Thèse de doctorat en Surfaces, interfaces, matériaux fonctionnels
Sous la direction de Nordin Felidj et de Claire Mangeney.
Soutenue en 2015
à Sorbonne Paris Cité , dans le cadre de École doctorale Chimie physique et chimie analytique de Paris Centre (Paris ; 2000-....) , en partenariat avec Université Paris Diderot - Paris 7 (1970-2019) (autre partenaire) .
Elaboration et propriétés optiques de nanostructures plasmoniques hybrides thermosensibles
La conception de nanomateriaux hybrides multifonctionnels est un champ de recherche en plein essor. Notamment, la combinaison de polymères thermosensibles et de nanoparticules d'or (GNPs) offre des perspectives prometteuses pour l'élaboration de matériaux à grande valeur ajoutée pour des applications dans le domaine des capteurs, du biomédical et de la catalyse. Dans ce travail de thèse, nous avons élaboré des nanostructures hybrides combinant nanoparticules d'or et poly(N-isopropylacrylamide) (PNIPAM), en s'appuyant sur des techniques de lithographies et de polymérisation radicalaire contrôlée. Grâce à ces deux techniques, il a été possible de faire varier à la fois le degré d'anisotropie des nanoparticules d'or et l'épaisseur des chaînes de PNIPAM, de façon parfaitement contrôlée. L'influence de ces deux paramètres sur la sensibilité des nanostructures plasmoniques à leur environnement local et plus particulièrement à des changements de température a ainsi pu être étudiée. De plus, en utilisant les nanoparticules d'or comme nanosources de chaleur, nous avons pu induire localement des élévations de température très rapides et déterminer les échelles de temps du processus de transition de phase des brosses de PNIPAM greffées. Dans un deuxième temps, nous avons cherché à exploiter ces structures hybrides stimulables pour la détection de molécules par SERS ou pour sonder l'isomerisation de molécules photochromes d'azobenzene, par spectroscopie UV-visible. Dans un dernier temps, nous avons proposé une nouvelle stratégie de greffage de couches organiques sur les nanostructures d'or, spatialement sélective, induite par plasmon. Le greffage de groupes aryles dérivant de sels de diazonium se produit spécifiquement dans les régions d'exaltation maximale du champ électromagnétique autour des GNPs. Cette nouvelle approche ouvre de nombreuses perspectives pour le confinement à l'échelle nanométrique de couches de polymères greffées sur des nanostructures plasmoniques.
Driven by the search for hybrid multifunctional nanomaterials with interesting and unique properties, we have considered the association of thermoresponsive pNIPAM with gold nanoparticles (GNPs), which ideally combine the responsiveness of pNIPAM with the optical, catalytic or photothermal properties of GNPs. In this PhD dissertation, we addressed strong synergies between GNPs and PNIPAM in hybrid GNP@PNIPAM nanostructures, obtained from the grafting of PNIPAM brushes on lithographie GNPs arrays. Firstly, the hybrid nanostructures including gold nanorod (GNRs) arrays coated by pNIPAM allowed us to investigate properly the influence of the GNPs anisotropy and the polymer thickness on the sensitivity to the local environment. The optimization of the GNR's aspect ratio r and the pNIPAM thickness, to provide a maximum of LSP shift upon a change in temperature,is obtained for r'-2. 4-2. 6 and hPNIPAM —25 nm, respectively. Secondly, such hybrid nanostructures allowed us to measure the phase transition time of pNIPAM brushes, 160±20 Ils for a 30 nm pNIPAM layer. Particularly, we used the pNIPAM brushes as a dynamic linker in order to control the coupling of plasmonic nanoparticles and the sensitive detection of Nile blue A molecules by SERS. Such hybrid nanostructures were also applied to probe the isomerization of azobenzene derived molecules by UV-visible spectroscopy. Interestingly, we developed a new strategy for the selective plasmon-mediated chemical grafting of aryl layers derived from diazonium salts on gold nanostripe arrays. This grafting occurs specifically in the regions of maximum field enhancement of GNPs. In perspective, this strategy is expected to allow us controlling the grafting of pNIPAM brushes, and thus the binding of analyte molecules to selected locations on the GNP surface with well-defined near-field enhancement factor for quantitative SERS measurements.