Thèse soutenue

Modélisation mathématique des systèmes biologiques et dérivation de modèles macroscopiques

FR  |  
EN
Auteur / Autrice : Diane Peurichard
Direction : Pierre DegondFanny Delebecque
Type : Thèse de doctorat
Discipline(s) : Mathématiques appliquées
Date : Soutenance le 08/07/2015
Etablissement(s) : Toulouse 3
Ecole(s) doctorale(s) : École doctorale Mathématiques, informatique et télécommunications (Toulouse)
Partenaire(s) de recherche : Laboratoire : Institut de mathématiques de Toulouse (2007-....)

Résumé

FR  |  
EN

Cette thèse s'inscrit dans le cadre de la modélisation de systèmes biologiques complexes. En premier lieu (travail en collaboration avec l'équipe de biologistes de Louis Casteilla), nous introduisons un modèle individus-centré pour étudier l'émergence de structures cellulaires de forme lobulaire dans un réseau organisé de fibres. Une étude paramétrique sur les résultats numériques ainsi que des méthodes de traitement d'images sur les données biologiques nous permettent de montrer que l'émergence de structures biologiquement cohérentes peut être reproduite par un modèle basé essentiellement sur des règles mécaniques entre les cellules et le réseau de fibres. L'originalité de ce modèle réside dans la modélisation de structures géométriques complexes (réseaux de fibres) par un ensemble d'unités élémentaires connectées interagissant à l'aide de fonctionnelles simples. Cette nouveauté a donné lieu à d'autres types de travaux en cours présentés comme perspectives directes de ce travail. Les deuxième et troisième parties portent sur la dérivation d'un modèle cinétique puis macroscopique pour étudier la matrice extra-cellulaire dans sa globalité. L'originalité de notre résultat réside dans l'obtention d'un système d'équations fermé décrivant l'évolution de la distribution des fibres individuelles et des liens de fibres. La limite hydrodynamique de l'équation cinétique est obtenue à l'aide de techniques non conventionnelles dû au un manque d'équation de conservation pour le système étudié. Dans le cas d'une densité homogène de fibres, nous prouvons l'existence de solutions au modèle macroscopique, et les simulations numériques montrent une bonne correspondance entre le modèle macroscopique et son homologue microscopique. Finalement (travail en collaboration avec S. Motsch), nous nous intéressons à l'influence d’interactions de type répulsion cellules-cellules dans un modèle de croissance tumorale. Nous montrons que le modèle macroscopique dérivé des équations microscopiques fait apparaître une instabilité et proposons une version modifiée de l'équation macroscopique que nous sommes capables de relier à la dynamique cellulaire. Les simulations numériques montrent la bonne correspondance entre les deux modèles.