based on previous observations of input/output pairs and we
refer to this particular setting as supervised learning.

One of the major topics Machine Learning is interested in is the one
of Concept learning, that is to separate inputs that match a given concept
from the others. A textbook example of concept learning that has found
its way into our daily lives is SPAM automatic detection, where in this
case the inputs are the various emails one receives and the outputs consist
of the values +1 and −1 whether the message is a SPAM. Hence, learn-
ing to distinguish between SPAM and non-SPAM emails amounts to learn
the concept of what a SPAM is. More generally, concept learning or, al-
ternatively, classification, refers to the problem of predicting whether an
input belongs to a concept based on previous observations. A variation of
the problem of classification that we may mention is Multiclass Classifi-
cation, where instead of predicting membership to some specific concept,
the learners task is to discriminate the inputs into multiple categories. A
practical example of Multiclass Classification is the problem of handwrit-
ten digits recognition where the classification task is that given a picture
of a handwritten digit to be able to determine which digit it is; a task for
which modern automatic recognition algorithm are on par with human
capabilities [Ciresan et al., 2012].

1



2 Introduction

Classification will be the central focus of this thesis, whether it is
multiclass or binary classification. Formally, a working assumption in
classification problems is that the data, that is the inputs, are vectors in a
Euclidean space of arbitrary dimension and the outputs are either +1/−1
for binary classification or an integer between 1 and Q in the case of mul-
ticlass classification with Q classes. The usual setting in Machine Learning
is the so-called supervised setting where it is assumed the existence of a
training set S composed of input/output pairs, where the input is thus a
vector and the output a scalar value. We formally call target concept and
write t the concept we wish to learn, that is t is a mathematical function
that maps each input vector with its associated class. The task of learning
in itself consist in inferring the correct classification rule from S only, that
is to find a function h that will mimic t as closely as possible. Supervised
learning has long been studied and represents what is usually accepted
as the most common setting for machine learning as it is both a simple
and intuitive paradigm but also allows for interesting and insightful the-
oretical results.

Motivations

Let us motivate our work through an example and consider the (fictive)
problem of categorizing different pictures of vertebrate animals with re-
spect to their subcategories, that is fishes, amphibians, reptiles, birds and
mammals; notably, this problem is inspired from the iconic Animal With
Attribute learning task [Lampert et al., 2009]. As it is, constituting a su-
pervised dataset for this problem seems easy enough, each of the five
groups have easily identifiable visual cues that most people learned to
recognize. For instance, fishes have fins, reptiles have scales, mammals
have furs or hair, birds have feathers and amphibian fit neither of those
previous rules and their skin is naked. Hence based on those simple rules
it seems that pretty much anybody with an internet access can gather a
dataset for problem and label it at minimal costs.

The point is these rules are simplistic and although they may work
in general, some cases may require more thought before deciding which
category they belong. For instance, whales may seem closer to fishes than
mammals, moreover there is sometime a thin line between whales and
sharks which are from two different groups, which is something that may
be confusing. Additionally, categorizing some species in any group at all
may prove challenging for anyone without an expert knowledge. Such is
the case of the platypus and although it is now known that the platypus
belongs to the group of mammals (despite its beak, venomous fangs and
the fact that it lays eggs) the discovery of the specie by European travellers
originally sparked controversy even among experts and the animal was for
some time considered a hoax. Additionally, far less iconic species may also
prove challenging —see e.g. the Axolotl also known as “Walking Fish”—
and more than an peculiar oddity these difficult cases represent a reality
that should be accounted for.

From a higher point of view, we may ask the question of the rele-
vance of those underrepresented species with respect to the problem as a
whole. The fact is, among the nearly 70, 000 vertebrates species referenced,
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half of them are fishes and less than 10 percents are mammals; moreover,
vertebrates only amounts for approximately 5 percents of the described
animal species in general. Arguably, a classifier that predicts every verte-
brates to be fishes is no better than one that does the same with mammals,
however, assuming that each species are equally represented in the pic-
tures, the former will have a 50% accuracy rate (that is, half the examples
will be correctly classified) but the latter will only be correct on 8% of the
pictures. Put otherwise, concept learning is about accurately learning con-
cepts rather than making as few mistakes as possible and the same applies
to those limit cases which are difficult to categorize: they are part of the
concepts we are trying to learn, independently of how underrepresented
they are with respect to the problem as a whole.

The message behind this example is that more often than not, accu-
rately labelling the data is difficult and there is actually a great disparity
in label and data availability. In the example above, this comes from the
fact that, for some data, an expert is needed in order to properly categorize
an image, this is both a slow and a costly process as opposed to acquiring
the data which can be automated without much hassle. This disparity is
often unaccounted for in the supervised setting and as a result, one must
either deal with mislabeled data or simply ignore a part of the data for
which reliable labels cannot be obtained.

At this point we may also mention the semi-supervised setting which
aims to answer this problem by taking into account both labeled and un-
labeled data. Notably semi-supervised learning has been a vivid topic
in machine learning for the past years [Zhu, 2005]. Ultimately, semi-
supervised learning is more of a passive solution to the problem of label
scarcity whereas the present work seeks to explore proactive approaches
for coping with the inherent difficulty of obtaining labels and although
semi-supervised learning is closely related to some of our contribution it
is a setting that eventually falls outside of the scope of this thesis.

The main idea driving this thesis is that label availability should not be
considered as a hard limit to the constitution of a training set but more of
an adjustment variable that one can tweak and play with. More precisely,
our message is that one can play with label (un)availability by willingly
allowing for some labelling errors or, at the contrary, asks for fewer, infor-
mative, labels.

The first approach leads to a supervised learning problem where some
labels are wrong, keeping our previous example in mind this correspond
to the case where the pictures are not labelled by an expert and as such
some errors are made, however chances are that those errors will follow
some kind of pattern. For instance, in regard to the whale/shark dis-
cussion above, we can expect some errors between fishes and mammals,
moreover Axolotl and other similar species are expected to sometimes be
categorized as fish rather than amphibians. On the other hand, fishes
and birds are two distinctive groups and very few mistakes should be ex-
pected between those two groups. As for the second approach, a solution
is to allow for interactivity between the learner and the expert in order
to reduces the number of labels required for learning. In a nutshell, the
idea is to let the learning algorithm actively decides which data are rel-
evant to its learning procedure rather than providing it with an already



4 Introduction

labelled dataset. Through this interactivity we aim to reduce the number
of labelled pictures needed and only focus on the interesting ones, that is
the ones we truly need an expert for. Typically, in the example discussed
so far, it is expected that a few queries are made to roughly identify the
five groups then most of the subsequent label requests would be about
difficult cases where the categorization problem is not trivial.

A more formal approach

In addition to the above example, we shall formally lay out the foci of
this thesis as well the contribution we propose. As stated before, from a
practical standpoint this work revolves around two settings that we may
motivate as solutions to overcome the issues of label unavailability clas-
sification problems. Moreover, a theoretical and transverse theme of the
present work is to discuss the problem of classification through the various
fields related to Machine Learning, as a result the domain of relevance of
our contributions ranges from statistical learning theory to computational
geometry.

Confusion Problems

Dealing with errors in the training set is arguably as old as classification
itself, the fact is whether it is from some corrupting processes or a lack
of proper access to the target concept, machine learning has to cope with
dataset that might contains erroneous labels. Unfortunately strong nega-
tive theoretical results were given early on for learning under the presence
of labeling mistakes in the general case (see e.g. [Höffgen et al., 1995])
which motivated a shift in the literature to slightly more specific set-
tings. The one we are interested in is that of confusion noise when the
labelling errors in the dataset only depend on the classes and not the
location of the data. In a binary setting it means that the errors are char-
acterized by their mislabeling probability with respect to the positive and
negative classes alone and past works have shown that learning can be
achieved in binary classification under the presence of confusion noise
[Blum et al., 1998, Bylander, 1994]. We will investigate how this work can
be extended to the problem of multiclass classification to which confusion
noise naturally extend, notably the noise will be tied to a confusion matrix
containing the mislabelling probability rates between each possible pairs
of classes. One of our contribution is to propose a novel algorithm to deal
with the multiclass confusion setting which we call UMA. We provide
a theoretical analysis of UMA and demonstrate its statistical correctness
with respect to the problem of confused multiclass learning. Moreover,
UMA is, to the best of our knowledge, the first algorithm to be provably
efficient in this setting.

Active Learning

Active learning is a natural and elegant way to overcome the label require-
ment of the supervised setting. From a theoretical perspective, supervised
learning requires the training set to be big enough to ensure that the only
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consistent solution with the labeled data is sufficiently close to the target
concept. Active learning, on the other hand, iteratively build a solution
from a few labeled examples and interactively asks for the most relevant
labels retrospectively to the current set of consistent hypotheses. The end
result is an algorithmic scheme that starts from an unlabeled dataset and
iteratively asks for more labels. Thus, active learning algorithms gen-
erally may require far less labels than their supervised counterpart at
equal performance rates. Recent advances in active learning pointed at
a possible geometric interpretation of the problem that seemed promis-
ing but ultimately was left unexplored [Tong and Koller, 2001], notably
the Active Learning algorithm proposed was functionally close to local-
ization methods such as Cutting Planes algorithms. We will propose a
new interpretation of active learning built upon these geometrical consid-
erations and more particularly a new family of active learning algorithms
based on this geometric interpretation. Additionally this family general-
izes some well-known, state-of-the-art, active algorithms and our geomet-
rical interpretation will shed new lights on the capacities and limitations
of those. We will therefore propose a variation of the algorithm proposed
in [Tong and Koller, 2001] that is both theoretically justified and validate
our analysis through experimental results.

Theoretical aspects

Learning in general, and particularly classification, is known to be
strongly related to the problem of solving a set of linear equations. An
interpretation of learning is thus to solve a linear programming problem,
a link that is well known in the machine learning community but surpris-
ingly rarely considered. Linear programming methods are usually used
as off-the-shelf tools and their features from a Machine Learning stand-
point tend to be overlooked. In this thesis, we will provide a detailed re-
view of how classification and linear optimization precisely relates to each
other. Moreover, we will focus on a geometric interpretation of classifica-
tion where the task of learning amounts to localizing a vector into some
convex version space. Building on these ideas and the peculiar needs of
machine learning, we will not only propose a new compound algorithm
that combines the strengths of both machine learning’s perceptron and
Cutting Planes methods but also give a new theorem on the partitioning
properties of approximate centers of gravity. Notably, this last contribu-
tion is not limited to the setting of machine learning and is relevant to all
methods relying on the partitioning properties of centers of gravity.

Outlines

This thesis is organized along three parts. In an attempt to propose, as
much as possible, a self-contained content the first part is dedicated to the
formal introduction of the various notions and ideas behind linear clas-
sification that we will use throughout this work. Because providing an
extensive review of even the most fundamental notions of linear classi-
fication is unrealistic, this part should not be taken as a work of review
but merely as a warm-up for the remaining of this thesis and a mean to
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gently introduce our notations and formalisms. Chapter 1 will deal with
the most fundamental matters while chapter 2 will provide an additional
layer of refinement and extend the ideas presented previously. By the end
of part I most of the non-specific theoretical ground for this thesis will be
introduced and the two remaining parts will focus on the details of our
contributions and thus are independent from each other.

Namely, part II tackles the problem on confusion learning and chapter
3 is devoted to a review of the state-of-the-art for bi-class confused learn-
ing as well as the introduction of confusions matrices as both an error
measure and a noise descriptor. Chapter 4 will present our first contribu-
tion, a study of the problem of confused learning in a multiclass setting,
which was first published at the Asian Conference on Machine Learning in
2013 [Louche and Ralaivola, 2013] and as an extended version in Machine
Learning Journal [Louche and Ralaivola, 2015b].

The last and third part of this thesis is three-fold an while the mo-
tivation throughout this part is the application of Cutting Planes meth-
ods to Active Learning algorithms, each chapter has its own focus and
can be taken independently. In chapter 5, we will take a step sideways
and consider the problem of localizing a point within the confines of a
version space, a problem that is strongly related to classification. In par-
ticular, the focus of this chapter will be on geometrical aspect and Cut-
ting Planes methods. Moreover, one of our contribution in chapter 5 is
theorem 5.2 which is an extension of the fundamental theorem of cen-
ters of gravity (theorem 5.1 [Grunbaum, 1960, Levin, 1965]) to approxi-
mate centroids. Chapter 6 deals with general machine learning in light
of the discussions of the previous chapter and will notably discuss how
Cutting Planes methods are naturally fit for machine learning problems,
something we demonstrate by proposing a new hybrid algorithm that
theoretically and practically combines the properties of a Perceptron al-
gorithm with the update scheme of Cutting Planes methods. Lastly, chap-
ter 7 will introduce the setting of Active Learning and discuss how the
general active learning process is similar to the Cutting Planes update
scheme. Additionally, in regard of the previous discussions in chap-
ters 5 and 6 we will provide new theoretical insights on the work of
[Tong and Koller, 2001] and propose a theoretically sound framework as
well as an improvement of their algorithm based on our theoretical analy-
sis. Finally, note that the contributions of these las three chapters were all
first published together at the International Joint Conference on Neural Net-
work in 2015 [Louche and Ralaivola, 2015a] where it won the best student
paper award.



Notations

Mathematical Notations
x, w, u, v, . . . Vectors
W, M, C, . . . Matrices
W·i The ith column of the matrix W
Wi· The ith row of the matrix W
W>, x> The Matrix and vector transposes
‖ · ‖2 The Euclidian vector norm
‖ · ‖F The Frobenius matrix norm
〈·; ·〉 The inner product of two vectors
X, T, . . . Random Variables
D , Dt, U , . . . Distributions
ED [·] The expectation of a random variable with respect to

the distribution D
PD (·) The probability of an event with respect to the distribu-

tion D
C,W , E , . . . Sets
| · | The size of a set / the absolute value of a scalar
[N] The set of integers {1; . . . ; N}
O(·) The Big O notation

Commonly Used Terms
H, X, Y Hypothesis, Input and Output spaces
x A learning example
t(·) The target concept
hw(·) The linear classifier of normal vector w
γhw

x , γhw
S The margin of hw over a training data x and across a

training set S
D The unknown data distribution over X

Dt The joint data distribution over X×Y consistent with t
S i.i.d∼ DN

t The training set S composed of N independent realiza-
tions of the joint distribution Dt

l0−1(·, ·) The 0-1 loss
Rl0−1

Dt
(·) The 0-1 risk of a classifier with respect to the joint dis-

tribution Dt
Rl0−1
S (·) The empirical 0-1 risk of a classifier with respect to S

Q The number of classes in multiclass problems
C The confusion matrix of a noising process
0D The zero vector of dimension D
ID The identity matrix of dimension D
I [·] The indicator function
B1 The Ball of unitary Euclidian norm
C The search space
W The version space
Vol(·) The volume of a convex body
CC(·), CG(·) The Chebyshev and gravity centers of a convex body
O(·) An Oracle function
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The present chapter aims at providing a gentle start to the ideas of
linear classification. While we do not expect the topics exposed here to be
new for most readers, this chapter should be seen as a mean to introduce
our notation and underline the peculiarities of our setting. Notably we
give a hyperplane’s definition (definition 1.1) that is rather unusual in
the machine learning literature. Although our definition is equivalent to
the usual one, it will allow for an easier exposition of our contributions
throughout this thesis.

More generally, this chapter serves the purpose of giving a rough di-
rection to this thesis by laying out its fundamental ground. Hence, this
chapter is heavily biased toward the problems we will tackle later on in
Part II and III, that is noisy multiclass classification and active learning.
As such, this chapter is in no way an extensive exposition of the founda-
tions of machine learning and more often than not we will refer the reader
to external references as soon as our discussion leaves the boundaries of
what is needed for this thesis to be understandable. To some extent, that
last remark holds for the various definitions and theorems to come in the
sense that we will usually favor a simpler formulation over an unneeded,
more general statement.

11
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1.1 The scope of this Thesis

As in everything, we first have to clarify, formally, what belongs within
the boundaries of this work and what does not, if we ever want to move
on more complex matters. This section’s aspiration is simply to precisely
draw the line between what is relevant to this thesis and what is not. In
other words, before anything else we have to discuss, even briefly, what
are these mathematical objects we are interested in.

1.1.1 A story of spaces and problems

Let us start with the input space, X, where our data lives. Throughout
we will assume X to be a Euclidean space of predetermined dimension
D. Therefore, data are seen as vectors in X of dimensions D. In practice
however, data are usually real-valued vectors and most of the time it is
fair to assume that X is akin to RD.

Associated with X is the output space Y which is the space of values that
will be matched with each data. With different Y comes different machine
learning problems. Regression problems correspond to the case where
Y is a continuous space, while classification problems imply a discrete
and finite Y. This thesis will focus on classification problems and as such
regression will be left mostly untouched hereafter. More precisely, we will
be interested in the so-called bi-class case and its multiclass extension,
that is, respectively: Y

.
= {−1; 1} and Y

.
= {1, . . . , Q} where Q ∈N is the

number of classes in the multiclass setting.
However, as far as this chapter is concerned we will only discuss the

problem of binary classification, hence, unless specified otherwise,

Y
.
= {−1; 1}

This will save us a lot of hassle and allow for streamlined notations while
we will be expounding the basic notions of classification. Multiclass clas-
sification will then be properly reintroduced in Section 2.3.

1.1.2 Classes and hypothesis

Put simply: machine learning is about inferring some functions from a
training sample that map X to Y and while the hows will be made clear
in a while, we will first introduce some notions.

We distinguish two semantic groups amongst those mappings referred
to as concepts and hypotheses. Both are set of functions from X to Y and
the distinction between the two is only in how they relate to the task of
classification. Namely: concepts are arbitrary and unique to each problem,
they are the function to be inferred and as such are generally unknown to
the user; conversely, the hypotheses are candidate functions able to mimic
a given concept and the pith of learning is to find the one hypothesis that
is the most similar to that concept.

Hypotheses are bound to a hypothesis class or, interchangeably, hypoth-
esis space noted H ⊂ YX, where YX denotes the set all functions from X

to Y. The concept —noted t hereafter— on the other hand, may or may
not be an element H and different problems arise whether t ∈H; yet, it is
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unnecessary and cumbersome for now to delve into these considerations
without a proper definition of learning.

Many different hypothesis class have been studied in machine learn-
ing. Among them is the class of linear classifiers which is arguably one
of the most popular. A tremendous amount a research has focused on
this particular class, leading to some of the most well-known methods of
machine learning (e.g. [Boser et al., 1992]).

In a nutshell, linear classifiers are hyperplanes in X (that is usually
RD). Thus they split X in two parts, inducing a mapping from X to Y.
More formally

Definition 1.1 (Linear Classifier) We call linear classifier of normal vector w ∈ X, the function
hw ∈ YX such that for any point x ∈ X:

hw(x) .
= sign [〈w; x〉]

where sign(0) is arbitrarily set to +1 and 〈·; ·〉 denotes the inner product in X.

Alternatively, any w ∈ X implicitly defines a linear classifier:

w ≡ hw

and both hw and w will be used interchangeably. In other words, since
this thesis will exclusively focus on linear classifiers, and because linear
classifiers are akin to a vector in X, unless specified otherwise, we will
now assume that:

H ≡ X

It should be noted that this definition does not match the one usually
found in machine learning textbooks. Instead, hyperplanes as usually de-
fined with respect to a normal vector and an offset term. The fundamental
difference being that in our case hyperplanes must pass through X’s ori-
gin. However, the two definitions can be seen as equivalent and one can
seamlessly transition from one definition to another at the cost of an ad-
ditional dimension by embedding the offset term into the hyperplane’s
normal vector (see, e.g., [Dunagan and Vempala, 2008] for more details).

To conclude this section, it should be noted that the semantic behind
the various notions we have introduced is of utmost importance, espe-
cially in the context of the present memoir where hypotheses and data
share a common representation, that is, a vector in X. Additionally, this
may also be beneficial, and switching between representations may yield
unsuspected results. In particular, this is one of the premises upon which
Part III is built.

1.2 Risks and Losses

1.2.1 Losses

Now that we have properly defined the hypothesis space, we may in-
troduce the fundamental tools we will use to measure the discrepancy
between hypotheses and concepts. Namely, we call loss some functional

l : H×X×Y→ R+
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Conceptually, losses are a mean to measure disagreement between two
functions in YX. Different losses imply different disagreement measures
and each have their pros and cons. The most intuitive —but also the less
practical— loss is the 0-1-loss which is defined as follow:

Definition 1.2 (0-1-loss) Given a hypothesis h ∈ H, a concept t and a datapoint x, the 0-1-loss
of h with respect to t on x is defined as:

l0−1(h, x, t(x)) .
=

{
0 if h(x) = t(x)
1 else

Although the 0-1-loss is easy to fathom, it is otherwise hard to work
with as the function is not continue on H (figure 1.2). Through the years,
machine learners have devised surrogate losses to palliate the difficulties
of working directly with the 0-1-loss. For linear classifiers, those surro-
gates typically rests on the notion of margin and are defined as a continu-
ous and derivable function of the margin (see also figure 1.1).

Definition 1.3 (Margin of a Point) Let set x ∈ X and hw ∈ H such that hw is of normal vector
w. We define the margin γhw

x of hw on x as:

γhw
x

.
= 〈w; x〉

Some examples of loss functions defined that way include the
quadratic loss: lquad(hw, x, t(x)) .

= (t(x) − γhw
x )2 and the exponential loss:

lexp(hw, x, t(x)) .
= exp(−t(x)γhw

x ). Finally, we introduce the hinge loss
which is one of the most popular losses in linear classification and, as
such, will be of particular interest for the following of this thesis:

lhinge(hw, x, t(x)) .
= max{0, 1− t(x)γhw

x }

1.2.2 Risks and Training Set

Training set

Until now, we have left unanswered the details of what we usually refer as
learning and stood by the idea that, somehow, the task consist in finding
a hypothesis h ∈ H that mimics some concept t. The catch here is that
we cannot manipulate X as a whole because it likely contains an infinite
number of elements and no representation of finite size. Hence the idea is
to sample X and work with a finite sample of the set. A classical assump-
tion that we retain throughout is that this sampling is done with respect
to a fixed, yet unknown, distribution D and each sample is identically and
independently distributed (i.i.d for short) according to D . The intuition
behind D is that all element in X are not all observed with the same fre-
quency, particularly, X might contains elements that are very unlikely to
be observed through the sampling procedure. Additionally, we assume
the samples to be drawn simultaneously with their associated classes and
define the notion of training set S :

S .
= {xi; ti}i∈[N]
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Figure 1.1 – The 0-1, quadratic, hinge and logistic losses with respect to the classifier
margin for a given point.

Figure 1.2 – The empirical risk associated with the 0-1 loss (left) and the hinge loss
(right) with respect to w on a linearly separable 2D toy dataset. The plots represent the
value of both losses for every two-dimensional classifier w = [w1, w2]

> with w1 and w2
in [−1; 1]
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Where, with a slight abuse of notation, we define ti
.
= t(xi).

Although this is a reasonable assumption in the general case, they
may have some settings where the labels are not as readily available as
the data. Actually, one of the motivations of this thesis is precisely to deal
with those cases where the basic assumption that a training composed of
reliable data-label pairs is available does not hold and we tackle this issue
in the following chapters.

It occurs that sometimes it may be convenient to think of S differ-
ently. Namely, we may see each xi and ti as a realization of some random
variables X and T where X ∼ D . In this representation, S is akin to a
collection of realizations of X and T drawn upon a joint distribution Dt
such that P (T = t(X)|X) = 1; and for the sake of concision, we will write:

S i.i.d∼ DN
t

Risk

With training sets comes the need to generalize the notion of loss to sets
of examples. Such generalization is called risk as it aims to measure the
average loss a given hypothesis will achieve on examples drawn from D .

Definition 1.4 (True Risk) For a hypothesis h ∈ H, an arbitrary concept t and a fixed loss
functional l we define the (true) risk of h as

Rl
Dt
(h) .

= EDt [l(h, X, T)]

Obviously, the true risk is an abstract measure of performance as we
lack the knowledge of Dt. Because of this, we have to rely on empirical
estimations of the risk, based on finite observations of Dt such as S .

Definition 1.5 (Empirical Risk) For a hypothesis h ∈H, a training set S i.i.d∼ DN
t and a fixed loss

functional l we define the empirical risk of h on S as

Rl
S (h)

.
=

1
N ∑
S

l(h, xi, ti)

Let us assume for a moment that we have an algorithm that, given
S , finds h ∈ H such that h .

= arg minH Rl
S (h) for a fixed, convenient,

loss l. The question of whether Rl
Dt
(h) can be bounded in term of Rl

S (h)
is of utmost importance as it will enable minimization of the true risk
through minimization of the empirical risk. Nonetheless, designing such
an algorithm —that is, one that provably finds a minimizer of Rl

S (.)— is a
problem on its own that we will tackle later in section 1.3.

1.2.3 P.A.C. learning and VC-dimension

Intuitively —and, to some extent, from the law of large number— it seems
reasonable to think that if S is large enough then, for any h ∈ H, the
values of Rl

S (h) and Rl
Dt
(h) will be close. In other words, the question of

how true and empirical risks relate to each other seems a bit ill-posed. A far
more interesting question, though, is to determine the minimal size of S ,
if any exists, that guarantees an arbitrarily small distance between Rl

S (h)
and Rl

Dt
(h).
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P.A.C. learning

The Probably Approximately Correct setting (P.A.C.), or alternatively Formal
Setting, is a framework aimed at providing formal and sound definitions
to the fundamental notions in machine learning. Established by Valiant
[Valiant, 1984] it is the cornerstone of modern learning theory and at its
core, are the notions of learning algorithm and P.A.C.-learnability. In a nut-
shell, a learning algorithm Al is an application from (X×Y)N to H such
that, for a given training set S of size N .

= |S|:

Al(S) .
= arg min

h∈H
Rl

Dt
(h)

As for P.A.C.-learnability the following definition is given

Definition 1.6 (P.A.C.-learnability) Let H ⊂ YX some hypothesis class, T ⊂ YX some concept
class and D an arbitrary distribution over X. Moreover let l some fixed loss
function and δ, ε ∈]0, 1[ some parameters set in advance. We say that H is
P.A.C.-learnable assuming T if and only if: there exists a learning algorithm
Al and some integer N0(ε, δ) such that for any concept t ∈ T and training set
S i.i.d∼ DN

t , N ≥ N0(ε, δ) the following holds with probability at least 1− δ:

Rl
Dt

(
Al(S)

)
≤ Rl

Dt
(h∗) + ε

Where h∗ is the optimal hypothesis of H:

h∗ .
= arg min

h∈H
Rl

Dt
(h)

This definition deserves some more exposition time to be fully
grasped. First, remark that we have introduced two new parameters δ
(confidence 1− δ) and ε (accuracy ε), hence the Probably THe reason for
this is the necessity to allow for some degree of uncertainty in learning.
The next observation is that we require to be close to the optimal solution
h∗, it is important to note that, for now, no assumption has been made on
t and because of that, there is no guarantee that RDt(h

∗) = 0. Also, we
have not yet restricted the execution time of Al and the definition does
not preclude exponential algorithms. If Al is polynomial in 1/δ, 1/ε and
N we will say that H is efficiently P.A.C.-learnable assuming T. In practice
though, Al is generally polynomial in N and N0(ε, δ) is a polynomial of
1/ε and 1/δ.

The major caveat of P.A.C.-learnability lies in its requirement for algo-
rithms that reliably produce almost optimal hypotheses, independently of
S and t. With little other choice than directly minimizing Rl

S (h) we need
a strong bond between empirical and true risks: we require that empiri-
cal and true risks are close for both h∗ and h, independently of S and t.
Phrased differently, we do not only ask for Rl

S (h) to be close to Rl
Dt
(h)

with respect to some fixed h but for any h ∈H at the same time.

VC-dimension

The VC-dimension was introduced by Vapnik and Chervonenkis in
[Vapnik and Chervonenkis, 1971]. Not only they established theoretical
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Figure 1.3 – The case of hyperplane (with an offset term). Any of the 6 possible labellings
over those 3 points can be produced by a linear classifier. Hence, the class shatters this
set of 3 points.

necessary conditions for Rl
S (h) to be close to Rl

Dt
(h) but they also intro-

duced a capacity measure that captures the notion of learnability. The
theory of VC-dimension rests on the notion of capacity of a class of hy-
potheses H. The starting idea is simple: the richer is H, the larger is N0
(see definition 1.6). Roughly, the intuition is that more diversity in H re-
quires more observations —in other words elements in S— to distinguish
two hypotheses. While this is easily believable for finite hypothesis class
where |H| < ∞, VC-dimension happens to accuratly capture the ’effective’
capacity of infinite hypothesis classes through the notion of shattering.

Definition 1.7 (Shattering and VC-dimension) For a hypothesis space H and a set of points E .
=

x1, . . . xN . We say that H shatters E if and only if, for each subset E ′ ∈ P(E),
there exists an hypothesis h ∈H such that

h(x) = +1⇔ x ∈ E ′

Additionally, the VC-dimension of H, denoted VC(H), is defined as the size
M .

= |E | of the largest set E that is shattered by H. If H can shatter arbitrarily
large sets, then VC(H)

.
= ∞.

The key observation behind this definition is that, for a given set E
there is exactly 2|E | different labeling of +1 and −1. Intuitively, the VC-
dimension corresponds to the critical moment when a hypothesis class is
no longer rich enough to produce all of those 2|E | labellings.

Theorem 1.1 (VC-dimension of linear classifiers) Let H the hypothesis class of linear classifier of
dimension D, as they were defined in definition 1.1 then VC(H) = D1.

Note that the class of linear classifiers is of particular interest here.
Its VC-dimension scales linearly with the dimensionality of the data and

1Note that the usual result is for linear classifier with an offset term b. In this case, the
VC-dimension is then equal to D + 1.
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because of this linear classifiers represent the perfect trade-off between
hypothesis classes that are too rich for learning to be relevant and the ones
that are too poor for anything interesting to be learned. The proof of this
theorem can be found in any Machine Learning textbook —e.g. chapter
13 of [Devroye et al., 1996]. A rough illustration of what the shattering
property is also given in figure 1.3.

The VC-dimension plays a central role in machine learning essentially
because of two fundamental results that underline the strong links be-
tween VC-dimension and P.A.C.-learnability. The first one directly link
the VC-dimension to the notion of P.A.C.-learnability and lays the bound-
aries of what is learnable.

Property 1.1 (Finite VC-dimension) A hypothesis class H such that VC(H) = ∞ is not P.A.C.-
learnable.

The second results, stated here as a theorem, is what truly enables
P.A.C.-learning as a valid theory of the learnable. In a nutshell, it links
N0(ε, δ) —that is, the minimal size of S , see definition 1.6— to the VC-
dimension of a hypothesis class. Note that, for clarity consideration, and
because doing otherwise would require to introduce a lot more definitions,
we will only state a restricted version of this theorem. Namely, we will
assume that t ∈ H or, alternatively, that Rl

Dt
(h∗) = 0. Additionally, the

loss considered for this theorem is the 0-1-loss.

Theorem 1.2 (Sample Complexity) Let H a hypothesis class, D a distribution over X, t ∈H an
arbitrary concept and S i.i.d∼ DN

t a training set of size N. Let h ∈ H be a given
hypothesis such that Rl0−1

S (h) = 0. Then, if N ≥ N0 with

N0 ∈ O
(

1
ε

log
[

1
δ

]
+

VC(H)

δ
log
[

1
ε

])
the following holds with probability 1− δ:

Rl0−1
Dt

(h) ≤ Rl0−1
Dt

(h∗) + ε

Since Rl0−1
Dt

(h∗) = 0 it means that Rl0−1
Dt

(h) ≤ ε. in plain English, the
Sample Complexity theorem says that, if one has an algorithm that can find
a hypothesis that does not err on S , with S large enough, then H is P.A.C.-
learnable (assuming T = H). The theorem can easily be generalized to
the case where T 6= H, hence the importance of the 0-1-loss in its state-
ment. Although it is an enthralling subject, VC-theory is not the focus of
this thesis and it would impair our message to digress more lengthy on
the subject, the interested reader can refer to [Shashua, 2009] for further
readings though.

Last but not least, [Ben-David et al., 1995] and [Bartlett et al., 1994]
have showed that similar results hold for other losses. Notably, those pa-
pers introduce a generalization of the VC-dimension, called Fat-shattering
dimension, or Pseudo-dimension that applies to continuous loss functions.
Note that a sample complexity result based on the pseudo-dimension is pre-
sented in Section 4.2, the proof given in Appendix A.2 follows the typical
scheme of sample complexity proofs and, as such, is very close to the proof
of, for instance, proposition 4.3.
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1.3 A Few Examples of Machine Learning Methods

The previous sections of this chapter were mostly focused on exposing
the fundamental results of learning theory are now ready to introduce
some iconic methods of machine learning. The very purpose of a learning
algorithm is to identify a hypothesis h ∈H that fits some desirable criteria.
An obvious one is, of course, to minimize the empirical risk, which is the
cornerstone of the P.A.C.-setting. The first algorithm we will present —
the Perceptron Algortihm— does exactly that, however we will also see that
more refined criteria yield interesting results.

1.3.1 The Perceptron Algorithm

Perhaps one of the most well-known, and studied algorithms of all ma-
chine learning, the Perceptron algorithm is also one of the first linear clas-
sification methods —that is, methods focused on learning linear classi-
fiers, see Definition 1.1. The idea of the Perceptron is a very simple, yet
powerful, one: explore S one example at time, making locally optimal
corrections when a mistake happens (see algorithm 1).

Algorithm 1 An example of perceptron algorithm

Require: A sequence of points (x1, t1), . . . , (xN , tN)
1: w0 ← 0, k← 0
2: for all xi : i ∈ [N] do
3: if ti

〈
wk; xi

〉
< 0 then . i.e. hwk(xi) 6= ti

4: wk+1 ← wk + tixi
5: k← k + 1
6: end if
7: end for

The perceptron algorithm belongs to the family of online algorithms,
those are algorithms that do not require a full access to S at all time but
instead process the elements of S one after another independently. Online
algorithms have the invaluable advantage that they can run sequentially:
stopped and restarted at will. For instance, S may be generated on the fly
as the algorithm is able to wait until new examples are available.

That being said, the most interesting property of the Perceptron resides
in its convergence behaviour. While the algorithm was first introduced in
[Rosenblatt, 1958] its convergence has remained unproved for a few years
until Block and Novikoff proposed the following theorem.

Theorem 1.3 (Convergence of Perceptrons [Block, 1962, Novikoff, 1962]) Let (x1, t1), . . . , (xN , tN)
be any sequence of points in X×Y such that ‖xi‖ ≤ R for all i. If there exists
a classifier w∗ of norm ‖w∗‖2 = 1 such that γw∗ .

= mini∈[N] γw∗
xi

then, the
Perceptron algorithm makes at most

R2

(γw∗)2

updates and outputs a classifier w that makes no mistake on the sequence
x1, . . . , xN .
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A few things should be said on the subject of this theorem. First, note
that we introduce the notion of margin over an entire set (γw∗); notion that
is formalized for any training set in definition 1.8.

Definition 1.8 (Margin of a Set) Let set S a training set and hw ∈ H a linear classifier. We
define the margin γw

S of h on S as:

γw
S

.
= min

xi∈S
γw

xi

But, more importantly, it is the scope of this theorem that is remark-
able, as this result holds independently of the underlying distribution. In
other words, the points x1, . . . , xN of the sequence are not required to fol-
low any form of distribution. Notably, when combined with the fact that
the perceptron is an online algorithm, one has a powerful convergence re-
sult that holds even when the sequence x1, . . . , xN is computed after each
step k not only dynamically, but with respect to the current Perceptron’s
solution wk−1 —see, algorithm 1. This is perhaps the most underexploited
property of the perceptron algorithm; this very idea will resurface at dif-
ferent points in this thesis and will prove an useful trick throughout the
next chapters. Finally, even though we will not provide the proof for this
theorem, the reader may still refers to the proof Th 2.3 in appendix A.1.1
which is an extension of this result and, when applied to the perceptron,
reduces to theorem 1.3.

1.3.2 (Hard Margin) Support Vector Machines

More than a Machine Learning algorithm, Support Vector Machines —
SVM for short— are a way to recast the problem of learning linear classi-
fiers into a more different framework than the one of empirical risk min-
imization. Introduced by Vapnik in [Boser et al., 1992], SVMs take their
roots in the VC-theory of linear classifier.

In itself theorem 1.1 is not undesirable and as discussed above the
VC-dimension of linear classifiers grows linearly with respect to the di-
mension of X. There are nonetheless two reasons that motivate the need
for a better result. First, linear classifiers are very limited in term of what
concept they can model in low dimension, and practical uses of linear
methods involve very high dimensional datasets. Second, the solution h∗

defined by the empirical risk minimization strategy is, more than often,
not unique, thus the problem seems ill-posed. Remedying to these issues
is achieved through regularization. Namely, we will reformulate the orig-
inal risk minimization problem in such a way that it has a better defined
solution. Practically speaking this is done by asking for the final solution
to fulfill some additional properties based on its margin. Theoretically
speaking, doing so does not go against P.A.C.’s empirical risk minimiza-
tion principle though and can be thought of as artificially shrinking the
hypothesis space. Hence, from this perspective, SVMs simply work on a
hypothesis class that is only a subset of all linear classifiers.

The SVM paradigm casts the problem of learning linear classifier in
terms of finding a large-margin classifier. In other words, for a given dataset
S , SVMs look for a constrained version of h∗:

h∗SVM
.
= arg max

h∈H
γh
S
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Another way to think of this is simply as a qualitative ordering over all the
possible h∗, where the picked solution is obviously the best one; hence, it
should be noted that h∗SVM is, per se, a valid candidate for h∗.

More precisely, the canonical, equivalent, formulation of the
SVM problem is as follow:

Find w = arg min
1
2
‖w‖2 s.t. ∀xi ∈ S : ti 〈w; xi〉 ≥ 1 (1.1)

This latter form is actually a quadratic programming problem, thus any
quadratic optimization algorithm can directly solve a SVM problem in
this form.

Not only SVMs introduce an slightly different problem, but, as hinted
before, they also allow some control over the VC-dimension of the solution
as it is shown by the next theorem:

Theorem 1.4 (VC-dimension of large margin classifier [Vapnik, 1998]) Let E a working set of
possible input such that maxE ‖x‖ ≤ R, and HET a hypothesis class of linear
classifier such that for all w ∈HET:

• ‖w‖2 ≤ T

• γw
E ≥ 1

Then, the VC-dimension of HET is

VC
(

HET

)
= R2T2

The notion of maximum margin is tied, as seen before, with the norm
of w under the constraint of a —at least— unitary margin. For the punc-
tilious reader, this theorem may be quite unsatisfactory because the VC-
dimension is now tied to some working set of points, E , that we could not
know in advance. Indeed E must contains not only S but all the points
that are likely to be drawn from D for the subsequent predictions; in other
words, knowing E in advance amounts to knowing D . Nevertheless, this
discussion, albeit interesting, is not central to this thesis and the inter-
ested reader shall refer to [Mount, 2015] for a more in depth debate on the
VC-dimension of large margin classifiers.

More generally, SVM represent a paradigm shift in machine learning.
Instead of simply minimizing the empirical risk, the focus is now onto the
simultaneous minimization of the empirical risk and the VC-dimension.
A strategy usually referenced as structural risk minimization in opposition
to the previous empirical risk minimization. We will see later —i.e. Sec-
tion 2.1— how this new paradigm was pivotal in the evolution of machine
learning and why, consequently, structural risk minimization has estab-
lished itself as the privileged approach for linear classifier learning.

1.4 Conclusion

Throughout this chapter, we have provided a snapshot of what is per-
haps the most studied problem of machine learning: binary classification.
It goes without saying that this exposition is by no means supposed to
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Figure 1.4 – An example of SVM classifier. The filled points (resp. empty) correspond to
positive (resp. negative) examples. The classifier achieve a margin γ on the dataset, and
the three red points are the support vectors, that is the datapoint of minimal margin.

be exhaustive and a lot of both fundamental and brilliant works were
skipped. Nonetheless, we have reviewed the fundamental notions upon
which are built this thesis and all of the algorithms and notions exposed
later ultimately stem from the notions and algorithms introduced here.
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The setting we have described so far —i.e. linear binary classification—
may be appealing by its simplicity but it is also limited in its expressiv-
ity. In this chapter, we shall provide the tools and means for the last
chapter’s notions to be relevant in a practical context. Namely, we will
introduce the notion of kernel that will allow for non-linear classifiers
to be trained within the framework of linear classification. Some of the
implications of using kernels will be discussed in section 2.2 where we
shall briefly mention the matter of sparsity through Sample Compression
Scheme. Additionally, the last section is devoted to expanding our setting
beyond discriminating between positive and negative data by allowing
problems with an arbitrary number of classes, in other words, multiclass
learning problems.

In many aspects, this chapter plays the role of a wrapper regarding the
last one: it allows for simple and theoretically sound concepts to be fully
taken advantage of in a complex environment.

25
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2.1 Kernels, or the true power of linear classifier

2.1.1 From Input space to Feature Space

So far, we have limited ourselves to linear classifiers. While the theory
about those is arguably well established, one must reckon that they lack
the expressive power of more sophisticated hypothesis classes. Indeed, a
linear classifier simply computes a weighted sum associated with a fixed
threshold to decide the class of a point. Building on this idea, the most
immediate step in the direction of more expressive classifiers is to augment
datapoints by adding new features derived from non-linear combinations
of the original ones. Therefore linear classifiers would gain in expressivity
through the use of these new, augmented, features.

Kernels in machine learning do just that. They allow to work with
augmented learning examples by adding new, features derived from the
existing ones. The obvious benefit of this is that linear classifiers are still
a relevant hypothesis class in this setting, albeit a lot more expressive.
More formally, we define the feature space F with inner product 〈·; ·〉F and
the feature map, a function φ : X → F which maps each point of X to a
point in F. Therefore, a (linear) classifier in the feature space is akin to a
hyper-plane in F.

The crux of kernel methods is the existence of a Mercer kernel functions.

Definition 2.1 (Mercer Kernel) A function k : X×X 7→ R is a Mercer Kernel if and only if it is
both symmetric and semi-definite positive:

• ∀x1, x2 ∈ X : k(x1, x2) = k(x2, x1)

• For all N ∈ R+, sequence x1, . . . , xN of elements in X and all α1, . . . , αN
in R:

N

∑
i=1

N

∑
j=1

αiαjk(xi, xj) ≥ 0

The existence of such kernels allows the use of the kernel trick thanks
to the Mercer’s theorem.

Theorem 2.1 (Mercer’s theorem [Mercer, 1909]) Let X an input space and k a Mercer’s kernel,
that is k is symmetric and semi-definite positive. Then, there exists a feature map
φ : X 7→ Fφ, with Fφ a Hilbert’s space, such that, for all x, x′ in X:

k(x, x′) =
〈
φ(x); φ(x′)

〉
Fφ

This theorem means that, as long as a Mercer kernel exists, one can
work with transformed data without directly dealing with their represen-
tation in the feature space, that may be of infinite dimension. This par-
ticular property is referred in the literature as the kernel trick and allows
for linear classifiers to model any arbitrary concept. A notable special
case is when F is of infinite dimension, in that case, according to theorem
1.1, the VCdimension of linear classifiers would grow towards infinity,
which would imply that proper learning is no longer be possible. Hence
the necessity of paradigms such as structural risk minimization and the
widespread use of SVM methods in machine learning which integrate in
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their design a way to control the VC-dimension of H by making it inde-
pendent of the dimensionality of F (see Th. 1.4). Consequently, methods
such as SVM can work with infinite feature space while keeping the VC-
dimension of H in check, allowing both generalization guarantees and
expressive hypothesis classes.

Example 2.1 (Polynomial Kernel) Polynomial kernels are a class of Mercer’s kernel defined
as:

ka,b
poly(x, x′) .

= (
〈

x; x′
〉
+ a)b =

(
a +

D

∑
i=1

xix′i

)b

with a ≥ 0 and b > 0.
Once expanded, the number of terms of this polynomial is given by the

multinomial theorem and it is easy to see that a feature space F such that
〈φ(·); φ(·)〉F = ka,b

poly(·, ·) would require one dimension per expanded term.

Example 2.2 (Gaussian Kernel) Gaussian Kernels (or, sometimes, Radial Basis Function
(RBF) kernels) are another popular class of Mercer’s kernel defined as:

kσ
RBF(x, x′) .

= exp
(
−‖x− x′‖2

2
2σ2

)
It is known that the corresponding feature space F is then of infinite dimension

—see, e.g. [Shashua, 2009]. An interesting property of these kernels is that
kσ

RBF(x, x) = 1; therefore for any point x ∈ X, ‖φ(x)‖2 = 1.

2.1.2 Learning in Feature Space

Kernels seem so far to preclude any direct use of the projected data. In-
deed, the representations φ(xi) in the feature space are possibly of infinite
size and could not be handled by learning algorithms, the same also ap-
plies to classifiers. More importantly, because of the kernel trick, those
representations and the feature space may not even be explicitly known.
One way to circumvent this problem by rewriting algorithms without ex-
plicit mention of w or φ(xi). While the formal exposition of this idea
might overburden this thesis with notions and results otherwise ancillary
to the main topic, we might still give the general intuition through a case
example for the Perceptron algorithm.

Example 2.3 (Kernel Perceptron) Let define w the classifier that would be learned by the per-
ceptron algorithm on a feature space F. From the Perceptron algorithm (see Alg.
1) we have that:

w =
M

∑
i=1

φ(xi
up)

where x1
up, . . . , xM

up is the sequence of datapoints erred upon during the execution
of the algorithm. Note that, for simplicity, we allow duplicate in this sequence as
this correspond to the case where the Perceptron makes repetitive mistakes on the
same point. From this, the decision rules associated with w for a new point x′ can
be rewritten as the sign of:

〈
w; φ(x′)

〉
F
=

M

∑
i=1

〈
φ(xi

up); φ(x′)
〉

F
=

M

∑
i=1

t(xi
up)k(xi

up, x′)
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Hence, we do not need an explicit representation of w or φ(x′) to make predic-
tions. The same idea extends to the whole Perceptron algorithm and one can
rewrite it uniquely in terms of the Mercer’s kernel k.

As advertised before, the general case (notably for SVM) is more tricky
as one has to ensure that there exists such decomposition of w in the
feature space. The interested reader may refer to the representer theorem
(see, e.g. [WAHBA, 1990, Schölkopf et al., 2001, Vert et al., 2004]) which
establishes that such representation exists.

More precisely, the SVM problem can be rewritten in its so-called dual
form:

max
αi ,i∈[N]

N

∑
i=1

αi −
1
2

N

∑
i,j

αiαjtitjk(xi, xj) s.t. ∀i ∈ [N] αi ≥ 0 (2.1)

and the decision rules now become:

h∗SVM(·) = sign

(
N

∑
i=1

αik(xi, ·)
)

with N the size of the training set S which contains the xi and ti and the
number of parameters αi thus scale linearly with the number of data in S .

2.2 Compression Scheme

2.2.1 A motivation for Sample Compression Scheme

With the use of kernels (see previous section), w can no longer be manip-
ulated as a vector, and we have instead to rely on a representation based
on the inner product in F : 〈·; ·〉F. More precisely, in most cases, given a
training set S of size N:

〈w; ·〉F =
N

∑
i=1

αik(xi, ·)

where the values of the αi depend on the learning algorithm.
For instance, in the SVM case, the αi are set by solving optimization

problem (2.1) but, on the other hand, for the Perceptron case, they are
defined by the mistakes made during the learning process. The end result
is the same: computing the decision rule is now tied to the size N of the
training set, making large training sets a burden for later predictions. One
feature of SVM that was instrumental in their success is that SVM actually
tend to produce sparse solutions (see also figure 2.1). That is, only a few of
the αi are in fact nonzero and, as such, the vector α is therefore sparse. For
any dataset S , there is only a limited number of points that lie at the edge
of the margin of the SVM classifier —i.e. there are only a few points x
verifying γ

h∗SVM
x = γ

h∗SVM
S . Moreover, those points alone are sufficient to de-

fine h∗SVM —one simply has to solve a SVM problem on those sole points—
and, when working with a full dataset, solving the optimization problem
underlying the SVM formulation amounts to identifying those points. To
some extends, Perceptrons have a similar feature, in the sense that only
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the points that caused some errors have non-zero α value. However those
points are far more numerous than in the SVM’s case.

All of this points toward the idea that a training set S is, from a learn-
ing perspective, redundant in most cases. The driving idea behind Sample
Compressions Scheme is precisely to analyze the benefit of being able to
capture all the information in a small number of datapoints.

2.2.2 Sample Compression Scheme and Results

Definition 2.2 (Sample Compression Scheme [Littlestone and Warmuth, 1986]) Let denote by
S(m) = (X×Y)m the set of all training sets of size m, then, a Sample Compres-
sion Scheme of size L consists in a pair of mappings

κ :
∞⋃

m=L

S(m)→ S(L)

and

ρ :
∞⋃

m=L

S(m)→ YX

such that for any S ∼ DN
t with arbitrary t and N and any x ∈ X:

κ(S) ⊆ S and ρ(S) = ρ(κ(S))

As previously hinted, both SVM methods and Perceptrons fall in the
definition of Sample Compression Scheme. For a given classifier w taken in
kernel form —that is, w = ∑N

i=1 αiφ(xi) where the vector α is determined
by the learning algorithm— κ(S) is the list of examples xi for which αi 6= 0
while ρ is the learning procedure itself that learns hw from those examples.

Similarly to the VC-dimension for hypothesis classes, the size
|kappa(S)| of a compression scheme allows for some control over
the variety of classifier that ρ can output. The idea being that
only a handful of classifiers can be learned from a small compressed
dataset κ(S). In fact, the connection is more profound and it has
been shown that if a hypothesis class can be learned from a Sam-
ple Compression Scheme then it is P.A.C.-learnable and thus it has
a finite VC-dimension [Littlestone and Warmuth, 1986]. Moreover,
[Moran and Yehudayoff, 2015] have recently proved the converse to be
true: finite VC-dimension implies the existence of a Sample Compression
Scheme.

From here, it is only natural that Sample Compression Schemes pro-
vide generalization guarantees akin to the VC ones. Namely, we refer
to the case where one has a training set S of size N and learn from a
compressed set κ(S) of size L.

Theorem 2.2 (Sample Complexity for Sample Compression Schemes [Floyd and Warmuth, 1995])
Let H a hypothesis class with Sample Compression Scheme of size at most L, D

a distribution over X, t ∈ H an arbitrary concept and S i.i.d∼ DN
t a training set of

size N. Let h .
= ρκ(S). Then, if N ≥ N0 with

N0 ∈ O
(

1
ε

log
[

1
δ

]
+ L +

L
ε

log
[

1
ε

])
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Figure 2.1 – A kernelized SVM classifier. The red and blue dots are positive and negative
examples. The decisions boundary of the classifier is drawn in black and the green squares
correspond to the Support Vectors. In this example, those 15 support vectors are enough
to characterize the SVM’s solution whereas the full dataset is composed of 50 data.

the following holds with probability 1− δ:

Rl0−1
Dt

(h) ≤ Rl0−1
Dt

(h∗) + ε

This is but a snapshot of the results available for Sample Compres-
sion Schemes, and far more specific bounds exist for various settings.
We refer the interested readers to the relevant literature, in particular,
the results of [Littlestone and Warmuth, 1986, Floyd and Warmuth, 1995,
Graepel et al., 2005].

2.3 Multiclass Classification

Until now, we have limited ourselves to the setting of binary classification,
that is Y

.
= {−1, 1}. This section is devoted to the so-called Multiclass Clas-

sification problem. More precisely, we focus in this section output spaces
such as

Y
.
= {1, . . . , Q}

where Q, the number of classes, is specific to each problem and is known
in advance.

This is a widely studied and important topic of Machine Learning,
both for practical and theoretical reasons, and this section should not be
thought as an overview but merely as an introduction to the ideas that
will be relevant to the remaining of this work.
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2.3.1 The Basics: OVA and OVO

The most natural idea to perform Multiclass Classification is to map the
problem to a collection of binary learning tasks and then to solve them
with the usual, bi-class, methods. Namely, we we discuss two particular
ways to achieve such mapping.

• The One-vs-All (OVA) approach, which consists in learning Q bi-class
classifiers (one for each class) that are each able to predict the corre-
sponding class membership —i.e. the classifier i predicts whether or
not a datapoint is in class i.

• The One-vs-One (OVO) approach, which relies on learning Q(Q −
1)/2 classifiers (one per class dichotomy) that predicts, for two given
classes i and j whether a point is more likely to belong to i or j. The
predicted class is then the one that ’wins’ the most dichotomies.

Both of those ideas have their perks and constraints. Among the most
obvious ones we can mention that OVA actually has to be used with clas-
sifiers that not only output a binary decision but also a confidence rating
—e.g. the margin γ for linear classifier— because multiple OVA classifiers
can predict membership to different classes. Despite that not being a prob-
lem with OVO, one still has to come with a solution for cases where two
classes are tied. Computationally speaking, the two methods are also very
different, and depending on one’s data, binary algorithm and general set-
ting, either OVA or OVO may be the more efficient approach. In the end,
the bottom line is this: in spite of their simplicity, OVA and OVO remains
two very efficient approach to tackle multiclass problems and, in practice,
those two very naive ideas yield state-of-the-art results [Li et al., 2005].

2.3.2 Ultraconservative Algorithms

Although the literature related to Multiclass Classification is very
dense, the part of this thesis that relates to this setting takes its
roots into one fundamental work proposed by Crammer and Singer
[Crammer and Singer, 2003]. This paper notably avoid the mapping
solution and instead tackle Multiclass Classification upfront, as one uni-
tary problem. The result is an elegant generalization of the Perceptron
algorithm that simultaneously learn Q interdependent classifiers.

More formally, they give the following definition of multiclass linear
classifier, that we will also use throughout this thesis:

Definition 2.3 (Multiclass Linear Classifier) We call multiclass linear classifier of matrix W ∈
RD×Q, the function hW ∈ YX such that for any point x ∈ X:

hW(x) .
= arg max

i∈Y
〈W·i; x〉 (2.2)

where W·i refers to the ith row vector of the matrix W.

Additionally, if there exist two solution i and j to problem (2.2) such
that 〈W·i; x〉 =

〈
W·j; x

〉
then we just one arbitrarily (say, e.g., the lower

one).
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Hence, multiclass linear classifiers are defined as matrices in RD×Q.
However, note that unlike their bi-class counterpart, the row vectors of
W are more akin to (rescaled) barycenter than separating hyperplane in
the sense that for each class, the corresponding row vector of W will be
pointing towards the barycenter of the subset of example belonging to
that class. Moreover, each of those vectors are in relation with the others
and any rescaling operation must be applied to W as a whole in order
to keep the different row vector balanced with each other. Notably, this
is not the case in binary classification —and, by extension to OVA and
OVO methods— where one can rescale each w seamlessly.

Thus, the problem of Multiclass Classification amounts to learn a
matrix W that minimizes the empirical risk of S , a problem simi-
lar to the one tackled by the Perceptron algorithm. In their paper
([Crammer and Singer, 2003]) Crammer and Singer not only propose a
generalization of the Perceptron algorithm to multiclass problems, but
a whole new class of algorithms that encompass both bi-class and mul-
ticlass Perceptrons while retaining the convergence properties previously
stated by Block and Novikoff [Block, 1962, Novikoff, 1962]. They refer to
this family of algorithm as Ultraconservative Additive Algorithms and pro-
vide the algorithmic scheme depicted in Alg. 2. The term ultraconservative
refers to the fact that only those prototype vectors W·r which achieve a
larger inner product 〈W·r; x〉 than

〈
W·t(x); x

〉
, that is, the vectors that can

entail a prediction mistake when decision rule in equation (2.2) is applied,
may be affected by the update procedure. The term additive conveys the
fact that the updates consist in modifying the weight vectors W·r’s by
adding a portion of x to them (which is to be opposed to multiplicative
update schemes).

Algorithm 2 The family of Ultraconservative Additive Algorithm

Require: A sequence of points (x1, t1), . . . , (xN , tN)
1: W0 ← 0, k← 0
2: for all xi : i ∈ [N] do
3: E .

= {r 6= ti :
〈
Wk
·r; xi

〉
≥
〈

Wk
·ti

; xi

〉
}

4: if E 6= ∅ then
5: Pick τk

1 , . . . τk
Q such that:

Q

∑
r=1

τk
r = 0 (2.3)

τk
ti
= 1 (2.4)

r /∈ E ∪ {ti} ⇒ τk
r = 0 (2.5)

6: ∀r ∈ [Q] : Wk+1
·r ← Wk

·r + τk
r xi

7: k← k + 1
8: end if
9: return Wk

10: end for

The general scheme of the algorithm follows the one of the Percep-
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tron, with W being updated only when a mistake happens. The novelty
here being the set E and the parameter τ. The set E is basically an error
set; it contains the classes that would be ranked higher than the true class
in equation (2.2) of Definition 2.3. The parameter τ controls the update
behaviour of the algorithm and different τ lead to different Ultraconser-
vative Additive Algorithms. As such, there is a few things worth noting
about τ. In a nutshell, τ dictates how the classes in E will affect the update
step; in this regard, the only rule is that, in the end, the total weights over
the classes of E is equal to −1. In particular, not every classes in E are
required to have a corresponding negative value in τ. In fact, it is quite
natural to just pick one class r and set the corresponding τr to −1 and all
other value to 0 —except of course for τti —, the class q may not even be
the class (wrongly) predicted by W but any arbitrary class in E . Finally,
note that the value of τ does not need to be the same from one iteration to
another, which ultimately allows for adaptive learning schemes.

The strength of Ultraconservative Additive Algorithms is that despite
all the freedom left on τ they still enjoy a mistakes bound similar to the
Perceptron’s one, independently of τ’s policy.

Theorem 2.3 (Mistakes Bound For Ultraconservative Additive Algorithm) Let (x1, t1), . . . , (xN , tN)
be any sequence of points in X×Y such that ‖xi‖ ≤ R for all i. If there exists a
multiclass classifier W∗ of norm ‖W∗‖F such that

γW∗ .
= min

i∈[N]
{
〈
W∗
·ti

; xi
〉
−max

r 6=ti
〈W∗
·r; xi〉}

then, any Ultraconservative Additive Algorithm make at most

2R2

(γW∗)2

updates and output a classifier W that make no mistake on the sequence
x1, . . . , xN .

Where the Frobenius norm ‖ · ‖F is defined as:

Definition 2.4 (Frobenius Norm) Let M a D × Q matrix. Then the Frobenius norm of M,
written ‖M‖F is defined as:

‖M‖F
.
=

√√√√ Q

∑
i=1

D

∑
j=1

(
Mij
)2

Also, note that the proof of theorem 2.3 is given as an example of
mistakes bound’s proof in appendix A.1.1.

2.3.3 A More General Formalization of Multiclass Classification

Before closing this section we shall mention another, strictly more general,
formalization of the Multiclass setting.

We introduce a feature vector representation function Ψ : X×Y 7→ XQ

such that, for any point x ∈ X of class t(x), Ψ(x, t(x)) is a vector composed
of Q blocks of size D with the t(x)’th block equal to x and the others set
to 0 everywhere.
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The multiclass algorithms discussed above can be used verbatim with
this representation, given that one uses the vectorization of W: vect(W)

.
=

[W·1, . . . W·Q]
>. Indeed, by construction 〈vect(W); Ψ(x, r)〉 = 〈W·r; x〉.

Moreover, this representation allows for the multiclass setting to be seen
as a peculiar binary problem where the goal is to classify vectors of the
form [Ψ(x, p)−Ψ(x, q)]> into +1 and −1 whether

〈
W·p; x

〉
≥
〈
W·q; x

〉
or

not.
Because we will not use this formalism in the present thesis though,

we will not dwell further into the specifics of this approach; nonethe-
less interested readers may refer to, among others, [Crammer et al., 2006,
Schapire and Singer, 2000] for further insights.

2.4 Conclusion

With this chapter, we conclude the first part of this thesis where we intro-
duced the notions and ideas of what is considered today as the common
ground of modern linear classification. Contrary to the previous chapter,
we touched upon some more advanced machine learning’s topics such as
kernels and how the matters discussed in the previous chapter translate
to this change of setting —that is, the necessity to drift from straight em-
pirical risk minimization to structural risk minimization paradigm. Last
but not least, we also briefly introduced the problem of multiclass clas-
sification as a direct extension to the binary case. Although multiclass
classification is a relevant setting to this thesis as a whole —mostly as a
natural extension of any bi-class method we may introduce— it will espe-
cially play a central role in Part II.
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Sometimes, the P.A.C.-setting, regardless of all its theoretical soudness,
simply fails to capture the reality of a learning task. Mainly, this is because
in practice the training set might not be trusted blindly when it comes
to label reliability. Sometimes, obtaining labels directly from the target
concept t is too costly and one has to rely upon a rough estimate of t;
sometimes, t cannot be observed directly and any estimation of the value
of t is potentially corrupted by some external interferences. Regardless of
the cause, this calls for learning models that account for label unreliability
and are able to cope with it accordingly.

Such is the premise of Part II and the present chapter will introduce
the relevant notions and works upon which chapter 4 is built. More pre-
cisely, we will assume that although some labels are corrupted —that is,
erroneous— we have information on the underlying corruption pattern
that we can leverage. The first part of this chapter accounts for previ-
ous works that have tackled the problem of corrupted labels —within the
aforementioned limits— in the bi-class case; these works represent the fun-
damental ground for ours and were motivational in its conception. The
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chapter’s second part discusses the extension of this setting to multiclass
classification through the introduction of confusion matrices and by doing
so we will argue that multiclass problems call for errors and classifier dis-
parity measures that are different to their bi-class counterparts.

3.1 A gentle introduction to noisy problems: the bi-
class case

3.1.1 The general Agnostic setting

A very general extension of the regular P.A.C. setting (also refer-
enced as restricted P.A.C. setting) is that of Agnostic P.A.C.learning
[Kearns et al., 1994, Haussler, 1988], where the term agnostic comes from
the idea that we assume to know nothing about the target concept t ex-
cept that it exists. Notably, it means that t may potentially lie outside of H.
Formally, the goal of Agnostic P.A.C. learning is to find a classifier h∗ ∈H

such that
Rl0−1

Dt
(h∗) .

= min
h∈H

Rl0−1
Dt

(h)

An interpretation of the Agnostic P.A.C. setting is that the labels
observed in S are corrupted output from h∗, and learning under the
P.A.C. setting amounts to learn h∗ from a corrupted dataset. It has been
shown that, Agnostic P.A.C. learning encompasses all other noisy labels
cases, including those when the corrupting process is malicious —or, in
other words, when the labels are not corrupted independently from each
others [Kearns et al., 1994]. The main drawback of having such a gen-
eral setting is that Agnostic P.A.C. is notably difficult, and negative re-
sults abound in learning theory, e.g. [Feldman et al., 2012, Hfastad, 1997,
Diakonikolas et al., 2011]. Interestingly though, the VC-dimension sample
complexity bounds (theorem 1.2 for the regular P.A.C. setting hold in the
agnostic case —minus some minor tweaks. An immediate consequence
is that Empirical Risk Minimization is still a valid strategy in the agnostic
P.A.C. setting. The true difficulty of this setting is actually to devise an
algorithm that provably find h∗ with respect to the 0-1-loss, something
known to be NP-hard [Höffgen et al., 1995, Johnson and Preparata, 1978,
Angluin and Laird, 1987, Kearns and Li, 1993, Kearns et al., 1994], hence
the relevance of surrogate approximate losses such as the hinge loss that
are more easy to work with, but do not always match the solution defined
by the 0-1-loss.

3.1.2 The Confusion Noise setting

With the Agnostic setting arguably too general for allowing interesting
and practical learnability results, the tendency in the last years was
to look for more flexible middle ground between restricted and agnostic
P.A.C. [Bylander, 1994, Blum et al., 1998, Kalai et al., 2008]. In particular,
an angle that will be relevant with the rest of this thesis consists in lay-
ing assumptions over the corrupting process —that is, how the labels are
corrupted. Specifically, we are interested in the so-called confusion noise
setting where the probability of switching a label to another is constant
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Figure 3.1 – The 0-1 loss (left) and the hinge loss (right) in a similar fashion to figure 1.2
but on a noisy 2D dataset where no perfect classifier exists. Here, the 0-1 loss is clearly
not convex contrary to the hinge loss. However, the two losses do not attain their minimal
value at the same point.

—as opposed to models where the noise depends on some localization
properties. Namely, we write Sy

.
= {(xi, yi)}N

i=1 the corrupted dataset
with Sy

i.i.d∼ DN
y where the yi’s are corrupted versions of the true labels ti’s.

We call noise the process that turns t into y and we define the family of
confusion noises of rate η, 0 ≤ η < 0.5 as the corrupting processes verifying:

P [y(X) 6= t(X)] = η

While it is a seemingly easy setting to cope with, it has been shown that
any algorithms that are robust to confusion noise —namely, any algorithms
that can provably P.A.C. learn t from a dataset corrupted with confusion
noise— are also robust to monotonic noises [Bylander, 1994]. Where mono-
tonic noises are classification noise processes such that the corruption rate
of each point depends on its margin with t. Formally, let w∗, ‖w∗‖2 = 1
such that hw∗

.
= t, then monotonic noises follow the following property:

P [t(X) 6= y(X)] =

[
1− t(X) 〈w∗; X〉

‖X‖2

]
η

By construction, the true concept t and its corrupted variant y agree on
a fraction 1− η of Sy and consequently, t has an accuracy rate of 1− η over
Sy, something that other hypotheses in H may be able to achieve. Because
of this, from a practical standpoint one cannot distinguish t from any
other hypothesis h of accuracy rate 1− η without additional information.
Hence, any hypothesis of accuracy 1− η is a valid solution.

Bearing this in mind, according to the P.A.C. paradigm, it is sufficient
to solve this problem to devise an algorithm that provably find a hypothe-
sis in H that achieve at least an accuracy rate of 1− η− ε with probability
1− δ over all possible instances of S .

Two decades ago, [Bylander, 1994, Blum et al., 1998] both indepen-
dently proposed a similar solutions to this problem. Their idea re-
volved around feeding a Perceptron algorithm with synthetic datapoints
of known true class computed from the corrupted training set S . In or-
der to facilitate the notation, they introduces the so-called normal form of a
bi-class training set.
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Definition 3.1 (Normal Form of a Bi-class Training Set) Let S .
= {xi, ti} a bi-class training set

with t any concept (corrupted or not). We say that S ′ is the normal form of S if
and only if

S ′ = {(tixi,+1)|(xi, ti) ∈ S}

To put it otherwise, datapoints in S with negative labels are reflected
through X’s origin. Notably, it means that for any point x in S and
any classifier w, there is a point x′ ∈ S ′ such that x′ .

= xt(x), thus
t(x) 〈w; x〉 = 〈w; x′〉 and learning from S ′ in our setting (that is, linear
bi-class classification) is strictly equivalent to learning from S . Hence-
forth, except stated otherwise, we will now assume that S is in normal
form. Moreover, a key feature of the normal form is that all datapoints are
now of class (+1) and points with negative label correspond to prediction
mistakes. Namely, given a noise rate η, it means that the learned classifier
is allowed to predict of fraction η of Sy in the negative class.

Lastly, from now on, we will distinguish the original dataset from the
corrupted one by writing St, as opposed to Sy. Namely, St

i.i.d∼ DN
t and

Sy
i.i.d∼ DN

y .

3.1.3 An Algorithm for Learning Linear Classifier Under Classification
Noise

We are now ready to describe the solution proposed by [Blum et al., 1998]
for the problem of learning bi-class linear classifier under classifica-
tion noise. We will focus on this solution rather than the one of
[Bylander, 1994] as the two are very closely related. Although, the so-
lution proposed in [Blum et al., 1998] is slightly more general as it does
not forcefully require the existence of a large margin solution on the un-
corrupted dataset St.

The first step is independent of any noise process and consists in the
introduction of a modified Perceptron algorithm (see the depiction in Alg.
3). Contrary to the usual Perceptron, Alg. 3 allows w to make mistakes
on St as long as every misclassified points x are sufficiently close to the
decision boundary. Namely: | 〈w; x〉 | ≤ σ‖w‖2‖x‖2.

Algorithm 3 [Blum et al., 1998] modified Perceptron

Require: A (uncorrupted) training set St
i.i.d∼ DN

t in normal form and a
threshold parameter σ

1: Pick w0 at random in X

2: k← 0
3: while ∃x ∈ St :

〈
wk; x

〉
< −σ‖wk‖2‖x‖2 do

4: Pick any xk
up ∈ St such that

〈
wk; xk

up

〉
< −σ‖wk‖2‖xk

up‖2

5: wk+1 ← wk −
〈

wk; xk
up

〉
xk

up

6: k← k + 1
7: end while
8: return w

[Blum et al., 1998] state the following theorem on Alg. 3:
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Theorem 3.1 (Convergence of algorithm 3 [Blum et al., 1998]) If St is labelled according to a
linear concept t, then with probability 1− δ Alg. 3 halts after M iterations and
outputs a vector w such that every misclassified point x ∈ St satisfies | 〈w; x〉 | ≤
σ‖w‖2‖x‖2 with

M ∈ O
[(

1
σ2

)
log (N) log

(
1
δ

)]
Nonetheless, the authors make the following interesting remark about

the proof. Let define w∗, ‖w∗‖2 = 1 such that hw∗
.
= t then, for Theorem

3.1 to hold it suffices that the following conditions are met for xk
up at any

step k (Alg. 3 line 4):〈
wk; xk

up

〉
≤ −σ

2‖wk‖2‖xk
up‖2

(3.1)

〈
w∗; xk

up

〉
≥ −σ2

16
√

N log N‖xk
up‖2

(3.2)

In plain English, it simply means that all update points must achieve a
minimal, positive, margin with w∗ (condition (3.2)) and, at the same time,
wk must errs on them with a large enough margin (condition (3.1)).

Building on this idea, [Blum et al., 1998] propose to cope with cor-
rupted datasets by computing synthetic update vectors, as opposed to
picking them directly in St which is not possible in a corrupted setting.
In other words, because the algorithm has only access to Sy instead of St,
the conditions above are not verified on a fraction η of the dataset —i.e.
the corrupted examples. Thus, the idea is to manually build the needed
update vectors from Sy in a way that ensures, with high probability, that
those vectors fit the previously cited convergence conditions.

For a fixed step k, and any dataset S , corrupted or not, let define:

S− .
=

{
x ∈ S|

〈
wk; x

〉
< − σ

‖wk‖2‖x‖2

}
S+ .

=

{
x ∈ S|

〈
wk; x

〉
>

σ

‖wk‖2‖x‖2

}
By construction, we have that S−t contains only misclassified points

that can potentially be used as update vectors —remember that St is in
normal form. By linearity of the dot product, we have that ∑x∈S+t x is also
a valid update vector to be used in Alg. 3. Namely, let replace the selection
of xup (Alg. 3 line 4) by the following definition:

xup
.
= ∑

x∈S−y

x +
η

1− η ∑
x∈S+y

x (3.3)

The key observation here is that, with respect to the corruption process,
one can rewrite ∑x∈S−y x and ∑x∈S+y x in terms of S+t and S−t :

E

 ∑
x∈S−y

x

 = (1− η) ∑
x∈S−t

x− η ∑
x∈S+t

x (3.4)

E

 ∑
x∈S+y

x

 = (1− η) ∑
x∈S+t

x− η ∑
x∈S−t

x (3.5)
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By re-injecting these two equations into equation (3.3) we ultimately
have:

E
[
xup
]
=

(
1− 2η

1− η

)
∑

x∈S−t

x

Thus, the expected value of xup acts as a proxy of S−t and therefore
xup is a valid update vector. Namely, running algorithm 3 on Sy with xup
defined as above amounts to, expectation wise, directly run Alg. 3 on St
with picking xup as the sum of the misclassified point in St.

Last but not least, it remains to tackle the matter of how far xup actually
is from its expected value E

[
xup
]
. In their work, [Blum et al., 1998] show

that as long as |S+t ∪ S−t | is large enough —note that |S+t ∪ S−t | ≤ |St|—
then either |xup − E

[
xup
]
| is small enough for conditions (3.1) and (3.2)

to hold or, otherwise, wk is already a good enough classifier and the algo-
rithm then halts.

This conclude the analysis of [Blum et al., 1998] which will be our
starting point when dealing with multiclass classification. However, be-
fore going there, we will have to properly extend the various definition
and notions seen so far to the case of multiple output classes, which is
what the remaining of this chapter is devoted to.

3.2 Confusion Matrices

3.2.1 A note on Precision and Recall

Before venturing to the topic of confusion matrices for multiclass prob-
lems, a good preliminary is to discuss the case of precision/recall matrices
for bi-class problems.

Until now, we have defined the risk independently of the positive and
negative classes. That is to say, we always have assumed the risk to be
some value η holding over the totality of S in a way that, for a given
classifier h:

PX∼D [h(X) 6= t(X)]

In most cases this definition of risk is adequate, both practically and
theoretically, but sometimes problems arise when one need a finer level of
granularity in performance measurement.

Example 3.1 (Toxic Mushroom) Let consider the task of predicting the toxicity of mushroom
species from biological data. It is well established that some cases of mushroom
poisoning can be very dire, or even deadly. Typically, erroneously predicting a
mushroom to be safe can lead to threatening human lives while, on the other
hand, the converse —that is, erroneously predicting a mushroom as toxic— has
little to no consequences. This is precisely the kind of problems where we want to
minimize false negative cases —that is, mushroom erroneously predicted safe—
at all cost, even if it means an increase of false positive cases. Because the true
risk, as defined previously, is impervious to these subtlety, we thus need a better
performance measure to assert and constrain the quality of the produced classifiers

Building on this example, for a given classifier h we distinguish multi-
ple prediction scenarii based on the respective output of t and h:
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Definition 3.2 (The different types of error) For a given concept t and classifier h we distinguish
the following outcomes:

• True Positive: t = +1 and h = +1

• False Positive: t = −1 and h = +1

• False Negative: t = +1 and h = −1

• True Negative: t = −1 and h = −1

Alternatively, it is common to refer to false positive outcomes as Type-1
errors and false negatives as Type-2 errors. Hence, the total number of errors
—that is, the measure we used to work with— is simply the sum of the
Type-1 and Type-2 errors. These definitions in hand, we then introduce the
corresponding probability rates. Namely:

Definition 3.3 (The different probability error rates) For a given concept t and classifier h we
defines the following probability rates:

• True Positive Rate (TPR):

P [h(X) = +1|t(X) = +1] .
=

E [I [h(X) = +1∧ t(X) = +1]]
E [I [t(X) = +1]]

• False Positive Rate (FPR):

P [h(X) = +1|t(X) = −1] .
=

E [I [h(X) = +1∧ t(X) = −1]]
E [I [t(X) = −1]]

• False Negative Rate (FNR):

P [h(X) = −1|t(X) = +1] .
=

E [I [h(X) = −1∧ t(X) = +1]]
E [I [t(X) = +1]]

• True Negative Rate (TNR):

P [h(X) = −1|t(X) = −1] .
=

E [I [h(X) = −1∧ t(X) = −1]]
E [I [t(X) = −1]]

Where all probabilities and expectations are conditioned over X i.i.d∼ Dt and I [·]
is the indicator function that return +1 if its argument evaluates to true and 0
otherwise.

Note that, while the number of errors (resp. number of good predic-
tions) can be obtained by summing false positive and false negative outcomes
(resp. true positive and true negative) the risk (resp. accuracy) cannot be com-
puted from FPR and FNR (resp. TPR and TNR) alone. Indeed, by using
probability rates conditioned over the value of t(X) we negate the effect
of class repartition. In other words, to retrieve the risk (resp. accuracy)
one have to multiply the FNR (resp. TPR) and FPR (resp. TNR) by the
corresponding class weight in S , that is P [t(X) = +1] and P [t(X) = −1],
then add the two resulting values together.

Rl0−1
Dt

(h) = FNR×P [t(X) = +1] + FPR×P [t(X) = −1]
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Figure 3.2 – A schematic representation of the different types of error. In this example the
target concept t is modelled by the black circle and the data are labelled positive (red) or
negative (blue) whether they lie within the circle. The current hypothesis is represented
by the dashed black line and predict the data above (resp. below) the line as positive
(resp. negative). The four areas correspond to the four possible prediction outcomes:
True Positive (orange), True Negative (cyan), False Positive (yellow) and False Negative
(blue). By counting how many points fall within each region, it is possible to estimate the
error rates of definition 3.3 For instance, the precision is defined as the number of True
Positive (i.e. the number of points in the orange region) divided by the number of Positive
examples (the orange and blue regions).

The obvious upside of those alternative error rates is that they are
completely impervious of class imbalance —that is, situations where one
class is vastly supernumerary comparatively to the other one.

Other possible measures related to these definitions include, among
others, the Positive Prediction Value (PPV), False Discovery Rate (FDR), False
Omission Rate (FOR) and Negative Predictive Value (NPV) which are used
and studied by the field of ROC analysis. The interested reader can find
proper definitions and extended details for those measure in some intro-
ductory works related to ROC analysis such as [Fawcett, 2006]. Also, note
that precision and recall are sometimes used as an alternative to this set of
measures. However, precision is actually an other name for PPV and recall
corresponds to TPR; as such TP/FP/FN/TN rates and precision/recall are
generally not used together. More precisely, we can define precision as
P(t(X) = +1|h(X) = +1) and recall as P(h(X) = +1|t(X) = +1)

A synthetic way to manipulate the previously defined probability rates
—that is, TPR, FPR, FNR and TNR— is through a left stochastic matrix of
the form

C .
=

(
TP rate FP rate
FN rate TN rate

)
Or, in a more formal way, C ∈ R2×2 is the matrix

C .
=

(
P(h(X) = +1|t(X) = +1) P(h(X) = +1|t(X) = −1)
P(h(X) = −1|t(X) = +1) P(h(X) = −1|t(X) = −1)

)
(3.6)
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where the dependency on h is made implicit in an attempt to keep the
notations clear.

Moreover, note that we have for any row j

C1j + C2j = 1

because, C is a left stochastic matrix and thus C1j = 1− C2j. In addition,
row-wise, remark that we have:

C11 + C12 = P(h(X) = +1)
C21 + C22 = P(h(X) = −1)

Finally, the diagonal terms C11 and C22 are related to the accuracy as
follow

P(h(X) = t(X)) = C11P(t(X) = 1) + C22P(t(X) = −1)

and the off-diagonal terms C12 and C21 to the risk:

Rl0−1
Dt

(h) = C12P(t(X) = −1) + C21P(t(X) = 1)

= (1− C22)P(t(X) = −1) + (1− C11)P(t(X) = 1)
= P(t(X) = −1) + P(t(X) = +1)
− [C22P(t(X) = −1) + C11P(t(X) = 1)]

= 1−P(h(X) = t(X))

Where the last line come from the fact that P(t(X) = −1) + P(t(X) =
+1) = 1.

In the past years, there have been some works that have explored the
use of these notions as performance measures for linear classifier, or some
similar ideas. Among them, we may cite [Li et al., 2005] that copes with
the problem of unbalanced dataset where one class is a lot more numerous
than the other.

Now that we have introduced these notions for bi-class settings, we
are ready to generalize them to multiple classes problems and properly
introduce confusion matrices.

3.2.2 Confusion Matrices for Multiclass Problems

In this section, we formally introduce confusion matrices. That is, multi-
class extension of the previously defined bi-class matrix C. Namely, for
a multiclass problem of Q classes, we extend the previous definition of C
by building upon the general term definition given in equation (3.6) and
we define, for a given concept t and classifier h, the confusion matrix of h,
C ∈ RQ×Q of general term

Cij
.
= P(h(X) = i|t(X) = j)

where, as usual and unless stated otherwise, probabilities are conditioned
over X i.i.d∼ Dt. Hence, C has the following general structure:
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C .
=


P(h(X) = 1|t(X) = 1) · · · P(h(X) = 1|t(X) = Q)
P(h(X) = 2|t(X) = 1) · · · P(h(X) = 2|t(X) = Q)

...
. . .

...
P(h(X) = Q|t(X) = 1) · · · P(h(X) = Q|t(X) = Q)


and similarly to the bi-class case, we have that C is a left stochastic

matrix with

∀i ∈ [Q] : ∑
j∈[Q]

Cij = ∑
j∈[Q]

P(h(X) = i|t(X) = j)

=P(h(X) = i)

∀j ∈ [Q] : ∑
i∈[Q]
i 6=j

Cij = ∑
i∈[Q]
i 6=j

P(h(X) = i|t(X) = j)

=P(h(X) 6= j)
=1− Cjj

∑
i∈[Q]

CiiP(t(X) = i) = ∑
i∈[Q]

P(h(X) = i ∧ t(X) = i)

=P(h(X) = t(X))

=1− Rl0−1
Dt

(h)

In substance, confusion matrices contain the errors rate of a classifier
for any pair of predicted/true classes, as such they provide a class-wise
information about the error patterns of a classifier. Although such level
of detail is situational at best in bi-class problems, it is an altogether more
important matter for multiclass ones. Arguably, on a conceptual level,
multiclass classification is about capturing the essence of each class, there-
fore the performance measure — whether it is the risk, or anything else—
act as a numerical proxy that asserts the success of this primal goal. The
risk is a good performance measure in this regards for bi-class classifica-
tion because of the limited output possibilities (either +1 or −1). On the
other hand, in a multiclass setting, using such a global measure means
that improving accuracy over one class can compensate errors in another
one. In particular, when classes are imbalanced, it means that improving
accuracy by, say, 10% over given class with a lot of example can allows
to completely ignore other classes with few datapoints. Typically, this is
something that should not be allowed given our original goal of correctly
learning the nature of all classes. In this regard, confusion matrices are a
tool that allows much finer control over how the errors are spread among
the different classes of the dataset. However, the question that remains is
the one of exploiting the information contained in confusion matrices in a
way that is relevant to the goal of learning a collection of Q classes; and
to this question, a definite answer has yet to be given, if any exists.

Recently, the idea of using confusion matrices as performance estima-
tors gained momentum though the publication of positive theoretical and
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Figure 3.3 – An illustration of two different linear classifiers on the same dataset. The
data are spread over 3 classes (4, ◦ and +). The points located in the green (resp. blue
and orange) region are predicted of class 4 (resp. ◦, +). In both figures the prediction
error rates have the same value of 0.25 yet the corresponding confusion matrices (top-right
corner) are different. The Frobenius norm (see definition ADDREF) of the confusion risk
is 0.17 in the top figure but 0.50 in the bottom one. Indeed, we can observe that the
top classifier makes some mistakes on the most represented class (◦) whereas the bottom
classifier is wrong on half the points for two classes out of three.



48 Chapter 3. Confusion Matrices for Multiclass Problems and Confusion Noise

practical results. These works consider the confusion risk which is simply
the confusion matrix without its diagonal:

RC
Dt
(h) .

=

{
Cij if i 6= j
0 otherwise

where we overloaded the risk notation in the above definition.
The majority of the works on confusion risk have focused on minimizing

the operator norm of RC
Dt
(h) for algebraic reasons, which is simply defined,

for any given matrix M as

‖M‖op
.
= max

v 6=0

‖Mv‖2

‖v‖2

The first theoretical results on the subject is due to [Machart and Ralaivola, 2012]
which have established algorithmic stability bounds for confusion ma-
trices in the addition to showing that some existing algorithm already
exhibit some confusion stability properties. A second theoretical results
was proposed later by [Morvant et al., 2012] that established P.A.C.-Bayes
bounds for confusion matrices. Finally, quickly after, [Ralaivola, 2012]
successfully proposed a new algorithm, named COPA for Confusion-based
Online Passive Aggressive, that was based on a variation of the ultracon-
servative additive update scheme (see [Crammer et al., 2006]) but was
designed to minimize the operator norm of RC

Dt
(h). Notably experimental

results for COPA backed the emerging confusion risk theory, with state-
of-the-art accuracy rates but combined to a much lower confusion risk. In
other words, the errors made by COPA, while being globally as numerous
as with other methods, were more evenly distributed among the classes,
thus leading to an overall better portrayal of the different Q classes.

3.3 The Multiclass Confusion Noise Model

In this work though, we will not be using confusion matrices as perfor-
mance measure. Nonetheless, the previous preparatory allowed us to in-
troduce confusion matrices in a somewhat more natural way and provide
a prime example of how they can be relevant to multiclass settings. No-
tably, we have discussed how multiclass problems call for finer, class-wise,
analytic tools. This is somewhat in opposition to the usual idea that multi-
class problems can be emulated, both theoretically and algorithmically by
a system of bi-class problems. In particular, ideas that are often overlooked
in bi-class problems are central when dealing with multiple classes. In this
last section, we will describe how confusion matrices naturally extends the
notion of corrupted dataset previously discussed in section 3.1

Namely, we are interested in noisy multiclass settings, where the noise
pattern is a multiclass extension of the bi-class noise. To this end, we
establish a proper definition of multiclass confusion noise.

We start from the previous idea of confusion matrices as characteriza-
tions of the error patterns of a classifier h. Except that we will be interested
in the differences between the true, pristine, concept t and its corrupted
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variant y. Hence, the confusion matrix we will be interested in is associ-
ated with y and can be alternatively thought as a class-wise description of
the noising process that corrupt Sy.

More precisely, for a noisy multiclass problem with Q classes, we
define the confusion matrix C as the matrix of dimension Q × Q (i.e.
C ∈ RQ×Q) of general term

Cij
.
= P(y(X) = i|t(X) = j)

Hence, we introduce multiclass confusion noises as the noise processes that
can be fully described by a confusion matrix. Notably, this implies that for
two given classes p and q the probability of observing the label p instead of
the label q —where p is a corrupted label and q the true class— is constant
for all x ∈ X of class q and equal to Cpq.

Alternatively put, the noise process is uniform within each class and its
level does not depend on the precise location of x within the region that
corresponds to the class t(x). As such, this noise process is both a) very
aggressive, as it does not only apply to regions close to the class bound-
aries between classes and b) regular, in the sense that the mislabelling rate
is piecewise constant. Nonetheless, this setting can account for many real-
world problems as numerous noisy phenomena can be summarized by a
simple confusion matrix. Moreover it has been proved [Bylander, 1994]
that robustness to classification noise generalizes robustness to monotonic
noise where, for each class, the noise rate is a monotonically decreasing
function of the distance to the class boundaries.

Remark 3.1 The confusion matrix C should not be mistaken with the matrix C̃ of general term:
C̃ij

.
= P(t(X) = i|y(X) = j) which is the class-conditional distribution of t(X)

given y. The problem of learning from a noisy training set and C̃ is a different
problem than the one we aim to solve. In particular, C̃ can be used to define
cost-sensitive losses rather directly whereas doing so with C is far less obvious.
Anyhow, this second problem of learning from C̃ is far from trivial and very
interesting but ultimately falls beyond the scope of the present work.

Also, note that this setting trivially encompasses other noise frame-
work where the noise is described on a more general scale than pair-wise
classes combination. For instance, the noise process that, for any point
x ∈ X of any class, randomly switch its class with probability η into any
other classes can be described in our setting by a confusion matrix with
(1− η) on all its diagonal values and η/(Q− 1) everywhere else.

Obviously, all of the previous properties of confusion matrices (see
section 3.2) hold in this setting. Notably, C is a left-stochastic matrix and,
consequently, one can retrieve the probability distribution of the corrupted
classes from C and the true class distribution —however, in the general
case, this distribution is unknown. In other words, let define πt (resp.
πy) the probability vector of general term (πt)i

.
= P(t(X) = i) (resp.
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(
πy
)

i
.
= P(y(X) = i)), then the following equality holds:

∀i ∈ [Q] :
Q

∑
j=1

Cij (πt)j =
Q

∑
j=1

P(y(X) = i|t(X) = j)P(t(X) = j)

= P(y(X) = i)
=
(
πy
)

i

Alternatively, in matrix form:

C×πt = πy

Particularly, from algebra, we have that if C is invertible, there is a
closed form for πt depending only in C and πy:

πt = C−1 ×πy (3.7)

Notably, this trick is one of the core idea that is developed in Chapter
4 and will allow learning in the context of multiclass confusion noise. In
particular, a prominent question that will be tackled is how to handle em-
pirical estimation of these probabilistic values. Also, note that equation
(3.7) is a generalization of the relation between S+t , S−t , S+y and S−y pre-
sented in section 3.1. Namely, if Q = 2, equation (3.7) roughly reduces to
equation (3.4) and equation (3.5).

3.4 Conclusion

In this chapter we have presented two of the premises of the work we will
expose next. In the first section, we have discussed the matter of learning
from noisy datasets in the setting of bi-class classification and we have
introduced some positive results and algorithms relative to this setting.
Additionally, the second section revolved around multiclass notions, and
how confusion matrices play a major role into asserting the quality of a
classifier in a multiclass setting. Moreover, the second part’s discussion
conveys the message that, contrary to what it may look like, multiclass
classification problems should not be thought as trivial extensions of bi-
class ones, especially when it comes to error measurement.

Ultimately, we will combine these two ideas in the next chapter and
tackle the problem of learning under confusion noise in a multiclass set-
ting. As such, this chapter was a mean to properly introduce the back-
ground knowledge relevant to chapter 4.
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This chapter deals with multiclass linear classification problems with
confused (corrupted) data defined as in section 2.3 and 3.3.

Our main contribution is to show that it is both practically and the-
oretically possible to learn a multiclass classifier on noisy data if some
information on the noise process is available. We propose a way to gen-
erate new points for which the true class is known. Hence we can it-
eratively populate a new unconfused dataset to learn from. This allows
us to handle a massive amount of mislabelled data with only a very
slight loss of accuracy. We embed our method into ultraconservative al-
gorithms and provide a thorough analysis of it, in which we show that
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the strong theoretical guarantees that characterize the family of ultracon-
servative algorithms carry over to the noisy scenario. The resulting algo-
rithm, that we call UMA —for Unconfused Multiclass Additive algorithm—
is, to the best of our knowledge, the first method to make use of the
confusion matrix as a way to handle corrupted data in a multiclass set-
ting. The present work has given birth to two publications, one in the
Asian Conference on Machine Learning in 2013 [Louche and Ralaivola, 2013]
and the second as an extended version in Machine learning Journal in 2015

[Louche and Ralaivola, 2015b]. The exposition of this chapter will closely
follow that of the aforementioned papers. Namely, Section 4.1 will discuss
the specifics and assumptions of our setting, we will expound UMA in
section 4.2 and provide a detailed analysis of the algorithm, section 4.3 is
devoted to experimental simulations and lastly section 4.4 will wrap up
this chapter with a more general discussion of this work.

4.1 Setting and Problem

4.1.1 A gentle start and a practical example

The probabilistic setting we consider hinges on the existence of two com-
ponents. On one hand, we assume the usual unknown (but fixed) prob-
ability distribution D on X

.
= RD. On the other hand, we also assume

the existence of a deterministic labelling function t ∈ H ⊂ YX, where
Y

.
= {1, . . . Q}, which associates a label t(x) to any input example x. In

particular, we are interested in establishing the robustness of ultraconser-
vative additive algorithms (see Alg. 2) to label confusion noise in the mul-
ticlass setting. As we want to recover from the confusion noise, i.e., we
want to achieve low risk on uncorrupted/non-noisy data, we use the term
unconfused to characterize the procedures we propose.

Beside the theoretical questions raised by the learning setting consid-
ered, we may depict the following example of an actual learning scenario
where learning from noisy data is relevant. This learning scenario will be
further investigated from an empirical standpoint in the section devoted
to numerical simulations (Section 4.3).

Example 4.1 One situation where coping with mislabelled data is required arises in (partially
supervised) scenarios where labelling data is very expensive. Imagine a task
of text categorization from a training set S .

= Sbase ∪ Smissing, where Sbase =
{(xi, ti)}N

i=1 is a set of N labelled training examples and Smissing = {xN+i}M
i=1

is a set of M unlabelled vectors; in order to fall back to realistic training scenar-
ios where more labelled data cannot be acquired, we may assume that N � M.
A possible three-stage strategy to learn a predictor is as follows: first learn a
predictor hbase on Sbase and estimate its confusion error C via a cross-validation
procedure —hbase is assumed to make mistakes evenly over the class regions—
second, use the learned predictor to label all the data in Smissing to produce the
labelled training set Ŝ .

= Sbase ∪ {(xN+i, hbase(xN+i))}M
i=1 and finally, learn a

classifier h from Ŝ and the confusion information C.

This introductory example pertains to semi-supervised learning and
this is only one possible learning scenario where the contribution we pro-



4.1. Setting and Problem 53

pose, UMA, might be of some use. Still, it is essential to understand right
away that one key feature of UMA, which sets it apart from many con-
tributions encountered in the realm of semi-supervised learning, is that
we do provide theoretical bounds on the sample complexity and running
time required by our algorithm to output an effective predictor.

4.1.2 Assumption

Out setting is built on a set of assumptions that will hold throughout this
chapter. In order to ease the comprehension, we will state them all at once
in this section before moving on the exposition of our work.

First, without loss of generality, we will suppose that the data are nor-
malized over the sphere of unit norm:

P (‖X‖2 = 1) = 1

Additionally, because we are interested in learning a linear classifier
we shall consider the linear separability assumption of theorem 2.3 to hold
with margin γW∗

St
on St. Namely

Assumption 4.1 (Linear Separability of St with Margin γ.) There exist γ > 0 and W∗ =
[W∗
·1 · · ·W∗

·Q] ∈ RD×Q, with ‖W∗‖2
F = 1 (see def 2.4) such that hW∗ has margin

γW∗
St
≥ γ.

As announced in the chapter introduction, we follow the multiclass
confusion noise setting described in chapter 3, section 3.3 and assume that
we only have access to a corrupted version

Sy
.
= {(xi, yi))}N

i=1 (4.1)

where, as before, each yi is a short hand to y(xi) with y ∈ YX a corrupted
version of the true concept t that complies to the following assumption:

Assumption 4.2 (Confusion Noising Process) The corrupted concept y —alternatively, the law
Dy of (X, Y)— is so that the conditional distribution

P(X,Y)∼Dy(Y|t(X))

is fully summarized into a known confusion matrix C ∈ RQ×Q given by

∀x ∈ X : Cpq
.
= P(X,Y)∼Dy(Y = p|t(X) = q)
.
= PX∼D (y(X) = p|t(X) = q) (4.2)

Finally, we assume the following from here on:

Assumption 4.3 (C Invertibility) C is invertible.

Note that this assumption is not as restrictive as it may appear. For
instance, if we consider the learning setting depicted in Example 4.1 and
implemented in the numerical simulations, then the confusion matrix ob-
tained from the first predictor hbase is often diagonally dominant, i.e. the
magnitudes of the diagonal entries are larger than the sum of the mag-
nitudes of the entries in their corresponding rows, and C is therefore in-
vertible. Generally speaking, the problems that we are interested in (i.e.
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problems where the true classes seems to be recoverable) tend to have
invertible confusion matrix. It is most likely that invertibility is merely
a sufficient condition on C that allows us to establish learnability in the
sequel. Identifying less stringent conditions on C, or conditions termed
in a different way —which would for instance be based on the condition
number of C— for learnability to remain, is a research issue of its own
that we leave for future investigations.

4.1.3 Problem: Learning a Linear Classifier from Noisy Data

The problem we address is thus the learning of a classifier h from Sy and
C so that the error rate

Rl0−1
Dt

(h) = P(h(X) 6= t(X))

of h, is as small as possible: the usual goal of learning a classifier h with
small risk is preserved, while now the training data is only made of cor-
rupted labelled pairs.

Building on Assumption 4.1, we may refine our learning objective by
restricting ourselves to linear classifiers hW, for W = [W·1 · · ·W·Q] ∈
RD×Q (see Definition 2.3). Our goal is thus to learn a relevant matrix W
from Sy and the confusion matrix C. More precisely, we achieve risk min-
imization through classic additive methods and the core of this chapter is
focused on computing noise-free update points such that the properties of
said methods are unchanged.

4.2 UMA: Unconfused Ultraconservative Multiclass

Algorithm

This section presents the main result of the paper, that is, the UMA pro-
cedure, which is an answer to the problem stated above: UMA makes it
possible to learn a multiclass linear predictor from Sy and the confusion
information C. In addition to the algorithm itself, this section provides
theoretical results regarding the convergence and sample complexity of
UMA.

As UMA is a generalization of the ultraconservative additive online
algorithms introduced in section 2.3.2 to the case of noisy labels, we first
and foremost recall the essential features of this family of algorithms. The
rest of the section is then devoted to the presentation and analysis of UMA.

4.2.1 A Brief Reminder on Ultraconservative Additive Algorithms

As already stated, Ultraconservative additive online algorithm output
multiclass linear predictors hW as in Definition 2.3 and their purpose is
therefore to compute a matrix W = [W·1 · · ·W·Q] ∈ RD×Q of Q weight
vectors from some training sample S .

= {(xi, ti)}N
i=1. To do so, they im-

plement the procedure depicted in Algorithm 2, which centrally revolves
around the identification of an error set and its simple update: when pro-
cessing a training pair (x, y(x)), they perform updates of the form

W·q ← W·q + τqx : q = 1, . . . , Q
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whenever the error set E (see Alg. 2) is not empty.
The main results regarding ultraconservative algorithms, which we

will extend in our learning scenario is the one of Theorem 2.3 that
is essentially a generalization of the well-known Block-Novikoff results
[Block, 1962, Novikoff, 1962] (Theorem 1.3), which establishes a mistake
bound for the Perceptron algorithm (an additive algorithm itself).

4.2.2 Main Result and High Level Justification

This section presents our main contribution, UMA, a theoretically
grounded noise-tolerant multiclass algorithm depicted in Algorithm 4.
UMA learns and outputs a matrix W = [W·1 · · ·W·Q] ∈ RD×Q from a
noisy training set Sy to produce the associated linear classifier

hW(·) .
= arg max

q

〈
W·q; ·

〉
(4.3)

by iteratively updating the W·q’s, whilst maintaining ∑q W·q = 0 through-
out the learning process. As a new member of multiclass additive algo-
rithms, we may readily recognize in step 8 through step 10 of Algorithm
4 the generic step sizes {τq}q∈Y promoted by ultraconservative algorithms
(see Algorithm 2). An important feature of UMA is that it only uses infor-
mation provided by Sy and does not make assumption on the accessibility
to the noise-free dataset St: the incurred pivotal difference with regular
ultraconservative algorithms is that the update points used are now the
computed (line 4 through line 7) xpq

up vectors instead of the xi’s. Estab-
lishing that under some conditions UMA stops and provides a classifier
with small risk when those update points are used is the purpose of the
following subsections; we will also discuss the unspecified step 3, dealing
with the selection step.

For the impatient reader, we may already leak some of the ingredients
we use to prove the relevance of our procedure. Theorem 4.1, which shows
the convergence of ultraconservative algorithms, rests on the analysis of
the updates made when training examples are misclassified by the current
classifier. The conveyed message is therefore that examples that are erred
upon are central to the convergence analysis. It turns out that steps 4

through 7 of UMA (cf. Algorithm 4) construct a point xpq
up that is, with

high probability, mistaken on. More precisely, the true class t(xpq
up) of xpq

up
is q and it is predicted to be of class p by the current classifier; at the same
time, these update vectors are guaranteed to realize a positive margin
condition with respect to W∗:

〈
W∗
·q; xpq

up

〉
>
〈
W∗
·k; xpq

up
〉

for all k 6= q. The
ultraconservative feature of the algorithm is carried by step 8 and step 10,
which make it possible to update any prototype vector W·r with r 6= q
having an inner product

〈
W·r; xpq

up
〉

with xpq
up larger than

〈
W·q; xpq

up
〉

(which
should be the largest if a correct prediction was made). The reason why
we have results ‘with high probability’ is because the xpq

up’s are sample-
based estimates of update vectors known to be of class q but predicted
as being of class p, with p 6= q; computing the accuracy of the sample
estimates is one of the important exercises of what follows. A control on
the accuracy makes it possible for us to then establish the convergence of
the proposed algorithm.
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Algorithm 4 UMA: Unconfused Ultraconservative Multiclass Algorithm.

Require: Sy = {xi, yi)}N
i=1, confusion matrix C ∈ RQ×Q, and α > 0

Ensure: W = [W·1, . . . , W·Q] and classifier hW(·) = arg maxq
〈
W·q; x

〉
1: W·k ← 0, ∀k ∈ Y

2: repeat
3: select p and q, p 6= q
4: compute set Aα

p as

Aα
p ←

{
x|x ∈ Sy,

〈
W·p; x

〉
− 〈W·k; x〉 ≥ α : ∀k 6= p

}
5: for k = 1, . . . , Q, compute θ

p
k as

θ
p
k ←

1
N

N

∑
i=1

I [yi = k] I
[

xi ∈ Aα
p

]
x>i : ∀k ∈ Y

6: form Θp ∈ RQ×D as

Θp ←
[
θ

p
1 · · · θ

p
Q

]>
7: compute the update vector xpq

up according to ([M]q refers to the qth
row of matrix M)

xpq
up ← ([C−1Θp]q)

>

8: compute the error set Eα(xpq
up, q) as

Eα(xpq
up, q)← {r ∈ Y\{q} :

〈
W·r; xpq

up
〉
−
〈
W·q; xpq

up
〉
≥ α}

9: if Eα(xpq
up, q) 6= ∅ then

10: compute some ultraconservative update steps τ1, . . . , τQ such
that: 

τq = 1
τr ≤ 0, ∀r ∈ Eα(xpq

up, q)
τr = 0, otherwise

and
Q

∑
r=1

τr = 0

11: perform the updates for r = 1, . . . , Q:

W·r ← W·r + τrxpq
up

12: end if
13: until ‖xpq

up‖2 is too small
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4.2.3 With High Probability, xpq
up is a Mistake with Positive Margin

Here, we prove that the update vector xpq
up given in step 7 is, with high

probability, a point on which the current classifier errs.

Proposition 4.1 Let W = [W·1 · · ·W·Q] ∈ RD×Q and α > 0 be fixed. Let Aα
p be defined as in

step 4 of Algorithm 4, i.e:

Aα
p

.
=
{

x|x ∈ Sy,
〈
W·p; x

〉
− 〈W·k; x〉 ≥ α : ∀k 6= p

}
. (4.4)

that is, Aα
p is the set of all examples predicted p with margin at least α.

For k ∈ Y, p 6= k, consider the random variable θ
p
k (θp

k in step 5 of Algorithm
4 is a realization of this variable, hence the overloading of notation θ

p
k ):

θ
p
k

.
=

1
N

N

∑
i=1

I [yi = k] I
[

xi ∈ Aα
p

]
x>i

The following holds, for all k ∈ Y:

ESy

[
θ

p
k

]
= E

Sy
i.i.d∼DN

y

[
θ

p
k

]
=

Q

∑
q=1

Ckqµ
p
q , (4.5)

where
µ

p
q

.
= ED

[
I [t(X) = q] I

[
X ∈ Aα

p

]
X>
]

. (4.6)

Proof. Let us compute EDy

[
I [Y = k] I

[
X ∈ Aα

p

]
X>
]
:

EDy

[
I [Y = k] I

[
X ∈ Aα

p

]
X>
]

=
∫

X

Q

∑
q=1

I [q = k] I
[

x ∈ Aα
p

]
x>PDy(Y = q|X = x)dD(x)

=
∫

X
I
[

x ∈ Aα
p

]
x>PDy(Y = k|X = x)dD(x)

=
∫

X
I
[

x ∈ Aα
p

]
x>Ckt(x)dD(x) (cf. eqn (4.2))

=
∫

X

Q

∑
q=1

I [t(x) = q] I
[

x ∈ Aα
p

]
x>CkqdD(x)

=
Q

∑
q=1

Ckq

∫
X

I [t(x) = q] I
[

x ∈ Aα
p

]
x>dD(x)

=
Q

∑
q=1

Ckqµ
p
q ,

where the last line comes from the fact that the classes are non-
overlapping. The N pairs (X, Y) being identically and independently dis-
tributed gives the result.

Intuitively, µ
p
q must be seen as an example of class p which is erro-

neously predicted as being of class q. Such an example is precisely what
we are looking for to update the current classifier; as expectations cannot
be computed, the estimate xpq

up of µ
p
q is used instead of µ

p
q .
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Proposition 4.2 Let W = [W·1 · · ·W·Q] ∈ RD×Q and α ≥ 0 be fixed. For p, q ∈ Y, p 6= q,
xpq

up ∈ RD is such that

EDy

[
xpq

up
]
= µ

p
q (4.7)〈

W∗
·q; µ

p
q

〉
−
〈
W∗
·k; µ

p
q
〉
≥ γ : ∀k 6= q, (4.8)〈

W·p; µ
p
q
〉
−
〈
W·k; µ

p
q
〉
≥ α : ∀k 6= p (4.9)

(Normally, we should consider the transpose of µ
p
q , but since we deal with vectors

of RD —and not matrices— we abuse the notation and omit the transpose.)
This means that

i) t(µp
q ) = q, i.e. the ‘true’ class of µ

p
q is q;

ii) and hW(µ
p
q ) = p; µ

p
q is therefore misclassified by the current classifier hW.

Proof. According to Proposition 4.1,

EDy [Θ
p] =

EDy

 θ
p
1
...

θ
p
Q

 =


EDy

[
θ

p
1

]
...

EDy

[
θ

p
Q

]
 =


∑Q

q=1 C1qµ
p
1

...
∑Q

q=1 CQqµ
p
Q

 = C

 µ
p
1
...

µ
p
Q


Hence, inverting C and extracting the qth of the resulting matrix equal-

ity gives that E
[
xpq

up
]
= µ

p
q .

Equation 4.8 is obtained thanks to Assumption 4.1 combined with
equation (4.6) and the linearity of the expectation. Equation (4.9) is ob-
tained thanks to equation (4.4) of Aα

p (made of points that are predicted to
be of class p) and the linearity of the expectation.

The attentive reader may notice that Proposition 4.2 or, equivalently,
step 7, is precisely the reason for requiring C to be invertible, as the com-
putation of xpq

up hinges on the resolution of a system of equations based on
C.

Proposition 4.3 Let ε > 0 and δ ∈ (0; 1]. There exists a number

N0(ε, δ, d, Q) = O
(

1
ε2

[
ln

1
δ
+ ln Q + d ln

1
ε

])
such that if the number of training samples is greater than N0 then, with high
probability 〈

W∗
·q; xpq

up

〉
−
〈
W∗
·k; xpq

up
〉
≥ γ− ε : ∀k 6= (4.10)〈

W·p; xpq
up
〉
−
〈
W·k; xpq

up
〉
≥ 0 : ∀k 6= p. (4.11)

Proof. The existence of N0 relies on pseudo-dimension arguments. We
defer this part of the proof to Appendix A.2 and we will directly assume
here that if N ≥ N0, then, with probability 1− δ for any W, xpq

up.

|
〈
W·p −W·q; xpq

up
〉
−
〈
W·p −W·q; µ

p
q
〉
| ≤ ε (4.12)
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Proving equation (4.10) then proceeds by observing that〈
W∗
·q −W∗

·k; xpq
up

〉
=
〈

W∗
·q −W∗

·k; µ
p
q

〉
+
〈

W∗
·q −W∗

·k; xpq
up − µ

p
q

〉
bounding the first part using Proposition 4.1:〈

W∗
·q −W∗

·k; µ
p
q

〉
≥ γ

and the second one with equation (4.12). A similar reasoning allows us to
get equation (4.11) by setting α

.
= ε in Aα

p.

This last proposition essentially says that the update vectors xpq
up that

we compute are, with high probability, erred upon and realize a margin
condition γ− ε.

Note that α is needed to cope with the imprecision incurred by the
use of empirical estimates. Indeed, we can only approximate

〈
W·p; xpq

up
〉
−〈

W·k; xpq
up
〉

in equation (4.11) up to a precision of ε. Thus for the result to
hold we need to have

〈
W·p; µ

p
q
〉
−
〈
W·k; µ

p
q
〉
≥ ε which is obtained from

equation (4.9) when α = ε. In practice, this just says that the points used
in the computation of xpq

up are at a distance at least α from any decision
boundaries.

Remark 4.1 It is important to understand that the parameter α helps us derive sample complex-
ity results by allowing us to retrieve a linearly separable training dataset with
positive margin from the noisy dataset. The theoretical results we prove hold for
any such α > 0 parameter and the smaller this parameter, the larger the sample
complexity, i.e., the harder it is for the algorithm to take advantage of a train-
ing samples that meets the sample complexity requirements. In other words, the
smaller α, the less likely it is for UMA to succeed; yet, as shown in the experi-
ments, where we use α = 0, UMA continues to perform quite well.

4.2.4 Convergence and Stopping Criterion

We arrive at our main result, which provides both convergence and a
stopping criterion.

Theorem 4.1 (COnvergence of UMA) Under Assumptions 4.1, 4.2 and 4.3 there exists a number
N, polynomial in D, 1/γ, Q, 1/δ, such that if the training sample is of size at least
N, then, with high probability (1− δ), UMA makes at most O(1/γ2) updates.

Proof. Let Sxup the set of all the update vectors xpq
up generated during the

execution of UMA and labeled with their true class q. Observe that, in this
context, UMA (Alg. 4) behaves like a regular ultraconservative algorithm
run on Sxup . Namely: a) lines 4 through 7 compute a new point in Sxup ,
and b) lines 8 through 10 perform an ultraconservative update step.

From Proposition 4.3, we know that with high probability, w∗ is a clas-
sifier with positive margin γ− ε on Sxup and it comes from Theorem 2.3
that UMA does not make more than O(1/γ2) mistakes on such dataset.

Because, by construction, we have that with high probability each ele-
ment of Sxup is erred upon then |Sxup | ∈ O(1/γ2); that means that, with
high probability, UMA does not make more than O(1/γ2) updates.
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All in all, after O(1/γ2) updates, there is a high probability that we
are not able to construct examples on which UMA makes a mistake or,
equivalently, the conditional misclassification errors P(hW(X) = p|T = q)
are all small.

Even though UMA operates in a batch setting, it ‘internally’ simulates
the execution of an online algorithm that encounters a new training point
(xpq

up ∈ Sxup) at each time step. To more precisely see how UMA can
be seen as an online algorithm, it suffices to imagine it to be run in a
way where each vector update is made after a chunk of N (where N is
as in theorem 4.1) training data has been encountered and used to com-
pute the next element of Sxup . Repeating this process O(1/γ2) times then
guarantees convergence with high probability. Note that, in this scenario,
UMA requires N′ = O(N/γ2) data to converge which might be far more
than the sample complexity exhibited in theorem 4.1. Nonetheless, N′

still remains polynomial in d, 1/γ, Q and 1/δ. For more detail on this
(online to batch conversion) approach, we refer the interested readers to
[Blum et al., 1998].

4.2.5 Selecting p and q

So far, the question of selecting good pairs of values p and q to perform
updates has been left unanswered. Indeed, our results hold for any pair
(p, q) and convergence is guaranteed even when p and q are arbitrarily
selected as long as xpq

up is not 0. Nonetheless, it is reasonable to use heuris-
tics for selecting p and q with the hope that it might improve the practical
convergence speed.

On one hand, we may focus on the pairs (p, q) for which the empirical
misclassification rate

P̂X∼Sy {hW(X) 6= t(X)} .
=

1
N

N

∑
i=1

I [hW(xi) 6= t(xi)] (4.13)

is the highest (X ∼ Sy means that X is randomly drawn from the uniform
distribution of law x 7→ N−1 ∑N

i=1 I [x = xi] defined with respect to train-
ing set Sy = {(xi, yi)}N

i=1). We want to favor those pairs (p, q) because, i)
the induced update may lead to a greater reduction of the error and ii)
more importantly, because xpq

up may be more reliable, as Aα
p will be bigger.

On the other hand, recent advances in the passive aggressive litera-
ture [Ralaivola, 2012] have emphasized the importance of minimizing the
empirical confusion rate, given for a pair (p, q) by the quantity

P̂X∼Sy {hW(X) = p|t(X) = q} .
=

1
Nq

N

∑
i=1

I [t(xi) = q, hW(xi) = p] (4.14)

where

Nq
.
=

N

∑
i=1

I [t(xi) = q]

This approach is especially worthy when dealing with imbalanced classes
and one might want to optimize the selection of (p, q) with respect to the
confusion rate.
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Obviously, since the true labels in the training data cannot be accessed,
neither of the quantities defined in equation (4.13) and equation (4.14) can
be computed. Using a result provided in [Blum et al., 1998], which states
that the norm of an update vector computed as xpq

up directly provides an
estimate of equation (4.13), we devise two possible strategies for selecting
(p, q):

(p, q)error
.
= arg max

(p,q)
‖xpq

up‖2 (4.15)

(p, q)conf
.
= arg max

(p,q)

‖xpq
up‖2

π̂q
(4.16)

where π̂q is the estimated proportion of examples of true class q in the
training sample. In a way similar to the computation of xpq

up in Algorithm
4, π̂q may be estimated as follows:

π̂q =
1
N
[C−1Πy]q

where Πy ∈ RQ is the vector containing the number of examples from Sy
having noisy labels 1, . . . , Q, respectively.

The second selection criterion is intended to normalize the number
of errors with respect to the proportions of different classes and aims at
being robust to imbalanced data. Our goal here is to provide a way to
take into account the class distribution for the selection of (p, q). Note that
this might be a first step toward transforming UMA into an algorithm for
minimizing the confusion risk, even though additional (and significant)
work is required to provably provide UMA with this feature.

On a final note, we remark that (p, q)conf requires additional precau-
tions when used: when (p, q)error is implemented, xpq

up is guaranteed to
be the update vector of maximum norm among all possible update vec-
tors, whereas this no longer holds true when (p, q)conf is used and if xpq

up
is close to 0 then there may exist another possibly more informative—
from the standpoint of convergence speed—update vector xp′q′

up for some
(p′, q′) 6= (p, q).

4.2.6 UMA and Kernels

Thus far, we have only considered the situation where linear classi-
fiers are learned. There are however many learning problems that
cannot be handled effectively without going beyond linear classifica-
tion. A popular strategy to deal with such a situation is obviously
to make use of kernels [Schölkopf and Smola, 2002] (see also section
2.1). In this direction, there are (at least) two paths that can be taken.
The first one is to revisit UMA and provide a kernelized algorithm
based on a dual representation of the weight vectors, as it is done with
the kernel Perceptron (see [Cristianini and Shawe-Taylor, 2000] and sec-
tion 2.1 example 2.3) or its close cousins (see, e.g. [Friess et al., 1998,
Dekel et al., 2005, Freund and Schapire, 1999]). Doing so would en-
tail the question of finding sparse expansions of the weight vectors
with respect to the training data in order to contain the prediction
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time and to derive generalization guarantees based on such spar-
sity: this is an interesting and ambitious research program on its
own. A second strategy, which we make use of in the numerical
simulations, is simply to build upon the idea of Kernel Projection
Machines [Blanchard and Zwald, 2008, Takerkart and Ralaivola, 2011]:
first, perform a Kernel Principal Component Analysis (shorthanded
as kernel-PCA afterwards) with D principal axes, second, project
the data onto the principal D-dimensional subspace and, finally, run
UMA on the obtained data. The availability of numerous methods to
efficiently extract the principal subspaces (or approximation thereof)
[Bach and Jordan, 2002, Drineas et al., 2006, Drineas and Mahoney, 2005,
Stempfel and Ralaivola, 2007, Williams and Seeger, 2001] makes this path
a viable strategy to render UMA usable for non-linearly separable con-
cepts. This explains why we decided to use this strategy in the present
work.

4.3 Experiments

In this section, we present results from numerical simulations of our ap-
proach and we discuss different practical aspects of UMA. The ultracon-
servative step sizes retained are those corresponding to a regular Percep-
tron: τp = −1 and τq = +1, the other values of τr being equal to 0.

Section 4.3.1 discusses robustness results, based on simulations con-
ducted on synthetic data while Section 4.3.2 takes it a step further and
evaluates our algorithm on real data, with a realistic noise process related
to Example 4.1 (cf. Section 4.1).

We essentially use what we call the confusion rate as a performance
measure, which is akin to the Frobenius norm of the (empirical) confusion
risk defined in Section 3.2:

1√
Q
‖RC
Stest
‖F

Where Stest is an independent test set containing new, uncorrupted, data
draw from Dt. Note that similarly to the empirical risk, RC

Stest
is simply the

empirical penchant of the confusion risk matrix RC
Dt

(see Section 3.2), and
the 1/

√
Q factor ensure that the confusion rate is comprised within 0 and

1.

4.3.1 Toy dataset

We use a 10-class dataset with a total of roughly 1, 000 2-dimensional ex-
amples uniformly distributed according to U , which is the uniform dis-
tribution over the unit circle centered at the origin. Labelling is achieved
according to equation (2.2) given a set of 10 weight vectors W·1, . . . , W·10,
which are also randomly generated according to U ; all these weight vec-
tors have therefore norm 1. A margin γ = 0.025 is enforced in the
generated data by removing examples that are too close to the decision
boundaries—practically, with this value of γ, the case where three classes
are so close to each other that no training example from one of the classes
remained after enforcing the margin never occurred.
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The learned classifiers are tested against a dataset of 10, 000 points that
are distributed according to the training distribution. The results reported
in the tables and graphics are averaged over 10 runs.

The noise is generated from the sole confusion matrix. This situation
can be tough to handle and is rarely met with real data but we stick with
it as it is a good example of a worst-case scenario.

Experimental Protocols

Robustness to noise We first (Fig. 4.1) evaluate the robustness to noise
of UMA by running our algorithm with various confusion matrices. We
uniformly draw a reference non-negative square matrix M, the rows of M
are then normalized, i.e. each entry of M is divided by the sum of the
elements of its row, so M is a stochastic matrix. If M is not invertible
it is rejected and we draw a new matrix until we have an invertible one.
Then, we define N such that N = (M− I)/10, where I is the identity
matrix of order Q; typically N has non-positive diagonal entries and non-
negative off-diagonal coefficients. We will use N to parametrize a family
of confusion matrices that have their most dominant coefficient to move
from their diagonal to their off-diagonal parts. Namely, we run UMA 20
times with confusion matrices C ∈ {Ci

.
= Ω(I + iN)}20

i=1, where Ω is a
matrix operator which outputs a (row-)stochastic matrix: when applied on
matrix A, Ω replaces the negative elements of A by zeros and it normalizes
the rows of the obtained matrix; note that i = 10 corresponds to the case
where C = M. Equivalently, one can think of Ci as the weighted average
between I and Ω(N) where I has a constant weight of 1 and Ω(N) is
weighted by i. Note that, after some point, further increasing i has little
effect on Ci as it eventually converges to Ω(N). Figure 4.1 plots our results
against the Frobenius norm of the diagonal-free confusion matrix C, that
is: ‖C− diag(C)‖F where diag(C) is defined as:

[diag(C)]ij
.
=

{
Cij if i = j
0 otherwise

For the sake of comparison, we also have run UMA with a fixed confusion
matrix C = I on the same data. This amounts to running a Perceptron
through the data multiple times and it allows us to have a baseline for
measuring the improvement induced by the use of the confusion matrix.

Robustness to the incorrect estimation of the confusion matrix. The
second experiment (Fig. 4.1) evaluates the robustness of UMA to the use
of a confusion matrix that is not exactly the confusion matrix that describes
the noise process corrupting the data; this will allow us to measure the ex-
tent to which a confusion matrix (inaccurately) estimated from the training
data can be dealt with by UMA. Using the same notation as before, and
the same idea of generating a random stochastic reference matrix M, we
proceed as follows: we use the given matrix M to corrupt the noise-free
dataset and then, each confusion matrix from the family {Ci}20

i=1 is fed to
UMA as if it were the confusion matrix governing the noise process. We
introduce the notion of approximation factor ρ as ρ(i) .

= 1− i/10, so that
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Figure 4.1 – Left: Evolution of the confusion rate (y-axis) for different noise levels (x-
axis).
Right: Evolution of the same quantity with respect to errors in the confusion matrix C
(x-axis) measured by the approximation factor (see text).

ρ takes values in the set {−1,−0.9, . . . , 0.9}. As reference, the limit case
where ρ = 1—that is, i = 0—corresponds to the case where UMA is fed
with the identity matrix I, effectively being oblivious of any noise in the
training set. More generally, the values of C are being shifted away from
the diagonal as ρ decreases, the equilibrium point being ρ = 0 where C is
equal to the true confusion matrix M. Consequently, a positive (resp. neg-
ative) approximation factor means that the noise is underestimated (resp.
overestimated), in the sense that the noise process described by C would
corrupt a lower (resp. higher) fraction of labels from each class than the
true noise process applied on the training set, and corresponding to M.
Figure 4.1 plots the confusion rate against this approximation factor.

On Figure 4.1 we observe that UMA clearly provides improvement
over the Perceptron algorithm for every noise level tested, as it achieves
lower confusion rates. Nonetheless, its performance degrades as the noise
level increases, going from a confusion rate of 0.5 for small noise levels—
that is, when ‖C− diag(C)‖F is small—to roughly 2.25 when the noise is
the strongest. Comparatively, the Perceptron algorithm follows the same
trend, but with higher confusion rate, ranging from 1.7 to 2.75.

The second simulation (Fig. 4.1) points out that, in addition to being
robust to the noise process itself, UMA is also robust to underestimated
(approximation factor ρ > 0) noise levels, but not to overestimated (ap-
proximation factor ρ < 0) noise levels. Unsurprisingly, the best confu-
sion rate corresponds to an approximation factor of 0, which means that
UMA is using the true confusion matrix and can achieve a confusion rate
as low as 1.8. There is a clear gap between positive and negative approx-
imation factors, the former yielding confusion rates around 2.6 while the
latter’s are slightly lower, around 2.15. From these observations, it is clear
that the approximation factor has a major influence on the performances
of UMA.

4.3.2 Real data

Experimental Protocol

In addition to the results on synthetic data, we also perform simulations
in a realistic learning scenario. In this section we are going to assume
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that labelling examples is very expensive and we implement the strategy
evoked in Example 4.1. More precisely, for a given dataset St, proceed as
follows:

1. Ask for a small number M of examples for each of the Q classes.

2. Learn a rough classifier1 y from these Q×M points.

3. Estimate the confusion C of y on a small labelled subset Sconf of S .

4. Predict the missing labels yi of Sy using y; thus, the y acts as a
corrupted concept .

5. Learn the final classifier hUMA from S , y, C and measure its error
rate.

One might wonder why we do not simply sample a very small portion of
St in the first step. The reason is that in the case of very uneven classes
proportions some of the classes may be missing in this first sampling. This
is problematic when estimating C as it leads to a non-invertible confusion
matrix. Moreover, the purpose of y is only to provide a baseline for the
labelling of Sy, hence tweaking the class (im)balance in this step is not a
problem.

In order to put our results into perspective, we compare them with
results obtained from various algorithms. This allows us to give a pre-
cise idea of the benefits and limitations of UMA. Namely, we learn four
additional classifiers: hSy is a regular Perceptron learned on Sy which is
labelled with noisy labels from y, hSconf and hSt are trained with the cor-
rectly labelled training sets Sconf and St respectively and, lastly, hSSVM
is a classifier produced by a multiclass semi-supervised SVM algorithm
(SSVM, [Bennett and Demiriz, 1998]) run on SSSVM which contains all the
datapoints of St but only the labels of Sconf are provided. The perfor-
mances achieved by hSy and hSt provide bounds for UMA’s error rates:
on the one hand, hSy corresponds to a worst-case situation, as we sim-
ply ignore the confusion matrix and use the regular Perceptron instead
—arguably, UMA should perform better than this; on the other hand, hSt

represents the best-case scenario for learning, when all the correct labels
are available—the performance of hSt should always top that of UMA (and
the performances of other classifiers). The last two classifiers, hSconf and
hSSVM, provide us with objective comparison measures. They are learned
from the same data as UMA but use them differently: hSconf is learned from
the reduced training set Sconf and hSSVM is output by a semi-supervised
learning strategy that infers both hSSVM and the missing labels of SSSVM
and it totally ignores the predictions made by y. Note that according to
the learning scenario we implement, we assume C to be estimated from
raw data. This might not always be the case with real-world problems and
C might be easier and/or less expensive to get than raw data; for instance,
it might be deduced from expert knowledge on the studied domain. In
that case, hSconf and hSSVM may suffer from not taking full advantage of the
accurate information about the confusion.

1For the sake of self-containedness, we use UMA for this task (with C being the identity
matrix). Remind that, when used this way, UMA acts as a regular Perceptron algorithm
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Datasets

Our simulations are conducted on three different datasets. Each one
with different features. For the sake of reproducibility, we used
datasets that can be easily found on the UCI Machine learning repository
[Bache and Lichman, 2013]. Moreover, these datasets correspond to tasks
for which generating a complete, labelled, training set is typically costly
because of the necessity of human supervision and subject to classification
noise. The datasets used and their main features are as follows.

Optical Recognition of Handwritten Digits. This well-known dataset is
composed of 8× 8 grey-level images of handwritten digits, ranging from
0 to 9. The dataset is composed of 3, 823 images of 64 features for training,
and 1, 797 for the test phase. We set M to 10 for this dataset, which means
that y is learned from 100 examples only. Sconf is a sampling of 5% of
St. The classes are evenly distributed (see Figure 4.2). We handle the
nonlinearity through the use of a Gaussian kernel-PCA(see section 4.2.6)
to project the data onto a feature space of dimension 640.

Letter Recognition. The Letter Recognition dataset is another well-
known pattern recognition dataset. The images of the letters are summa-
rized into a vector of 16 attributes, which correspond to various primitives
computed on the raw data. With 20, 000 examples, this dataset is much
larger than the previous one. As for the Handwritten Digits dataset, the
examples are evenly spread across the 26 classes (see Figure 4.2). We uni-
formly select 15, 000 examples for training and the remaining 5, 000 are
used for test. We set M to 50 as it seems that smaller values do not yield
usable confusion matrices. We again sample 5% of the dataset to form
Sconf and use, as before, a Gaussian kernel-based Kernel-PCA to (nonlin-
early) expand the dimension of the data to 1, 600.

Reuters. The Reuters dataset is a nearly linearly-separable document cat-
egorization dataset of more than 300, 000 instances of nearly 47, 000 fea-
tures each. For size reasons we restrict ourselves to roughly 15, 000 exam-
ples for training, and 15, 000 other for test. It occurs that some classes are
so underrepresented that they are flooded by the noise process and/or do
not appear in Sconf, which may lead to a non-invertible confusion matrix.
We therefore restrict the dataset to the 9 largest classes. One might won-
der whether doing so erases class imbalance. This is not the case as, even
this way, the least represented class accounts for roughly 500 examples
while this number reaches nearly 4, 000 for the most represented one (see
Figure 4.2). Actually, these 9 classes represent more than 70 percent of
the dataset, reducing the training and test sets to approximately 11, 000
examples each. We do not use any kernel for this dataset, the data being
already near to linearly-separable. Also, we sample Sconf on 5% of the
training set and we set M = 20.
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Figure 4.2 – Class distribution for the three datasets.

Results

Figure 4.3 presents the misclassification error rates averaged on 10 runs.
Keep in mind that we have not conducted a very thorough optimiza-
tion of the hyper-parameters as the point here is essentially to compare
UMA with the other algorithms. Additionally, we also report the error
rates of hSSVM when trained on the kernelized data with all dimensions,
that is the kernelized data before we project them onto their D princi-
pal components. Because the projection step is indeed unnecessary with
SSVM, this will give us insights on the error due to the Kernel-PCA step.
Comparing the first and the last columns of figure 4.3, it appears that
UMA always induces a slight performance gain, i.e. a decrease of the
misclassification rate, with respect to hSy .

From the second and third columns of figure 4.3, it is clear that the
reduced number of examples available to hSconf induces a drastic increase
in the misclassification rate with respect to hSt which is allowed to use the
totality of the dataset during the training phase.

Comparing UMA and hSconf in figure 4.3 (fifth and second columns),
we observe that UMAachieves lower misclassification rates on the Hand-
written Digits and Letter Recognition datasets but a higher misclassifica-
tion rate on Reuters. This is likely related to the strong class imbalance
in the dataset. Indeed, some classes are overly represented, accounting
for the vast majority of the whole dataset (see Fig. 4.2). Because Sconf is
uniformly sampled from the main dataset, hSconf is trained with a lot of ex-
amples from the overrepresented classes and therefore it is very effective,
in the sense that it achieves a low misclassification rate, for these overrep-
resented classes; this, in turn, induces a (global) low misclassification rate,
as possibly high misclassification rates on underrepresented classes are
countervailed by theirs accounting for a small portion of the data. On the
other hand, because of this disparity in class representation, the slightest
error in the confusion matrix, granted it involves one of these overrepre-
sented classes, may lead to a significant increase of the misclassification
rate. In this regard, UMA is strongly disadvantaged with respect to hSconf

on the Reuters dataset and it is the cause of the reported results.
The error rates for the SSVM and UMA classifiers are close for the

Reuters and Handwritten Digits datasets whereas UMA has a clear ad-
vantage on the Letter Recognition problem. On the other hand, note that
we used the SSVM method in conjunction with a Kernel-PCA for the sake
of comparison with UMA in its kernelized form. The last column of fig-
ure 4.3 tends to confirm that this projection strategy increases the error
rate of hSSVM. Also, reminds that the value of M does not impact the
performances of hSSVM but has a significant effect on UMA, even though
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Dataset hSy hSconf hSt hSSVM UMA hSSVM (no K-PCA)

Handwritten Digits 0.25 0.21 0.04 0.15 0.16 0.07
Letter Recognition 0.35 0.36 0.23 0.49 0.33 0.18
Reuters 0.30 0.17 0.01 0.22 0.21 0.22

Figure 4.3 – Misclassification rates of different algorithms.

UMA never uses these labelled data. For instance, on the Reuters datasets,
increasing M from 20 to 70 reduces UMA’s error rate by nearly 0.1 (see
the error rates of figure 4.4 (m = 70) when the size of labelled data is
close to 550, that is 5% of the whole dataset). Despite our efforts to keep
M as small as possible, we could not go under M = 50 for the Letter
Recognition dataset without compromising the invertibility of the confu-
sion matrix. The simple fact that an unusually high number of examples
are required to simply learn a rough classifier asserts the complexity of
this dataset. Moreover, the fact that hSy also outperforms hSSVM implies
that the labels fed to UMA are already mostly correct, and, according to
our working assumptions, this is the most favorable setting for UMA.

Nonetheless, the disparities between UMA and hSconf deserve more at-
tention. Indeed, the same data are being used by both algorithms, and one
could expect more closeness in the results. To get a better insight on what
is occurring, we have reported the evolution of the error rate of these two
algorithms with respect to the sampling size of Sconf in Figure 4.4. We can
see that UMA is unaffected by the size of the sample, essentially ignoring
the possible errors in the confusion matrix on small samples. This rein-
forces our previous results showing that UMA is robust to errors in the
confusion matrix. On the other hand, with the addition of more samples,
the refinement of the confusion matrix does not allow UMA to compete
with the value of additional (correctly) labelled data and eventually, when
the size of Sconf grows, hSconf performs better than UMA. This points to-
ward the idea that the aggregated nature of the confusion matrix incurs
some loss of relevant information for the classification task at hand, and
that a more accurate estimate of the confusion matrix, as induced by, e.g.,
the use of larger Sconf, may not compensate for the information provided
by additional raw data.

Building on this observation, we go a step further and replicate this
experiment for all of the three datasets; only this time we track the per-
formances of hSSVM instead. The results are plotted on Figure 4.5. For the
three datasets, we observe the same behavior as before. Namely, UMA is
able to maintain a low error rate even with a very small size of Sconf. On
the other hand, UMA does not benefit as much as other methods from
a large pool of labelled examples. In this case, UMA quickly stabilizes
while, to the contrary, the SSVM method starts at a fairly high error rate
and keeps improving as more labelled examples are available.

Beyond this, it is important to recall that UMA never uses the labels
of Sconf (those are only used to estimate the confusion matrix, not the
classifier (refer to Section 4.3.2 for the detailed learning protocol). While
refining the estimation of C is undoubtedly useful, a direction toward sub-
stantial performance gains should revolve around the combination of both
this refined estimation of C and the use of the correctly labelled training



4.3. Experiments 69

0 1250 2500 3750 5000

0.1

0.2

0.3

0.4

0.5

0.6

Number of labelled data

E
rr

o
r 

ra
te

 

 

UMA

f
conf

Figure 4.4 – Error rate of UMA and hSconf with respect to the sampling size. Reuters
dataset with m = 70 for the sake of figure’s readability.
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Figure 4.5 – Error rates for the Reuters (left), optical digit recognition (center) and letter
(right) datasets with respect to the size of Sconf. Average over 15 runs.

set Sconf. This is a research subject on its own that we leave for future
work.

All in all, the reported results advise us to prefer UMA over other
available methods when the amount of labelled data is particularly small,
in addition, obviously, to the motivating case of the present work where
the training data are corrupted and the confusion matrix is known. Also,
another interesting finding we get is that even a rough estimation of the
confusion matrix is sufficient for UMA to behave well.

Finally, we investigate the impact of the selection strategy of (p, q) on
the convergence speed of UMA (see Section 4.2.5). We use three variations
of UMA with different strategies for selecting (p, q) (error, confusion, and
random) and monitor each one along the learning process on the Reuters
dataset. The error and confusion strategies are described in Section 4.2.5
and the random strategy simply selects p and q at random.

From Figure 4.6, which reports the misclassification rate and the confu-
sion rate along the iterations, we observe that both performance measures
evolve similarly, attaining a stable state around the 30th iteration. The
best strategy depends on the performance measure used, even though re-
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Figure 4.6 – Error and confusion rates on Reuters dataset with various update strategies.

gardless of the performance measure used, we observe that the random
selection strategy leads to a predictor that does not achieve the best per-
formance measure (there is always a curve beneath that of the random
selection procedure), which shows that it not an optimal selection strat-
egy.

As one might expect, the confusion-based strategy performs better
than the error-based strategy when the confusion rate is retained as a per-
formance measure, while the converse holds when using the error rate.
This observation motivates us to thoroughly study the confusion-based
strategy in a near future as being able to propose methods robust to class
imbalance is a particularly interesting challenge of multiclass classifica-
tion.

The plateau reached around the 30th iteration may be puzzling, since
the studied dataset presents no positive margin and convergence is there-
fore not guaranteed. One possible explanation for this is to see the Reuters
dataset as linearly separable problem corrupted by the effect of a noise
process, which we call the intrinsic noise process that has structural features
‘compatible’ with the classification noise. By this, we mean that there must
be features of the intrinsic noise such that, when additional classification
noise is added, the resulting noise that characterizes the data is similar to a
classification noise, or at least, to a noise that can be naturally handled by
UMA. Finding out the family of noise processes that can be combined with
the classification noise—or, more generally, the family of noise processes
themselves—without hindering the effectiveness of UMA is one research
direction that we aim to explore in a near future.

4.4 General Conclusion

4.4.1 Discussion and Afterthoughts

In this section we shall discuss some more of UMA characteristics and
noticeable aspects. While this is not bound to the main exposition of UMA,
we think some remarks are useful addition that bring contextualization
and help in establishing what is the potentiality of our work in the fields
of learning noisy classifier and multiclass classification.

One of the core ideas behind UMA, namely, the computation of the
update vector xpq

up, is not tied to the additive update scheme. Thus, as long
as the assumption of linear separability holds, the very same idea can be
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used to render a wide variety of algorithms robust to noise by iteratively
generating a noise-free training set with the consecutive values of xpq

up. Al-
though, every computation of a new xpq

up requires learning a new classifier
to start with. This may eventually incur prohibitive computational costs
when applied to batch methods (as opposed to online methods) which are
designed to process the entirety of the dataset at once2.

UMA takes advantage of the online scheme of additive algorithms and
avoids this problem completely. Moreover, additive algorithms are de-
signed to directly handle multiclass problem rather than having recourse
to a bi-class mapping. The end-results of this are tightened theoretical
guarantees and a convergence rate that does not depend of Q, the number
of classes. Besides, UMA can be directly used with any additive algo-
rithms, allowing to handle noise with multiple methods without further
computational burden.

While we provide sample complexity analysis, it should be noted that
a tighter bound can be derived with specific multiclass tools, such as the
Natarajan’s dimension (see [Daniely et al., 2011] for example), which al-
low to better specify the expressiveness of a multiclass classifier. However,
this is not the main focus of this work and our results are based on simpler
tools.

A complement to this work we want to investigate at a later time is a
way to properly tackle near-linear problems (such as Reuters). As for now
the algorithm already does a very good jobs due to its noise robustness.
However more work has to be done to derive a proper way to handle cases
where a perfect classifier does not exist. We think there are great avenues
for interesting research in this domain with an algorithm like UMA and we
are curious to see how this present work may carry over to more general
problems.

4.4.2 Conclusion

In this chapter, we have proposed a new algorithm, UMA —for Uncon-
fused Multiclass Additive algorithm— to cope with noisy training exam-
ples in multiclass linear problems. As its name indicates, it is a learning
procedure that extends the (ultraconservative) additive multiclass algo-
rithms introduced in section 2.3.2; to handle noisy datasets, it only re-
quires the information about the confusion matrix that characterizes the
mislabelling process. This is, to the best of our knowledge, the first work
where the confusion matrix is used as a way to handle noisy label in mul-
ticlass problems.

As such, UMA provide a first positive answer in our capability to cope
with unreliable or missing data efficiently and thus provides closure to
part II. In part III will take an altogether different angle on the more gen-
eral problem of label unavailability and explore how to adapt the theory
and the setting of learning when obtaining a full training set of labelled
samples is prohibitively costly.

2Nonetheless, from a purely theoretical point of view, UMA makes at most O(1/γ2)
mistakes (see theorem 4.1) and computing xup pq can be done in O(N) time. Therefore,
polynomial batch methods do not suffer much from this as their overall execution time is
still polynomial.
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In this chapter we shall take a step aside and forget about Machine
Learning for a moment. Indeed, we will essentially discuss the matter
of localization problems and how one can solve them through Cutting
Planes algorithms. The relevance of this chapter with respect to the last
third of this thesis, that is part III, comes from the similarities between
localization and learning problems. More precisely, the premise of this
chapter is that machine learning and localization frameworks are two dif-
ferent perspectives on the same problem. Notably, the three last chapters
of this thesis share the idea that we can leverage the Cutting Planes theory
developed in computational geometry to devise theoretically sound and
efficient Machine Learning methods. Given this general synopsis for part
III this chapter aims at giving a gentle introduction to the formalism of
Cutting Planes and localization problems as well as establishing the theo-
retical background needed for the two next chapters to unfold seamlessly.
Additionally, theorem 5.2 [Louche and Ralaivola, 2015a] is a new addition
to the theory of centers of gravity and one of the contributions of this the-
sis. We decided to expound it in this chapter because of its relevance to

75
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computational geometry and centers of gravity methods even though we
will not need it until chapter 7.

The first section will discuss in detail how the two settings we will
consider can be thought as equivalent, and we will make explicit the link
between machine learning and localization problems. The second section
introduces Cutting Planes methods and discusses some of the properties
of these methods that the reader should be aware of. Finally, the last
section focuses on a key geometrical notion in Cutting Planes theory, that
is the idea of centroid and more precisely, the notion of center of gravity.

5.1 An introduction to Localization Problem

As announced in the introduction, this chapter deals mostly with compu-
tational geometry, and more precisely localization problems. The goal of
this section is to motivate and discuss the relevance of localization prob-
lems relatively to the problem of bi-class classification.

5.1.1 Motivating the Setting

The problem so far

Let us first recap the learning problem we want to tackle. Contrary to part
II we will take a step back to binary classification as it was defined in chap-
ter 1. More formally, the setting we consider consists in a D-dimensional
input space X and an output space Y where X is a vector space with inner
product, generally akin to RD and Y

.
= {+1;−1}. The goal of learning

as it has been defined previously is to learn some concept function t that
maps X to Y based on the information contained in some training set
S .

= {(xi, ti)}N
i=1 where the pairs (xi, ti) are independently drawn from a

joint distribution Dt. More precisely, the crux of this setting is to find some
point w ∈ X such that the hyperplane hw of normal vector w separates
the the points mapped to (−1) from the points mapped to (+1). In other
words, we define the classifier hw(·) as

hw(·)
.
= sign(〈w; ·〉)

and ask for hw to mimic the concept t. Under P.A.C.-learnability assump-
tion, it is known (see the discussion in section 1.2.3) that we can assert the
quality of hw over Dt from its error rate on S given that S is large enough.
However, allowing for more expressive classifier via kernelization (Section
2.1) requires finer optimality condition such as Compression (Section 2.2)
or Large Margin (Section 1.3) properties. Finally, we keep our setting noise
free (Section 3.1) and will assume that a suitable h that perfectly mimics t
on S can always be found, in other words there always exists a vector w
such that Rl0−1

S (hw) = 0.
Therefore, the problem we really want to tackle in bi-class classification

so far is the one of finding a vector w ∈ X such that, for any point x ∈ S ,
w realizes a positive dot product with t(x)x: t(x) 〈w; x〉 ≥ 0. An alternate
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take on this problem is to define a matrix X ∈ XN such that

X .
=

 t1x>1
...

tNx>N


and to rewrite the problem of learning as:

find w s.t.

{
w ∈ X

Xw ≥ 0
(5.1)

Note that, in the above formulation, the class labels are integrated
within the matrix X. As such, X can be thought as the matrix contain-
ing the data of the problem, this formalism is notably related to the normal
form of a training set previously introduced in definition 3.1. For reminder,
the normal form of S is a dataset S ′ where all points have a positive label
which is defined as : S ′ .

= {(x′i,+1) : x′i = tixi}N
i=1

An alternative interpretation of learning

Problem (5.1) belongs to the class of linear programming problems (more
precisely, feasibility problems), a widely studied and fundamental class
of problem of computer science. It is known that learning problems can
be seen as peculiar form of linear problems [Dunagan and Vempala, 2008]
and linear programming methods are known to be efficient in machine
learning [Bennett and Parrado-Hernández, 2006] although they usually
lack the more advanced design feature of modern machine learning al-
gorithm. As such, optimization methods for linear programming (or
quadratic programming in the SVM case) are often relegated as algorith-
mic tools and rarely studied for their inherent learning properties.

So far, the problem of learning we have been interested in has always
been thought as learning a separating hyperplane. The underlying se-
mantic being that data are points in X labeled either +1 or −1, thus
the intuitive goal behind binary classification is to differentiate between
points labeled +1 and −1 or, in other words, to find a hyperplane such
that points with different labels lie on different sides of the hyperplane.
As discussed in section 3.1, the introduction of the normal form of S ,
noted S ′, changed a little this interpretation by introducing dataset with
only positive labels; notably as far as learning is concerned, S and S ′ are
functionally the same.

The key motivation for this chapter is that, except from our inherent
interpretation of what a learning task is, there is no actual differences
between a classifier and a datapoint. Indeed, since section 1.1.2 and defi-
nition 1.1 we have build our settings around the fact that H ≡ X through
the used of the inner product as the pivotal element of the decision rule
and although it seems natural to think of data as points and classifiers as
hyperplanes, the semantics of the two can be switched freely. Namely, let
us consider a dual interpretation of learning, that is where the matrix X
is thought as a collection of hyperplanes, defined by their normal vectors,
and w is akin to a point in X. The problem of learning thus become the
problem of finding a point w such that ∀i ∈ [N] 〈w; Xi·〉 ≥ 0. In other
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words, we want w to lie on the positive side of every hyperplanes defined
in X at once (see also figure 5.1). As a matter of fact, this corresponds to a
well-studied geometrical problem known as localization.

Version space

The crux of localization problems is to localize a point w within a convex
version spaceW0. More formally,W0 is defined from a collection of hyper-
planes hx1, . . . , hxN as the intersection of the positive halfspaces induced
by X, that is

W0(X)
.
= {w ∈ X : ∀i ∈ [N] 〈w; Xi·〉 ≥ 0}

and we can rewrite the localization problem as

find w s.t. w ∈ W0 (5.2)

where we dropped the dependency over X forW0.
Thus, solving the localization problem (5.2) amounts to solving the

linear problem (5.1) which, in turn, is equivalent to our learning problem.
Nonetheless, before going further down this road, we shall discuss a

little more the specifics of problem (5.2). First, we may note that in our
case W0 is unbounded, this is because all hyperplanes are defined from
a normal vector only and as such, they all go through the origin of X.
Ultimately, thisW0 being unbounded has to do with scale insensitiveness
and for any point w ∈ W0 note that for any λ > 0 and i ∈ [N], 〈w; Xi·〉 ⇔
〈λw; Xi·〉. Said otherwise, W0 is unbounded because, by construction of
the learning problem, any rescaling of a valid classifier w is also valid.
While this is a desirable property in the case of learning, dealing with
unbounded version space will prove difficult. We refer to the discussion
found in [Herbrich et al., 2001] in this matter and argue that if we enforce
a Euclidean norm of 1 on W0, that is if we consider the set W0 ∩ {w :
‖w‖2

2 = 1} we have a convex and compact set over the geodesic that is
the D-dimensional sphere of unit Euclidean norm. Although transposing
our reasoning onto geodesic geometry is feasible and lead to a definition
of the version space that is compact, with respect to said geodesic, this is
an arguably impractical solution as underlined by [Herbrich et al., 2001].
Instead, we follow the solution proposed in [Minka, 2001a, Minka, 2001b,
Herbrich et al., 2001] and adopt a more practical solution by enforcing a
maximal norm over W0 thus defining a restricted version space W (figure
5.2)

W .
=W0 ∩ B1

where B1 denotes the ball of unit Euclidean norm B1
.
= {w : ‖w‖2

2 ≤ 1}.
What we lose here is thatW is no longer defined in terms of hyperplanes
only, although this can be easily

accounted for; moreover there is a strong connection betweenW as it is
defined here and the geodesic approach, thus for most of what is to come
reasoning over W and projecting over the geodesic afterwards (through
normalization) is a sound solution to circumvent computationally costly
geodesic calculus [Minka, 2001b, Herbrich et al., 2001].
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Figure 5.1 – An illustration of the equivalence between a learning problem (top) and a
localization problem (below) with two positive data (red) and two negative ones (blue).
On the top picture, the purple area represent the set of separating hyperplane and w is one
possible solution. Remark that on this example x2 and x3 are enough to fully describe the
solution set. The bottom picture represents the equivalent localization problem, where each
point is taken as a hyperplane normal vector —with negative points being first reversed.
Again, the purple area in which w lives is only defined by x2 and x3’s hyperplanes and
the point w is an example of valid classifier.
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Figure 5.2 – An illustration of a two dimensional version space with and without the
restriction to the unit ball.

Therefore, the localization problem we shall consider is the one of lo-
calizing a point w within some compact convex set W , where W is de-
fined by a collection of hyperplane whose normal vectors are in X and a
quadratic constraint over the norm of w.

find w s.t. w ∈ W (5.3)

In addition, note that solving the localization problem (5.3) yields a
solution to the learning problem define in section 5.1.1. Also note that the
reverse may be not true, yet any solution of the learning problem can be
trivially rescaled to yield a solution to the localization problem. Hence, in
practice, one can go from one problem to the other seamlessly.

5.2 Cutting Planes Algorithms

5.2.1 A general introduction to Cutting Planes Algorithms

Cutting Planes algorithms are a family of optimization methods that
have reliably been used in machine learning as solver methods
[Franc and Sonnenburg, 2009, Teo et al., 2010] for machine learning prob-
lems such as SVMs and regularized risk functionals. Namely, they are
based on a geometric approach to linear problems, and try to iteratively
localize a feasible solution. At their core, those methods are an elegant
and efficient way to greedily solve localization problems in a manner that
is resembling a lot to some machine learning procedures, particularly
the Perceptron, in the sense that their general scheme is to start from
an arbitrary tentative solution and iteratively refine it based on data
feedback.

Algorithm 5 depicts a skeletal example of Cutting Planes algorithm
that underlines the general idea while leaving the more specific parts of
the algorithm unspecified.

Cutting Planes methods are built upon the idea that localization prob-
lem, however complex they are, verify the two following observations:

• A lot of elements in X are actually redundant, that is to say, there is
a lot of hyperplanes hXi· such thatW(X\{hXi·}) =W(X).
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Algorithm 5 A Skeletal Cutting Planes Algorithm for finding a point in
W
Require: A Cutting Planes Oracle O
Ensure: A point wk ∈ W

1: C0 ← B1
2: k← 0
3: repeat
4: wk ← Query(Ck) . Compute a query point wk ∈ Ck

5: Ask the Oracle O whether wk ∈ W
6: if wk /∈ W then
7: Receive a Cutting Plane hc from O
8: Ck+1 ← Ck ∩ {w ∈ X| 〈c; w〉 ≥ 0} . Trim Ck

9: k← k + 1
10: end if
11: until wk ∈ W
12: return wk

Figure 5.3 – A schematic representation of how Cutting Planes methods proceed. The
purple area represents the version space and the orange one the search space. Each panel
corresponds to a different query (the red dot) after which the oracle return a separating
cut, hence reducing the size of the search space.

• Finding a point w ∈ W up front may be too difficult to tackle as a
single task.

Typically, a Cutting Planes procedure may start with a very simple lo-
calization problem, involving only a few hyperplanes and then iteratively
refine the problem by adding new hyperplanes until a point in the version
space is found.

Cutting Planes algorithm are built upon the idea of Cutting Planes or-
acle —denoted O henceforth— where O is a function that, given a point
w ∈ X answers yes or no whether w ∈ W ; in addition, if the oracle an-
swers negatively, it responds with a separating cut, that is a hyperplane’s
normal vector x such that 〈w; x〉 < 0; in other words hx separates w from
W . Assuming it has access to a Cutting Planes oracle O, the algorithm
then keeps track of a search-space C ⊇ W that is iteratively trimmed until
it is close enough to W . Therefore the algorithm works as follows: it first
computes a query point w ∈ C and asks the oracle whether w ∈ W . Then,
it updates C with respect to the oracle answer, or terminates if w ∈ W .

To complete this section note that Cutting Planes algorithms get their
name from their general query scheme that consists in starting with a
very general search space C and iteratively shrink it until C becomes an
acceptable approximation of W . More precisely for a Cutting Planes al-
gorithm to terminate C does not have to be exactly the same as W . As
long as the algorithm is fully deterministic —especially the computation
of the query point and the oracle answer— it is guaranteed that the last
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Figure 5.4 – An illustration of neutral (left) and deep (right) cuts. The search space is
represented in blue and the version space is the purple pentagon. The query point and
the Oracle’s cut are in black. In both figure, the dotted area represents the portion of the
search space that is pruned by the cut.

query will always be for a point in W given C is the same. This allows
in some case to greatly reduce the complexity of W by rebuilding a neat
version of it through C. Therefore, if X contains redundant information,
Cutting Planes algorithms may identify a small set of cuts that describe
an accurate approximation of W . In other words, they encompass a very
desirable feature for learning algorithm in that they naturally provide a
Sample Compression Scheme. In anticipation to the discussions to come
in chapter 6, we may already mention that this property will be most de-
sirable when the aforementioned cuts will be drawn from X.

5.2.2 Analysis of Cutting Planes Algorithms through the query step

The query step is the cornerstone of Cutting Planes algorithms. It is this
step that drives the execution of the algorithm, and ultimately determines
whether a particular instance of the algorithm will be fast and/or efficient.
In a nutshell, the query step is divided two folds: first, the query function
compute a new query point w ∈ C (see Alg. 5); then w is fed to the Oracle
and a cut is received.

The role of the Oracle

By design, the Oracle acts as a black box of which we do not have any
knowledge. As such, no assumption should be made on its internal mech-
anism beyond the fact that it provides feedback through cuts in a deter-
ministic way. Hence, the Oracle drives the cutting process by providing
separating hyperplanes when needed —where, contrary to learning, sep-
arating here relates to the query point andW .

Building on this idea, we may differentiate two types of cuts referred as
deep and neutral. A neutral cut is a cut that goes through the query point
in such a way that w lies just outside the edges of the updated search
space. On the other hand, a deep cut refers to a cut that truly goes in
between w and W in the sense that there is some strictly positive distance
between w and the cut (see also Fig 5.4). Intuitively, a deep cut is always
better than a neutral one because it helps shrinking C faster although our
lack of knowledge about the oracle does not permit to plan for a deep or
a neutral cut during the querying process and neutral cuts should always
be assumed as far algorithm analysis goes.
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The role of the query point

As a matter of fact, the query() function amounts to solve a localization
problem per se. However, the search space has some nice properties in
this respect. First because it is defined by much fewer hyperplanes than
the version space —one per step of the algorithm. And second, because
each update only adds a single constraint at a time, thus at a given step k,
Ck is supposedly close to Ck−1 which in turns implies that wk should not
be too far away from wk−1 although this last bit is not forcefully accurate,
especially with respect to what ’far away’ might means. However the
intuitive idea it conveys is that the sub-problem solved at each iteration
should not be thought as independent localization tasks but steps on the
path to the final solution where each update of w is a little closer toW .

In this regard, query points play a central role in Cutting Planes al-
gorithm and the general efficacy of a particular implementation is often
tied to how well query point computation and Oracle’s cuts intertwine
together. On the other hand, it is a core idea that computing a query point
should be a simple process or otherwise it would undo the purpose of
Cutting Planes methods. In the end, these considerations call for carefully
designed query point strategies that we may precise in the remaining of
this chapter.

5.2.3 Toward Efficient Cutting Planes Algorithms

As stated previously, designing a query strategy is instrumental in ensur-
ing the efficacy of a Cutting Planes method. The main challenge here is to
find, in a reasonable time, a query point which will come with guarantees
on the reduction of C, independently of the cut returned by the Oracle.

Intuitively, we want query points that are deep within C so cutting
them out will lead to a drastic reduction in the size of the search space.
For instance, consider two query points w and w′ such that w is deep
within C and w′ lies near an edge of C. For now, it is unnecessary to detail
what deep might mean in the mathematical sense, so let it just be a generic
term for ’away from all edges’ and we will refine the idea later. Now, for the
case of w, no matter the cut, we are more or less ensured that any cut that
leaves out w will also prune a good chunk of C. However, in the case of
w′ there is two possibilities: either the cut removes only a small part of C
orW is lies between w′ and its closest C’s edge, thus leading to a cut that
will discard most of C (see also fig 5.5)

Obviously, this does not mean that querying points close to the edges
of C is desirable, because of our lack of control over the oracle, the pre-
ferred approach is to ensure a guaranteed minimum size reduction, as-
suming that the oracle will always return the least favourable cut. Hence,
the query point should ensure a large enough reduction of C’s size in all
cases.

We have yet to come with a mathematical characterization of what a
good query point is beyond the, rough, ’away from all edges’ placeholder
we have used for now and the intuition that this term conveys is the one
of the center of C, which will be the central topic of the next section.
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Figure 5.5 – Two different query points and the cuts they may induce; the orange (resp.
blue) area represents the discarded (resp. kept) part of C after the cut. The two top
figures depict the case of a query point close to the edges of C and the induced cuts split
C unevenly, leading to inconsistent reduction in the volume of C. On the other hand, the
bottom figures depict the case of a central query point. In this case the split is almost
even in all cases and leads to a much more reliable reduction of C’s volume.

5.3 Centroids

5.3.1 The epitome of centroid: the Center of Gravity

In the previous section, we haven taken some time to emphasize the
stakes of a good query strategy for Cutting Planes methods. Unsur-
prisingly, studying those strategies has been a major focus of Cutting
Planes related research since the inception of the algorithm (see e.g.
[Boyd and Vandenberghe, 2004] for a general review). The idea of a point
’away from all edges’ matches the mathematical concept of centroid, although
there exists many different kinds of centroid, with different properties,
more or less desirable. Conceptually, a centroid is defined as the center of
a convex body, where the term ’center’ is up to different meanings, hence
the multiple co-existing variety of centroids.

A definition of the Center of Gravity

The first centroid to be considered for query purposes in the Cutting
Planes literature is also the most intuitive one: the center of gravity, or
alternatively, center of mass. The term is borrowed from physics termi-
nology and it actually correspond to the usual center of mass of an object,
that is the average location of an object1.

Definition 5.1 (Center of Gravity) Given a convex body C assumed to be of constant density, the
center of gravity of C denoted CG(C) is:

CG(C) .
=

1
Vol(C)

∫
w∈C

wdw

1For a more complete definition, we should take into account the mass distribution
over said object. Although, in an effort to keep things simple, we assume an uniformly
distributed mass.
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where Vol(C) is the volume of C.

Definition 5.2 (Volume of a convex body) Given a convex body C, its volume Vol(C) is defined
as

Vol(C) .
=
∫

w∈C
1dw

Centers of gravity are remarkable in many senses, they are easy
to grasp and understand, yet they crystallize some of the most fun-
damental properties of a convex body. Considering centers of grav-
ity as potential query point for Cutting Planes algorithms started in
the early 50’s with the works of [Newman, 1965, Levin, 1965] (see also
[Boyd and Vandenberghe, 2007]).

The fundamental property of Center of Gravity

What makes Center of Gravity interesting as query points is that they
match the very idea of center in a Cutting Planes sense. That is, for a given
convex search space C, its center of gravity is the point that have the best
volume reduction guarantees if cut-out by the oracle. This property is
often referred as the fundamental property of Centers of gravity and is due
to [Grunbaum, 1960, Levin, 1965]

Theorem 5.1 (Partition of Convex Body) Let C be a convex body in a D-dimensional Hilbert
space, CG(C) its center of gravity. Let hx any hyperplane of normal vector x that
splits C in two partitions C+ and C− such that

C+ .
= {w ∈ C : 〈w; x〉 ≥ 0}

C− .
= {w ∈ C : 〈w; x〉 < 0}

If CG(C) ∈ C− (resp. C+) then

Vol(C−) ≥
(

D
D + 1

)D

Vol(C)

Because the term
( D

D+1

)D
decreases as D increases and converge to

e−1, we also have the following corollary that is interesting because the
result no longer depends on D.

Corrollary 5.1 (Partition of Convex Body (continued)) Let C, C−, C+ and CG(C) defined as in
theorem 5.1 then, if CG(C) ∈ C− (resp. C+):

Vol(C−) ≥ e−1Vol(C) ≈ 0.37Vol(C)

A detailed rewriting of the theorem’s proof can be found in Appendix
A.3. Also, a novel, non-trivial extension of this theorem can be found in
Section 5.3.4 theorem 5.2.

This theorem is remarkable on many levels. First it holds for any con-
vex body, independently of their shape on complexity 2 and the corollary
makes it independent to the dimension which is a very unusual and re-
markable feature for such results. Also, it establishes a strong link be-
tween the volume of a convex body and its center of gravity, and, in a

2Also, note that the result holds when hyperplanes are defined with an offset term
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Figure 5.6 – The limit case of Theorem 5.1 in two dimensions. The center of gravity is
located precisely at 2/3 of the total height and the blue area amounts for exactly 4/9 of
the total area of the triangle. The proof of the theorem is based on a generalization of this
case to any dimension and can be found in full in appendix A.3.

sense, the center of gravity encodes some fundamental volume and shape
information; on that matter, it thus comes with no surprise that comput-
ing the center of gravity allows for fast computation of the volume (see
[Rademacher, 2007, Elbassioni and Tiwary, 2008]). Finally, it establishes a
geometric convergence rate for Cutting Planes algorithms when centers of
gravity are used for in the query strategy.

More precisely, we know that given an instance of Cutting Planes al-
gorithm, the execution stops when Vol(C) is close to Vol(W) as it means
that C is a close approximation of W and consequently localizing a point
in C is to localize a point in W . The limit case being when the two vol-
umes are equal, since C ⊇ W it implies that C = W . Therefore, theorem
[Grunbaum, 1960] allows to upper bound the number of steps performed
by a Cutting Planes algorithm that would use CG(C) as a query point.
More precisely we have that the volume of C shrinks by a constant ratio at
each step, hence the number of step before the algorithm terminates, that
is the number of iteration before Vol(C) ≤ Vol(W), is in O (log(Vol(W))).

Computational limits of the center of gravity

For all their nice properties, Centers of gravity nonetheless suffer from
a major drawback: they are difficult to compute. More precisely, be-
cause of their close relation with the volume of a convex body, Cen-
ters of gravity can be used to iteratively compute the volume of a
convex body. Because volume computation is a known #P-hard prob-
lem, computing a center of gravity is therefore also #P-hard —See
[Rademacher, 2007, Elbassioni and Tiwary, 2008] for more details.

With exact computation of centers of gravity not a possibility, one is
left with approximation methods. We shall review some of those later
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in Section 5.3.3 in order to keep with our main focus here, that is the
exposition of different types of centroid.

5.3.2 A second centroid, the chebyshev’s center

Motivated by the hardness of computing centers of gravity, Chebyshev’s
Centers were the next step in terms of centroid in the Cutting Planes lit-
erature [Elzinga and Moore, 1975]. They can be thought as a relaxation of
centers of gravity in that they try to capture the same concept of center
though with a far simpler —in the computational sense— definition 3.

Intuitively, the Chebyshev’s Center of a convex body is the point that
is the farthest from all edges which seems to fit our idea of an ideal query
point. More formally, given a convex body C it’s Chebyshev’s Center is
the center of the largest inscribed sphere in C, hence the idea of being far
from all edges.

Definition 5.3 (Chebyshev’s center) For a given convex body C we define the Chebyshev’s center
of C and write CC(C) the point such that:

CC(C) .
= min

w∈C
max

w′∈X\C
{‖w−w′‖2}

In other words, CC(C) is the deepest point in C in the sense that it
is far away from all edges. Nonetheless CC(C) is only an approxima-
tion of the center of gravity ([Tong and Koller, 2001, Herbrich et al., 2001,
Boyd and Vandenberghe, 2007, Boyd and Vandenberghe, 2004]), underly-
ing that the problem of finding the optimal query point is more complex
that one might thought at first.

Example 5.1 (Trapezoid) A good example of how Chebyshev and gravity centers relate to each
other is depicted in figure 5.8. Consider a trapezoid defined as the resulting in-
tersection of a triangle and a half-space with delimiting hyperplane parallel to the
triangle’s base. For the sake of the argument, let assume that the height of the
trapezoid is long enough so that the Chebyshev centers of the triangle and the
trapezoid are the same, that is, the intersection of the two angle bisectors from the
base (see fig 5.7).

However, pruning the upper angle of the triangle does impact the center of
gravity that is consequently shifted toward the base of the trapezoid (Fig. 5.8).
Hence, we can define a whole variety of trapezoid from this construction with
different heights; each one of those have the same Chebyshev’s center but different
centers of gravity. The two limit cases being, on the one hand, the full triangle
(Fig. 5.8 bottom panel), and on the other hand the trapezoid with height equal to
the diameter of the maximal radius inscribed sphere (Fig. 5.8 top panel).

Another example is also depicted in figure 5.9, which represents an
actual version space restricted to the unitary Euclidian ball in a three di-
mensional learning problem along with its Chebyshev’s center (dark blue)
and center of gravity (light blue).

The key observation is that the edges of a convex body does not cap-
ture enough information to properly assert its mass repartition (see the

3It seems to exist two non-equivalent definitions of the Chebyshev’s Center. The one
we will use is the one of —among others— [Boyd and Vandenberghe, 2007]. The other
one is, for instance, the one described in [Garkavi, 1964, Amir and Mach, 1984]
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Figure 5.7 – An illustration of the Chebyshev’s center (top) and the center of gravity
(bottom) for a trapezoid. Geometrically, the Chebyshev’s center can be defined as the
intersection of the two base’s angle bisector (red lines in the top figure) —given a long
enough height. The center of gravity case is a little more convoluted as it requires to first
split the trapezoid in two triangles (red line). From here, we can easily find the center of
gravity of the two sub-triangles from their medians (green and blue lines). Finally, we
know that the Trapezoid’s center of gravity lies both between the two sub-triangle center
of gravity —remind that it can be defined as the weighted average of those two points—
and on the trapezoid’s base median. Taking intersection of those two lines (purple) yields
the desired point.
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Figure 5.8 – Three different trapezoids with three different heights. The top and bottom
cases correspond to the upper and lower limits for the height. That is when the height is
equal to the diameter of the largest inscribed sphere (orange, top panel) and the triangle
case (bottom panel). The middle panel depicts the case where the Chebyshev center and
the center of gravity are the same point. Some of the construction lines of Fig. 5.7 are
depicted for reference.
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Figure 5.9 – A depiction of the difference between the center of gravity and the Cheby-
shev’s center on a 3-dimensional search space (red area) lying on the unit ball of norm
one. The orange hyperplanes represent cuts. The light blue (resp. dark blue) point is the
Chebyshev’s center (resp. center of gravity). We can see here that the Chebyshev’s center
is drastically shifted with respect to the center of gravity.
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discussion in [Tong and Koller, 2001] for instance). This eventually explain
the lack of theoretical guarantees related to Chebyshev’s center when used
in conjunction with Cutting Planes methods. Contrary to Centers of Grav-
ity, there is no strong convergence results for Chebyshev’s centers and
their use in practice is more backed by empirical efficiency rather than
theoretical analysis.

On the other hand, Chebyshev’s centers are easy to compute and, given
a convex body described as a finite set of ellipsoid constraints —which is a
more general setting than needed for our case— one can find it by simple
quadratic programming.

Finally, on the chapter of approximate center of gravity, we should
also mention briefly another popular approximation, that is the analyt-
ical center —ACCPM— [Nesterov, 1995, Boyd and Vandenberghe, 2007]
which can be thought as a middle ground between the guarantees of a
center of gravity, and the computational ease of the Chebyshev’s Center.
Moreover, ACCPM has recently found its way to the machine learning lit-
erature [Fanzi et al., 2009]. Nonetheless, we will not go this way in this
thesis and investigating the use of ACCPM in machine learning is yet an-
other possible, and promising, extension of our work.

5.3.3 Sampling methods

Another take on the problem of computing the center of gravity is that of
seeking an analytical approximation of the centroid —as opposed to the
geometrical approximation that is the Chebyshev’s Center. In other word,
the idea is to compute a point that is relatively close —from a distance
perspective— to the center of gravity, yet easy to compute.

MCMC methods

This can be achieved by a simple Monte Carlo approach. Namely, we will
approximate the center of gravity by summing over a finite sample of
points uniformly spread over C. Let consider UC the uniform distribution
over C such that, for all x ∈ X:

UC(x) =

{
1

Vol(C) if x ∈ C
0 otherwise

and a collection E = {w1, . . . , wk}, E ⊂ C of k points drawn from UC :
E i.i.d∼ U k

C . Then, we define the approximate center of gravity C̃G as:

C̃G .
=

1
k

k

∑
i=1

wi

However, sampling uniformly over C is not a trivial task. Fortu-
nately, the question of sampling points from a given distribution is a
vastly studied topic and methods abounds to achieve this goal. We
are particularly interested in Monte-Carlo Markov-Chain methods —or
MCMC for short— which rely on biased random walks over the distri-
bution’s domain. There exists a wide range of MCMC methods, and
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going through a review of the MCMC literature in this work is unreal-
istic and unwise. Hence, we will focus in the following on a peculiar
family of MCMC sampling method, known as Hit and Run algorithms
[Lovász, 1999, Lovász and Vempala, 2003] that is famously known as a
good sampling algorithm over convex bodies —that is, when the target
distribution is constant over the convex body, and 0 elsewhere. In its sim-
plest form, the Hit-and-Run algorithm starts from a point within C and
perform a random walk within the boundaries of C. Notably, Hit-and-Run
algorithms converges to the uniform distribution in a time polynomial in
the dimensionality of C [Lovász, 1999] and in practice happens to be one
of the fastest class of sampling algorithms.

The billiard Algorithm

For mainly practical reasons, we will consider a slight variation of the
original Hit-and-Run algorithm that is known as the billiard algorithm
[Rujan, 1997, Rujan and Marchand, 1999]. Historically this variation has
been reliably used in center of gravity focused work and machine learning
[Herbrich et al., 2001] hence this choice. The idea behind the billiard algo-
rithm is a very simple one, like regular Hit-and-Run, the algorithm starts
with an initial point within C and move in a random direction. However,
the algorithm keeps moving until it reaches an edge of C and then bounce
on this boundary as a billiard ball would. Finally, sampling the trajectory
at a constant time interval provides the required sample set. The algo-
rithm convergence rests on the ergodic billiard theory which studies and
describes the behaviour of a billiard ball undergoing elastic collision —
that is, without loss of velocity— with the (enclosing) edges of a convex
body. Roughly speaking, ergodicity ensure that almost all infinitely long
trajectories will cover uniformly the phase space. In other words, assum-
ing an infinitely long trajectory, the billiard’s ball will uniformly assume
all the possible combinations of location and direction within C eventu-
ally. The question of what conditions are needed for the version space to
have this ergodicity property is, to the best of our knowledge, still open.
However in his work, Pál Ruján [Rujan, 1997] strongly implies any version
space can reasonably be considered as ergodic:

“Except for very special cases with high symmetry, it seems therefore
unlikely that high dimensional convex polyhedra are not ergodic. If so,
adding a few scatterers inside the polyhedra might restore ergodicity.”

Moreover, this is an assumption that has been backed by
numerous empirical results [Rujan, 1997, Herbrich et al., 2001,
Rujan and Marchand, 1999, Brinker, 2004].

In practice, running the billiard algorithm amounts to compute, re-
peatedly which edge of C the ball will hit first. That is to say, given a
search space defined as the intersection of a collection of cuts of normal
vectors c1, . . . , cM, and a point w ∈ C moving at constant speed along a
random direction v we have to compute for every delimiting hyperplane
hci of C how long it will take for w to collide with hci . We note dist(w, hci)
the distance between w and hci and vi the component of v perpendicular
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Figure 5.10 – An example run of the billiard algorithm on a 2 dimensional convex poly-
tope. The left figure depicts the five first bounces whereas the right one is a plot of the
billiard’s trajectory after 300 bounces.

Figure 5.11 – A depiction of the ergodic nature of the billiard trajectory. The left figure
represents the complete billiard path after a typical run of 5000 bounces. The left figure is
a magnification of the left panel’s red square. Although the polytope seems to be uniformly
covered in the first figure, we can distinguish some irregularities at a lower scale.

Figure 5.12 – An illustration of the billiard algorithm used to approximate the center
of gravity. The left figure depicts the first hundred approximation made after the first
hundred of bounces. The color correspond to the order, with the red one being the first
approximation, and the blue one the hundredth one. The purple diamond represent the
final estimate after 5000 bounces. Notably, even after a hundred of bounce, the algorithm
already yield a relatively good approximation. The right picture represents the midpoints
of each of the 5000 bounces, colored by the length of the bounce. The final approximation
of the center of gravity is then computed from the weighted average of those points.
Contrary to the billiard’s trajectory, those points do not form an uniform coverage of the
polytope.
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to ci. Hence

dist(w, hci) = 〈w; ci〉 (5.4)
vi = 〈v; ci〉 (5.5)

and the time before w collides with hci is therefore:

τi = −
dist(w, hci)

vi

After computing the M collision times, it suffices to looks for the
smallest positive one τmin = mini τi to determines which hyperplane
will intercept w first. A special case occurs when the billiard leaves the
ball of unit norm B1 before hitting any hyperplane. Some of the afore-
mentioned works propose to reset the billiard when this event happens
[Rujan, 1997, Herbrich et al., 2001]. In our case, it seems justified to treat
this case as a regular collision [Minka, 2001b, Brinker, 2004] and stay as
close as possible to the original billiard setting. This also make sense from
the geodesic point of view since the center of gravity of C, when projected
on the surface of B1 matches the center of gravity of C ∩ B1 (see section
5.1.1). Practically, detecting collision with the inner limit of B1 is a matter
a fixing a maximum collision time τmax after which ‖wτmaxv‖ = 1; this is
simply done by solving a quadratic equation after each bounce.

Finally, after a collision, the new velocity vector is given by

v′ = v− 2vici

Additionally, assuming a normal vector ci of unit norm ‖xi‖ = 1
we can see that the velocity is preserved —that is, ‖v′‖ = ‖v‖— and
〈v′; ci〉 = − 〈v; ci〉. Note that, when the collision involves the unit ball
B1, we assume x1 to be a vector located at the impact point and directed
toward the origin of the space.

One practical advantage of the billiard algorithm is that both the
collision time and velocity update are already defined in term of dot
product. Thus it simplifies a lot the process of rewriting the algo-
rithm for kernelized data and classifier; notably, this is one of the mo-
tivation of [Herbrich et al., 2001] for using billiard algorithm. More-
over, dealing with kernels incidentally means that generating a ran-
dom direction uniformly over the unit sphere in F is not a trivial task
[Gilad-Bachrach and Burges, 2013]. Contrary to the vanilla Hit-and-Run
algorithm, being able to do so is not a prerequisite for the billiard algo-
rithm due to the ergodicity property which states that almost all trajectory
will eventually cover the entire state space.

Finally, note that the above discussion is obviously subject to our
capacity of finding a good starting point, that is a point in C. We al-
ready argued that this is a localization problem supposedly easy to tackle,
nonetheless, the biggest computational burden comes in practice from this
initialization step. On the other hand, because the billiard algorithm vis-
its (hopefully) the totality of C, one can adopt a practical approach and
consider the sampled points of C as potential starting point for the next
iteration —remember that the first iteration is trivial since C0 = B1. If
all else fail, a viable fall back strategy is to use a fast machine learning
algorithm (e.g. the perceptron) to quickly find a point in C.
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5.3.4 On the property of sampled centers of gravity

The problem so far

From an empirical perspective, sampling methods provide useful results
that are practically close to the true center of gravity and, more impor-
tantly, Theorem 5.1 seems to hold for these approximates [Rujan, 1997,
Herbrich et al., 2001]. Theoretically though, a formal result is lacking for
numerical estimate of the center of gravity. More precisely, to the best of
our knowledge, there is no previous result on how the bound of 5.1 de-
grades when considering a close estimate of the center of gravity. Hope-
fully, the ratio of theorem 5.1 should degenerate smoothly with the quality
of the approximation, that is its distance from the true center of gravity.
One of the contribution of this thesis is to answer this question and pro-
vide a generalization of 5.1 that holds for any approximation of the center
of gravity.

Theorem 5.2 extends Theorem 5.1 for approximate centers of gravity.
In addition it reduces to Theorem 5.1 when applied to the true center of
gravity. Moreover, that is a result of its own interest, which may benefit
to many fields of computer science. A prime example being sampling
methods as previously discussed, and of course Cutting Planes methods.
Here, the purpose of Theorem 5.2 is essentially to the above case, that is
to validate the use of approximations of the center of gravity CG(C) in a
Cutting Planes setting.

A generalized partition of convex bodies

Theorem 5.2 (Generalized Partition of Convex bodies [Louche and Ralaivola, 2015a]) Let C be
a closed convex body of dimension D and CG(C) its center of gravity. Let hx
a hyperplane of normal vector x, ‖x‖ = 1 and define the upper (resp. lower)
partition C+ (resp. C−) of C by hx as

C+ .
= C ∩ {w ∈ RD : 〈x; w〉 ≥ 0}

C− .
= C ∩ {w ∈ RD : 〈x; w〉 < 0}.

The following holds true: if CG(C) + Λx ∈ C+ then

Vol(C+)
Vol(C) ≥ e−1(1− λ)D,

where

Λ = λΘD
Vol(C)HC+

RD HC−
,

with λ ∈ R an arbitrary real, ΘD a constant depending only on D,
R the radius of the (D − 1)-dimensional ball B of volume Vol [B] .

=
Vol
[
C ∩ {w ∈ RD : 〈x; w〉 = 0}

]
and HC+ = maxv∈C+ v>x (resp. HC− =

minv∈C− v>x)

Proof. The proof is a (non-trivial) extension of Grunbaum’s one for Theo-
rem 5.1 [Grunbaum, 1960] which can be found in full in appendix A.3
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Figure 5.13 – An schematic illustration of the different distances mentioned in Th. 5.2
on a two dimensional example. G and G′ respectively represent the center of gravity
and its approximation at a distance Λ. The red line represents the hyperplane of nor-
mal vector x dividing C into C+ and C−. The blue distances represent HC+ and HC− ,
that is the distance between the red hyperplane and farthest point in C+ and C−. The
light blue dashed line is the diameter of the 1-dimensional sphere of volume equal to the
intersection between C and the red hyperplane; note that computing R become a lot less
straightforward as the dimensionality of C increase.

We may add a few remarks to this result, especially regarding the
Λ = λΘD

Vol(C)HC+
RD HC−

part. In a nutshell, Λ is related to how the initial re-
sult of Th. 5.1 degrades with approximated centers of gravity. The terms
ΘD and Vol(C) are directly related to D and C, in other words they do
not depends on the approximate center of gravity. On the other hand the
ratio HC+

HC−
and R are more interesting. In substance, HC+ (resp. HC−) corre-

sponds to the distance of the farthest point in C+ (resp. C−) relatively to
the hyperplane hx and we may immediately note that, contrary to Th. 5.1
the ratio between C+ and C− is actually dependant of how hx intersects
C. The same goes for R which is the radius of (D− 1)-dimensional ball B
of volume Vol [B] .

= Vol
[
C ∩ {w ∈ RD : 〈x; w〉 = 0}

]
. A way to visualize

this Ball is to consider the slice of C along hx, that is the D− 1 dimensional
volume C ∩ hx, B is a (D− 1)-dimensional ball of same volume —for in-
stance, if C is a 3-dimensional volume then C ∩ hx will describe a planar
surface and B will be a disk whose area is the same than C ∩ hx. More
details on how B is constructed can be found in the proof of Th. 5.2 in
the appendix or in the original works of [Grunbaum, 1960]. Moreover, an-
other difference with corollary 5.1 lies in the fact that the partition ration
is no longer independent of the dimension of C although this had to be
expected because it was a convenient side effect of the result of theorem
5.1.

All in all, λ is therefore intricately tied to the location of hx in C and,
as a result, the intuition that an approximate center of gravity closer to its
true location would imply better volume reduction property seems wrong.
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The problem is actually more complex and depends on both the general
shape of C and the orientation of hx. For instance, for an elongated C, λ
can vary a lot depending on whether hx intersects C along its long or short
axis. From a practical perspective however we can reasonably assume that
C has a shape regular enough for all possible values of λ to be confined
within a small interval, making the result of Th. 5.2 related to Λ only —i.e.
the distance between the true center of gravity and its approximation.

A relevant critic to the above discussion is to ask of the relevance of the-
orem 5.2 given that we advocate for an assumption similar to the smooth
degradation of the result of theorem 5.1. We argue that theorem 5.2 pro-
vides insights on the limits of this assumption and identifies the important
factors that may break it. As such, we gain a better understanding of the
limits of our model and it is made easier to detect cases where model
based on approximated center of gravity might under-perform.

5.4 Conclusion

This chapter stands apart from the rest of this thesis in the sense that it
does not discuss Machine Learning directly. Instead, we focused on lo-
calization problem and Cutting Planes algorithm theory. We already have
discussed in this chapter the strong links between localization and learn-
ing problems, and it should come without surprise that the next chapters
build upon these similarities to develop new methods for machine learn-
ing. Additionally, we also discussed the matter of centroid of a convex
body, something that is closely tied to the performance of Cutting Planes
methods, and one of our contribution in this respect comes in the form
of theorem 5.2 which is a non trivial and new extension of theorem 5.1
to approximated center of gravity. Although this result is motivated by
linear classification considerations (see chapter 7 for the details of its use)
we may underline that theorem 5.2 is not specific to machine learning and
its relevance spans beyond the scope of this thesis and in particular to
geometrical methods build around centers of gravity.
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This chapter is a direct application of the ideas developed in Chap-
ter 5 to the setting of machine learning. Namely, we will first discuss
what interpretation we can give to the various notions introduced previ-
ously within the context and semantics of Machine Learning. We shall
then unfold our discussion in two times. A first matter will be to dis-
cuss how centroids can be thought as classifier and consequently what
underlying learning paradigms correspond to the Chebyshev and Gravity
centers. A surprising result is that both correspond to known learning
methods, with the Chebyshev’s center being equivalent to a SVM clas-
sifier and the center of gravity being used as an approximation of the
Bayes Point. The second point of this chapter comes from the observation
that learning algorithms can be used to implement the query function of
a Cutting Planes algorithm (Alg. 5) and as such it is possible to wrap
classic learning methods into a Cutting Planes update Scheme. More pre-
cisely, we shall discuss this approach on two peculiar cases: SVM methods
and the Perceptron algorithm. The former case yielded an already vastly
discussed contribution [Joachims et al., 2009] that established remarkable
improvement with respect to the classic SVM computational complexity;
the latter case is a contribution of our own that has been published first
in [Louche and Ralaivola, 2015a], its main interest is to show that Cutting
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Planes are a natural way to enhance the Compression property of the per-
ceptron algorithm without leaving the theoretical boundaries of theorem
1.3. The result is a new algorithm that is bounded in its total number
of update by theorem 1.3 —consequently, this also bound the number of
Cutting Planes queries— and exhibit a much more aggressive compression
behaviour than a regular Perceptron.

6.1 Localization methods in the context of Machine

Learning

6.1.1 Back to Machine Learning

As a preliminary to this chapter we shall make a proper transition from
the matters discussed in the previous chapter —i.e. Cutting Planes algo-
rithms and centroids— to linear classification. In many senses, this section
mirrors Section 5.1.1 as we will unfold the localization setting we built up
in chapter 5 within the context of binary linear classification.

Cutting Planes Algorithms for Learning

We shall revisit Cutting Planes algorithms in retrospect to the underlying
learning problem we want to tackle. Let us first re-state the localization
problem Cutting Planes algorithm are used for, that is to find a point w lo-
calized within a version spaceW defined with respect to a matrix X ∈ XN

that can be thought as N hyperplane’s normal vectors (see also problems
(5.1) (5.2) and (5.3)). On this topic we may underline that the matrix X is
constructed from a learning problem’s training set S .

= {(xi, ti)}N
i=1:

X .
=

 t1x>1
...

tNx>N


Or, equivalently, from a training set S ′ in normal form (see definition 3.1)
with data tixi and labels (+1) everywhere. Thus the core idea behind
chapter 5 was to rest on this duality between points and hyperplanes to
motivate the study of localization methods as potential learning algorithm.
As such a conclusion of this discussion is that Cutting Planes algorithms
do return a classifier w that is consistent with S , yet we barely scratched
the matter of how relevant the Cutting Planes properties are with respect
to machine learning considerations.

The first point we shall discuss though, is the question of the specifics
of the Cutting Planes oracle or, more precisely, how do we build a Cutting
Planes oracle given our learning setting. To that question we may answer
simply and remind that, by design, the Oracle function should be easy to
compute and as such we go for the most straightforward solution, that is
to directly search through X for a hyperplane that has a negative margin
with the queried point. Equivalently, note that this amounts to finding
a labelled example (xi, ti) in S on which the queried point —that is, a
classifier— makes a prediction mistake. In anticipation of section 6.2.2 we
may also mention two variations of this Oracle implementation that add a
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minimal computational overhead. Namely, Cutting Planes Oracle that will
consistently returns the cut with minimal or maximal (negative) margin
when multiple cuts are possible. Intuitively, these two strategies lead to
Cutting Planes Oracles that will either return the deepest cut possible or
the least deep one and we shall discuss the relevance of these strategies in
section 6.2.2.

6.1.2 On the property of Cutting Planes as Learning Algorithm

A matter we barely touched in the above discussion is that, similarly to the
final output of a Cutting Plane algorithm, query points are akin to classi-
fiers in a learning setting. More precisely, given the implementation of the
oracle we propose, cuts are therefore data from S and consequently query
points can be thought as classifiers that are consistent with a subset of
S . More precisely, from a learning perspective, the Cutting Planes update
scheme can be summarized as follows: at each step, produce a classifier
w consistent with a partial dataset SC then ask for a new data from S on
which w errs. Where SC is the training set composed by the cuts returned
by the Oracle so far, thus SC ⊂ S is the learning counterpart of the search
space C introduced in chapter 5.

Consequently, a defining feature of Cutting Planes methods when ap-
plied to learning problem is that they precisely proceed by building a
simplified representation of S by selecting relevant data through Oracle
queries. In particular, we argue that this behaviour gives rise to Sample
Compression Scheme in the sense that the algorithm ultimately identifies
a search space C that is a synthetic approximation ofW , that is S , with an
emphasis on making as few Oracle queries as possible.

Property 6.1 (Cutting Planes Provides Samples Compression Scheme) Any Cutting Plane algo-
rithm such as depicted in algorithm 5 is a Sample Compression Scheme provided
that the Oracle in line 7 and the Query Step in line 4 are deterministic.

Proof. If the compression set is made of the training examples that define
the cutting planes, this result is a direct consequence of the structure of
Algorithm 5. A proof by induction that essentially hinges on the fact that,
at each iteration k, the next query point is deterministically computed
from Ck (only) gives the result.

Additionally, the learning algorithm obtained with the assump-
tions of Proposition 6.1 is a Process Sample Compression Scheme
[Littlestone and Warmuth, 1986], that is, even if we interrupt the learning
before convergence has occurred, running the algorithm on the partial
compression scheme obtained so far gives exactly the same predictor.
Moreover, it is obviously an aim to have fast convergence of the local-
ization procedure, where fast convergence means few iterations of the
cutting-plane procedure. This directly translates into the idea of finding
a point in the version space that is expressed as a combination of as few
vectors as possible, which, by theorem 2.2, is very beneficial for general-
ization purposes. This is especially interesting in the context of centroids,
and more specifically centers of gravity, that may come with guarantees on
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the number of iterations (relatively to Vol(W)), and therefore on |κ(S)|,
to reach convergence.

Finally, we may state plainly a fact we only hinted at so far, that is
finding a point in C is, per se, a learning task. Hence, any learning algo-
rithm that operate the setting we have described so far —i.e. binary linear
classification— is a potential implementation of the query() function of
algorithm 5. At this point in the discussion, a natural question that arises
is the one of how usual classification methods may intertwine and benefit
from theorem 2.2 when used as query strategies in a Cutting Planes set-
ting and conversely what is the relevance of Cutting Planes specific query
strategies with respect to the Machine Learning needs.

6.1.3 The case of CG and CC

Of the last section’s concluding question, we shall answer the second part
first. That is, in a binary linear classification setting, what is the underlying
interpretation of centroids. To precise the setting, we may for a time forget
about the overall Cutting Plane Scheme and focus on what happen on
one iteration of the algorithm. More generally, because each iteration of
a Cutting Planes algorithm amounts to solving a learning problem, we
may consider the even more global setting where we have a training set
S (independently of whether it is a sub-sample of a larger training set)
and we are interested in the qualities of the centroids of W(S) from a
learning point of view. In particular, the centroids we may consider are
the Chebyshev’s center and the center of gravity as they are the more
relevant to our problem, as far as the Machine Learning literature goes.

The Chebyshev’s center is a SVM classifier

We are going to argue in this section that the Chebyshev’s center as we
have defined it in section 5.3.2 is simply a rescaling of the classifier defined
through the well known SVM formulation in section 1.3.2 equation (1.1).

Our argument rests on the geometrical interpretation of the margin in
our setting. More precisely, we have defined the margin γw

x between a
point x and a classifier w as the value 〈x; w〉 (see definition 1.8) or alter-
natively, if we assume w to be of unit norm (‖w‖2 = 1), the margin is
the distance between a point x and the hyperplane of normal vector w. In
an equivalent way, we can consider the dual interpretation we have dis-
cussed so far where data are akin to hyperplanes and classifier to points.
Under this new perspective, the converse also hold true, and assuming a
data x of unit norm (‖x‖2

2) the margin γw
x is the distance of w from the

hyperplane defined by x. Because in our setting the classification rule of a
linear classifier only depends on the sign of 〈x; w〉 we can freely rescale all
datapoint to have a unit norm and therefore we will be reasoning over γw

x
as the distance between a point w and the hyperplane of normal vector x.
Therefore the SVM solution, that is a classifier with maximal margin over
S , seems to intuitively match the idea of largest inscribed sphere.

Theorem 6.1 (Chebyshev’s center and SVM) For any training set S and associated version space
W(S), where S andW defined as usual (see respectively section 1.2.2 and 5.1.1),
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let denote wSVM the (hard-margin) SVM’s solution on S as defined in the canon-
ical SVM formulation in section 1.3.2 and CC(W) the Chebyshev’s center ofW
(see definition 5.3). Then the following hold true:

CC(W) =
wSVM

1 + ‖wSVM‖2

Proof. The idea of the proof is to show that for a fixed norm, the center of
the ball of largest margin over S is always a rescaling of wSVM.

Let α
.
= ‖wSVM‖2, the first step is to show that there is no vectors w′ of

norm ‖w′‖2 = α such that γw′
S > γw

S (see definition 1.8).
Formally, assuming the converse to be true, then there is a real ε > 0

such that γw′
S = γwSVM

S + ε. Alternatively, we have that for all x in S ,
〈w′; x〉 ≥ 〈wSVM; x〉+ ε ≥ 1+ ε, thus there exists a vector w̃′ .

= w′/(1+ ε)
of norm ‖w̃′‖2 < α such that, for all x in S〈

w̃′; x
〉
=

〈
1

1 + ε
w′; x

〉
=

1
1 + ε

〈
w′; x

〉
≥ 1

which is a contradiction with the definition of wSVM.
Similarly, for any real β = λα with λ > 0, we can show that the point

of fixed norm β of maximal margin over S is λwSVM. Again, assuming the
converse to be true would imply the existence of w′ as defined above by a
simple matter of rescaling.

Additionally, let γ
CC(W)
S the margin realized by CC(W) on S . Let write

β the norm of CC(W) and by definition of B1 we know that CC(W) is at
a distance 1− β from the edge of B1. From the previous arguments, we
know that the point of maximum margin with norm β is βwSVM/α, that is
to say, CC(W) = βwSVM/α. Moreover we have by calculation that for all
x in S , 〈βwSVM/α; x〉 ≥ β/α or, put otherwise γ

CC(W)
S ≥ β/α.

Finally, from the definition of the Chebyshev’s Center, finding the
value of β is a matter of maximising at the same time the margin γ

CC(W)
S

of CC(W) and its distance to B1:

β = arg max
β>0

min(β/α, 1− β)

where the first (resp. second) term is linearly increasing (resp. decreasing)
with β, thus the solution hold for

β

α
= 1− β

⇔ β =
α

1 + α

and putting everything back together yield that

CC(W) =
β

α
wSVM

=
1

1 + α
wSVM

=
wSVM

1 + ‖wSVM‖2
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We shall note that this equivalence is a well known and dis-
cussed result in the literature [Tong and Koller, 2001, Herbrich et al., 2001,
Rujan, 1997]; however we did not found, to our greater surprise, any for-
mal proof of the above theorem where the rescaling term is made explicit,
hence our choice to present the full proof here.

6.1.4 Bayes Point Machine and Center of Gravity

Contrary to the Chebyshev’s center, centers of gravity have been studied
in machine learning directly for their learning properties, albeit recently.
Works like [Rujan, 1997, Herbrich et al., 2001, Minka, 2001a, Brinker, 2004]
were instrumental in the late 90’s and early 2000’s in enabling geometric
approaches to machine learning and these works are a notable inspiration
of the studies presented here. Considering the version space’s center of
gravity for learning purpose can be traced back to Bayesian models and
more precisely to the idea of Bayes Classification Strategy which is defined
as the optimal classification strategy, in the sense that, it corresponds to
the strategy that predict the most likely label according to a vote across all
the hypotheses consistent with the data, that is the version space.

Definition 6.1 (Bayes Classification Strategy) Given a fixed loss l, a training set S and the corre-
sponding version space W , and assuming1 that H is the class of linear classifier
with uniform prior distribution PH and posterior distribution PH|S such as

PH|S (hw) =

{
1

Vol(W)
if w ∈ W

0 if w /∈ W

The Bayes Classification Strategy (BCS) maps any point x ∈ X to either
(+1) or (−1) as follow:

hBCS(x) .
= arg miny∈Y E

hw
i.i.d∼PH|S

[l(sign(hw(x)), y)]
.
= arg miny∈Y

∫
w∈W l(sign(〈w; x〉), y)dw

It is known that the Bayes Classification Strategy provably outperforms
all other classification strategy [Herbrich et al., 2001] although it usually
does not correspond to an element of H and as such, it is not a valid so-
lution to our problem. More importantly, it also means that deciding for a
label requires to go through all classifiers inW for each new data, which is
computationally expensive [Graepel et al., 1999]. In [Herbrich et al., 2001]
the authors propose a solution to this problem by projecting the Bayes
Classification Strategy onto the space H of linear classifiers. More pre-
cisely, they define the Bayes Point as the element of H that mimics the
best the Bayes Classification Strategy over the entire data distribution Dt,
that is the classifier w that minimizes the loss λ with respect to the labels

1In itself, Bayesian theory does not require these assumptions to hold and this def-
inition is usually given in a slightly more general form. However, in order to stream-
line the discussion, we focus on our specific problem rather than the general theory (see
[Herbrich et al., 2001, Mitchell, 1982] for more details).
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computed from the Bayes Classification Rules as it is defined in definition
6.1

Definition 6.2 (Bayes Point) Given S ,W , H and PH|S defined as before and Dt the underlying
data distribution over X. We define the Bayes Point as the linear classifier hwBP

of normal vector wBP such that:

wBP .
= arg min

w∈X
E

xi.i.d∼D

[
E

hw′
i.i.d∼PH|S

[l(sign(hw′(x)), sign(hw(x)))]
]

Alternatively, the authors of [Rujan, 1997, Rujan and Marchand, 1999]
provide a geometrical interpretation of both the Bayes Classification Strat-
egy and the Bayes Point that help the understanding of these notions.
Consider the version spaceW and a new datapoint x to label; if the hyper-
plane of normal vector x does not cut throughW the problem is trivial and
all classifiers in W predict the same label for x, otherwise the Bayes Clas-
sification Rules advocates to splitW in two setW+ andW− depending on
the sign of 〈w; x〉 and hBCS then predicts (+) if Vol(W+) ≥ Vol(W−) and
(−) else. Additionally the authors introduce the notion of Bayes-line, that
is any hyperplane of normal vector x that splits W in two equal volumes
Vol(W+) = Vol(W−). In a nutshell, Bayes-lines correspond to the limit
cases where the Bayes Classification Strategy goes from predicting (+) to
(−) and intuitively any classifier w ∈ W that aims to mimic the Bayes
Classification Strategy must lie on those Bayes-lines, in other words if x
defines a Bayes line we want a classifier w such that 〈w; x〉 = 0. Obvi-
ously, there is absolutely no guarantee that all the Bayes-lines intersect in
one single point; if such situation arises, it means that the Bayes Classifica-
tion Strategy actually belong toW and can be reduced to a single classifier
w which is in most cases not possible. The Bayes Point defined above is an
attempt to find a point that is the closest of all Bayes-Lines intersections;
where closest is relative to the loss l used (see also Fig 6.1). Notably, the
notion of Bayes Line is dependent of the underlying distribution D and as
such computing the Bayes Point require the capacity to massively sample
over Dt which is something not possible in the general case.

In practice, the authors of [Watkin, 1993, Herbrich et al., 2001] note
that if Dt is Gaussian2, then the center of mass is a very good approxima-
tion of the Bayes Point. Moreover, the geometric argument of [Rujan, 1997]
on Bayes Line echoes the volume property of the center of gravity (theo-
rem 5.1), yet for any form of result to hold in this respect, we have to
assume the Bayes lines to be uniformly distributed over all directions. In
other words, the center of gravity is a valid approximation for any distri-
bution that ensures a uniform distribution of the normalized data x/‖x‖
over the unit sphere, which is obviously the case when Dt is Gaussian.

Bayes Point Machines —BPM for short— are defined as the family of
algorithms that build upon these ideas and return as classifier the cen-
ter of gravity of the version spaces [Herbrich et al., 2001]. Experimental
results in [Herbrich et al., 2001] tends to demonstrate the good general-
izations properties of BPM, and [Rujan, 1997, Rujan and Marchand, 1999]
give empirical evidence of the relevance of the billiard algorithm and the

2By Gaussian, we mean that the points t(x)x are distributed over X according to a
Gaussian distribution
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Figure 6.1 – A depiction of the Bayes Classification Strategy. The left panel represents a
version space of classifier and the red and blue lines two data in this representation. The
red line split the version space in two parts corresponding to whether the classifiers in
the version space would make a positive prediction (orange area) or a negative one (blue
area). The Bayes Classification Rule acts as a majority vote over the version space and
would assign a positive label to the red data. The blue line however is a Bayes Line
and splits the version space in two equal part, thus the result of the majority vote is
indecisive. The right figure depicts the same version space (focused on the area of interest,
for convenience) with three Bayes Lines that do not intersect on a unique point. In this
case, no linear classifier can perfectly emulate the Bayes Classification Rule. The red dot
represents the Bayes Point, a linear approximation of the Bayes Classification Rule.

closeness (in terms of geometrical distance) between the Bayes Point, the
Center of Gravity, and the Billiard’s approximation of the Center of Grav-
ity. Finally, we shall also mention [Minka, 2001a, Minka, 2001b] which in-
troduce the Expectation Propagation algorithm, a method that encompasses,
among other things, billiard-like estimation of the Center of Gravity.

On this front, we shall note that the idea of restricting W0 to the unit
ball B1 proposed in section 5.3.3 —as opposed to [Herbrich et al., 2001,
Rujan, 1997] where the billiard is reset when the ball escape B1— is also
advocated by [Minka, 2001b] in which the author observes enhanced sta-
bility with this approach.

6.2 Cutting Planes Powered Machine Learning

In the previous section, we have discussed the relevance of Cutting Planes
methods and notions in the context of Machine Learning. In particular,
we have been interested in how centroids were more or less knowingly
used as classifier in the past years. This is yet another hint at the fact that
Machine Learning problems could be efficiently tackled as localization
problems, and that the relevant literature holds great theoretical and prac-
tical solution for our field. This section aims to take the reasoning a step
further and we shall now focus on how to fully integrate a Cutting Planes
methods into learning problems. Namely, we will discuss the matter of
performing learning directly with Cutting Plane algorithms and how the
iterative approach of Cutting planes methods can be an advantage when
combined with classical learning approaches.
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6.2.1 Cutting Plane and SVM

We will first discuss a well established result from [Joachims et al., 2009]
built upon a smart interfacing between a Cutting Planes algorithm and a
SVM.

This section essentially reviews the works of [Joachims and Yu, 2009]
and [Joachims et al., 2009] for the case of binary classification. Whether
our readers are interested in more details or how the results presented
here may port to other settings, we refer them to the aforementioned pa-
pers. Notably, the setting presented here is a bit different than the one
established so far, nonetheless, the resulting algorithm can be thought as
a Cutting Planes algorithms, where the queried point is CC(W), however
the Oracle is a bit different than what we discussed before.

First, let us introduce a variation of the SVM formulation we have
introduced in section 1.3.2 that is known under the name of soft margin
SVM. In a nutshell, we want to allow for errors to be made by introducing
a slack variable to the objective functional. This slack variable will account
for error in the training set by adding a penalty to the objective functional
we minimize. Nonetheless, this will allow for erroneous solution given
that the penalty paid for errors does not outweighs the gain for a better
overall solution where said penalty is controlled by a hyper-parameter C.
Ultimately, this setting ensure that every problem has a feasible solution,
even when the data are not linearly separable.

Definition 6.3 (Soft-margin SVM formulation) Given a training set S .
= {(xi, ti)}N

i=1 and a
predetermined scalar value C, we define wsoft-SVM and ξ1, . . . , ξN as the solution
to the following optimization problem:

minw,ξi≥0
1
2‖w‖2 + C

N ∑N
i=1 ξi

s.t. ∀i ∈ [N] : ti 〈w; xi〉 ≥ 1− ξi

Computationally speaking, this is also a quadratic problem that can
be solved with any quadratic programming solver although we have in-
troduced N additional slack variables in the form of ξ1, . . . , ξN . Solving
the problem as it is would imply having a resolution time that scale poly-
nomially in the number of variable, hence in N. On the other hand, for
each data point corresponds a different constraint, thus the number of
constraints is linear in N. Remark that, Cutting Planes can easily cope
with a large number of constraints (see section 5.2 and the discussion on
Sample Compression Scheme in section 2.2), however the increased num-
ber of variables is detrimental to the overall efficacy of the algorithm. The
key idea of [Joachims et al., 2009] is to rewrite the soft-margin SVM prob-
lem with exponentially more constraints, but fewer variables: the so-called
structural SVM formulation

Definition 6.4 (Structural SVM formulation) Given a training set S .
= {(xi, ti)}N

i=1 and a pre-
determined scalar value C, we define the structural SVM problem as follow:

minw,ξ≥0
1
2‖w‖2 + Cξ

s.t. ∀c ∈ {0, 1}N : 1
N ∑N

i=1 citi 〈w; xi〉 ≥ 1
N ∑N

i=1 ci − ξ
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Moreover Joachims and Yu show that the solution (w, ξ) of a Struc-
tural SVM problem is actually also a solution to the soft-margin SVM one,
where ξ = ∑N

i=1 ξi ([Joachims and Yu, 2009], Theorem 1).
Ultimately, the Cutting Plane algorithm will rely on an oracle that is

capable of generating constraints on the go, this will notably avoid the
otherwise prohibitive computational cost of evaluating all of the 2N con-
straints at each step. Namely, for a given w the oracle build the vector
c ∈ RN as follow:

ci
.
=

{
1 if ti 〈w; xi〉 < 1
0 otherwise

and return the corresponding constraint. We will not give a full rewrit-
ing of the algorithm here as it involves a slightly different setting than
ours, especially in regard to the soft-margin SVM and would require to
spend a substantial amount of time on alternate definition and notation
for something that is auxiliary to our main point. The message of this sec-
tion however is that, if allowed to return an approximate solution (w, ξ)
that achieves an objective value (definition 6.4) within an ε range of opti-
mal one, then the number of Cutting Planes iterations required is constant
with respect to N and polynomial with other factors. Experimental re-
sults hint at an overall execution time roughly linear in N though, which
underlines that both theoretically and empirically the embedding of learn-
ing algorithm into Cutting Planes update scheme can be computationally
interesting. More importantly, this work constitutes a first positive re-
sult and a strong motivation to unravel this thread in research, especially
given that, to much of our surprise, we could not find any work similar to
[Joachims et al., 2009] for BPM. It is our belief that similar results could be
achieved with, in addition, far stronger theoretical results due to the nat-
ural properties of centers of gravity. Namely, convergence should comes
naturally without the need of an approximate solution. Moreover, adding
a Cutting-Plane selection strategy on top of the regular BPM algorithm
could help alleviate the usually high cost of the billiard sampling method.
Moreover, our setting is flexible enough to allow for error tolerant formu-
lation akin to the soft-margin SVM and it is an avenue for improvement
to look a this specific problem for BPM when used in conjunction with
Cutting-Planes methods similarly to [Joachims et al., 2009].

6.2.2 Perceptron and Cutting Planes

Motivations

Although the BPM way is an immediate and interesting extension of the
previous section, we preferred to focus ourselves on another founding al-
gorithm of machine learning, the Perceptron algorithm. Our reasons for
this are multiple and we shall share some in order to help motivate our ap-
proach. Looking back at the previous section, we may notice that despite
its sound geometrical interpretation, SVM methods do not have strong
complementary properties with Cutting Planes algorithms. Not only the
SVM solution lacks the theoretical guarantees of a center of gravity, but it
is known to already embed property such as Compression Scheme. On the
other hand, Perceptrons would fully benefit from this compression prop-
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erty and at the same time their online update scheme naturally fits the
query scheme of Cutting Planes. In particular, our approach rests on the
idea that once a Perceptron has reached convergence, it may be restarted
from its latest iteration if new data are made available which is in sharp
contrast to SVM methods that typically require to go through the entire
learning procedure a second time.

The Algorithm

The solution we propose is to use a tweaked perceptron algorithm as the
query() function, with a Cutting Planes Oracle following the implemen-
tation discussed in section 5.2 as depicted in algorithm 6.

Algorithm 6 Top : A Perceptron-based localization algorithm. Bottom :
The slightly modified Perceptron algorithm for compression scheme.
Require: S a training set.
Ensure: Find w ∈ W (see section 5.1.1)

1: C0 ← B1
2: k← 0, w0 ← 0
3: repeat
4: w̃k ← Perceptron(w̃k−1, (xn0 , tn0), · · · , (xnk , tnk)) . Query point
5: wk ← w̃k/‖w̃k‖
6: if wk /∈ W then
7: Pick a cutting plane xnk s.t. tnk

〈
wk; xnk

〉
< 0 . Oracle

8: Ck+1 ← Ck ∩ {w : tnt 〈w; xnk〉 ≥ 0}
9: k← k + 1

10: end if
11: until wk ∈ W
12: return wk

13:
14: function Perceptron(wstart, (xn0 , tn0), · · · , (xnk , tnk))
15: k← 0
16: w0 ← wstart

17: while ∃ni : tni

〈
wk; xni

〉
< 0 do

18: wk+1 ← wk + tni xni

19: k← k + 1
20: end while
21: return wk

22: end function

The aforementioned tweaks come into play to ensure that the Cutting
Planes query scheme and the Perceptron update process intertwine cor-
rectly. Namely, this algorithmic compound can be seen in two different
ways: on one hand it is a Cutting Planes algorithm that run a (tweaked)
Perceptron to select its next query point, on the other hand it is a Percep-
tron algorithm that is fed by a Cutting Planes oracle. In order to do this,
we have to take full advantage of the online property of the Perceptron.

For the sake of the discussion, let say that we have some black-box
that can produce a stream of data and that this black-box is used to fed
a Perceptron algorithm. Initially, the black-box produces only a handful,
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of distinct data and simply loops on these points, hence the Perceptron
will be fed with duplicates until convergence —note that convergence will
happen though, even with duplicates (see theorem 1.3 and 6.2). Once all
points are correctly classified, the black-box will add a new point to its
pattern until convergence is, again, achieved. This is akin to an overly
supervised execution of the Perceptron, where a new data is introduced
only when all the previous ones are correctly classified. Of course, the
new data could cause updates that may induce mistakes on the rest of the
dataset in such a way that one does not know how many iterations it will
take to reach once again a solution each time a new data is introduced.
Practically speaking, the black-box do the exact same thing than the Cut-
ting Plane scheme of algorithm 6: at each step k it feds the Perceptron on
a loop with the same data until a solution is achieved then, query a new
data from the oracle, restart the Perceptron from its previous solution and
start over. We illustrate this by rewriting algorithm 6 from a Perceptron
centric perspective in algorithm 7. See also the flowchart presented in
Figure 6.2.

Algorithm 7 The same algorithm (see algorithm 6) from a Perceptron’s
perspective. The set E corresponds to the search space in the sense that
C = B1 ∩

[⋂
xi∈E{w : 〈w; x1〉 ≥ 0}

]
Require: S a training set.
Ensure: Find w ∈ W (see section 5.1.1)

1: k← 0, w0 ← 0
2: while ∃xi ∈ E : ti

〈
wk; xi

〉
< 0 do

3: wk+1 ← wk + tixi . Perceptron update
4: k← k + 1
5: if ∀xi ∈ E : ti

〈
wk; xi

〉
≥ 0 then

6: E ← E ∪CPOracle(S , wk, E) . Ask for a new datapoint
7: end if
8: end while
9: return wk/‖wk‖2

10:
11: function CPOracle(S , w)
12: if ∃xi ∈ S : ti 〈w; xi〉 < 0 then . equiv. w/‖w‖2 /∈ W
13: return xi
14: else
15: return ∅
16: end if
17: end function

Convergence

A noteworthy feature of the algorithm we propose is its convergence
speed. Intuitively, it might seem that we are left with a very inefficient
algorithm that requires to solve a Perceptron problem after each Cutting
Planes iteration; in addition, the lack of volume reduction guarantees for
querying the Oracle with the Perceptron classifier also seems to discard
any convergence result on the number of Cutting Planes iteration.
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Figure 6.2 – A synthetic depiction of how the Perceptron and Cutting Planes algorithms
interact.
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In reality, we can dismiss both of these matters as both the number
of Perceptron’s iterations and Oracle queries are theoretically bounded in
the algorithm we propose. We have argued before (sections 5.2) that the
intermediate localization problems are just a means to drive the resolution
of the global problem. In particular, we leverage the online property of
the Perceptron algorithm to build upon this idea by restarting each new
execution from the last queried point. Remarkably, theorem 1.3 allows for
a theoretical bound to hold on the total number of Perceptron updates
required to solve the problem; that is, the number of time lines 18 in
algorithm 6 is executed across the whole algorithm, from the beginning to
the output of the final classifier.

Theorem 6.2 (Mistake Bound) Let S .
= {(xi, ti}N

i=1 a training set such that there exists a clas-
sifier w∗, ‖w∗‖ = 1 and a scalar γS such that ∀(xi, ti) ∈ S : ti 〈w∗; xi〉 > γS
—alternatively, the largest inscribed sphere inW0 of center w∗, ‖w∗‖ = 0 has a
radius of at least γS .

Define M the number of Perceptron updates performed by the Perceptron-
based Localization Algorithm 6 (i.e. M is the number of times line 18 of Percep-
tron of Algorithm 6 is executed). Then the following holds:

M ≤ R2

γ2
S

with R .
= maxxi∈S ‖xi‖.

Proof. Remind that theorem 1.3 [Block, 1962, Novikoff, 1962] holds for any
sequence of points independently of its size or generation process; in par-
ticular, the result holds when the sequence is made of duplicated and de-
pendent data. Consider the rewriting of the algorithm given in Alg. 7 and
more precisely the sequence point used for update in line 3. Let us write
this sequence x̃1, . . . , x̃M. By construction, this sequence is not indepen-
dently distributed and does contain duplicates, however it is nonetheless
sampled from S , hence there exists a solution w∗ of norm 1 that achieves a
margin of γS on this sequence. The theorem is then obtained from the fact
that algorithm 7 acts as a regular Perceptron with respect to this peculiar
sequence of points.

Hence, on any learning problem, our algorithm enjoys the same mis-
take bound than a vanilla Perceptron and, given that the overhead from
Oracle queries is usually negligible, each update is as fast as a regular Per-
ceptron update. Nonetheless, it also has the advantages of Cutting-Planes
methods, that is, it is an efficient Sample Compression Scheme. From a
higher picture, theorem 6.2 shows that our algorithm is a practical imple-
mentation of the idea that the intermediate localization problems should
drive the resolution of the problem toward an efficient solution.

Experimental Results

Here, we present some empirical simulations based on the modified per-
ceptron algorithm we introduced above (algorithm 6).

We generate a toy dataset of 1, 000 2-dimensional datapoints. Each
point is uniformly drawn on a 20-by-20 square centered at the origin. We
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Figure 6.3 – Left : for each value i the bar represents the empirical probability (over
1, 000 runs) to query at least i Cutting Planes. Right: each bar represents the number of
internal Perceptron updates computed after each Cutting Planes loop.

label this dataset according to a classifier w∗ uniformly drawn over the
unit circle. In order to have only positive labels, negative examples are
reflected through the origin. We then enforce a minimal margin γ by
pruning examples xi for which 〈w∗; xi〉 < γ. This last modification allows
us to have some control over the size of the version space W . The down-
side of this is that we no longer have exactly 1, 000 datapoints (though
during our experiments we noted that the size of the dataset stays mostly
the same for reasonable margin values).

For these experiments, we use the Perceptron-based Localization algo-
rithm (Algorithm 6). We implement it with three different oracle strategies
for selecting cutting planes. The first strategy (which we call Largest Error)
picks the cutting plane with the lowest margin. The second one (Smallest
Error) picks the Cutting Planes with the highest negative margin, that is to
say points that are incorrectly classified but close to the decision boundary.
Finally, the third one (Random Error) simply picks a Cutting Planes with
negative margin at random. It should also be noted that our instantiation
of the Perceptron algorithm picks the update vector that realizes the low-
est margin for its internal update —line (18) of Perceptron in algorithm
6. This is mostly an arbitrary choice and we only mention it for the sake
of reproducibility.

The first experiment consists in a single run over a dataset of margin
γ = 0.1. We monitor both the number of Cutting Planes generated and
the number of internal Perceptron updates for each cutting plane. The
presented results are averaged over 1, 000 runs.

The left pane of Figure 6.3 supports the soundness of our approach
in the case of a compression scheme with no more than 6 Cutting Planes
for the best strategy (Largest Error). Additionally, we can observe a sharp
decrease after the third Cutting Planes with this strategy and 80% of the
time, only 4 Cutting Planes are required to model the dataset. In contrast,
the right-hand side of Figure 6.4 reveals a trade-off between the number of
Cutting Planes used and the number of internal updates for each Cutting
Planes. We observe a smooth shift across our three strategies with Smallest
Error putting the emphasis on small number of internal updates. In all
respect, the Random Error strategy acts as a middle ground between the
two other extreme approaches.
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The fourth plot corresponds to a regular Perceptron.

For the second experiment the margin3 is variable with values between
0.01 and 0.3. We also monitor the total number of internal updates rather
than the per Cutting Planes value for the three strategies and a regular
Perceptron Algorithm 4. Remind that these four plots are bounded from
theorem 6.2, however the plots are far below their common theoretical
bound and plotting it here would not have been possible given the scale.

The previously observed behavioral shift across the three strategies
is confirmed by figure 6.4. Additionally, some relative robustness is ob-
served with respect to γ, especially when the emphasis is put on querying
a small number of Cutting Planes. It is interesting to note that the Ran-
dom Strategy makes nearly as few updates as Smallest error while still
querying a —relatively— low number of Cutting Planes. Finally, all three
strategies are making slightly less updates than the regular Perceptron.

6.3 Conclusion

The take home message of this chapter is simple and can be summarized
as follow: computational geometry literature is relevant to machine learn-
ing theory. Through this chapter, this is an idea we have illustrated in
two different ways. First, we showed how centroids have a relevance
to machine learning and how reasoning over the geometric properties of
the version space may yield efficient classifiers. Moreover, the connec-
tion between Chebyshev’s center and SVM is noteworthy and we shall
underline how both machine learning and computational geometry de-
veloped similar solutions to equivalent problems. Secondly, we discussed
that wrapping classic learning methods within a Cutting Planes update
scheme can be beneficial from a learning point of view. Notably we dis-
cussed how Cutting Planes can bring improved convergence speed when
interfaced with SVM methods [Joachims and Yu, 2009], or provide Sam-
ple Compression Scheme when interfaced with the Perceptron Algorithm
[Louche and Ralaivola, 2015a]. It is our belief that we have just scratched
the top of the possible interconnections between those two fields and it is

3See [Tong and Koller, 2001] for a discussion on how the margin may relate in practice
the Vol(W)

4More precisely, we use the exact same Perceptron than the one used for the internal
loop but ran on the full dataset
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an interesting research project in itself to further expand on these ideas.
A tangible first step in this direction is through Analytic Center Cutting
Planes Methods which have recently been considered for their learning
properties [Fanzi et al., 2009].
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This chapter is devoted to a slightly different setting than the ones
explored in the previous chapters, namely we will be interested here in
the setting of Active Learning. In a continuation of the previous chap-
ter, we argue that in addition to what we already have discussed, Cutting
Planes methods are also very close to Active Learning procedures. More
precisely, both rely on a query mechanic given some Oracle and seek to
iteratively improve their current solution. We will show that Active Learn-
ing can mostly be stated in terms on Cutting Planes and the interfacing
between the two settings lies in the specifics of the Oracles. Nonetheless,
one of our result is to show that a viable Cutting Planes Oracle can be
built from an Active learning Oracle and as such Cutting Planes methods
can be used to solve Active Learning problems. From this approach stems
a new family of Active Learning algorithm based on geometrical consid-
erations that was first proposed in [Louche and Ralaivola, 2015a]; notably
one specific instance of this new family is an adaptation of the BPM algo-
rithm to the setting of Active Learning that was independently discussed
in [Brinker, 2004]. Additionally, our algorithmic contribution comes with
a novel theoretical analysis based on Cutting Planes theory that asserts of
the soundness of our endeavour as well as helps in explaining the results
previously observed in [Tong and Koller, 2001]’s SIMPLE algorithm. In
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addition, we shall note that our approach borrows from both the Expected
Model Change and Uncertainty Sampling theories of active learning and
aims to achieve an acceptable trade-of between the theoretical guarantees
of the former and the computational simplicity of the latter.

7.1 Active Learning: Motivations and General Frame-
work

Supervised learning —that is, the setting we have discussed until now—
carries on the implicit assumptions that: 1) data and labels are obtained at
the same time, through the same process 2) there is no interaction between
the learning algorithm and the data/label source. While the reasons for
such assumptions are multiple, they are arguably too restrictive and un-
natural. In particular, data and labels come usually from two different
sources and the former may be some order of magnitude cheaper to ob-
tain than the latter. This is typically the case when data are produced by
measurement devices but requires human expertise to interpret, a text-
book example of this is the case of medical imaging where collecting data
is cheap and can be performed by low-wage employees but establishing a
diagnosis requires specialized physician knowledge.

Relaxing only the first assumption leads to the settings of Unsupervised
and Semi-Supervised learning that are well-studied and vivid topics in Ma-
chine Learning, but fall outside of the context of this thesis (see [Zhu, 2005]
for an in-depth discussion of the these topics). On the other hand, relaxing
both assumptions is known as Active Learning.

More precisely, in the Active Learning setting we assume that, contrary
to labels, data are marginally cheap to obtain. The idea is to provide the
algorithm with unlabeled data at first and then let the algorithm decide
which labels it needs; in other words, the learning algorithm has to actively
query the labels. Sample complexity is then measured in term of the
number of label queries. The underlying idea being that allowing the
algorithm to choose the relevant labels —as opposed to generating an
already labelled dataset— should allows for better sample complexity.

A way to put this into perspective is to think of Supervised Learn-
ing as a wasteful process where many points in S are redundant from
a learning point of view. Active Learning is built upon the idea that by
querying the labels of carefully picked datapoint only, one can avoid this
data redundancy without hindering its learning capabilities.

The usual observation about Active Learning is that, in most cases, the
sample complexity is exponentially reduced comparatively to Supervised
Learning [Settles, 2010].

7.2 Active Learning Strategies

7.2.1 Two Strategies of interest

Active Learning is a vastly studied topic, and results for this setting in the
recent years are numerous. Exposing here the totality of recent research on
the topic would be both cumbersome and unpractical. Hence, giving an
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Figure 7.1 – An illustration of the uncertainty query strategy. In this example, 0 is the
origin, blue and red dots correspond to positive and negative examples; x2 and x1 are
two unlabeled datapoints. In this case, an uncertainty based strategy would query x2
because the point is closer to the current hypothesis (w), thus its label is considered more
uncertain.

extensive review of the field here is unrealistic and the interested reader
can refers to the survey of [Settles, 2010] for a more complete review.

Instead, we shall focus on two particular Active Learning Strategies that
are closely related to the solution we will propose. Namely, we will be
interested in the so-called Uncertainty Sampling [Lewis and Gale, 1994] and
Expected Model Change [Settles et al., 2007] approaches.

Formally, in Active Learning one has access to a training set S0
i.i.d∼ DN

—alternatively, S0
.
= {xi}N

i=1. In other words, S0 is a training set without
labels. In order to cope with S0 the learner has access to a Labelling Oracle
O : X → Y such that O(x) .

= t(x). Thus, the problem of Active Learning
is to devise a query strategy for the Oracle that minimizes the number of
queries.

In Uncertainty Sampling the queries are focused on datapoints for which
the label is uncertain. Typically, this approach works well with probabilis-
tic settings, where classifiers not only output the class but also a confi-
dence estimation for the prediction. The idea is to proceed in rounds,
where each round consists in a prediction step where S0 is labeled by
the current classifier, a query step where the oracle is queried on the most
uncertain pair label/datapoint, and a learning step where the classifier is
re-trained using only the queried points and labels. We also refers the
readers to works like [Settles, 2010, Lewis and Gale, 1994].

On the other hand, the Expected Model Change operates differently and
aims at finding a query point that would guarantee the largest model
change, independently of the Oracle’s label. In other world, what we are
truly interested in is to make the most informative query model-wise and
while the idea is theoretically sound, such strategy is in general computa-
tionally costly as it implies to compute what the new model would be for
every point/label combinations.



120 Chapter 7. Cutting-Plane Powered Active Learning

Figure 7.2 – An illustration of the Expected Model Change Strategy. This is the same
example than Fig. 7.1. The red and blue areas represent the set of consistent solutions
after receiving a positive (red area) or negative (blue area) for x2 (top) or x1 (bottom). In
this example querying x1 would halve the space of consistent solutions independently of
the label received —i.e. the blue and red areas on the bottom have the same size— this is
not the case for x2. Hence, an Expected Model Change Strategy would query x1 because
doing so would guarantee a substantial reduction in the number of possible classifiers,
whereas in the case of x2 it would depend of the label returned by the Oracle.
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Notably, both of these strategies have been used with linear classifiers.
In the case of Uncertainty Sampling, the margin —that is, the distance to
the hyperplane defined by w— is acting as a confidence measure while, in
the case of Expected Model Change one usually keeps track of the variations
of the Version Space’s volume Vol(W) as a way to measure changes in the
model. More precisely, informative queries are precisely the ones that
invalidate as many classifiers as possible in W . A general update scheme
for both strategies in the bi-class linear settings is given in algorithm 8 and
9; where the expectation’s distribution over {+1,−1} in algorithm 9, line
6 is usually arbitrary and specific to the implementation.

Algorithm 8 A General Uncertainty Sampling Query Scheme for Linear
Classifier
Require: An unlabeled training set SX

.
= {xi}N

i=1, an oracle O and a learn-
ing procedure learn.

1: S ← ∅
2: w← 0
3: loop
4: x← arg minx∈SX,x/∈S | 〈w; x〉 | . Select the most uncertain point
5: S ← S ∪ {(x, O(x))} . Query the label
6: w← learn(S) . Update the classifier
7: end loop
8: return w

Algorithm 9 A General Expected Model Change Query Scheme for Linear
Classifier
Require: An unlabeled training set SX

.
= {xi}N

i=1, an oracle O, a learning
procedure learn and some difference measure (·∆·) over subsets of
H.

1: S ← ∅
2: W ←H

3: loop
4: UpdateW according to:

W .
= {h ∈H : ∀(x, t(x)) ∈ S , h(x) = t(x)} (7.1)

5: For each x ∈ SX compute:

W+
x

.
=W ∩ {h ∈H : h(x) = +1}

W−x
.
=W ∩ {h ∈H : h(x) = −1}

6: x← arg maxx∈SX

[
Ei∈{+,−}

[
W∆W i

x | x
]]

7: S ← S ∪ {(x, O(x))} . Query the label
8: end loop
9: w← learn(S)

10: return w

Recently, Tong and Koller [Tong and Koller, 2001] have proposed to
implement both of these strategies with SVM methods. Their implemen-
tation of Uncertainty Sampling yielded one of the most successful modern
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Active Learning algorithm; sometimes referred as the SIMPLE algorithm.
Part of the success of SIMPLE is its overall high performances coupled
with a relatively low computational cost of Uncertainty Sampling. How-
ever, they also observed that SIMPLE notably fails in some cases and
proposed a more robust solution to this problem based on the idea of Ex-
pected Model Change. Interestingly, their solution replaces the expectation
part of the algorithm (Alg. 9, line 6) by an equilibrium criterion over the
sizes of W−x and W+

x . Particularly, they propose two different criteria,
thus defining two other methods that, despite being more robust, are also
far more computationally intensive.

Finally, note that the work of Tong and Koller is deeply tied to our own
approach and we will come back to it in greater detail later. Especially
a question that is central to this problem is the one of how these two
strategies, and by extension the different methods they propose, relate to
each others.

7.2.2 A Version Space Approach to Active Learning

As discussed above, the so-called Expected Model Change Query Scheme is
build upon the idea that a good query should have a huge impact on
the model learned. In other word, in order to decide which data will be
queried, one compute each possible Oracle’s response (+1 or −1 in our
case) and measure how this impacts the resulting predictive model once
this new information has been incorporated.

Speaking of model in the case of linear bi-class problem is akin to
speaking of version space, that is, the set of all linear classifier that are con-
sistent with the labelled data. The point of this section is to lay down the
basis for re-interpreting Active Learning problems as Cutting Planes ones.
Namely, we will argue that Active Learning problems can be reduced to
the problem of shrinking the version space as effectively as possible.

We already have discussed how localization and learning problems are
related (Section 5.1.1). The bottom-line of this discussion is that labelled
datapoint can be seen as hyperplane’s normal vectors (that is tixi) and
the problem of learning is reduced to the problem of localizing a point to
the positive side of every hyperplane at once; the (convex) set of all these
points being the version SpaceW .

Given this setting, we shall distinguish the information carried by a
label from the information carried by a datapoint. Namely, a datapoint x
is seen as normal vectors and thus informs on the general direction the
corresponding hyperplane whereas its label acts as a switch: if it is +1 the
hyperplane has normal vector x, if it is −1 the hyperplane is reversed and
has normal vector −x. In other words, depending on the label, the posi-
tive and negative sides of the hyperplane get switched, without changing
its orientation. Moreover, we will henceforth denote that a datapoint is
of unknown label by writing ±x and h±x will refer to the non oriented
hyperplane —that is, without positive or negative side— of normal vector
x or −x equivalently.

Practically speaking, querying a new point amounts to add a new hy-
perplane to the problem. If this hyperplane does not intersect the version
space, the query is non-informative: it does not change the learned model
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at all. Conversely, the query is informative if it intersects the version space.
Note that the distinction between informative and non-informative queries
does not require the labels to be known in advance; because every classi-
fier in the version space predicts the same label for those queries, we can
already infer their label. Intuitively, we can measure how informative a
given query is by quantifying how much of the version space is discarded
once the label is known. More formally, for a version space W , a given
query will split it into two subsetsW1 andW2 such thatW1 ∪W2

.
=W —

note that one of those may be the empty set, in the case of non-informative
queries. Which set is discarded and which is not is then determined by the
label returned by the Oracle. The volume of the discarded set is directly
related to how helpful the query is and the smaller the version space, the
lower the uncertainty about the objective classifier. Ultimately, when the
version space is small enough so that no potential query intersects it, the
problem is solved.

Strategies that fall under the Expected Model Change paradigm are
built upon these version space considerations. Because the goal is to query
as few labels as possible, they revolve around computing the expected re-
duction of the version space, given all possible queries and labels. Practi-
cally speaking, it means looking for a query which will lead to a sizable
volume reduction of the version space independently of the label returned
by the Oracle. In particular, we want to avoid queries that unevenly split
the version space as their relevance is essentially tied to whether the oracle
return the convenient label.

Although Expected Model Change Strategies are theoretically and ex-
perimentally sound, they very computationally demanding; at each query
step, the algorithm has to learn a model for every possible point/label
pair in order to determine the best data to ask oracle with. Practically
though, some heuristic can be used in order to speed up the process, yet
the general procedure remains the same and relies on solving a learning
problem for every point/label couple considered.

Our idea takes its ground in the similarities between Cutting
Planes methods and active learning. Both follow the same scheme of
query/update with respect to some Oracle. Moreover both rely onto the
fast reduction of some solution space for their efficiency. In the following,
we will show that Cutting Planes theory can be leveraged in order to
devise a strategy that both fall under the Expected Model Change setting
and does not require solving multiple learning problem at each step.

7.3 Active Learning And Cutting Planes

7.3.1 A state of Active Learning Methods, and how they relate to CP

Amidst the the prolific works related to Active learning (see,
e.g. [Settles, 2012] for a review) we may single out a few contributions our
work draw inspiration from; they share the common feature of focusing
on/exploiting the geometry of the version space. The query strategies pro-
posed by [Golovin and Krause, 2010] and [Gonen et al., 2013] are based
on multiple estimations of the volume of the (potential) version space,
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Figure 7.3 – A version space W with the hyperplanes corresponding to three data x1
(blue), x2 (red) and x3 (green). The black dot represent the current classifier w. The
expected model change paradigm requires to evaluate the size of the cyan and orange
areas for each data (the three bottom figures) and then query the data corresponding to
the most balanced split, that is x3 in the present case. On the other hand the uncertainty
query paradigm queries the label of the closest data of w, that is x2 in this case. Our
method seeks to achieve the best of those two approaches and relies on learning a classifier
w such that the closest data is very likely to be the one yielding the most even split ofW .
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which, as discussed above might be computationally expensive when
added together.

In comparison, in the active learning strategy we derive from the gen-
eral Cutting Planes approach, we compute our queries from an approx-
imated center of gravity of the version space, which is computationally
equivalent to a single volume estimation. On the other hand, the work of
[Balcan et al., 2007] that proposes a margin-based query strategy derived
from uncertainty sampling theory (see [Lewis and Gale, 1994]) also pro-
vides theoretical justifications of such strategies and gives insights on the
foundations the work of [Tong and Koller, 2001] hinges on.

In particular, our work is closely related to the one of
[Tong and Koller, 2001] which pioneered the route to make Active learn-
ing procedure from Cutting Planes algorithm, even though the connection
with Cutting Planes methods was not clearly identified in this work.
Notably, the same idea has been successfully used with Cutting Planes for
active Boosted Learning [Trapeznikov et al., 2011]. We may also mention
[Brinker, 2004] which tackles the problem of active learning in a similar
way —the connection with Cutting Planes is never made explicit though—
and share some of our conclusion on the general idea on Active Learning
methods based on Centers of gravity.

A by-product of our active learning procedure is that we now solve a
Bayes Point Machine (BPM) problem [Herbrich et al., 2001] at each step k
by finding the center of gravity of the current version space W k. There-
fore, we can turn our active learning procedure into a full Active Learning
algorithm —that we dub active-BPM— straightforwardly by using the
center of gravity for classification.

Note that this is one of many possible instantiations of our proce-
dure, which is nonetheless of interest as it is the BPM-counterpart of
the active-SVM algorithm of [Tong and Koller, 2001]. Moreover, theo-
rem 5.2 provides a general guideline to systematically query the training
point that comes with the best volume reduction guarantees. This is a
theoretically sound and viable strategy for Active Learning that comes
with a theoretical bound on the induced volume reduction, the lack of
which was an essential limit of the Chebyshev’s center-based method of
[Tong and Koller, 2001]. Hence, our contribution is to show how the Cut-
ting Planes literature and its accompanying worst-case convergence ana-
lyzes may give rise to theoretically supported query strategies that do not
have to hinge on margin-based arguments.

7.3.2 Tuning the Cutting Planes for active learning

The solution we propose rests on the idea that both the Active Learning
query scheme and Cutting Planes methods are based on the same general
process. Namely, both can be divided in two parts:

• A query phase, where some Oracle provides insightful information
relatively to a specific request

• An update phase, where the model process this newly acquired in-
formation.
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The process then repeats itself over and over until a definitive solution is
found. This section addresses the small differences that exists between
Active Learning Query Scheme and Cutting Planes methods in a way that
will allow for Cutting Planes results to be applied to Active Learning prob-
lems.

More precisely, we may identify that Active Learning and Cutting
Planes settings differ on the specifics of the Oracle. In the Cutting Planess
setting, one can ask the Oracle about virtually any point. The Oracle then
responds with a separating hyperplane such that the queried point lie
on one side of the hyperplane, and the (true) version space on the other.
On the other hand Active Learning does not allow for arbitrary queries:
only the points that are present in the dataset are allowed to be queried;
moreover, from a version space perspective, those datapoints are akin to
hyperplanes and the oracle feedback is much more limited in the sense
that it only contains information on which side of the hyperplane is the
positive one. In other words, given a hyperplane h±x with normal vector
of unknown sign ±x, the oracle simply lift the sign uncertainty.

The following of this section focuses on establishing that Cutting
Planes methods are efficient at solving Active Learning problems. Our
analysis is based on a modified Cutting Planes Oracle that is both easy
to implement from an Active Learning Oracle and non-detrimental to the
efficacy of Cutting Planes methods. That peculiar Oracle therefore acts
as an interface between the two settings and ultimately allows for Active
Learning problems to be solved through Cutting Planes methods.

Consider a slightly modified Cutting Plane Oracle O′ that differs from
a regular Cutting Plane Oracle in the following way: it has access to a
list of available cuts through their normal vectors x1, . . . , xN but the list is
twisted and some cuts are actually reversed, hence if the Oracle chooses
to return a cut hxi , it may actually end up returning a cut h−xi . In order
to compensate for that flaw, O′ is designed in such a way that it always
returns the cut that is the closest to the queried point w.

Building an Oracle that operate in the same way than O′ from an Active
Learning Oracle is easy. Let S0 be an unlabeled dataset S0

.
= {xi}N

i=1 and
Õt the Active Learning oracle such that

Õt(xi) = t(xi)

. We define O′ as

O′(w) = Õt

(
min
x∈S
‖x−w‖

)
min
x∈S
‖x−w‖

In other words, when queried with w, O′ look for the datapoint x ∈ S
that is the closest of w, query Õt on this point and return the hyperplane
of normal vector tixi.

We claim that O′ is sufficient for Cutting Planes algorithm to work
correctly if, at a given step k, the algorithm query wk .

= CG(Ck), the center
of gravity of Ck; moreover, the algorithm will likewise enjoy a reduction
of C’s volume that is exponential in the number of steps taken. Where
the search space Ck in the context of Active Learning correspond to the
current version spaceW k. We back our claim by establishing that, at each
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step the volume of C is nearly halved in most cases, regardless of whether
O′ return a twisted cut.

First consider the case where, for a given query w, O′ returns a neutral
cut h±x: clearly this case does not depends on whether h±x is twisted or
not because w lies right in between the two sides of the hyperplane; in
other words, the side (positive or negative) on which w is located doest
not matter and theorem 5.1 (see also [Grunbaum, 1960]) holds as it stands
for this case. Alternatively, when the Oracle does not return a neutral
cut, that is when h±x is a deep cut, we propose to consider a hypothetical
query point w′ for which h±x is a neutral cut. Because O′ always return
the closest cut to w we know that w′ will be as close as possible to w
and our idea is to deal with w′ as if it was an approximation of w. From
theorem 5.2 we can extend the result of theorem 5.1 to approximate centers
of gravity such as w′ and obtain guaranteed volume reduction ofW .

What theorem 5.2 means in this context is that independently of the
cut htixi returned by O′ we can always take a point w′ such that w′ =
CG(W) + λtixi and apply theorem 5.2 to w′. A problem subsists however:
we have previously discussed how theorem 5.2 does not guarantee that the
distance between the true center of gravity and its approximation does not
forcefully relates to the quality (volume-wise) of the approximation and in
order to account for that, O′ shouldn’t return the closest cut to CG(W) but
rather the best one according to the value of Λ in theorem 5.2. Faced with
this problem we can go two ways: either modify O′ such that it queries the
best datapoint according to theorem 5.2 or adopt a practical perspective
and consider that, in most cases, HC+/HC− and R are seemingly constant
when considering all the possible cuts in S . The former approach usually
require to solve some computationally expensive problems even though
smart upper bounding may result in relative precise and computationally
efficient solution. On the other hand, empirical results (Section 7.4 and
[Brinker, 2004]) tend to show that the latter solution is reasonable on real
Active Learning problems and that is the one we will adopt for the present
matter.

Putting everything together, we can write down a new Active Learn-
ing algorithm based upon Cutting Planes methods (Alg. 10) that provably
reduces the size of W k with each query by at least a constant factor. Our
algorithm relies on computing a center of gravity at each step and for the
sake of clarity we use the center of gravity as a classifier in the predic-
tive model, hence the name of active-BPM. Nonetheless, any learning
procedure can be adapted our query scheme thus spanning a whole new
family of Active Learning algorithms based on Cutting Planes method.
We shall also mention that our algorithm mirror [Tong and Koller, 2001]
active-SVM’s SIMPLE variant by replacing the SVM parts with a BPM. A
noteworthy observation is that SIMPLE is known to fail for some suppos-
edly difficult version space configurations, it appears that these difficult
cases are instances where CG(W) and CC(W) are actually far from each
other. In other words, SIMPLE is at its best when it approximates cor-
rectly our BPM based query procedure and thus fits the framework of
our theoretical analysis, conversely its performances degrade when the
two strategies start diverging, notably theory and experiment show that
active-BPM performs as usual in those cases.
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Algorithm 10 Top: The active-BPM Cutting Planes active learning pro-
cedure; wk is computed as the center of mass (i.e BPM) of W k (line 15)
but can replaced by any other classifier thus spanning an entire family of
Cutting Pslanes learning procedures. Bottom: a possible implementation
of QUERY() : sampling strategies are given in, e.g., [Herbrich et al., 2001,
Lovász and Vempala, 2006, Kannan and Narayanan, 2012]

1: W0 ← B1
2: k← 0
3: repeat
4: wk ← CG(W k)
5: (xi, ti)← Query(W k,S)
6: if ti

〈
wk; xi

〉
< 0 then

7: W k+1 ← Ck ∩ {v : ti 〈v; xi〉 ≥ 0}
8: k← k + 1
9: end if

10: untilW k is small enough
11: return wk

12:
13: function Query(C,S)
14: Sample M points x1, . . . xM fromW
15: v← ∑M

k=1 xk/M
16: x← arg minxi∈S 〈v; xi〉
17: t← get label from an expert
18: return (x, t)
19: end function

7.4 Experimental results

We illustrate our method for active learning on text classification data.
For easy comparison, we follow an experimental procedure similar as
the one in [Tong and Koller, 2001]. Namely, we use the Reuters-21578
—ModApte variation— and Newsgroups datasets1. The Reuters dataset
is composed of 8, 293 documents represented in TF-IDF form for 18, 933
words. The dataset spans 65 topics such as Earn, Coffee or Cocoa and is
split in 5, 946 training examples and 2, 347 test examples. On the other
hand, the Newsgroups dataset accounts for 18, 846 documents of 26, 214
features split in 20 topics. Half of this dataset is uniformly picked for
training while the rest is kept for testing purposes. On both datasets we
train a “one-versus-all” classifier for each class. We start by creating a
pool of unlabeled training examples sampled from the training set. Then
we run algorithm 10. We use two variations of the Query function: one
based on the Chebyshev’s center (note that this is equivalent to the active-
SVM of [Tong and Koller, 2001]), and the other based on an approximation
of the center of gravity from Minka’s Expectation Propagation method
[Minka, 2001a]. This last approach corresponds to the active-BPM algo-
rithm and was notably proposed in [Brinker, 2004] independently. It is
a direct application of Active Learning algorithms with Cutting planes

1Available at http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.
html

http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
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Figure 7.4 – An illustration of the idea behind our convergence result. Given a version
space W with center of gravity G, if the Active Learning Oracle returns a cut that does
not exclude the center of gravity G we will consider instead an approximate center of
gravity —G′ here— such that G′ lies just at the limit of the cut. Measuring the distance
Λ between G and G′ give a rough idea of how the the version space will be split according
to theorem 5.2.

method to the Bayes Point Machine. For both methods, we use two pools
of different sizes (500 and 1, 000 examples). For initialization reasons, each
pool comes with two already labeled vectors2.

All the computations are done with a linear kernel and the presented
results are class-wise accuracy measurements on the test examples over
the 10 most represented classes. The values reported here are an average
of these measures over 25 runs. We complement these two datasets with
Gunnar Raetsch’s Banana dataset. The Banana dataset is a widely used
bataset of 2-dimensionnal points split into two classes from which we ex-
tract 400 training and 4900 test examples. Due to its small size, the whole
training set is used for the pool of unlabeled example. The computations
are realized with an RBF kernel of parameter σ = 0.5 and presented re-
sults are averaged over 50 runs.

Figure 7.5 graphically depicts the behavior of the so-called active-
SVM [Tong and Koller, 2001] and the active-BPM algorithms on each
dataset. Namely, in both algorithms, the queries are selected according to
their distance to the “centroid” of W k, which, in turn, serves as classifier.
The difference between these two algorithms lies in that active-SVM uses
the Chebyshev center and active-BPM the center of gravity for centroid.
In figure 7.5, plots are represented by circles or squares whether they cor-
respond to results achieved by active-SVM or active-BPM. Additionally,
for the Reuters and Newgroups datasets, dashed plots correspond to the
pool of 500 examples while dotted plots relate to the pool of 1000 exam-
ples. The error bounds on the third plot (Banana) shows the usual stan-
dard deviation. Each plot represents the accuracy of those algorithms with

2SVM and CC are computed with libSVM: http://www.csie.ntu.edu.tw/ cjlin/libsvm/.
BPM and CG are computed from Minka’s own implementation of EP for BPM in matlab:
http://research.microsoft.com/en-us/um/people/minka/papers/ep/bpm.
The motivation here is essentially the ease of use provided by Minka’s code and re-
sult should not vary by much when using the regular Billiard algorithm proposed in
[Herbrich et al., 2001, Rujan, 1997].

http://research.microsoft.com/en-us/um/people/minka/papers/ep/bpm
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Figure 7.5 – Accuracy on the Reuters (top) and Newsgroups (middle) datasets for
active-SVM and active-BPM for pools of 500 and 1000 examples. Bottom: accuracy
with error bars on the Banana dataset (Gunnar Raetsch) for active-SVM and active-
BPM.
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respect to the number of queries made. We can see that active-BPM sys-
tematically outperforms active-SVM and increases its accuracy faster for
all datasets, already attaining an accuracy of 0.9 after roughly 10 queries
for both Reuters and Newsgroups datasets. Both algorithm seem to sta-
bilize after 30 queries, with the active-BPM being slightly more accurate
than its SVM counterpart. For the Banana dataset, the accuracy increase
in the first queries is a lot smoother, with an accuracy for active-BPM of
roughly 0.8 after 20 queries. Both algorithms seem to have converged after
60 queries. Comparatively, not only does active-BPM clearly dominate its
SVM counterpart but it is also more stable as evidenced by the error bars
which become negligible past the 60th query.

7.5 Conclusion

In this last chapter we have discussed how Active Learning and Cutting
Planes settings are close. A focus point of our analysis was in establishing
that both settings are build upon a common ground with only mild dif-
ferences. Notably, our approach has revolved around building a Cutting
Planes Oracle from an Active Learning Oracle and studying the conver-
gence properties of the resulting Cutting Planes algorithm. In doing so,
we made use of theorem 5.2 which was instrumental in establishing the ef-
ficacy of Cutting Planes methods in the Active Learning setting. The result
is an Active Learning algorithm previously hinted by [Brinker, 2004] that
build upon the Cutting Planes theory to devise a query strategy that com-
bines the theoretical soundness of Expected Model change and the sim-
plicity of Uncertainty sampling strategies. Additionally, our theoretical
analysis provides a new insight on the results of [Tong and Koller, 2001]
and the limitations of their SIMPLE algorithm. Finally, this chapter comes
as yet another hint at the relevance of geometric methods for machine
learning problems and in this sense it complements and reinforces the
discussions we held in chapter 6.





Conclusion

Back and There Again

In this thesis, we have studied and discussed various machine learning
methods that have in common to propose alternative ways to work around
label unavailability in classification learning. Namely, contrary to the semi
supervised setting, these methods focus on playing on label availability, ei-
ther to make labelling easier, at the cost of label consistency, or by altering
the supervised setting learning scheme in order to reduce the label re-
quirement of learning. Specifically, we were interested in confused learn-
ing on one hand, that is learning under a class-wise characterized noise
pattern, and active learning on the other hand, where labels are actively
queried on the fly by the learning algorithm. Besides, we also provided a
detailed theoretical discussion on the link between machine learning and
localization methods that bore interesting results, both to computational
geometry and regular supervised learning.

Our first contribution (chapter 4) was toward confused learning where
we proposed to extend the works of [Blum et al., 1998, Bylander, 1994] for
learning under confusion noise in a bi-class setting to the problem of mul-
ticlass classification. Namely in the setting of multiclass classification, the
labels are assumed to be produced by a corrupted concept that differs
from the target concept on some examples in a way that is class-wise con-
stant; that is to say for each couple of class (p, q) the probability for an
example of true class p to be labelled q in the dataset, that is the confusion
rate between p and q, is constant. Moreover, this information is assumed
to be known (or, at least, accurately estimated) and our algorithm relies on
the use of the confusion matrix which regroups those aforementioned con-
fusion rates for every couples of class (p, q). The algorithm we proposed,
called UMA algorithm (Unconfused Multiclass Additive algorithm), is able
to achieve consistent learning with respect to the true, obfuscated, concept
from the confused training set and the confusion matrix under the as-
sumption of a invertible confusion matrix, which is, as we have discussed,
a tolerable assumption in practice. Notably, UMA is based upon the gen-
eral update scheme of the Ultraconservative Additive algorithms family in-
troduced in [Crammer and Singer, 2003] which is both a generalization of
the perceptron update scheme and an extension to multiclass problems.
To the best of our knowledge, UMA is the first algorithm to learn un-
der confusion noise in a multiclass setting. Additionally, we provided a
detailed theoretical analysis of UMA that not only established its conver-
gence properties from a formal point of view, but also touched upon some
of the key elements of the algorithm. We also have discussed the specifics
of UMA update scheme and how different tunings of the algorithm may
lead to different behavior in practice and we tackled the question of mak-
ing UMAto work with kernels. Finally we complemented our study with
synthetic and real world experiments that backed our previous theoretical
results on UMA.

Our second contribution (chapter 5) is actually more related to the
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field of computational geometry than machine learning. Centers of grav-
ity are known for their property to capture some interesting feature of
their parent convex body, namely one of the most remarkable property
of centers of gravity is that any hyperplane going through the center of
gravity of a convex body splits it in two parts in such a way that the vol-
ume of the first is no less than a fraction 1/e of the second’s (theorem
5.1, [Grunbaum, 1960]). Besides, a noteworthy peculiarity of this result
is its independence from both the dimension of the convex body and the
orientation of the hyperplane. It should come at no surprise that cen-
ters of gravity are notoriously hard to compute, and approaches based
on centers of gravity’s theory tend to rely in practice to approximated
centroids, those being either based on geometric arguments such as the
Chebyshev’s center or numerical approximation through the use of sam-
pling methods. Yet, the question of the partitioning properties of those
approximations is mostly unknown from a theoretical point of view and
despite strong empirical evidence of the soundness of such approaches,
we are not aware of any result on how theorem 5.1 degrades when ap-
proximated centers of gravity are used. We proposed theorem 5.2 which
partly answer this question and directly link the partition’s volume ratio
with the distance between the approximated centroid and the true center
of gravity. On the other hand, we lose the attractive independence in the
dimension and hyperplane’s orientation we had in theorem 5.1 although
this had to be expected given the nature of the result. Our theorem is a
direct extension of theorem 5.1 and its proof, which is given in full in ap-
pendix A.3, is a non trivial extension of the original proof of theorem 5.1
found in [Grunbaum, 1960]. Also note that for the sake of completeness a
rewriting of the proof presented originally in [Grunbaum, 1960] is given
in appendix A.3.2. The applications of theorem 5.2 might be multiple and
although its use in this thesis served machine learning purposes we shall
emphasize that it is ultimately a result that have relevance beyond the field
of machine learning and particularly in computational geometry.

The penultimate contribution of this work (chapter 6) is essentially in
the form of a new supervised algorithm based on the Perceptron. The Per-
ceptron algorithm is a seminal algorithm of machine learning that trade
the compression properties of modern learning methods such as SVMs for
an elegant and online update scheme. More importantly though, one of
the greatest strength of the Perceptron comes from its convergence prop-
erty (theorem 1.3). More precisely, a Perceptron algorithm will eventually
converge in a time independent of the number of examples, as long as
those examples are linearly separable. Our contribution is based on two
observations: first, a Perceptron will converge even though it is fed with
artificial example designed specifically to achieve good compression as
long as they are separable and second, that Cutting Planes methods nat-
urally embed compression scheme features because of their oracle query
scheme that ensure an efficient and simplified reconstruction of the ver-
sion space. The algorithm we have proposed leverages the strengths of
both methods and as such it enjoys a convergence rate on par with a Per-
ceptron but find a solution that depends on a lot less examples which
induces some improved generalization guarantees from a Compression
Scheme standpoint. In addition synthetic experimental result allowed us
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to validate our theory and improve on the theoretical bound by exhibiting
a speed up in the number of updates relatively to a regular Perceptron. Be-
yond the algorithmic interest of this contribution, it is a testimony on how
machine learning can benefit from a more geometric interpretation of its
fundamental problems and it is our belief that this contribution is merely
one among the many links one can draw between machine learning and
localization methods.

Finally our last contribution (chapter 7) caught up with the recurring
theme of this thesis, playing with label availability and concerned the set-
ting of Active Learning where all the data are unlabeled at first and the
labels are actively queried by the learning algorithm depending of their
expected relevance. Recent results in Active Learning suggest that the
active query scheme allows for an important reduction in the number of
labels required with respect to supervised learning at similar accuracy
rates [Settles, 2010]. One of the fundamental work of the past years in
this domain is [Tong and Koller, 2001] which proposed the SIMPLE active
algorithm and demonstrated its applicability in text classification prob-
lems. Notably, SIMPLE takes its ground on a geometric approach of ac-
tive learning that is strongly reminiscent of Cutting Planes methods even
though it is never presented as such in the original paper, moreover the
authors argue that part of the success of their algorithm is because the
SVM classifier is the Chebyshev center of the learning problem’s version
space, that is the set of all consistent classifier with the labelled data. Our
contribution was to build on their idea and formally study the problem of
Active Learning through the geometric point of view we have discussed in
chapters 5 and 6. The crux of our contribution was to argue that Cutting
Planes theory provides a suitable framework to study Active Learning al-
gorithms in the sense that the two settings are built upon the same ideas
and algorithmic schemes. Notably, we propose to base the active queries
on the version’s space center of gravity rather than Chebyshev’s center
as in active-SVM algorithm. According to theorem 5.2 we argued that
this is a theoretically sound strategy. Moreover we showed that theorem
5.2 helps explaining the drop in efficacy observed in active-SVM when
the Chebyshev’s and gravity centers are far away. Although our contribu-
tion focused on learning Bayes Point Machine classifiers because of their
natural connection to centers of gravity, the active learning query scheme
we proposed can be used to turn many passive learning algorithms into
active ones. Finally, it is worth noting that our contribution acts as a
middle ground between the two opposed Active Learning paradigms that
are Expected Model change and Uncertainty Sampling, in particular, cen-
ter of gravity based queries allow for the computationally efficient query
scheme of uncertainty sampling methods as well as the version space’s
halving property of Expected Model chance approaches.

Publications

The contributions of this thesis have been previously published in peer-
reviewed conferences and journals. The results of chapter 4 were
first presented at the Asian Conference on Machine Learning in 2013

[Louche and Ralaivola, 2013] and an extended revision was also published
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in Machine Learning Journal [Louche and Ralaivola, 2015b]. The contri-
butions we discussed in chapter 5, 6 and 7 were presented together in
the single work at the International Conference on Neural Network in 2015

[Louche and Ralaivola, 2015a] which won the best student paper award.

perspectives

Beyond the immediate interest of the contributions presented therein it
should also be discussed the future research avenues our results have
opened and on many aspects this thesis is nothing but a little step toward
more efficient learning methods for confused and active learning, as well
as a better understanding of classification from a geometric perspective.

On the matter of learning under confusion noise, the immediate ques-
tion that our work prompts is the one of extending our model to other
noise models than confusion noise and we think that an argument along
the line of [Blum et al., 1998, Bylander, 1994] can be used to back the rel-
evance of confusion noise to other, more local, settings. Also, one of the
current drawback of UMA is the invertibility requirement over the con-
fusion matrix which seems to be a limiting assumption and a possible
improvement for UMA would be to replace the invertibility assumption
with a less restricting criterion. An other interesting observation about
UMA is that it was found to handle quasi-linear problem such as Reuters
quite well and a possible continuation for this work would be to study
how learning can be achieved under confusion noise for nearly linear tar-
get concepts. More precisely, it seems that the capacity of UMA to cope
with confused dataset might allow to handle a little overstrain on the hy-
pothesis class.

In addition, the last part of this thesis opens a lot of questions because
of its more exploratory nature and leaves a lot of points to be investigated.
In the first place, it is the general connection between machine learning,
and more particularly classification, and localization methods that is left to
be explored in greater details. One interesting observation we had during
our work was that Cutting Plane theory and machine learning developed
the same solutions to similar problem through the use of centers of gravity
and Chebyshev centers, and the link between the two domains would have
been explicit sooner it would have allowed for a better understanding of
machine learning. A point of interest for future research is to study how
more complex machine learning settings (e.g. multi-task learning) may
benefit from a similar geometrical interpretation.

On a less general level, it seems to us that there is more to the problem
of approximate centers of gravity than what we have presented in theorem
5.2 and our result is still very dependent on the shape of the parent convex
body, the direction of the hyperplane and the dimension. In the future,
an interesting path to follow is to investigate similar results that do not
depend on the distance between the center of gravity and its approxima-
tion but on more geometric considerations in the hope that it would help
produce a more general result. Another interesting question we would
like to investigate is the relevance of centerpoints to these questions and
how they could relate to machine learning theory.
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The modified Perceptron algorithm we propose would also benefit
from a more thorough study and could be extended in numerous ways.
First, it would be interesting to properly asserts its compressions prop-
erties in practical settings, moreover, we lack a theoretical result on the
number of Cutting Planes iteration performed (beyond the general bound
given by the convergence theorem) while our experiment shows that very
few cuts are getting queried in practice. Another interesting improvement
would be for the implementation of a margin optimization scheme into the
algorithm based on the margin’s gradient, much like how Cutting Planes
methods are used in quadratic optimization; this would notably allow for
the algorithm to fit the large margin paradigm of SVM methods.

More generally, a practically appealing research path would be to
modify Cutting-Planes based learning methods such as our modified
Perceptron algorithm to make them robust to noise in a similar than
[Joachims et al., 2009] for SVMs. This is especially relevant to the BPM al-
gorithm that has yet to be properly studied within a Cutting Planes frame-
work, although it seems that the algorithm would greatly benefit from this
approach because of the cost incurred for the computation of the center of
gravity and the lack of compression scheme result for regular BPM. More-
over a Cutting Planes query scheme applied to the BPM algorithm would
fully take advantage of the BPM classifier being the center of gravity of the
version space and allow for strong theoretical compression guarantees.

Finally, the Active Learning query strategy we propose may be poten-
tially improved in a number of ways. Notably, our query strategy only
take into account the distance of a data hyperplane to the version space’s
center of gravity and as such we completely ignore the hyperplane orien-
tation. Given the result of theorem 5.2 it seems reasonable to think that
the orientation of the data’s hyperplane should be relevant in the query
strategy and it is one of the most immediate extension of our work. An-
other interesting potential improvement comes from the fact that we do
not re-use the billiard trajectory computed during the center of gravity
estimation procedure of our algorithm, namely this sampling could be
leveraged to give a rough estimation of the version’s space volume af-
ter each possible cut, this would notably allow to detect some limit case
where queries close to the center of gravity may not yield the expected
volume reduction. Also, note that a better exploitation of theorem 5.2
could also lead to a smarter query strategy where some of the suboptimal
queries could be easily discarded regardless of their distance to the center
of gravity. Lastly, we may mention that besides centers of gravity there ex-
ists other approximate centroids, the Analytic center being one particular
example, that may allow for theoretical guarantees in an active learning
context without the computational burden of center of gravity estimation.

To conclude we would emphasize that our active learning strategy is
an application of the results presented in chapters 5 and to a lesser extent
chapter 6, yet there is more to these chapters than our contribution to
Active Learning. A general perspective and ambitious extension of this
thesis is to provide a comprehensive study of geometrical methods applied
to machine learning.
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A.1 Appendix of Part I

In this section we will present the proof to the Ultraconservative con-
vergence theorem (theorem 2.3). The proof is essentially a rewriting of
the one found in [Crammer and Singer, 2003] with the set of notations we
used in this thesis. Yet, we feel like this proof is fundamental with re-
spect to the present work and should nonetheless be included here. Part
of this is because Ultraconservative algorithms are central to our work,
not only because of their relevance to Part II but also because Rosenblatt’s
Perceptron algorithm (and most of its variants) ultimately falls within the
framework of ultraconservative additive algorithms. Namely, the Alg. 1

and its variations introduced in this work can be rewritten as an additive
algorithm where Q = 1 —note that in this case Q = 1 and Q = 2 are
equivalent since in the latter case w1 = −w2 is enforced by the additive
update scheme. More importantly, theorem 2.3 is a generalization of the
result of Block and Novikoff (theorem 1.3) and the two results are equiv-
alent for Q = 1. Finally, the proof we will present is also a generalization
of the proof of theorem 1.3 and applying the exact same reasoning to the
setting of a bi-class Perceptron yields the Block-Novikoff theorem; this
fact also extends to most variants of the Perceptron algorithm hence this
proof should be considered as a general purpose proof technique for any
algorithm derived from a Perceptron’s update scheme and more particu-
larly to anything we have exposed so far that is related to the Perceptron’s
algorithm (Alg. 1, 4, 6).
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A.1.1 Proof of Theorem 2.3

We first remind the fundamental set of constraint over the update vectors
that define the family of ultraconservative algorithm. This will serve as an
easy reference since the proof is constructed upon this set of constraints,
for more detail we refer the reader to the full algorithm (Alg. 2) in section
2.3.2.

Remark A.1 (Update Constraints for the Ultraconservative Additive Algorithm family) Any
algorithm belonging to the Ultraconservative Additive algorithm family has
the following update rule:

∀r ∈ [Q] : Wk
·r ← Wk

·r + τk
r xi

where Wk is the current (multiclass) classifier at step k, xi a data on which Wk

errs, Q the number of class and τk ∈ RQ a real vector compliant with the follow-
ing rules:

Q

∑
r=1

τk
r = 0 (A.1)

τk
ti
= 1 (A.2)

r /∈ E ∪ {ti} ⇒ τk
r = 0 (A.3)

Theorem A.1 (Mistakes Bound For Ultraconservative Additive Algorithm) Let (x1, t1), . . . , (xN , tN)
be any sequence of points in X×Y such that ‖xi‖ ≤ R for all i. If there exists a
multiclass classifier W∗ of norm ‖W∗‖F such that

γW∗ .
= min

i∈[N]
{
〈
W∗
·ti

; xi
〉
−max

r 6=ti
〈W∗
·r; xi〉}

then, any Ultraconservative Additive Algorithm make at most

2R2

(γW∗)2

updates and output a classifier W that make no mistake on the sequence
x1, . . . , xN .

As a preliminary, we will need the following lemma in order to ease
the unfolding of the proof.

Lemma A.1 For any vector τ following the rules of remark A.1 the following holds true:

Q

∑
r=1

τ2
r ≤ 2τti ≤ 2

proof of lemma A.1: From the aforementioned rules, we have that

Q

∑
r=1

τr = ∑
r 6=ti

τr + τti

= τti − τti (first rule)

Hence,
‖τ‖1 = 2τt1 and ‖τ‖∞ = τti
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Applying Hölder’s inequality we get:

Q

∑
k=1

τ2
r =

Q

∑
k=1

(τrτr)

= ‖ττ‖1

≤ ‖τ‖1‖τ‖∞ (Hölder’s inequality)
= 2ττi τti

≤ 2τti ≤ 2

Proof of theorem 2.3. Let assume that the algorithm has already made k up-
dates. Because an update is only computed when an error occurs, that
is to say that the algorithm has already made k error during the training
phase. We will write Wk+1 the current classifier after the kth update, that
is ∀r ∈ [Q] : Wk+1

·r = Wk
·r + τk

r + xk
up where xk

up denote the update vector
xi of class ti on which Wk has made an error (see also Alg. 2. The proof
will proceed by bounding ‖Wk+1‖2

F from above and below, a by-product
of doing so is that this will allows for k to also be bounded from above
—that is the number of update the algorithm can possibly make.

First, we derive the lower bound on ‖Wk+1‖2
F, this can be done by

bounding the term ∑Q
r=1

〈
W∗
·r; Wk+1

·r
〉

with respect to ∑Q
r=1

〈
W∗
·r; Wk

·r
〉
. In

other words, we are interested in how the current classifier get closer to
W∗ with every updates. Namely

Q

∑
r=1

〈
W∗
·r; Wk+1

·r

〉
=

Q

∑
r=1

〈
W∗
·r; Wk

·r + τk
r xk

up

〉
=

Q

∑
r=1

〈
W∗
·r; Wk

·r

〉
+

Q

∑
r=1

τk
r

〈
W∗
·r; xk

up

〉
(A.4)

Focusing on the second term on the right we have that

Q

∑
r=1

τk
r

〈
W∗
·r; xk

up

〉
= ∑

r 6=ti

τk
r

〈
W∗
·r; xk

up

〉
+ τk

ti

〈
W∗
·ti

; xk
up

〉
= ∑

r 6=ti

τk
r

〈
W∗
·r; xk

up

〉
−
(

∑
r 6=ti

τk
r

)〈
W∗
·ti

; xk
up

〉
(From τti = −∑r 6=ti

τr (rule (A.1)))

= ∑
r 6=ti

τk
r

〈
W∗
·r; xk

up

〉
−
〈

W∗
·ti

; xk
up

〉
= ∑

r 6=ti

−τk
r

(〈
W∗
·ti

; xk
up

〉
−
〈

W∗
r ; xk

up

〉)
Using the assumption that W∗ realizes a margin γW∗ , that is, for any

r ∈ [Q] then
〈
W∗
·ti

; xi
〉
− 〈W∗

·r; xi〉 ≥ γW∗ we have that
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∑
r 6=ti

−τk
r

(〈
W∗
·ti

; xk
up

〉
−
〈

W∗
r ; xk

up

〉)
≥ ∑

r 6=ti

−τk
r γW∗

= τk
t1

γW∗ (First rule (A.2))

= γW∗ (second rule (A.2))

Hence we have that

Q

∑
r=1

τk
r

〈
W∗
·r; xk

up

〉
≥ γW∗ (A.5)

Putting this back into equation (A.4) we get

Q

∑
r=1

〈
W∗
·r; Wk+1

·r

〉
=

Q

∑
r=1

〈
W∗
·r; Wk

·r

〉
+

Q

∑
r=1

τk
r

〈
W∗
·r; xk

up

〉
≥

Q

∑
r=1

〈
W∗
·r; Wk

·r

〉
+ γW∗

Recursively applying the same calculations on ∑Q
r=1

〈
W∗
·r; Wk

·r
〉

and for
each of the k previous classifiers we obtain that

Q

∑
r=1

〈
W∗
·r; Wk+1

·r

〉
≥ kγW∗ (A.6)

Finally, from the definition of the Frobenius norm:

‖W∗‖2
F‖Wk+1‖2

F =

(
Q

∑
r=1
‖W∗

·r‖2
2

)(
Q

∑
r=1
‖Wk+1

·r ‖2
2

)

≥
(

Q

∑
r=1
‖W∗

·r‖2‖Wk+1
·r ‖2

)2

(Cauchy-Schwartz)

≥
(

Q

∑
r=1

〈
W∗
·r; Wk+1

·r

〉)2

(Cauchy-Schwartz on each sub-temrs)

≥
(

kγW∗
)2

Using the assumption that ‖W∗‖F = 1 yield the lower bound

‖Wk+1‖2
F = ‖W∗‖2

F‖Wk+1‖2
F ≥

(
kγW∗

)2
(A.7)

Next, we bound ‖Wk+1‖F from above. Re-using the previous notations,
we have:
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‖Wk+1‖F =
Q

∑
r=1
‖Wk+1

·r ‖2
2

=
Q

∑
r=1
‖Wk

·r + τk
r xk

up‖2
2

=
Q

∑
r=1
‖Wk

·r‖2
2 + 2

Q

∑
r=1

τk
r

〈
Wk
·r; xk

up

〉
+

nbClass

∑
r=1

(
τk

r

)2
‖xk

up‖2
2

= ‖Wk
·r‖2

F + ‖xk
up‖2

2

Q

∑
r=1

(
τk

r

)2
+ 2

Q

∑
r=1

τk
r

〈
Wk
·r; xk

up

〉
(A.8)

As previously in Eq. (A.4) the last term can be expended as follow

2
Q

∑
r=1

τk
r

〈
Wk
·r; xk

up

〉
= 2 ∑

r 6=ti

−τk
r

(〈
W∗
·ti

; xk
up

〉
−
〈

W∗
r ; xk

up

〉)
(A.9)

Two cases are possible the sum above, depending on r. Either〈
W∗
·ti

; xk
up

〉
−
〈

W∗
r ; xk

up

〉
≥ 0 and r /∈ E , thus from the third rule (A.2)

τk
r = 0; or

〈
W∗
·ti

; xk
up

〉
−
〈

W∗
r ; xk

up

〉
< 0 and from the first rule (A.1) we

know that τk
r ≤ 0. As a result, the term is the sum of sub-terms each

negative or null therefore

2 ∑
r 6=ti

−τk
r

(〈
W∗
·ti

; xk
up

〉
−
〈

W∗
r ; xk

up

〉)
≤ 0 (A.10)

Putting this back into equation (A.8) gives

‖Wk+1‖F = ‖Wk
·r‖2

F + ‖xk
up‖2

2

Q

∑
r=1

(
τk

r

)2
+ 2

Q

∑
r=1

τk
r

〈
Wk
·r; xk

up

〉
≤ ‖Wk

·r‖2
F + ‖xk

up‖2
2

Q

∑
r=1

(
τk

r

)2

≤ ‖Wk
·r‖2

F + 2‖xk
up‖2

2 (lemma A.1)

≤ ‖Wk
·r‖2

F + 2R (Def of R)

Once again, recursively applying the same calculation on Wk yields
the desired bound:

‖Wk+1
·r ‖2

F ≤ 2kR2 (A.11)

Combining the two bound together we have that

k2
(

γW∗
)2
≤ ‖Wk+1‖2

F ≤ 2kR2

⇔k2
(

γW∗
)2
≤ 2kR2

⇔k
(

γW∗
)2
≤ 2R2
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Therefore

k ≤ 2R2

(γW∗)2 (A.12)

A.2 Appendix of Part II

A.2.1 Proof of Proposition 4.3

As a reminder we will restate proposition 4.3 like it was given in chapter
4.

Proposition A.1 Let ε > 0 and δ ∈ (0; 1]. There exists a number

N0(ε, δ, d, Q) = O
(

1
ε2

[
ln

1
δ
+ ln Q + d ln

1
ε

])
such that if the number of training samples is greater than N0 then, with high
probability 〈

W∗
·q; xpq

up

〉
−
〈
W∗
·k; xpq

up
〉
≥ γ− ε (A.13)〈

W·p; xpq
up
〉
−
〈
W·k; xpq

up
〉
≥ 0 : ∀k 6= p. (A.14)

The proof of this proposition can be found directly in the related sec-
tion of Chapter 4 however the proof of the existence of N0 was deferred to
this appendix. The proof basically rely on the double sampling technique
as it is discussed in [Devroye et al., 1996] but adapted to the specifics of
our setting.

Existence of N0 (Prop. 4.3). For a fixed pair (p, q) ∈ Y2, we consider the
family of functions

Fpq
.
= { f : f (x) .

=
〈
wq −wp; x

〉
: wp, wq ∈ B}

where B is a D-dimensional unit ball where D is the dimensionality of X,
as usual. For each f ∈ Fpq define the corresponding “loss” function

l f (x) .
= l( f (x)) .

= 2− f (x)

Strictly speaking, l f (x) is not a loss as it does not take the predicted
label t(x) into account, nonetheless it does play the same role in the fol-
lowing proof than a classic loss in the regular double-sampling proof. One
way to think of it is as the loss of a problem for which we do not care about
the observed labels but instead we want to classify points into a predeter-
mined class—in this case q.

Clearly, Fpq is a subspace of affine functions, thus Pdim(Fpq) ≤ (D +
1), where Pdim(Fpq) is the pseudo-dimension of Fpq. Additionally, l is
Lipschitz in its first argument with a Lipschitz factor of L .

= 1. Indeed
∀t0, t1, t2,∈ Y : |l(t1, t0)− l(t2, t0)| = |t1 − t2|.
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Let Dpq be any distribution over X×Y and S ∈ (X×Y)M such that
S i.i.d∼ D M

pq , then define the empirical loss errl
S ( f ) .

= 1
M ∑xi∈S l(xi, ti) and the

expected loss errl
Dpq

( f ) .
= EDpq [l(x, t)]

The goal here is to prove that

P
S i.i.d∼D M

pq

(
sup
f∈Fpq

|errl
Dpq

[ f ]− errl
S [ f ]| ≥ ε

)
∈ O

((
8
ε

)(D+1)

eMε2/128

)
(A.15)

Proof of (A.15). We start by noting that l(t1, t2) ∈ [0, 2] and then proceed
with a classic 4-step double sampling proof. Namely:

Symmetrization. We introduce a ghost sample S ′ ∈ (X×Y)M, S ′ i.i.d∼ D M
pq

and show that for f bad
S such that |errl

Dpq
[ f bad
S ]− errl

S [ f bad
S ]| ≥ ε then

PS ′|S

(∣∣∣errl
S ′ [ f bad

S ]− errl
Dpq

[ f bad
S ]

∣∣∣ ≤ ε

2

)
≥ 1

2

as long as Mε2 ≥ 32.
It follows that

P(S ,S ′)∼D M
pq×D M

pq

(
sup
f∈Fpq

|errl
S [ f ]− errl

S ′ [ f ]| ≥ ε

2

)
≥ PS∼D M

pq

(
|errl

S [ f bad
S ]− errl

Dpq
[ f bad
S ]| ≥ ε

)
×PS ′|S

(∣∣∣errl
S ′ [ f bad

S ]− errl
Dpq

[ f bad
S ]

∣∣∣ ≤ ε

2

)
≥ 1

2
PS∼D M

pq

(
|errl

S [ f bad
S ]− errl

Dpq
[ f bad
S ]| ≥ ε

)
=

1
2

PS∼D M
pq

(
sup
f∈Fpq

|errl
S [ f ]− errl

Dpq
[ f ]| ≥ ε

)
(By definition of f bad

S )

Thus upper bounding the desired probability by

2×P(S ,S ′)∼D M
pq×D M

pq

(
sup
f∈Fpq

|errl
S [ f ]− errl

S ′ [ f ]| ≥ ε

2

)
(A.16)

Swapping Permutations. Let define ΓM the set of all permutations that
swap one or more elements of S with the corresponding element of S ′
(i.e. the ith element of S is swapped with the ith element of S ′). It is
quite immediate that |ΓM| = 2M. For each permutation σ ∈ ΓM we note
σ(S) (resp. σ(S ′)) the set originating from S (resp. S ′) from which the
elements have been swapped with S ′ (resp. S) according to σ.

Thanks to ΓM we will be able to provide an upper bound on (A.16).
Our starting point is that (S ,S ′) ∼ D M

pq ×D M
pq then for any σ ∈ ΓM, the

random variable sup f∈Fpq
|errl

S [ f ]− errl
S ′ [ f ]| follows the same distribution

as sup f∈Fpq
|errl

σ(S)[ f ]− errl
σ(S ′)[ f ]|.
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Therefore:

P(S ,S ′)∼D M
pq×D M

pq

(
sup
f∈Fpq

|errl
S [ f ]− errl

S ′ [ f ]| ≥ ε

2

)

=
1

2M ∑
σ∈ΓM

PS ,S ′∼D M
pq×D M

pq

(
sup
f∈Fpq

|errl
σ(S)[ f ]− errl

σ(S ′)[ f ]| ≥ ε

2

)

= E(S ,S ′)∼D M
pq×D M

pq

[
1

2M ∑
σ∈ΓM

I

[
sup
f∈Fpq

|errl
σ(S)[ f ]− errl

σ(S ′)[ f ]| ≥ ε

2

]]

≤ sup
(S ,S ′)∈(X×Y)2M

[
Pσ∈ΓM

(
sup
f∈Fpq

|errl
σ(S)[ f ]− errl

σ(S ′)[ f ]| ≥ ε

2

)]
(A.17)

which concludes the second step.

Reduction to a finite class. The idea is to reduce Fpq in (A.17) to a finite
class of functions. For the sake of conciseness, we will not enter into the
details of the theory of covering numbers. Please refer to the corresponding
literature for further details (e.g. [Devroye et al., 1996]).

In the following, Γ(ε/8,Fpq, 2M) will denote the uniform ε/8 covering
number of Fpq over a sample of size 2M.

Let define Gpq ⊂ Fpq such that (lGpq)|(S ,S ′) is an ε/8-cover of
(lFpq)|(S ,S ′). Thus, |Gpq| ≤ Γ(ε/8, lFpq , 2M) < ∞ Therefore, if ∃ f ∈
Fpq such that |errl

σ(S)[ f ] − errl
σ(S ′)[ f ]| ≥ ε

2 then, ∃g ∈ Gpq such that

|errl
σ(S)[g]− errl

σ(S ′)[g]| ≥
ε
4 and the following comes naturally

Pσ∈ΓM

(
sup
f∈Fpq

|errl
σ(S)[ f ]− errl

σ(S ′)[ f ]| ≥ ε

2

)

≤ Pσ∈ΓM

(
max
g∈Gpq

|errl
σ(S)[g]− errl

σ(S ′)[g]| ≥
ε

4

)
≤ Γ(ε/8, lFpq , 2M) max

g∈Gpq
Pσ∈ΓM

(
|errl

σ(S)[g]− errl
σ(S ′)[g]| ≥

ε

8

)
(union bound)

Hoeffding’s inequality. Finally, consider |errl
σ(S)[g] − errl

σ(S ′)[g]| as the
average of M realizations of the same random variable, with expectation
equal to 0. Then by Hoeffding’s inequality we have that1

Pσ∈ΓM

(
|errl

σ(S)[g]− errl
σ(S ′)[g]| ≥

ε

4

)
≤ 2e−Mε2/128 (A.18)

Putting everything together yields the result w.r.t. Γ(ε/8, lFpq , 2M) for
Mε2 ≥ 32. For Mε2 < 32 it holds trivially.

Recall that lFpq is Lipschitz in its first argument with a Lips-
chitz constant L = 1 thus Γ(ε/8, lFpq , 2M) ≤ Γ(ε/8,Fpq, 2M) =

O
(( 8

ε

)Pdim(Fpq)
)

1Note that in some references the right-hand side of (A.18) might viewed as a proba-
bility measure over M independent Rademacher variables.
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The last part of the proof comes from the observation that, for any
fixed (p, q), we had never used any other specific information about Fpq
other than the upper bound of D + 1 over its pseudo dimension. In other
words, equation (A.15) holds for slightly modified definition of Fpq as
long as the pseudo dimension does not exceed D + 1.

Let us now consider :

F̃pq
.
= { f : f (x) .

= I [t(x) = q] I
[

x ∈ Aα
p

] 〈
W·p −W·q; x

〉
: wp, wq ∈ B1}

Clearly for each function in F̃pq there is at most one corresponding
affine function, thus F̃pq and Fpq share the same upper bound of D + 1 on
their pseudo-dimension.

Consequently, any covering number of Fpq is also a covering number
of F̃ pq. More precisely, this proof holds true for any wp and wq, indepen-
dently of Apα which may itself be defined with respect to wp and wq.

It comes naturally that, fixing S as the training set, the following holds
true:

1
m ∑

M
I [t(x) = q] I

[
x ∈ Aα

p

]
x = xpq

up

Thus ∣∣∣errl
S [ f ]− errl

D [ f ]
∣∣∣ = ∣∣∣∣〈 wp −wq

‖wp −wq‖
; xpq

up

〉
−
〈

wp −wq

‖wp −wq‖
; µ

p
q

〉∣∣∣∣
We can generalize this result for any couple (p, q) by a simple union

bound, giving the desired inequality:

P(X×Y)∼D

(
sup

W∈RD×Q

∣∣∣∣〈 wp −wq

‖wp −wq‖
; xpq

up

〉
−
〈

wp −wq

‖wp −wq‖
; µ

p
q

〉∣∣∣∣ ≥ ε

)

≤ O
(

Q2
(

8
ε

)(D+1)

eMε2/128

)
Equivalently, we have that∣∣∣∣〈 wp −wq

‖wp −wq‖
; xpq

up

〉
−
〈

wp −wq

‖wp −wq‖
; µ

p
q

〉∣∣∣∣ ≥ ε

with probability 1− δ for

M ∈ O
(

1
ε2

[
ln
(

1
δ

)
+ ln(Q) + D ln

(
1
ε

)])

A.3 Appendix of Part III

This section is divided in three. We first give an overview of the basic
notions and results for the proofs to come, additionally, we will introduce
some complementary notations in this introductory part. The two other
sections consist in a rewriting of the proof of [Grunbaum, 1960] on the
partition of convex bodies by hyperplanes. The proof is restated in full
with proper notation and is the starting point of our result. The last section
gives the proof of theorem 5.2 which is an extended version of the result
of Grunbaum to approximate center of gravity.
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A.3.1 Preliminaries

Hyper-Sphere and Hyper-Ball

Definition A.1 (D-dimensional Sphere) We call n-sphere of center o ∈ RD and radius R ∈ R

and write SP(o, R) ⊂ RD the subset

SP(o, R) .
= {x ∈ RD : ‖x− o‖ = R}

Definition A.2 (D-dimensional Ball) We call D-ball of center o ∈ RD and radius R ∈ R and
write B(O, R) ⊂ RD the subset

B(o, R) .
= {x ∈ RD : ‖x− o‖ < R}

Alternatively, one can think of a ball as :

B(o, R) .
=

⋃
r∈[0,R]

SP(o, r)

Definition A.3 (Surface of a sphere) We call Surface of the D-sphere SP(o, R) and write
Vol(SP(o, R)) the D− 1 dimensional volume

Vol(SP(o, R)) .
= Πs

D × RD−1

Where Πs
D is a constant factor depending only on D (e.g Πs

1 = 2, Πs
2 = 2π,

Πs
3 = 4π and so on . . . )

Definition A.4 (Volume of a Ball) We call Volume of the D-ball B(o, R) and write Vol(B(o, R))
the D-dimensional volume

Vol(B(o, R)) .
=
∫ R

0
Vol(SP(o, r))dr

That is

Vol(B(o, R)) =
∫ R

0
Πs

DRD−1dr

=
Πs

DRD

D
= ΠDRD

Where ΠD
.
=

Πs
D

D is a constant factor depending only on D.

Hyper-Cone

From these core definitions, we can now introduce (Hyper)-cones and
some of their core properties. Intuitively, an Hyper-cone of dimension
D + 1, center o, radius R and height H is a sequence of D-Ball of linearly
decreasing radius between R and 0, each one living on a difference “slice”
of RD+1 in such a way that the first Ball has center o and the last one
o+ HuD + 1.

Remark A.2 We will use uD+1 to denote the vector of RD+1 with 1 on its D + 1 component
and 0 elsewhere. Moreover, for the sake of notation conciseness, we will assume,
without loss of generality, that hyper-cones are always aligned with the D + 1
dimension of RD+1
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Definition A.5 (Hyper-cone) We call Hyper-cone of dimension D + 1, base B(o, R) ⊂ RD and
height H the set :

H .
=

⋃
∀η∈[0,H]

B
(

o+ ηuD+1,
H − η

H
R
)

Alternatively, we can define the apex z .
= o + H × uD+1 of the hyper-

cone and give the following definition :

Definition A.6 (Hyper-cone (2)) We call Hyper-cone of dimension D + 1, base B(o, R) ⊂ RD

and apex z the convex hull conv ({B(o, R); z}).

We are now ready to state the core properties of Hyper-cone that we
will use in the remaining of this document.

We start with the volume of a Hyper-cone

Definition A.7 (Volume of Hyper-cone) Given an Hyper-cone C ∈ RD+1 of dimension D + 1,
base B(o, R) ⊂ RD and height H we call volume and write Vol(C) the D + 1-
dimensional volume :

Vol(C) .
=
∫ H

0
Vol
(
B
(

o+ ηuD+1,
H − η

H
R
))

dη

Proposition A.2 The volume of the Hyper-cone C ⊂ RD+1 of dimension D + 1, base B(o, R) ⊂
RD and height H is

Vol(C) = ΠDRD

D + 1
H

Proof. From the definition of volume of a sphere we have Vol(B(o, R)) .
=

ΠDRD. Substituting R by H−η
R and from the definition of the volume of a

Hyper-cone we have

Vol(C) =
∫ H

0
ΠD

(
H − η

H
R
)D

dη

We substitute η by v .
= H − η, dv = −dη.

Vol(C) =
∫ 0

H
−ΠD

( v
H

R
)D

dv

=
∫ H

0
ΠD

( v
H

R
)D

dv

=
ΠDRD

HD

∫ H

0
vDdv

=
ΠDRD

HD × HD+1

D + 1

=
ΠDRD

D + 1
H
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Center of Mass

We can now move on to the center of gravity. For a reminder of the
definition of the center of gravity, we refer the reader to Definition 5.1

Proposition A.3 Let SP a D-dimensional sphere such that SP .
= SP(o, R). Then CG(SP) =

o.

Proof. Without loss of generality, assume that o = 0. Then, SP = {x ∈
RD : ‖x‖ = R}. Since ‖x‖ = ‖ − x‖ it is clear that ∀x ∈ RD : x ∈ SP ⇔
−x ∈ SP . Thus, we can rewrite CG(SP) as

CG(SP) = 1
Vol(SP)

∫
x∈SP

−xdx

Thus

2CG(SP) = 1
Vol(SP)

(∫
x∈SP

xdx +
∫

x∈SP
−xdx

)
=

1
Vol(SP)

∫
x∈SP

x− xdx

= 0

Proposition A.4 Let B a D-dimensional ball such that B .
= B(o, R). Then CG(B) = o.

Proof. Remind that B can be seen as a collection of concentric D-sphere of
center o and radii between 0 and R (see Def. A.2). Then, we can rewrite
CG(B) as

CG(B) = 1
Vol(B)

∫ R

0
CG(SP(o, r))Vol(SP(o, r))dr

= O

Where the last line come from Proposition A.3.

Proposition A.5 (Center of Gravity of an Hyper-cone) Let C a D + 1 dimensional Hyper-cone
(C ⊂ RD+1) of base B(o, R) ⊂ RD and apex z such that ‖z− o‖ = H. Then,
CG(C) is located on the segment [O; z] at a distance H/D+2 of o.

Proof. Without loss of generality, we assume that o = 0 and z = HuD+1.
By definition, C is a collection of ball, and we can rewrite CG(C) as :

CG(C) = 1
Vol(C)

∫ H

0
CG

[
B
(

ηuD+1,
H − η

H
R
)]
×Vol

[
B
(

ηuD+1,
H − η

H
R
)]

dη

From Proposition A.4 it is clear that CG(C) lies on the segment [o; z].
The remaining of the proof came by explicitly calculating CG(C).
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CG(C) = 1
Vol(C)

∫ H

0
ηuD+1 ×Vol

[
B
(

ηuD+1,
H − η

H
R
)]

dη (Prop. A.4)

=
1

Vol(C)

∫ H

0
ηuD+1

ΠDRD

HD (H − η)Ddη (Volume of a Ball)

=
1

Vol(C)

∫ H

0
(H − v)uD+1

ΠDRD

HD vDdv

(Subst. v .
= H − η, see Prop. A.2)

=
1

Vol(C)

[∫ H

0

ΠDRD HvD+1

HD vDdv−
∫ H

0

ΠDRDvD+1

HD vD+1dv
]

=
1

Vol(C)

[
ΠDRDuD+1

HD−1

∫ H

0
vDdv− ΠDRDuD+1

HD

∫ H

0
vD+1dv

]
=

1
Vol(C)

[
ΠDRD HD+1uD+1

HD−1(D + 1)
− ΠDRD HD+2uD+1

HD(D + 2)

]
=

1
Vol(C)

[
ΠDRD H2uD+1

D + 1
− ΠDRD H2uD+1

D + 2

]
=

D + 1
ΠDRD H

[
ΠDRD H2uD+1

D + 1
− ΠDRD H2uD+1

D + 2

]
(Volume of a Hyper-cone)

=

(
H − H

D + 1
D + 2

)
uD+1

=

(
1− D + 1

D + 2

)
HuD+1

=

(
D + 2− D− 1

D + 2
HuD+1

)
=

(
H

n + 2

)
uD+1

That is to say, CG(C) is on the segment [o; z] at a distance H/D+2 of o.

Hyperplane and Halfspace

We re-introduce hyperplane in this section and states an interesting prop-
erty of hyper-cone relative to hyperplane that will be fundamental to the
coming proof. Contrary to the main document, we will introduce hyper-
plane here with an offset term. This is done in order to ease the flow of
the remaining proof, nonetheless it is not strictly necessary and we remind
that as discussed in Section 1.1.2 the two settings are equivalent. Practi-
cally though, stating the full proofs without the introduction of an offset
term would mean spending a lot of time in adding additional dimensions
and dealing with unnecessary basis change throughout the course of this
appendix.

Definition A.8 We call (D)-Hyperplane of normal w ∈ RD and offset b ∈ R and write
h(w, b) ⊂ RD the subset :

h(w, b) .
= {x ∈ RD : 〈w; x〉+ b = 0}
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Definition A.9 We call Positive Halfspace of the D-Hyperplane h(w, b) ⊂ RD and write
h+(w, b) ⊂ RD the subset

h+(w, b) .
= {x ∈ RD : 〈w; x〉+ b ≥ 0}

Conversely, we call Negative Halfspace of h(w, b) ⊂ RD and write
h−(w, b) ⊂ RD the subset

h−(w, b) .
= {x ∈ RD : 〈w; x〉+ b ≤ 0}

Additionally, note that h(w, b) ⊂ h+(w, b) but h(w, b) 6⊂ h−(w, b).

Definition A.10 For any subset E ⊂ RD and any Hyperplane h ⊂ RD we call Positive Partition
and write E+ ⊂ RD the subset

E+ .
= E ∩ h+

Conversely, for we call Negative Partition and write E− ⊂ RD the subset

E− .
= E ∩ h−

Proposition A.6 (Volume reduction of Hyper-Cone) For any (D+ 1)-Hyper-cone of base B(o, R),
apex z and Height H, let set hCG(C)

.
= h(uD+1, H/n+2) the Hyperplane passing

by CG(C) ( i.e. CG(C) ∈ hCG(C) ) and parallel to RD. Then,

Vol(C+) = Vol(C)

 1(
1 + 1

D+1

)D+1

 ≥ Vol(C)e−1

Proof. We start by proving the right-hand side of the relation. Let set
D′ = D + 1 and divide both side by Vol(C) then we can rewrite it as

1(
1 + 1

D′
)D′ ≥ e−1

From the usual definition of e we have that

lim
D→∞

(
1 +

1
D′

)D′

= e

⇔ lim
D′→∞

1(
1 + 1

D′
)D′ = e−1

And by standard arguments we can show that

1(
1 + 1

D′
)D′ ≥

1(
1 + 1

D′+1

)D′+1

Therefore
1(

1 + 1
D′
)D′ ≥ lim

n→∞

1(
1 + 1

D′
)D′ = e−1

Finally, the left-hand side of relation is obtained by direct calculation
of Vol(C+). The general idea is the same than the calculation of Vol(C)
but, instead of integrating over the entire height we start at H/D+2, thus
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ignoring C−. Besides, without loss of generality, we assume that o = 0
and that z = HuD+1.

Vol(C+) =
∫ H

H/D+2

Vol
[
B
(

ηuD+1,
H − η

H
R
)]

dη

=
∫ H

H/D+2

ΠD
RD

HD (H − η)Ddη (Volume of a Ball)

=
∫ H(1− 1

D+2 )

0
ΠD

RD

HD vDdv (Subst. v .
= H − η)

=
ΠDRD

HD

∫ H(1− 1
D+2 )

0
vDdv

=
ΠDRD

HD × HD+1

D + 1
×
(

1− 1
D + 2

)D+1

=
ΠDRD H

D + 1
×
(

1− 1
D + 2

)D+1

= Vol(C)
(

1− 1
D + 2

)D+1

= Vol(C)
(

D + 1
D + 2

)D+1

= Vol(C)
(
(D + 1)× 1

D+1

(D + 2)× 1
D+1

)D+1

= Vol(C)
(

1
D+2
D+1

)D+1

= Vol(C)
(

1
1 + 1

D+1

)D+1

= Vol(C)

 1(
1 + 1

D+1

)D+1



Spherical Symmetric

For the remaining of this document, let K be a (full dimensional) convex
body in RD+1.

Definition A.11 (Spherical Symmetric) For any convex body K ∈ RD+1 we say that K is Spher-
ically Symmetric along the unit vector v if and only if ∀b ∈ R the cut of K by
the hyperplane h(v, b) (i.e. K∩ h(v, b)) is a D dimensional hypersphere of center
bv

A.3.2 Partition of Convex Bodies By Hyper-Plane

This section consists in a rewriting of the proof of [Grunbaum, 1960] in-
stantiated within the previously defined notations and setting.

We first recall the theorem for easy reference:
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Theorem A.2 For any convex body K ⊂ RD+1, and any hyperplane h. If CG(K) ∈ K+ then

Vol(K+) ≥ e−1 ×Vol(K)

Proof of Theorem 5.1.

Remark A.3 (Points along uD+1) This proof will revolve around key points located on the D + 1th

axis of RD+1 of base vector uD+1. In an attempt to avoid overburdening the
notation, we will treat these points as number along the real line when context is
clear. Therefore, if x1 = λ1uD+1 and x2 = λ2uD+1 we will freely write x1 > x′2
if λ1 > λ2.

Let h the hyperplane such that h = arg minh Vol(K+) such that
CG(K) ∈ K+. It is easy to see that CG(K) ∈ h: if CG(K) /∈ h you
can always reduce Vol(K+) by shifting h toward CG(K). Without loss of
generality, let’s say that CG(K) = 0 the origin of RD+1 and that uD+1 is
the normal vector of h with λ = 0, hence h = h(uD+1, 0).

In order to ease the comprehension of the proof, we make the following
assumption that we will lift later on.

Assumption A.1 K is a convex body which is Spherically Symmetric along uD+1

A direct implication of this is that CG(K) = CG(K ∩ h). In other
words, CG(K) is the center of the n− 1 dimensional sphere K∩ h (see, for
example, the argument of proposition. A.5 ).

Let C+ the Hyper-cone of base K ∩ h and apex z such that C+ ⊂ h+

and Vol(C+) = Vol(K+).
Moreover either :

• K+ = C+ and z is the apex of K+

• z /∈ K+

To prove that, remember that each slice K ∩ h(uD+1, λ) of K along the
D + 1 axis is a sphere. We look at the function fC+() (resp. fK+()) which
maps each value of λ ∈ R+ with the radius of the corresponding slice
of C+ (resp. K+).By construction, we know that fC+(0) = fK+(0) and by
definition fC+() is a decreasing linear function. If fK+() has any strictly
convex part, then there exists an arc [ fK+(λ1), rK+(λ2)] which is not in K+

and therefore K is not a convex set. Hence fK+() is concave. Then, because
fC+(0) = fK+(0), for z to be in K+ either K+ is a Hyper-cone (and fK+ is
linear) or Vol(K+) > Vol(C+) (that is to say

∫ ∞
0 fK+(λ)dλ >

∫ ∞
0 fC+(λ)dλ

) which is in contradiction with the definition of C+
As a consequence, C+ is at least as elongated as K+. In other words,

the mass of C+ is more spread along the axis of uD+1, this incurs a shift
of the center of gravity of CG(C+) with respect to CG(K+). Therefore
CG(C+) is on the closed segment [CG(K+), z].

Thus, by using the notation introduced in Note A.3 :

0 = CG(K) ≤ CG(K+) ≤ CG(C+) ≤ z

We now define C− by extending C+ such that C .
= C− ∪ C+ is a cone of
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apex z and Vol(C−) = Vol(K−). Therefore,

Vol(C) = Vol(C+) + Vol(C−)
= Vol(K+) + Vol(K−)
= Vol(K)

Once again, we are interested in the relative position of CG(K−) and
CG(C−). We invoke the same arguments than before and claim that, in a
similar way :

CG(K−) ≤ CG(C−) ≤ 0 = CG(C)

Remark A.4 The proof for this is a little more tricky this time though. Part of this is due to
the fact that C− is not a hyper-cone in itself and one must consider C and K in
their entirety for the non-convexity argument. A possible start is to consider the
radius increase along the reverse axis uD+1

.
= −uD+1 and replicate the previous

argument with added attention to the slope of fK−() which must be such that
fK() as a whole is still concave.

Let α, β ∈ R such that α
.
= Vol(K+)/Vol(K) and β

.
= Vol(K−)/Vol(K).

Then

CG(K) = αCG(K+) + βCG(K−)
Or alternatively, by construction of C

CG(C) = αCG(C+) + βCG(C−)
Combining these with the previous inequalities, we have that

CG(K) ≤ CG(C)
Moreover, we know from proposition A.5 that CG(C) is at a distance

H/D+2 of its base, where H is the height of C.
Let h̃ .

= h(uD+1, b̃) such that CG(C) ∈ h̃ and write C̃+ the positive
partition of C by h̃, that is C̃+ .

= h̃+ ∩ C.
From Proposition A.6 we have that Vol

(
C̃+
)
≥ e−1Vol(C). Moreover,

because of CG(C) ≥ CG(K) we have that Vol(C+) ≥ Vol
(
C̃+
)

.
Putting all of this together we get that

Vol(K+) = Vol(C+)

≥ Vol
(
C̃+
)

≥ e−1Vol(C)
= e−1Vol(K)

Finally, all we have left is to deal with assumption A.1. This is simply
tackled by remarking that, by definition, spherical symmetrization pre-
serve volumes for sliced part along the symmetry axis. Thus, for any K
of any convex shape it suffices to apply the proof on the spherical sym-
metrization of K : symS(K) and we have

Vol(K+) = Vol(symS(K+)) ≥ e−1Vol(symS(K)) = Vol(K)
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A.3.3 Generalized Volume Reduction

This section is dedicated to theorem 5.2 which is a generalization of theo-
rem 5.1 to approximate center of mass. As usual, we will first restate the
theorem for clarity.

Theorem A.3 For any convex body K ⊂ RD+1 and any hyperplane h of normal v, splitting K
in K+ and K−. Let

w .
= CG(K) + λ

(D + 1)Vol(K)
ΠDRD

K+

[
HK+

(D + 2)HK−

]D [
1− 1

D + 2

]
v

Where HK+ = maxx∈K+ x>v, HK− = minx∈K− x>v and RK+ the radius of
the D− 1-Ball BK∩h such that Vol(BK∩h) = Vol(K ∩ h).

Then, if w ∈ K+ the following holds true

Vol(K+) ≥ Vol(K)(1− λ)D+1e−1

Proof. The proof start in a similar way than the one of Grunbaum, with
respect to w.

Namely, let assumption A.1 hold for now, and let h the hyperplane
such that h = arg minh Vol(K+) such that w ∈ K+. Same as before, we
have that w ∈ h. Without loss of generality, let’s say that w = 0 the
origin of RD+1 and that uD+1 is the normal vector of h with b = 0, hence
h = h(uD+1, 0).

Let define C+ the Hyper-cone of base K ∩ h, apex z such that C+ ⊂ h+

and Vol(C+) = Vol(K+). Moreover, let C− the extension of C+ such that
C .
= C− ∩ C+ is an hyper-cone of height H and volume Vol(C) = Vol(K).

That is to say Vol(C−) = Vol(K−). From the same argument than before,
we know that CG(C+) (resp. CG(C−)) is shifted with respect to CG(K+)
(resp. CG(K−)), thus, according to the notation defined in note A.3 we
have that

CG(K) ≤ CG(C)

If w ≤ CG(C) then the exact same argument than the one of section
A.3.2 applies and

Vol(K+) ≥ Vol(K)e−1 (See Th. 5.1 for details)

Otherwise, we have that

CG(K) ≤ CG(C) ≤ w

The idea of the proof is to find w̃ such that w ≤ w̃ from which we can
bound the volume of K+ in a similar way than before.

Let define

w̃ .
= CG(C) + λH

[
1− 1

D + 1

]
uD+1 (A.19)

Denote by B0 = B(o0, R) the base of C and remind that C has height
H, apex z and CG(C) = o0 + H/D+2uD+1. Therefore

w̃ = H
[

λ

(
1− 1

D + 2

)
+

1
D + 2

]
uD+1
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Consider h̃ .
= h(uD+1, b̃) the hyperplane of normal vector uD+1 (i.e. h̃

is parallel to h) and offset b̃ such that w̃ ∈ h̃. Then, let C̃+ the positive
partition of C with respect to h̃

C̃+ = C ∩ h̃+

We can compute the volume of C̃+ as follow :

Vol(C̃+) =
∫ H

w̃
Vol

[
B
(

o0 + ηuD+1,
H − η

H
R
)]

dη

=
∫ H

w̃
ΠD

RD

HD (H − η)Ddη (Volume of a Ball)

=
∫ H−H[λ(1− 1

D+2 )+
1

D+2 ]

0
ΠD

RD

HD vDdv (Subst. v .
= H − η)

=
ΠDRD

HD

∫ H(1−λ)[1− 1
D+2 ]

0
vDdv

=
ΠDRD

HD × HD+1

D + 1
(1− λ)D+1

[
1− 1

D + 2

]D+1

= Vol(C)(1− λ)D+1
[

1− 1
D + 2

]D+1

(Volume of a Hyper-cone)

≥ Vol(C)(1− λ)D+1e−1 (See Prop. A.6)

Where in the first two lines, we allow a slight abuse of notation and
use w̃ as a real as explained in Note A.3.

Then, we can rewrite the volume of C+ as

Vol(C+) =
∫ w̃

w
Vol

[
B
(

o0 + ηuD+1,
H − η

H
R
)]

dη + Vol(C̃+)

Consequently, if w ≤ w̃ then the first term of Vol(C+) is positive and
therefore, Vol(C+) ≥ Vol(C̃+)

w̃ = CG(C) + λH
[

1− 1
D + 2

]
= CG(C) + λ

(D + 1)Vol(C)
ΠDRD

[
1− 1

D + 2

]
(Volume of a Hyper-cone)

≥ CG(K) + λ
(D + 1)Vol(K)

ΠDRD

[
1− 1

D + 2

]
(CG(C) ≥ CG(K) and Vol(C) = Vol(K))

Unfortunately, we cannot easily compute R directly. Nonetheless, since
B0 and h are parallel, we can use the triangle proportionality theorem.
Denote RC+ the radius of the base of C+, that is K ∩ h and HC+ the height
of C+ (i.e. the distance between w and z) then we have :

1
R

=
HC+

HRC+

From this, we want to bound HC+ and H since RC+ is easy enough to
estimate because it is directly related to K and h.
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From previous argument, we know that z /∈ K+ except if K+ = C+.
So let define

HK+
.
= max

x∈K+
x>uD+1

Intuitively, HK+ is maximal distance between a point in K+ and w with
respect to the axis of uD+1. Because z is precisely on this axis, and that
z /∈ K+ (or K+ = C+) the following holds true

HK+ ≤ HC+ (A.20)

Conversely, let define HK− as the maximal distance between w and
any point of K− with respect to the axis of uD+1. Again, from previous
argument, we know that o0 ∈ K−. Note that, because C is a Hyper-cone,
we know that o0 is at a distance H/n+2 of CG(C). Moreover, remind that
we are treating the case where w ≥ CG(C), hence, the distance between
o0 and w is at least H/D+2 which in turn is smaller than HK− . Reordering
gives the following

HK− ≥
H

D + 2
⇔ (D + 2)HK− ≥ H (A.21)

Putting back equations (A.20) and (A.21) together, we have that

1
R
≥ HK+

(D + 2)HK−RC+

Which we plug back into the previous calculation

w̃ ≥ CG(K) + λ
(D + 1)Vol(K)

ΠDRD

[
1− 1

D + 2

]
≥ CG(K) + λ

(D + 1)Vol(K)
ΠDRD

C+

[
HK+

(D + 2)HK−

]D [
1− 1

D + 2

]
= w

Remind that we drop uD+1 in the above since we treat w̃ and w as real
numbers (see Note A.3).

We conclude this proof by putting everything together. Namely,

• w ≤ CG(C) and
Vol(K+) ≥ Vol(K)e−1

• w ≥ CG(C) and we can define w̃ such that

Vol(K+) ≥ Vol(C̃+) ≥ Vol(K)(1− λ)De−1

Once again, we lift assumption A.1 as before by noting that spherical
symmetry preserves volumes. One difference though lies in the fact that
computing RC+ is no longer immediate in the general case. Notwithstand-
ing, it can be easily approximated within satisfactory precision.

As a final note, we may mention that distinguishing between these
two cases is non-trivial. Hence, without additional computation, only the
worst bound can be guaranteed.
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Titre Du Bruit de Confusion à l’Apprentissage Actif : Jouer sur la Disponibilité des Étiquettes dans les Problèmes de Classifi-
cation Linéaire

Résumé Les travaux présentés dans cette thèse relèvent de l’étude des méthodes de classification linéaires, c’est à dire l’étude
de méthodes ayant pour but la catégorisation de données en différents groupes à partir d’un jeu d’exemples, préalablement éti-
quettés, disponible en amont et appelés ensemble d’apprentissage. En pratique, l’acquisition d’un tel ensemble d’apprentissage
peut être difficile et/ou couteux, la catégorisation d’un exemple étant de fait plus hardu que l’obtention de du-dis exemple.
Cette disparité entre la disponibilité des données et notre capacité à constituer un ensemble d’apprentissage étiqueté a été un
des problèmes centraux de l’apprentissage automatique et ce manuscrit s’interèsse à deux solutions usuellement considérées
pour contourner ce problème : l’apprentissage en présence de données bruitées et l’apprentissage actif. Plus précisement, nous
nous intéressons en premier lieu à l’apprentissage avec bruit de confusion (ou, alternativement, apprentissage confus) où chaque
exemple, en fonction de sa catégorie d’origine uniquement, a une probabilité fixe d’être incorrectement étiqueté dans l’ensemble
d’apprentissage. Alternativement, l’apprentissage actif se focalise sur l’utilisation d’un très petit nombre d’exemples en laissant
au processus d’apprentissage la liberté de demander de manière autonome les catégories des exemples jugés importants. D’une
manière plus générale, ces deux approches peuvent être vue comme jouant sur la disponibilité des étiquettes, soit en acceptant un
étiquetage de moins bonne qualité et potentiellement faux, soit en limitant le nombre d’étiquettes nécéssaires à l’apprentissage à
son strict minimum. Notre première contribution est de proposer un algorithme d’apprentissage pour le cadre de l’apprentissage
confus multiclasse là où les précédents travaux à ce sujet ne s’étaient portés que sur le cas des problèmes avec seulement deux
classes [Blum et al., 1998, Bylander, 1994]. Notre étude démontre que l’algorithme que nous proposons est capable d’inférer une
fonction de classification correcte à partir d’un ensemble d’apprentissage confus, à supposer que la matrice de confusion associée
au bruit est fournie. Notre travail sur ce sujet à été l’occasion de deux publications, à l’Asian Conference on Machine Learning en
2013 [Louche and Ralaivola, 2013], et dans le journal Machine Learning en version étendue [Louche and Ralaivola, 2015b]. Notre
seconde contribution est de proposer une nouvelle approche d’apprentissage actif inspirée des travaux de [Tong and Koller, 2001]
et plus particulièrement des similarités entre l’algorithme SIMPLE et les méthodes de Plans Coupants. Plus particulièrement,
nous nous proposons de revisiter les principes de l’apprentissage actif et par extension, de l’apprentissage supervisé en général,
au travers d’une approche plus géométrique. Notre contribution à l’apprentissage actif est un nouvel algorithme, que nous
appelons active-BPM en référence à l’algorithme des Machines à Point de Bayes [Herbrich et al., 2001], inspiré par la théorie
que nous developpons et basé sur les centres de gravité. Une particularité intéréssante de notre algorithme est nottament sa ro-
bustesse aux problèmes dont les espaces de version sont connus pour poser problème à l’algorithme du SIMPLE. Nous proposons
également deux contributions auxiliaires à ce résultat qui sont le fruit de notre étude sur les problèmes d’apprentissage actif.
Le premier est un nouvel algorithme d’apprentissage supervisé interfaçant les méthodes de Plans Coupants avec l’algorithme
de Perceptron. Notre dernière contribution est un théorème général de géometrie sur les centres de gravité approximés. Plus
précisément, ce dernier résultat porte sur l’applicabilité du théorème de [Grunbaum, 1960] concernant la partition des corps
convexes par leur centre de gravité lorsque à la place du vrai centre de gravité, seule une approximation est disponible. Ces
trois contributions ont précédemment étaient publiées ensemble lors de l’International Joint Conference on Neural Network en 2015

[Louche and Ralaivola, 2015a]. De plus, cette publication a été récompensée du prix du meilleur papier étudiant lors de sa
présentation en conférence.

Mots-clés modèles linéaires, classification, multi-classe, matrice de confusion, bruit, apprentissage actif, géométrie computationelle, per-
ceptrons, méthodes de plans coupants, schémas de compréssion

Title From Confusion Noise to Active Learning: Playing on Label Availability in Linear Classification Problems

Abstract The works presented in this thesis fall within the general framework of linear classification, that is the problem
of categorizing data into two or more classes based on on a training set of labelled data. In practice though acquiring labeled
examples might prove challenging and/or costly as data are inherently easier to obtain than to label. Dealing with label
scarceness have been a motivational goal in the machine learning literature and this work discuss two settings related to this
problem: learning in the presence of noise and active learning. More precisely, the first setting we consider is the one of
learning under confusion noise (that we may refer to as confused learning for short) where the probability for an example
to have a corrupted label only depends of its true class. Conversely, in Active Learning the emphasis is put on using as
few labels as possible by allowing for interaction between the learning algorithm and the labelling process. More generally
both of these approaches can be thought as playing on label availability whether it is by accepting erroneous, albeit easy to
get, data or, at the contrary, by trying to reduce the label needs of the learning algorithm to its optimal minimum. Our first
contribution is to propose and study an algorithm that is able to learn in a multiclass confused setting whereas previous
works on this subject [Blum et al., 1998, Bylander, 1994] have been limited to the case of bi-class classification. Notably our
algorithm is proved to converge to the true, unknown, labelling function given it has access to the confusion matrix associated
with the noising process. Our work on this topic have previously been the subject of two publications, first at the Asian
Conference on Machine Learning in 2013 [Louche and Ralaivola, 2013] and then as an extended revision in Machine Learning Journal
[Louche and Ralaivola, 2015b]. Our second contribution is to propose a novel Active learning algorithm inspired from the
similarities between the SIMPLE algorithm [Tong and Koller, 2001] and Cutting Planes methods. We revisit the setting of active
learning, and more generally supervised learning, through a geometric point of view. Concretely, our contribution take the form
of a theoretically backed algorithm for active learning based on centers of gravity that we call active-BPMin reference to the
Bayes Point Machine algorithm [Herbrich et al., 2001]; notably theoretical and practical results show that our algorithm does
not suffer from the pitfalls of SIMPLE on ill-shaped version spaces. We also propose two auxiliary contributions that come as
a by-product of the above study. The first one is a new supervised algorithm interfacing a Cutting Planes update scheme with
a perceptron algorithm. Our last contribution comes in the form of a general theorem on approximate centers of gravity. More
precisely, we study how the result of [Grunbaum, 1960] on the partition of convex bodies by centers of gravity degrades when
approximations are used. Those three last contributions have been first published together at the International Joint Conference on
Neural Network in 2015 [Louche and Ralaivola, 2015a] and won the Best Student Paper award during the conference meeting.

Keywords linear models, classification, multiclass, confusion matrix, noise, active learning, computational geometry, perceptron methods,
cutting planes methods, compression schemes




	Contents
	List of Figures
	List of Algorithms
	Introduction
	Notations
	I Preliminaries
	The Problem of Classification
	The scope of this Thesis
	A story of spaces and problems
	Classes and hypothesis

	Risks and Losses
	Losses
	Risks and Training Set
	P.A.C. learning and VC-dimension

	A Few Examples of Machine Learning Methods
	The Perceptron Algorithm
	(Hard Margin) Support Vector Machines

	Conclusion

	Some Extensions to Classification
	Kernels, or the true power of linear classifier
	From Input space to Feature Space
	Learning in Feature Space

	Compression Scheme
	A motivation for Sample Compression Scheme
	Sample Compression Scheme and Results

	Multiclass Classification
	The Basics: OVA and OVO
	Ultraconservative Algorithms
	A More General Formalization of Multiclass Classification

	Conclusion


	II Learning With Noisy Labels
	Confusion Matrices for Multiclass Problems and Confusion Noise
	A gentle introduction to noisy problems: the bi-class case
	The general Agnostic setting
	The Confusion Noise setting
	An Algorithm for Learning Linear Classifier Under Classification Noise

	Confusion Matrices
	A note on Precision and Recall
	Confusion Matrices for Multiclass Problems

	The Multiclass Confusion Noise Model
	Conclusion

	Unconfused Multiclass Algorithms
	Setting and Problem
	A gentle start and a practical example
	Assumption
	Problem: Learning a Linear Classifier from Noisy Data

	UMA: Unconfused Ultraconservative Multiclass Algorithm
	A Brief Reminder on Ultraconservative Additive Algorithms
	Main Result and High Level Justification
	With High Probability, xuppq is a Mistake with Positive Margin
	Convergence and Stopping Criterion
	Selecting p and q
	UMA and Kernels

	Experiments
	Toy dataset
	Real data

	General Conclusion
	Discussion and Afterthoughts
	Conclusion



	III Active Learning and Version Space
	From Linear Classification to Localization Problems
	An introduction to Localization Problem
	Motivating the Setting

	Cutting Planes Algorithms
	A general introduction to Cutting Planes Algorithms
	Analysis of Cutting Planes Algorithms through the query step
	Toward Efficient Cutting Planes Algorithms

	Centroids
	The epitome of centroid: the Center of Gravity
	A second centroid, the chebyshev's center
	Sampling methods
	On the property of sampled centers of gravity

	Conclusion

	Localization Methods applied to Machine learning
	Localization methods in the context of Machine Learning
	Back to Machine Learning
	On the property of Cutting Planes as Learning Algorithm
	The case of CG and CC
	Bayes Point Machine and Center of Gravity

	Cutting Planes Powered Machine Learning
	Cutting Plane and SVM
	Perceptron and Cutting Planes

	Conclusion

	Cutting-Plane Powered Active Learning
	Active Learning: Motivations and General Framework
	Active Learning Strategies
	Two Strategies of interest
	A Version Space Approach to Active Learning

	Active Learning And Cutting Planes
	A state of Active Learning Methods, and how they relate to CP
	Tuning the Cutting Planes for active learning

	Experimental results
	Conclusion


	Conclusion
	Appendix
	Appendix of Part I
	Proof of Theorem 2.3 

	Appendix of Part II
	Proof of Proposition 4.3

	Appendix of Part III
	Preliminaries
	Partition of Convex Bodies By Hyper-Plane
	Generalized Volume Reduction


	Bibliography

