
Université de Strasbourg

École Doctorale Mathématiques, Sciences de
l’Information et de l’Ingénieur

Laboratoire des sciences de l’ingénieur, de l’informatique et de
l’imagerie (ICube)

THÈSE présentée par :

Jean-François DOLLINGER

Soutenue le : 01 juillet 2015

pour obtenir le grade de : Docteur de l’Université de Strasbourg
discipline/spécialité : Informatique

A framework for efficient execution on
GPU and CPU+GPU systems

Thèse dirigée par :
M. CLAUSS Philippe Professeur, Unistra, Strasbourg

Rapporteurs :
M. COHEN Albert Directeur de Recherche INRIA, ENS, Paris
M. BODIN François Professeur, IRISA, Rennes
Examinateurs :

M. HACK Sebastian
Professeur, Universität des Saarlandes, Saar-
brücken, Allemagne

M. LOECHNER Vincent Maître de conférences, Unistra, Strasbourg

Laboratoire des sciences de l’ingénieur, de l’informatique et de l’imagerie (ICube) UMR 7357

2

Contents

1 Résumé en Français 11
1.1 Introduction . 11
1.2 Prédiction et sélection adaptative de version de code 12

1.2.1 Introduction . 12
1.2.2 Vue d’ensemble du framework 13
1.2.3 Equité . 14
1.2.4 Prédiction . 14
1.2.5 Expérimentations . 16

1.3 Calcul hétérogène : CPU vs GPU . 17
1.3.1 Introduction . 17
1.3.2 Code CPU . 18
1.3.3 Code GPU . 18
1.3.4 Expérimentations . 19

1.4 Calcul hétérogène : CPU + GPU . 19
1.4.1 Introduction . 19
1.4.2 Génération de code . 20
1.4.3 Répartition de charge . 21
1.4.4 Multiversioning . 23
1.4.5 Consommation d’énergie . 23
1.4.6 Experimentations . 23

1.5 Parallélisation spéculative . 24
1.5.1 Introduction . 24
1.5.2 Problématique . 25
1.5.3 Machine virtuelle . 25
1.5.4 Contributions . 25

2 Introduction 27
2.1 Context . 27
2.2 Problematic . 28
2.3 Outline . 30

3 Context and related work 31
3.1 Genesis of GPU computing . 32
3.2 GPU architecture . 34

3.2.1 CUDA . 36

3

4 CONTENTS

3.2.2 Processor space . 36
3.2.3 Software model . 38
3.2.4 Memory space . 39
3.2.5 OpenCL . 41
3.2.6 CUDA vs OpenCL . 42

3.3 Directive languages . 42
3.4 Approaches to performance modelling 43
3.5 Optimization techniques . 44

3.5.1 Hand-tuning vs. Automatic optimization 44
3.5.2 Static methods . 45
3.5.3 Hybrid methods . 46
3.5.4 Dynamic methods . 48
3.5.5 Conclusion . 48

3.6 Heterogeneous computing . 49
3.6.1 Static partitioning . 50
3.6.2 Hybrid partitioning . 51
3.6.3 Dynamic partitioning . 51
3.6.4 Conclusion . 52

3.7 Polytope Model . 53
3.7.1 SCoP . 54
3.7.2 Polyhedral model illustration 56
3.7.3 Access functions . 56
3.7.4 Scattering matrix . 58
3.7.5 Dependence . 61
3.7.6 Transformations . 62
3.7.7 Integer points counting . 63

3.8 CLooG . 64
3.9 PLUTO . 64
3.10 Par4All . 65
3.11 R-Stream . 65
3.12 PPCG . 65
3.13 Skeleton compilers . 66
3.14 Libraries . 66
3.15 Speculative parallelization . 67

4 Code versioning and profiling for GPU 69
4.1 Introduction . 69
4.2 Related Work . 71
4.3 Framework overview . 73
4.4 Profiling . 75

4.4.1 Equity . 75
4.4.2 Static performance factors . 76
4.4.3 Dynamic performance factors 76
4.4.4 CUDA grid size evaluation . 86

4.5 Runtime prediction . 88

CONTENTS 5

4.5.1 Prediction . 88
4.6 Experiments . 90

4.6.1 Testbed . 90
4.6.2 Prediction accuracy . 93

4.7 Perspectives and conclusion . 94

5 Heterogeneous computing 95
5.1 CPU vs GPU execution: a dynamic approach 96

5.1.1 Introduction . 96
5.1.2 CPU vs GPU attempt . 97
5.1.3 Early termination of CPU and GPU codes 99
5.1.4 Experimentations . 102
5.1.5 Perspective and limitations . 105

5.2 CPU vs GPU execution: a hybrid approach 106
5.3 CPU + GPU joint execution . 108

5.3.1 Introduction . 108
5.3.2 Code generation . 111
5.3.3 CPU+GPU Runtime . 113
5.3.4 Evaluation . 117
5.3.5 Multiversioning . 120
5.3.6 Power-guided scheduling . 131
5.3.7 Perspectives and conclusion . 134

6 Thread Level Speculation 139
6.1 CPU speculative execution . 139

6.1.1 Introduction . 139
6.2 Overview of our system . 141
6.3 Binary skeletons . 144

6.3.1 Guarding code . 146
6.3.2 Initialization code . 146
6.3.3 Verification code for speculative parallelization 147

6.4 Memory backup . 148
6.5 Experimental results . 150
6.6 Memory backup extensions . 155
6.7 GPU extension proposal . 155

6.7.1 Verification code . 155
6.7.2 Memory address space . 156
6.7.3 Finding adequate block size . 157
6.7.4 CPU + GPU execution . 157

6.8 Conclusions and perspectives . 158

7 Conclusion 161
7.1 Contributions . 161
7.2 Perspectives . 163

Bibliography 165

6 CONTENTS

List of Figures

1.2 Comparaison entre temps d’exécution prédit (barre gauche) et effectif
(barre droite) sur PolyBench avec le jeu de données standard sur GTX
590. 17

1.3 Comparaison entre temps d’exécution prédit (barre gauche) et effectif
(barre droite) sur PolyBench avec le jeu de données standard sur GTX
680. 17

1.4 Temps d’exécution normalisé pour le jeu de données standard sur Poly-
Bench . 20

1.5 Speedup to execution time on CPU or GPU alone. 24

3.1 Recomputed theoretical peak performance trends between Intel CPUs
and Nvidia GPUs. 32

3.2 Nvidia discrete graphics card architecture. 35

3.3 Insight of a Streaming Multiprocessor (SM) organization. 37

3.4 CUDA execution model. 38

3.5 Illustration of a loop nest and its associated polyhedron 56

3.6 Constraint inequalities and associated constraint matrix 56

4.1 Comparison of actual execution time per iteration for several block - tile
sizes for gemm (matrix size = 1024 ∗ 1024). 70

4.2 Example of a CPU ranking table and prediction for gemm. 72

4.3 Global framework workflow overview. 73

4.4 Comparison (top) and deviation (bottom) of actual execution time per
iteration to empirically demonstrate commutativity of the block dimen-
sions for gemm, Block/Tile size: 32× 16/32× 16, NK = 2000. 75

4.5 Comparison between profiled and measured execution times per iteration
(1). 79

4.6 Comparison between profiled and effective execution times per iteration
(2). 80

4.7 Sequential parameters influence for different tile configurations for syrk. 81

4.8 Bandwidth evaluation on Asus P8P67-Pro motherboard with Asus GTX
590 GPU and Asus P8P67-Deluxe with Nvidia GTX 680 GPU. 82

4.9 Profiling flow chart. 83

7

8 LIST OF FIGURES

4.10 Demonstration of the capability of our profiler to map the actual execu-
tion time per iteration measurements (solid) for gemm, Block/Tile size:
16 × 16/128× 128, NK = 2000. The profiler makes use of a paramet-
ric sliding window to perform measurements in a wider spectrum (solid,
cross). This configuration is compared to a single point based decision,
with a maximum allowed deviation of 10% (dashed, square) and 5%
(dashed, circle). 85

4.11 A code version (a) and its associated prediction code (b). 89
4.12 Comparison between prediction (left bar) and real (right bar) execution

times on PolyBench with small dataset on GTX590. 90
4.13 Comparison between prediction (left bar) and real (right bar) execution

times on PolyBench with standard dataset on GTX590. 91
4.14 Comparison between prediction (left bar) and real (right bar) execution

times on PolyBench with large dataset on GTX590. 91
4.15 Comparison between prediction (left bar) and real (right bar) execution

times on PolyBench with small dataset on GTX680. 92
4.16 Comparison between prediction (left bar) and real (right bar) execution

times on PolyBench with standard dataset on GTX680. 92
4.17 Comparison between prediction (left bar) and real (right bar) execution

times on PolyBench with large dataset on GTX680. 92

5.1 GPU kernel termination algorithm with thread election. 97
5.2 Comparison of execution time between zero-copy (accessing central me-

mory) and memcpy (accessing device off-chip memory) techniques when
varying the number of threads. 101

5.3 Normalized execution time for the PolyBench standard dataset. 103
5.4 Normalized execution time for the PolyBench large dataset. 103
5.5 Overhead to the single-PU execution time for the PolyBench standard

dataset. 104
5.6 Overhead to the single-PU execution time for the PolyBench large dataset.104
5.7 Delay to shut the computation down on the PU that lost the race, for

standard dataset. 105
5.8 Delay to shut the computation down on the PU that lost the race, for

large dataset. 106
5.9 Energy consumption resulting from simultaneously running CPU and

GPU codes, for standard dataset. Energy consumption is expressed
in Watts second and originates from the product of maximal device
consumption (measured for a reference code at wall socket) by execution
time. 107

5.10 Evaluation of the execution time per iteration for gemm for various block
sizes and sequential parameter fixed to 1024 110

5.11 Illustration of the mechanisms required for communication. 112
5.12 Scheduler algorithm steps for gemm and gesummv. GPU is eliminated

after first step in gesummv. 116
5.13 Speedup to execution time on CPU or GPU alone. 119
5.14 Execution time imbalance ratio for several combinations of PUs. 119

LIST OF FIGURES 9

5.15 Speedup to execution time of slowest code version combination for gemm.121
5.16 Execution time imbalance ratio for several combination of code versions

for gemm. 121
5.17 Speedup to execution time of slowest code version combination for syr2k. 122
5.18 Execution time imbalance ratio for several combination of code versions

for syr2k. 122
5.19 Average prediction error ratio of CPU and GPU for gemm. 123
5.20 Average prediction error ratio of CPU and GPU for syr2k. 123
5.21 Speedup to execution time of slowest code version combination for 2mm. 124
5.22 Average prediction error ratio of CPU and GPU for 2mm. 124
5.23 Speedup to execution time of slowest code version combination for 3mm. 125
5.24 Execution time imbalance ratio for several combination of code versions

for 3mm. 125
5.25 Speedup to execution time of slowest code version combination for syrk. 126
5.26 Execution time imbalance ratio for several combination of code versions

for syrk. 126
5.27 Speedup to execution time of slowest code version combination for doitgen.127
5.28 Execution time imbalance ratio for several combination of code versions

for doitgen. 127
5.29 Speedup to execution time of slowest code version combination for ge-

summv. 128
5.30 Execution time imbalance ratio for several combination of code versions

for gesummv. 128
5.31 Speedup to execution time of slowest code version combination for mvt. 129
5.32 Execution time imbalance ratio for several combination of code versions

for mvt. 129
5.33 Speedup to execution time of slowest code version combination for gemver.130
5.34 Execution time imbalance ratio for several combination of code versions

for gemver. 130
5.35 Scheme of the measurement platform circuit with Wattmeter. 131
5.36 Instant power consumption (y) and normalized flops (y2) for gemm. . . 133
5.37 Instant power consumption (y) and normalized flops (y2) for doitgen. . 133
5.38 Speedup to execution time of slowest code version combination for gemm

with energy-enabled scheduler. 135
5.39 Speedup to execution time of slowest code version combination for syrk

with energy-enabled scheduler. 135
5.40 Speedup to execution time of slowest code version combination for doit-

gen with energy-enabled scheduler. 136
5.41 Comparison of energy consumption for gemm between energy enabled

scheduler (left bar) and iteration count based elimination (right bar). . 137
5.42 Comparison of energy consumption for syrk between energy enabled

scheduler (left bar) and iteration count based elimination (right bar). . 137
5.43 Comparison of energy consumption for doitgen between energy enabled

scheduler (left bar) and iteration count based elimination (right bar). . 138

6.1 Static-dynamic collaborative framework 142

10 LIST OF FIGURES

6.2 The chunking mechanism . 143
6.3 Alternate execution of different versions during one loop nest’s run . . . 143
6.4 memcpy merging strategy. 149
6.5 memcpy behaviour on multiple spacing configurations, for different ch-

unk sizes. 149
6.6 Runtime overhead of covariance . 152
6.7 Runtime overhead of backpropagation 152
6.8 Runtime overhead of adi . 152

Chapitre 1

Résumé en Français

1.1 Introduction

Le rapide déploiement d’applications graphiques fin des années 80 et le surcoût occa-
sionné en terme de consommation de ressources a poussé à l’utilisation de coprocesseurs
spécialisés appelés Graphics Processing Unit (GPU). A leur origine les GPUs présentent
une architecture peu flexible n’autorisant qu’un certain spectre d’applications ; seul un
nombre restreint d’opérations précâblées étaient exposées aux programmeurs. Avec l’ar-
rivée des langages CUDA en 2007 et OpenCL en 2009, le modèle de programmation
s’est affranchi des contraintes de programmabilité archaïques inhérentes aux GPUs
d’ancienne génération. Aujourd’hui, les GPUs se révèlent être une alternative viable
pour des traitements autres que graphiques, en particulier pour combler l’insatiable
demande en performance de la communauté scientifique.

Malgré les efforts de simplification engagés par les fournisseurs de puces graphiques,
le portage d’un code pour une exécution efficace sur GPU n’est pas chose aisée. Un
programmeur doit non seulement se familiariser avec le modèle de programmation,
mais également avoir une connaissance fine de l’architecture et transformer le code
pour utiliser le GPU à son plein potentiel.

Les nids de boucles concentrent la majorité du temps d’exécution d’un programme.
Le modèle polyédrique est une représentation mathématique d’un nid de boucles af-
fine paramétré, soit un nid de boucles dont les accès mémoire et les bornes de boucles
sont exprimés via des combinaisons affines des paramètres et des itérateurs des boucles
englobantes. Ce cadre théorique autorise l’application de transformations de code auto-
matiques (e.g. inversion de boucles, tuilage, skewing, etc.) tout en préservant la séman-
tique initiale. Mes travaux de thèse ainsi que les outils utilisés s’appuient principalement
sur le modèle polyédrique.

Des outils de parallélisation automatiques polyédriques tels que PLUTO [25], C-
to-CUDA [15], PPCG [145], R-Stream [131], Par4All [7, 9], sont capables de générer
du code optimisé pour une architecture cible. Ces outils manipulent des SCoP (Static
Control Parts) renfermant une succession de nids de boucles affines. Le processus ty-
pique de compilation, du fait de sa nature statique, réduit le champ des opportunités
des compilateurs. A défaut de générer du code performant dans toutes les situations,
les performances restent généralement moyennes car issues d’heuristiques : il est néces-

11

12 CHAPITRE 1. RÉSUMÉ EN FRANÇAIS

saire de considérer les paramètres dynamiques et l’ensemble des ressources de calcul
d’un système.

Les performances d’une version de code peuvent varier en fonction du contexte
d’exécution ; elles sont fonction des paramètres de nid de boucles. Pour répondre à
cette problématique, le “multiversioning” consiste à produire plusieurs versions de code
sémantiquement équivalentes au programme original. La meilleure des versions doit être
sélectionnée à l’aide d’une prédiction du temps d’exécution sur GPU.

Pour tirer les meilleures performances des systèmes hétérogènes, c’est à dire de
systèmes hébergeant des processeurs aux architectures différentes, il est nécessaire de
déterminer les affinités entre les codes et les Unités de Calcul (processeur central,
GPU, accélérateurs, etc.), appelées UC dans la suite du texte. Nous présentons une
méthode dynamique capable de sélectionner l’architecture cible la plus adaptée, tout en
tenant compte de l’impact de l’environnement d’exécution. Celle-ci consiste à exécuter
simultanément un même code sur plusieurs processeurs et sélectionner le plus rapide.
Pour cela nous proposons une technique d’interruption anticipée de codes exécutés sur
GPU et CPU.

Une autre méthode que nous avons implémentée consiste à exploiter toutes les res-
sources de calcul ; elle requiert l’ajustement de la charge de travail attribuée à chaque
UC. En effet, pour être performante, la distribution d’un calcul requiert de partager
équitablement les temps d’exécution. Nous présentons un ordonnanceur guidé par des
prédictions de temps d’exécution et capable, si c’est avantageux, de sélectionner l’ar-
chitecture adéquate ou d’utiliser conjointement plusieurs UCs pour effectuer un calcul.
La taille de la charge de travail est raffinée successivement jusqu’à obtenir des temps
d’exécution équivalents sur toutes les UCs engagées.

1.2 Prédiction et sélection adaptative de version de
code

1.2.1 Introduction

Rendre les performances d’un programme adaptative au contexte d’exécution est un
travail difficile et fastidieux, surtout pour des architectures complexes tels que les CPU
généralistes ou les cartes accélératrices. La prédiction des performances d’un code est
souvent difficile statiquement. En effet, l’efficacité d’un code varie selon l’architecture,
la charge et les jeux de données à traiter. Pour ces raisons, les compilateurs peuvent
difficilement prendre des décisions statiquement. Les techniques de compilation itera-
tives facilitent la recherche de la meilleure des versions pour un contexte donné, mais
négligent généralement la variation des paramètres d’entrée et/ou du matériel. Les
compilateurs devraient fournir un moyen au programme de s’adapter par le biais de
la compilation dynamique (JIT) ou du multiversioning. La compilation dynamique a
l’inconvénient d’introduire un surcoût, potentiellement non négligeable. Si l’objectif
de l’utilisateur est uniquement la performance, le multiversioning est mieux adapté.
Les versions de code, toutes sémantiquement équivalentes, mais de caractéristiques de
performance différentes, sont choisies en fonction du contexte d’exécution. Ainsi, nous

1.2. PRÉDICTION ET SÉLECTION ADAPTATIVE DE VERSION DE CODE 13

Extract

scop

#pragma scop

for(...)

 for(...)

 for(...)

#pragma endscop

/* scop */

GPU_select(...);

/* endscop */

O ine pro ling

Pro le

kernels

Pro le

memcpy

version 0

memcpy

duration

Ranking

table

Bandwidth

table

Runtime prediction

+

Kernel

duration

version 2

version 0version 1

Application binary

object le

...

/* scop */

call GPU_select(...)

/* endscop */

...

Static code generation

Build

templates

void scop_0(...)

Launch

PPCG

Execution

con guration

2

Pro le les

Figure 1.1 – Vue d’ensemble de l’infrastructure du framework.

avons développé un framework capable de prédire des temps d’exécution et de sélec-
tionner la meilleure version d’un code sur une architecture hétérogène CPU+GPU.

1.2.2 Vue d’ensemble du framework

Le framework, représenté en Fig. 1.1, repose sur trois étapes : génération de code,
profilage et prédiction. Les nids de boucles annotés dans le code source original sont
extraits dans des fonctions. Plusieurs versions de ces nids de boucles sont générées à
l’aide de PPCG, un compilateur polyédrique source-à-source capable de produire du
code CUDA optimisé à partir de code C. Elles diffèrent par leur ordonnancement,
taille de tuile et de bloc CUDA, utilisation de mémoire partagée, etc. PPCG a été

14 CHAPITRE 1. RÉSUMÉ EN FRANÇAIS

modifié afin de produire certaines informations issues de la compilation, notamment les
polynômes d’Ehrhart représentant la taille du domaine d’itération et de la grille CUDA.
Les fichiers générés sont transmis à un ensemble de programmes afin de construire le
code de profilage et de prédiction.

Le profilage effectué avant toute exécution de l’application considérée, à l’insta-
llation par exemple, est constituée de deux phases distinctes pour traiter le cas des
GPUs. Une première étape consiste à caractériser la bande passante disponible entre la
mémoire centrale et la mémoire du périphérique et produit une table de bande passante.
La seconde étape consiste à simuler l’exécution des différentes versions de code sur
l’architecture cible. Le code de profilage dédié se charge de construire une table de
classement par version de code. Ces informations sont utilisées à l’exécution afin de
calculer une prédiction du temps d’exécution du code considéré avec un faible surcoût.

Dans la taxonomie CUDA, une fonction C exécutée par un ensemble de threads
CUDA est communément appelée un kernel. Le code hôte réalise les appels kernels avec
leur configuration d’exécution et s’occupe des copies mémoire. L’analyse du code hôte
et des kernels générés par PPCG repose sur pycparser, un parseur de code C99 écrit en
python, étendu pour supporter CUDA et un sous-ensemble de directives pragmas. Ces
directives sont utilisées pour fournir des informations complémentaires au compilateur,
comme les sections de code à optimiser ou à exécuter en parallèle. Les interactions avec
le parseur sont contrôlées par un wrapper exposant les nœuds de l’Arbre de Syntaxe
Abstraite (AST), une représentation en arbre d’un code, au travers d’une interface
haut-niveau.

1.2.3 Equité

Pour concevoir notre profileur nous avons contrôlé empiriquement la propriété de com-
mutativité des dimensions de la grille CUDA pour les codes. D’après les résultats
obtenus, le nombre de blocs par dimension szx,y, n’avait pas une grande influence sur
les performances perf :

perf(szx ∗ szy) ∼ perf(szx′=y ∗ szy′=x)

Nous distinguons les paramètres séquentiels, apparaissant dans les boucles séquen-
tielles à l’intérieur et à l’extérieur des kernels des paramètres parallèles apparaissant
dans les dimensions parallèles. Les paramètres parallèles déterminent la taille de la grille
CUDA. Dans le profileur, pour maintenir l’homogénéité, les paramètres parallèles sont
calculés pour correspondre au nombre de blocs requis, par dimension. La valeur des
paramètres séquentiels est augmentée séparément, jusqu’à ce que leur impact devienne
stable. Leur influence est modélisée par le biais d’une fonction linéaire de régression.
Nous avons également remarqué que des tuiles incomplètes n’avait que peu d’incidence
sur les temps d’exécution.

1.2.4 Prédiction

Pour éviter une dépendance vis-à-vis des particularités bas-niveau du matériel qui
risquent de devenir obsolètes avec l’évolution du matériel, le framework développé ma-
nipule des temps d’exécution. Les expérimentations ont montré que les performances

1.2. PRÉDICTION ET SÉLECTION ADAPTATIVE DE VERSION DE CODE 15

des codes étaient principalement déterminées par le nombre de threads. Lors d’une
phase de profilage, avant la première exécution de l’application, les versions sont éva-
luées sur la machine cible. Les principaux facteurs de performance affectant les temps
d’exécution sont pris en compte par le système.

Les facteurs de performance statiques, sont constants lors de l’exécution et sont
naturellement pris en compte pas le profilage. Ils comprennent le temps d’exécution de
toutes les instructions : opérations arithmétiques et en virgule flottante, instructions
de branchement (incluant la prédiction), etc. Les facteurs de performance dynamiques
externes sont difficiles à contrôler car ils sont issus de l’environnement d’exécution.
Leur fréquence et leur durée impactent la qualité des mesures effectuées et par consé-
quent influencent la précision des prédictions. Les facteurs de performance dynamiques
internes émanent des interactions entre l’application cible et le matériel. Notre système
doit caractériser ces facteurs de performances car ils fluctuent en fonction du problème
en entrée : d’une exécution à une autre, le temps d’exécution peut différer.

Dans ce travail nous nous concentrons principalement sur des grandes tailles de
problèmes qui représentent le cas d’utilisation typique des GPUs. Pour s’affranchir des
effets de cache difficilement modélisables, du surcoût de l’appel kernel, et pour mettre
en lumière l’influence de la coalescence et des conflits de bancs, la taille du domaine
d’itération est manipulée artificiellement.

Des essais préliminaires ont mis en exergue deux importants facteurs de perfor-
mance dynamiques internes, pour réaliser des prédictions précises. Le premier concerne
les contentions d’accès mémoire et les conflits de banc. Comme les paramètres paral-
lèles sont calculés pour correspondre au mieux au nombre de blocs requis, l’empreinte
mémoire qu’ils induisent est encapsulée dans les mesures. Les paramètres séquentiels
requièrent un traitement spécifique comme leur valeur peut varier pour une taille de
grille donnée. Leur influence n’est pas nécessairement constante. Les expérimentations
ont montré que leur incidence suivait une tendance linéaire pour les temps d’exécution
par itération collectés. Leur influence est modélisée via une fonction linéaire de régres-
sion. Pour prendre cela en considération, la table de classement est remplie avec les
fonctions linéaires des paramètres séquentiels.

L’ordonnanceur de blocs et de warps est capable de cacher les latences mémoire
en couvrant les blocs et warps en attente d’un accès mémoire avec d’autres calculs.
La répartion de la charge au niveau bloc est donc le second paramètre de performance
dynamique à considérer. Pour ce faire, les mesures sont effectuées pour différentes tailles
de grille. Les portions linéaires des mesures sont détectées afin de réduire l’espace de
recherche pour limiter la durée du profilage. Pour chacune des mesures une entrée est
placée dans la table de classement.

Le profileur néglige cependant le surcoût de l’appel du kernel CUDA et les effets
de cache en manipulant artificiellement le domaine d’itération. Pour éviter d’effectuer
des mesures redondantes, le code de profilage bénéficie de nombreuses optimisations :
détection des phases affines, commutativité de la grille CUDA, etc. En sortie, il produit
une table de classement contenant des temps d’exécution par itération pour chaque
version.

Un programme de mesure se charge de calculer la bande passante disponible entre
l’hôte et le périphérique. Les caractéristiques de celle-ci sont fortement liées au matériel

16 CHAPITRE 1. RÉSUMÉ EN FRANÇAIS

sous-jacent. Les spécifications de la carte mère et la capacité du bus de données a une
forte influence sur le débit disponible. En sus, le débit d’un périphérique PCIe est
asymétrique et non linéaire. En effet, le débit s’accroît et tend vers la bande passante
asymptotique lorsque l’on augmente la taille des données à transférer. Des transferts de
petites taille ont une efficacité bien moindre. Un micro-benchmark dédié se charge de
collecter les mesures de bandes passantes pour différentes tailles de message et construit
une table de bande passante par sens de transfert. Le débit est modélisé par une table
de bandes passantes représentant des fonctions affines par morceaux.

Lors de la phase de prédiction, des nids de boucles simplifiés prédisent les temps
d’exécution des versions à l’aide des informations de profilage. A cet instant, le contexte
d’exécution est connu. Le code de prédiction est construit en remplaçant l’appel kernel
et les copies mémoire par le calcul associé. En premier lieu, le code de prédiction
récupère les fonctions des paramètres séquentiels pour l’intervalle de blocs comprenant
la taille de la grille CUDA considérée. Ces fonctions sont instanciées avec la valeur
des paramètres séquentiels. Les résultats sont interpolés linéairement pour calculer le
temps d’exécution. Puis, on y ajoute le temps prédit nécessaire pour la transmission
des données, basé sur la taille des messages et la direction des transferts. La meilleure
des versions GPU est sélectionnée et exécutée.

1.2.5 Expérimentations

La première plateforme de test est composée de deux Asus GTX 590 connectée à une
carte mère Asus P8P67-Pro et sont couplées à un core i7 2700k. La seconde plateforme
de test contient une Nvidia GTX 680 connectée à une carte mère Asus P8P67-Deluxe
et couplée à un core i7 2600. Les cartes Asus GTX 590 reposent sur une architecture
Fermi, tandis que la GTX 680 repose sur une architecture Kepler. Les expérimentations
sont effectuées sur les codes issus de PolyBench.

Les Figures 1.2 et 1.3 montrent la précision de notre système. La barre de gauche
représente le temps d’exécution prédit tandis que la barre de droite indique le temps
d’exécution effectif. Chaque barre est divisée en deux parties représentant le temps
de communication et le temps d’exécution d’un kernel. Quelques imprécisions sont
obtenues pour des petites tailles de problème, mais celles-ci sont équivalentes pour
chaque version et n’influencent donc pas le mécanisme de sélection de la version de
code la plus performante.

Sur GTX 590 l’erreur moyenne pour un jeu de données standard est de 2.3% et
tombe à 1.13% en excluant syrk3. Sur GTX 680 l’erreur moyenne est de 5.8% pour le
jeu de données standard. Ces résultats assurent un bon niveau de fiabilité quant à la
version de code sélectionnée.

Selon l’architecture la meilleure version de code peut varier. Ainsi pour la première
plateforme de test les codes : bicg1 vs bicg3, gemver3 vs gemver2, mvt1 vs mvt2,
gesumv1 vs gesumv2, sont respectivement les plus rapides sur GTX 590 vs GTX 680.
Au final, notre méthode est capable de sélectionner la version de code la plus rapide
en fonction de l’architecture cible.

1.3. CALCUL HÉTÉROGÈNE : CPU VS GPU 17

 0

 1e+08

 2e+08

 3e+08

p r p r p r p r p r p r p r p r p r p r p r p r p r p r p r p r p r p r

tim
e

(n
s)

execution time
transfer time

gesumv3
gesumv2

gesumv1
mvt3

mvt2
mvt1

gemver3
gemver2

gemver1
bicg3

bicg2
bicg1

gemm3
gemm2

gemm1
syrk3

syrk2
syrk1

Figure 1.2 – Comparaison entre temps d’exécution prédit (barre gauche) et effectif
(barre droite) sur PolyBench avec le jeu de données standard sur GTX 590.

 0

 1e+08

 2e+08

 3e+08

 4e+08

tim
e

(n
s)

execution time
transfer time

gesumv3
gesumv2

gesumv1
mvt3

mvt2
mvt1

gemver3
gemver2

gemver1
bicg3

bicg2
bicg1

gemm3
gemm2

gemm1
syrk3

syrk2
syrk1

Figure 1.3 – Comparaison entre temps d’exécution prédit (barre gauche) et effectif
(barre droite) sur PolyBench avec le jeu de données standard sur GTX 680.

1.3 Calcul hétérogène : CPU vs GPU

1.3.1 Introduction

Avec la profusion d’architectures alternatives, choisir le (co)processeur approprié est
crucial pour assurer une exécution efficace d’un code. Choisir une architecture stati-
quement peut conduire à rater des opportunités de performances, sur une grille de
serveurs acceptant plusieurs jobs utilisateurs par exemple. Dans ces circonstances, il
est préférable d’exécuter un code sur un autre processeur pour conserver un bon niveau
de performances. Pour satisfaire à ces contraintes, nous avons développé une méthode
dynamique de sélection d’architecture. La technique proposée est capable de s’adapter
aux contraintes dynamiques et selectionner la meilleure architecture pour le problème
en entrée. Néanmoins, même si elle s’adapte bien à la dynamicité cela se fait au dé-
triment de la consommation électrique. De ce fait, pour choisir l’architecture la plus à
même d’exécuter un code et palier à l’influence de l’environnement d’exécution, un code
GPU est mis en concurrence avec un code CPU. Le vainqueur signale sa terminaison
et met prématurément fin à l’exécution des autres compétiteurs. Or, il n’existe pas de

18 CHAPITRE 1. RÉSUMÉ EN FRANÇAIS

moyen propre et efficace de terminer l’exécution de codes parallèles, ni avec OpenMP
ni avec CUDA. Pour ce faire, les codes parallèles sont instrumentés afin de piloter la
terminaison anticipée de l’exécution.

1.3.2 Code CPU

Sur CPU les boucles for parallèles (e.g. omp parallel for) sont extraites et sont placées
dans des sections parallèles (e.g. omp parallel). L’implémentation OpenMP utilisée
est basée sur les threads POSIX, autorisant la terminaison d’un thread par l’envoi
de signaux et l’utilisation des fonctions de restauration de contexte (i.e. long jump).
Ainsi, nous évitons l’utilisation d’un mécanisme d’attente active ayant plus d’impact
sur les performances. En outre, cela a l’avantage de ne pas affecter les nids de boucles
parallélisés sur le niveau de boucle le plus externe. Le code est généré de sorte que
les itérations de la boucle parallèle soient distribuées selon l’ordonnancement statique
introduit par OpenMP. Le gestionnaire de signaux effectue un saut à la fin de la section
parallèle pour terminer l’exécution rapidement. Ainsi, les threads ne sont pas annulés,
pour éviter les comportements non-définis, mais leur flot d’exécution est redirigé vers
la fin de la section parallèle. Pour ce faire, les meta-données du threads (e.g. thread
id, contexte) sont sauvegardées à l’entrée d’une section parallèle, pour une utilisation
ultérieure. En outre, un flag est fixé afin d’indiquer une terminaison artificielle de
l’exécution de la section parallèle. A nouveau, en dehors d’une section parallèle le flot
d’exécution est redirigé vers la sortie de la fonction implémentant le code CPU.

Cependant, les threads sortis de la section parallèle, ne doivent pas y retourner
auquel cas un saut pourrait corrompre la pile et avoir un comportement indéfini. De
plus, selon le standard OpenMP un saut ne peut violer le critère d’entrée et de sortie
des threads. Le code séquentiel est protégé par un verrou pour empêcher ce type de
comportement. Dès qu’un thread de calcul entre ou sort d’une section parallèle, il
désactive ou active le verrou qui lui est associé.

1.3.3 Code GPU

Sur GPU, une garde est insérée dans la deuxième dimension du nid de boucles paral-
lèle. Un flag permet de commander l’interruption de l’exécution d’un kernel à l’aide de
l’instruction trap. Ainsi, à chaque itération de la boucle instrumentée tous les threads
actifs contrôlent un flag localisé dans la mémoire globale du périphérique. En effet,
contrôler la valeur d’une variable allouée en mémoire centrale peut grever les perfor-
mances, surtout si un nombre conséquent de threads tente d’y accéder simultanément.
Par ailleurs, le flag scruté est déclaré volatile, afin d’empêcher le compilateur d’opti-
miser la variable dans un registre. Après la terminaison de l’exécution d’un kernel, un
flag similaire est contrôlé afin de rediriger l’exécution vers la fin du code CUDA hôte.

Depuis CUDA 4.0, le contexte d’exécution associé à un périphérique est partagé
entre les différents threads. Par conséquent, il est possible d’envoyer des commandes
vers un même périphérique depuis plusieurs threads dans des streams différents, sans
que les opérations ne soit traitées séquentiellement. A cette fin, le code généré par
PPCG est transformé afin d’utiliser les appels fonction CUDA appropriés, afin que les

1.4. CALCUL HÉTÉROGÈNE : CPU + GPU 19

mouvements de données et les kernels soient placés dans la file d’un stream CUDA.
Pour interrompre l’exécution d’un kernel, le CPU modifie la valeur du flag sur le GPU
via une copie mémoire placée dans un stream différent. Un flag est également contrôlé
après chaque mouvement de données, car ces derniers sont ininterruptibles.

1.3.4 Expérimentations

La Figure 1.4 montre des temps d’exécution normalisés par rapport à la version de code
la plus rapide sur la plateforme de test comprenant deux GTX 590 et un core i7 2700k.
On observe que pour le jeu de données standard covariance, 2mm, 3mm, doitgen, gemm,
syr2k, syrk, reg-detect, fdtd-2d, jacobi-1d-imper and jacobi-2d-imper sont plus efficaces
sur GPU. A l’opposé atax, bicg, gemver, gesummv, mvt, trmm, lu, floyd-warshall and
fdtd-apml sont plus rapides sur CPU. Pour le jeu de données standard l’accélération
maximale est de 10.46x pour 2mm, tandis qu’elle est minimale pour fdtd-2d avec 1.32x.
Lorsque le CPU gagne, l’accélération maximale est de 2.96x pour floyd-warshall, tandis
qu’elle est minimale pour bicg avec 1.02x. En moyenne l’accélération est de 1.57x, et
de 3.88x lorsque respectivement, le CPU ou le GPU gagne.

Le choix de l’architecture est réalisé dynamiquement grâce à ce système de sélec-
tion de code basé sur la compétition entre les ressources. Néanmoins, ceci se fait au
détriment d’une consommation électrique plus importante. En revanche les facteurs
de performances dynamiques externes sont pris en compte et permettent d’adapter
le choix de l’architecture cible. En tout et pour tout, cette technique est capable de
sélectionner la meilleure des versions de code avec un surcoût contenu.

1.4 Calcul hétérogène : CPU + GPU

1.4.1 Introduction

Une troisième partie de la thèse consiste en l’exploitation conjointe des CPUs et GPUs
pour l’exécution d’un code. Une utilisation efficace des ressources de calcul hétérogènes
est un problème difficile, particulièrement lorsque les unités de calcul (UC) reposent
sur des environnements de compilation et d’exécution différents en plus des différences
architecturales.

Sur des CPUs multicoeurs, une exécution efficace repose sur la parallélisation (avec
OpenMP par exemple), l’exploitation de la localité de cache (tuilage de boucle par
exemple), des optimisations bas niveau ; tandis que l’exploitation des GPUs requiert
des optimisations des transferts mémoire entre hôte et périphérique, distributions des
calculs sur une grille de blocs SIMD avec des limitations sur leur taille, une exploitation
explicite de la hierarchie mémoire, la coalescence des accès mémoire, etc.

Dans ce travail, notre objectif est de résoudre ces problèmes automatiquement, en
l’occurence par la génération de codes efficaces exécutés sur plusieurs UCs dans un
contexte dynamique. La plus grosse difficulté de ce problème est de calculer une bonne
répartition de charge entre les UCs hétérogènes. Pour ce faire, nous nous reposons sur
des prédictions de temps d’exécution sur chaque PU, basé sur un générateur de code
statique, un profilage offline et une prédiction et un ordonnancement à l’exécution.

20 CHAPITRE 1. RÉSUMÉ EN FRANÇAIS

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

covariance

2m
m

3m
m

atax
bicg

doitgen

gem
m
gem

ver

gesum
m

v

m
vt

syr2k
syrk

trm
m

lu floyd-warshall

reg-detect

fdtd-2d

fdtd-apm
l

jacobi-1d-im
per

jacobi-2d-im
per

no
rm

al
iz

ed
 e

xe
cu

tio
n

tim
e

CPU
GPU

Figure 1.4 – Temps d’exécution normalisé pour le jeu de données standard sur Poly-
Bench

Notre plateforme de développement cible des processeurs à mémoire partagée et un ou
plusieurs GPUs CUDA.

1.4.2 Génération de code

Lors d’une étape préliminaire, le code est parallélisé avec le backend OpenMP C de
PPCG. Des bornes de boucles artificielles sont injectées dans les boucles parallèles pour
contrôler le domaine d’itération. Cela permet de diviser le domaine d’itération initial
des boucles parallèles en morceaux, appelés chunks. A l’exécution, chaque chunk est
associé à une UC et dimensionné pour assurer une bonne répartition de la charge.
Pour ce faire, PLUTO et PPCG génèrent des versions de code spécialisées des chunks
parallèles, optimisées pour le CPU et le GPU. Comme les chunks peuvent être exécutés
dans n’importe quel ordre la sémantique du code est préservée et les calculs peuvent
être distribués sur les UCs disponibles sans risque. Les scripts développés calculent
également la boîte englobante des accès tableau pour générer le moins possible de
communications entre CPU et GPU.

Pour des codes parallèles appelés itérativement, la quantité de données à transférer
est ajustée pour éviter les copies redondantes. Plus précisément, les scripts déterminent
quels éléments de tableau ont été modifiés en dehors du code parallèle et nécessitent
d’être transférés vers le GPU. Pour les transferts restants, seules les données man-
quantes, après re-partitionnement, sont envoyées vers le GPU en contrôlant les para-
mètres de partitionement. Enfin, les résultats calculés sur GPU sont systématiquement

1.4. CALCUL HÉTÉROGÈNE : CPU + GPU 21

transférés dans la mémoire du CPU.

1.4.3 Répartition de charge

La distribution des calculs est réalisée grâce à l’analyse de dépendences et l’ordonnance-
ment polyédriques : des compilateurs comme PLUTO ou PPCG prennent un SCoP en
entrée et génèrent des nids de boucles parallèles et séquentielles. Les boucles parallèles
les plus externes sont découpées en chunks, dont la taille est contrôlable et sont exécutés
indépendemment sur plusieurs UCs.

Afin de préserver les performances, il est nécessaire de considérer la répartition
de charge, notamment en prédisant les temps d’exécution. En effet, nous considérons
que le temps d’exécution minimum d’un calcul distribué est obtenu lorsque les temps
d’exécution sont parfaitement équitables entre les UCs. Le temps d’exécution d’un
chunk sur une UC donnée est prédit à l’exécution, à chaque exécution du code cible.
Le calcul est basé sur : (1) la taille de la boucle (i.e. le nombre d’itérations et les
données accédées), évalués avec des outils polyédriques ; (2) le temps d’exécution par
itération et par donnée accédée moyen, basés sur les tables générées automatiquement
au profilage et dépendant du contexte d’exécution (taille de la grille CUDA, répartition
de charge entre les coeurs CPUs). Au final, la répartition de charge entre les différentes
UCs est obtenue en ajustant la taille des chunks pour distribuer les temps d’exécution
équitablement.

Notre système de prédiction des temps d’exécution sur GPU est complété par le
travail de Benoit Pradelle et al. [120] pour prédire les temps d’exécution sur CPU
multi-cœurs. Les codes CPU sont générés avec PLUTO, un compilateur polyédrique
source-à-source générant un code optimisé pour la localité, parallélisé avec OpenMP
et tuilé. Le runtime consiste en deux composants : un ordonnanceur et un répartiteur,
et fait usage des résultats du profilage pour prédire des temps d’exécution. La boucle
parallèle la plus externe est décomposée en chunks, chacun associé à une UC spécifique.
La technique d’ordonnancement est décrite par l’algorithme 1.1.

Le temps d’exécution par itération de chaque chunk fluctue non-linéairement en
fonction de la taille du chunk comme nous l’avons décrit dans la Section 1.2. Par
conséquent il n’existe pas de méthode directe de calcul de la taille des chunks, mais ce
problème d’optimisation requiert d’être raffiné itérativement.

La taille des chunks est ajustée de manière à ce que les temps d’exécution soient
distribués équitablement entre les UCs. Pour arriver au résultat escompté trois étapes
sont nécessaires : l’initialisation, le rafinage et le partitionement. La phase d’initialisa-
tion distribue les itérations de la boucle chunkée équitablement entre les PUs. L’idée
est de tendre au maximum vers une répartition équivalente des temps d’exécution,
c’est à dire un temps d’exécution approximativement équivalent pour tous les chunks
T0 ≈ T1 ≈ ... ≈ Tn−1. Le rafinage débute par le calcul d’une prédiction du temps d’exé-
cution de chaque chunk Ti et leur somme Tall. Ainsi, la proportion du temps d’exécution
de chaque chunk Ri = Ti/Tall doit tendre vers o = 1/n pour obtenir une bonne répar-
tition de charge. Notez que la répartition de charge optimale prédite est obtenue pour
Ri = o pour tous les i. La taille de chaque chunk est ajustée en la multipliant par o/Ri

pour se rapprocher de la répartition de charge optimale. Cependant ces ajustements

22 CHAPITRE 1. RÉSUMÉ EN FRANÇAIS

Algorithm 1.1 Scheduler algorithm

#step 1 : initialize to equal distribution
chnk_size← (ub− lb)/num_pu
for i← 0 to num_P U − 1 do

P Us[i].lb← i ∗ chnk_size
P Us[i].ub← P Us[i].lb + chnk_size

end for

#step 2 : refine
for s← 0 to MAX_ST EP S do

time← 0.
for i← 0 to num_P U − 1 do

P Us[i].size = P Us[i].ub− P Us[i].lb
if P Us[i].size 6= 0 then

P Us[i].time_val = P Us[i].time(P Us[i].lb, P Us[i].ub)
time← time + P Us[i].time_val

end if

end for

for i← 0 to num_P U − 1 do

if P Us[i].time_val 6= 0 then

adjst = time/(num_P U ∗ P Us[i].time_val)
P Us[i].size = P Us[i].size ∗ adjst

end if

end for

#normalize the chunk bounds
(P Us, max_card)← normalize(P Us)
for i← 0 to num_P U − 1 do

if P U.cardP U/max_card < 0.1 then

P Us← eliminate(P Us, i)
end if

end for

reg ← register_schedule(P Us)
end for

#step 3 : select schedule
P Us← select_schedule(reg)

1.4. CALCUL HÉTÉROGÈNE : CPU + GPU 23

sont calculés indépendamment pour chaque chunk et cela conduit à des situations où
la somme de la taille des chunks n’est plus égale au nombre total d’itérations. Ainsi,
la phase de partitionnement normalise la taille des chunks de telle sorte que toutes les
itérations de la boucle chunkée soit exécutées, ni plus ni moins. Les itérations éliminées
par les arrondis d’entiers sont assignées à une UC arbitraire (le CPU par défaut dans
l’implémentation courante). Les UCs inefficaces sont retirées en se basant sur le nombre
d’itérations des chunks et sont réutilisables pour d’autres calculs.

Après chaque redimensionnement, les temps d’exécution sont recalculés jusqu’à
obtenir stabilisation, dans la limite de 15 itérations. Puis, le répartiteur lance l’exé-
cution des chunks sur leurs UCs respectives. Afin de ne transmettre que les données
utiles, la boite englobante des accès mémoire est calculée. Cette méthode peut être
associée à un algorithme qui sélectionne les UCs respectant au mieux les contraintes
énergétiques et de performance imposées.

1.4.4 Multiversioning

Notre framework est capable de générer plusieurs versions de codes CPU et GPU et de
sélectionner la combinaison de versions la plus performante à l’exécution. L’ordonnan-
ceur est appelé pour chacune des combinaisons et retourne le temps d’exécution prédit.
Le système sélectionne la combinaison ordonnancée qui minimise le temps d’exécution.
Comme le nombre de combinaisons croît exponentiellement nous avons limité le nombre
de versions à 3 par UC (9 combinaisons pour une plateforme à base de CPU + GPU).

1.4.5 Consommation d’énergie

Le thème de la consommation énergétique est un des sujets brûlants en recherche sur
les systèmes informatiques en raison des problèmes de quantité d’énergie requise, de
budget et écologiques. L’efficacité énergétique, est généralement fortement corrélée aux
performances d’un programme. Plus un code est rapide, plus faible est la consommation
en énergie, qu’importe l’architecture sous-jacente.

Dans un contexte hétérogène, les ordonnanceurs peuvent favoriser des architectures
efficaces, quand la consommation en énergie est un problème. Dans ce cas, les UCs
exposant un ratio calcul/consommation énergétique acceptable font partie du calcul.

Pour cette raison nous introduisons une nouvelle unité : les watts par itération.
Dans cette relation le temps est laissé de coté, comme le rôle de l’ordonnanceur est de
dimensionner les chunks de telle façon que leurs temps d’exécution soient similaires.
Plus le nombre d’itérations allouées au chunk est grand plus l’UC est considérée efficace.
Cette technique est suffisante pour éliminer les UCs énergétiquement inefficaces.

1.4.6 Experimentations

La Figure 1.5 montre l’accélération obtenue en utilisant différentes combinaisons d’UCs
comparé aux temps d’exécution sur CPU seul ou sur GPU seul. Notre système atteint
une accélération maximale de 20x sur gemm et une accélération de 7x en moyenne
en comparant le meilleur et le moins bon temps d’exécution. Ces résultats montrent

24 CHAPITRE 1. RÉSUMÉ EN FRANÇAIS

que gemm, 2mm, 3mm, syrk, syr2k (les cinq sur la gauche de la Fig. 1.5) sont mieux
adaptés à une exécution sur GPU tandis que doitgen, gesummv, mvt, gemver sont plus
performants sur CPU. Notez que doitgen est plus performant sur le CPU en raison d’un
temps de calcul moins élevé sur CPU que sur GPU, et non pas à cause du temps de
transfert des données. Une exécution combinée sur CPU+GPU profite de façon remar-
quable à trois codes (syr2k, doitgen et gemver). Grâce à ce système d’ordonnancement
nous sommes capables d’exécuter conjointement un code sur des systèmes comprenant
un CPU et plusieurs GPU. Les accélérations dénotent de la précision des prédiction et
de la qualité du résultat obtenu par notre ordonnanceur.

 0

 5

 10

 15

 20

 25

 30

gem
m

2m
m

3m
m

syrk
syr2k

doitgen

gesum
m

v

m
vt

gem
ver

sp
ee

du
p

CPU
1GPU

CPU+1GPU
CPU+2GPUs
CPU+3GPUs
CPU+4GPUs

Figure 1.5 – Speedup to execution time on CPU or GPU alone.

1.5 Parallélisation spéculative

1.5.1 Introduction

Durant ma thèse j’ai participé au projet VMAD (Virtual Machine for Advanced and
Dynamic analysis of programs), un système de parallélisation spéculative développé au
sein de l’équipe INRIA CAMUS. Le framework est constitué d’un composant statique
implémenté sous forme de passes LLVM et d’une machine virtuelle. Plusieurs versions
d’un nid de boucles, qui diffèrent par les instrumentations appliquées, sont générées
statiquement. Celles-ci communiquent avec la machine virtuelle via des callbacks. Le
passage d’une version à une autre, décidé par la machine virtuelle, est assuré de façon
transparente pour l’application. La machine virtuelle se présente sous la forme d’une

1.5. PARALLÉLISATION SPÉCULATIVE 25

bibliothèque partagée greffée à l’application lors de l’exécution (préchargement). Un
ensemble de plug-ins chargés à la demande implémentent une définition des callbacks.

1.5.2 Problématique

La plupart des compilateurs traditionnels restent conservatifs en cas d’incapacité à
garantir la validité sémantique d’une transformation de programme statiquement. La
parallélisation spéculative est une approche optimiste faisant l’hypothèse qu’un code
est au moins partiellement parallèle. Cette technique requiert l’emploi de code de vérifi-
cation pour détecter une éventuelle violation des dépendances à l’exécution. Les boucles
while, les nids de boucles partiellement parallèles ou faisant intervenir des pointeurs,
constituent la classe de codes candidats à la parallélisation automatique spéculative.

1.5.3 Machine virtuelle

A l’exécution, un échantillon du domaine d’itération est considéré, afin de construire
les fonctions affines des accès mémoire à l’aide d’itérateurs virtuels. J’y ai adjoint un
algorithme de calcul des bornes de boucles. Une analyse de dépendance dynamique
extrait le parallélisme des nids de boucles considérés. Selon la dimension de boucle
parallèle, l’exécution est redirigée vers le motif parallèle adéquat. Le motif contient
le nid de boucles original parallélisé et transformé en boucles for. L’exécution des
nids de boucles cibles est découpée en intervalles d’itérations contigus de la boucle
externe, appelés chunks. Un module de décision implémente un automate chargé de
sélectionner le type de code à exécuter dans un chunk. Les chunks d’instrumentation
se chargent notamment de récupérer les adresses mémoire accédées et les valeurs des
itérateurs virtuels. Après cette étape et selon le résultat de l’analyseur de dépendance
dynamique, un chunk parallèle (code parallèle) ou original (code séquentiel original)
peut être lancé. Si un chunk parallèle s’est avéré erroné, son exécution est rejouée par
un chunk original, suivie par une phase d’instrumentation.

1.5.4 Contributions

Des instructions de vérification se chargent de tester la validité des chunks lors de
l’exécution. J’ai intégré un système de commit/rollback équivalent aux mécanismes
employés pour les bases de données. Avant l’exécution d’un chunk parallèle, les données
sont sauvegardées pour les plages d’accès mémoire en écriture prédites. Pour optimiser
les copies en mémoire, une stratégie de fusion des plages d’accès mémoire, dépendant
de leur distance en octets, est préalablement appliquée. En cas de rollback, les données
antérieurement sauvegardées sont propagées et écrasent toutes les éventuelles modifi-
cations du dernier chunk. La génération de code est réalisée statiquement, le code est
générique et complété à l’exécution par une étape d’instantiation que j’ai développée.
Celle-ci requiert les fonctions affines issues de la phase d’instrumentation.

26 CHAPITRE 1. RÉSUMÉ EN FRANÇAIS

Chapter 2

Introduction

2.1 Context

Diversity and complexity of programs have continually urged the microprocessor in-
dustry to enhance computing speed. Before the early 2000s, software and hardware
communities lived a smooth story. During 30 years, performance of the processors grew
exponentially, by a factor of 30x in average, every decade [60]. In that world, software
could directly benefit from hardware technological improvements, barely requiring any
code refactoring. Most of the performance gains stemmed from processor higher clock
rates and transistor count [53], materialized in the following relation:

P erformance = Frequency ∗ IP C1

While frequency scaling fastens the raw execution process, electronic miniaturization
allows the processors to implement a series of optimization dedicated circuitry, such as,
wider and hierarchized caches, out of order unit, memory prefetcher, branch predictor,
etc. In addition, the emerged ILP (Instruction Level Parallelism) and DLP (Data Level
Parallelism) paradigms, in conjunction with redundant or larger functional units, paved
the way to superscalar and vector-processing architectures.

Nowadays, the semiconductor industry faces numerous technological locks. The
power wall, arising from energy constraints, in particular, power consumption and heat
production, has drastically limited frequency scaling potential. Also electronic compo-
nents shrinking has emphasized tunnelling effects, leading to more energy draining, as
a result to current leakage. In addition to physical barriers, the ILP wall (limitations
inherent to exploiting instruction parallelism) and the memory wall (the gap between
processor and memory speed), considerably limit hardware performance improvements.

In his 1970s projection, Moore highlighted that transistor density would roughly
double every two years. In modern processors, this conjecture materializes, inter alia,
by embedding multiple cores in a single chip. Dennard observed that power was a
function of the surface of the circuits rather than density: “Moore’s law gives us more
transistors... Dennard scaling makes them useful”. This watershed in the design of
processors, marked the end of the Free Lunch [137] in the software field. To fully exploit

1IPC: Instruction Per Cycle

27

28 CHAPTER 2. INTRODUCTION

this new godsend, programmers have not only to rethink their applications, but also
their way of writing, ultimately, efficient programs. However, according to observation
on CPU specifications, the number of cores will likely remain stable and intra-core
performance may even drop in the next few years [96]. Indeed, the performance trends
inverted to the point where “software is getting slower more rapidly than hardware
becomes faster”, as stated in Wirth’s law [153]. An emerging concept, relying on a
good usage of accelerating cards, such as GPUs, FPGAs, Xeon Phi and other DSPs
sets a new standard to achieve performance: heterogeneous computing was born, not
to mention the plight of programmers.

2.2 Problematic

It is commonly accepted, especially in scientific computing, that most computation
time of the programs is spent in loop nests or recursive calls. Regularity and syntactic
construction of for -loops ease their optimisation. The polytope model provides loop
nest analysis and manipulation facilities. Affine loop nests are abstracted into geo-
metrical objects, namely bounded polyhedra. Loop bounds and array subscripts are
parametric affine functions of the enclosing loop iterators. Under these conditions, ap-
plication of code transformations becomes an exact ILP (Integer Linear Programming)
mathematical problem.

To push the compilers in generating efficient code, it becomes common, if not
mandatory, to parallelize and apply high-level transformations. An approach, called
approximate computing, consists in granting some of the hardware or software reliabil-
ity, to improve performance and energy consumption [110]. Such a technique is out
of the scope of this thesis, as optimizations should be neutral to the program result.
Parallelizing a code is a tedious and error-prone task, requiring, when appropriate,
anti-dependence removal (e.g. variable- renaming, privatization, scalar expansion) and
the application of transformations (e.g. loop- shifting, splitting, skewing), to expose
parallelism. Although the codes are parallel, improving performance often requires to
take advantage of data locality (e.g. loop- tiling, interchange, fusion) and maximize
throughput (e.g. loop- unrolling, strip-mining). In particular, hardware limitations of
GPUs, including the number of registers, size of shared memory, number of blocks,
size of the blocks, and separated address space for discrete GPUs set the limits of code
optimization.

To preserve the original semantics, it is compulsory to respect the initial code
dependences. Finding the optimal combination of transformations is tricky due to the
large number of optimizations and dynamic context sensitivity. Dynamicity arises for
two main reasons: the execution environment variations (e.g. hardware characteristics
and availability, compiler optimizations) and input data size variation (e.g. from a call
to a function to another). On the other hand, compilers have to take static decisions to
generate the best possible performing code on average. But, as a result of the dynamic
context, they miss many optimization opportunities.

To relieve programmers, these problems suggest the use of assisted programming or
automatic optimizing tools. High-level optimization and automatic parallelization are
still a hot-topic in current compilers. Initiatives such as Graphite [114] and Polly [58]

2.2. PROBLEMATIC 29

have brought polyhedral optimizers in the mainstream GCC [52] and LLVM [89] compil-
ers. High-level languages are natural candidates to polyhedral compilers as the control
flow is unaltered. Ad-hoc source-to-source tools, such as PLUTO [25], C-to-CUDA
[15], PPCG [145], PoCC [13], PIPS [8] transcript the codes into a target-optimized
counterpart. Internal performance models are generally parametrized by heuristics.
Tweaking is therefore delegated to the programmer or external tuning frameworks.

Since the scope of possible static optimizations to gain performance is limited,
new techniques are required to get the most of modern processors. Context sensi-
tive optimization is a difficult topic, hardware evolution and dynamicity call generic-
ity. Feedback-oriented techniques refine the optimizer passes post-mortem, based on
program execution traces and profiling. For this purpose, the compiler may identify
and instrument hotspots [6, 20, 58, 146], that is, code regions requiring further opti-
mizations. Other methods use static information, such as processor specifications or
programmer hints, to parametrize their performance models. The concept of multi-
versioning relies on multiple potentially efficient versions of codes, generated statically.
At runtime, control flow is routed to the supposedly fastest code version. Execution
behaviour can be characterized before or during application execution. A discriminant
metric (e.g. time) enables the code selector to choose the fastest version, based on
pre-gathered profiling data or partial code executions at runtime.

Programmability and scalability of accelerator cards offer new speed-up perspec-
tives. Following on from OpenMP [36], directive languages, such as HMPP [41], Ope-
nACC [152], OmpSs [113] now target heterogeneous (co)processors. Code regions of
interest are annotated and may be tagged with execution configuration and transfor-
mation hints. Efficient exploitation of heterogeneous computing resources is a difficult
problem, especially when the processing units (PUs) run different compilation and
runtime environments, in addition to different hardware. On multicore CPUs, efficient
computing relies on parallelization (using OpenMP for example), cache locality ex-
ploitation (loop tiling for example), low-level optimizations (vectorization, instruction
reordering, etc.). While exploitation of GPUs requires optimization of memory trans-
fers between host and device, distribution of the computations on a grid of SIMD blocks
with limitations on their sizes, explicit memory hierarchy exploitation, global memory
accesses coalescing, etc. To benefit from heterogeneous environments it is compulsory
to accurately distribute the load. Task-based systems dispatch the computations ac-
cording to hardware affinity and availability. Tasks, typically structured by a graph,
are picked from a pool with respect to dependencies. History-based methods construct
an affinity database between tasks and processors for a given input problem. The most
suited architecture is selected before re-executing the code. Fine-grained techniques
slice loop iteration domains and balance the load. Computation may be run jointly
on multiple heterogeneous processors. To enhance effectiveness, the schedulers are
parametrized by energy constraints.

The majority of traditional compilers stay conservative when it comes down to
parallelization. In fact, compilers take conservative decisions when they do not have
enough information to guarantee the correctness of the codes statically. Speculative
parallelism is an optimistic approach, making the assumption that a code at least
exposes partial parallelism. A Thread Level Speculation (TLS) framework, aims to

30 CHAPTER 2. INTRODUCTION

execute the target code with multiple threads generally backed-up by a commit/rollback
system, either supported by software or hardware. Most of the TLS rely on profiling,
execution sample of the target code is analysed at runtime. Based on the collected
information, the code may be parallelized. The more advanced tools are capable to
perform code transformations and dynamic optimizations at runtime. For instance, tile
size may be decided through multiple empirical tests at runtime. Also, such a system
may decide whenever it is best to run a code on CPU, GPU or both.

The backbone contributions of this thesis are three techniques to tackle GPU and
CPU performance:

• A code selection mechanism built on multiversioning, based on predicted execu-
tion times. Different versions are statically generated by PPCG [145], a source-
to-source polyhedral compiler, able to generate CUDA code from static control
loops written in C. The code versions differ by their block sizes, tiling and parallel
schedule. The profiling code carries out the required measurements on the tar-
get machine: throughput between host and device memory, and execution time
of the kernels with various parameters. At runtime, we rely on those results to
calculate predicted execution times on GPU, and select the best version.

• A method to jointly use CPU and GPU in order to execute a balanced parallel
code, automatically generated using polyhedral tools. To evenly distribute the
load, the system is guided by predictions of loop nest execution times. Static
and dynamic performance factors are modelled by two automatic and portable
frameworks targeting CPUs and CUDA GPUs. There are multiple versions of
the loop nests, so that our scheduler balances the load of multiple combinations
of code versions and selects the fastest before execution.

• A CPU vs GPU code selection mechanism capable to adapt to dynamicity, by
running the codes simultaneously.

Additionally, we provide insights of the backup and dynamic code generation mech-
anisms of VMAD. We elaborate on potential issues to port the current speculative
mechanism to GPUs. For this purpose we provide a route, to enable speculative com-
putation on GPUs.

2.3 Outline

To synthesize, the thesis is structured in the following way. In Chapter 3, we present
the polyhedral model and describe the context of this thesis. In Chapter 4 we provide
a description of our mechanism to predict execution times on GPU and the subsequent
code selection mechanism. In Chapter 5 we thoroughly describe a dynamic CPU vs
GPU and an hybrid CPU + GPU mechanism to tackle heterogeneous systems. We
briefly go through an hybrid CPU vs GPU technique and focus on a strategy to han-
dle energy constraints applied to the CPU + GPU technique. Finally, in Chapter 6
we present VMAD, a software speculative parallelism system designed by Alexandra
Jimborean a former Ph.D. student of the INRIA CAMUS group.

Chapter 3

Context and related work

Recent history has revived interest for coprocessors and accelerating devices. Arith-
metic coprocessors were initially dedicated to quickly dispatch floating point operations.
In fact, in the early days of modern CPUs, floating point operations were emulated. As
circuitry evolved, arithmetic coprocessors rather fell into disuse. In the recent years,
inability of CPUs to scale in performance revived the interest in specialized coproces-
sors. Indeed, the number of general purpose high performance computing architectures
increased drastically: AMD and Nvidia GPUs, Intel MIC, Kalray MPPA, FPGAs, etc.
This microcosm of heterogeneous architectures raises the question of efficiency vs de-
velopment time and integration in a computing environment [151].

Nevertheless, introduction of GPUs in the ecosystem of processors has tremendously
impacted the typical usage of CPUs. Arora et al. [10] show that porting GPU-friendly
code sections leaves a code of different characteristics for the CPU, typically harder to
characterize with the state of the art prefetchers, branch predictions and exposing less
ILP. Similarly to natural species, the authors of this paper suggest specialization to
ensure efficiency. Thus, to address the new challenges CPUs must cope with the new
situation. If this trend turns true, heterogeneity will reach new levels.

Graphics processors broke through thanks to inherently parallel multimedia applica-
tions. GPUs come for cheap and are widely available: in mobile devices (smartphones,
tablets, embedded systems), as parts of a System On a Chip (SoC) (Snapdragon,
Tegra, Exynos) or Accelerated Processing Units (APU) (AMD FX, Intel core i7), game
consoles, laptop and desktop computers and now, supercomputers. Today, they also
turned out to be a viable alternative to achieve performance with parallel programs.
Henceforth, it is not unusual to list GPUs powered supercomputers in the top500 and
green500 rankings [4, 3]. The toolchain to tackle GPUs has reached a certain level of
maturity, either in programming models, debugging tools, number of exposed features
or bug correction.

This performance potential does not come for free as it requires software adapta-
tion. Nevertheless, porting a code to the GPU does not always translate to better
performance as it may as well lead to slowdown. Modern compilers must work on sev-
eral fronts: discover the best optimization combination for an architecture, find good
parameters for parametric optimization, and potentially find the best architecture for
a code in collaboration with runtime systems. In fact, there was a time, a compiler was

31

32 CHAPTER 3. CONTEXT AND RELATED WORK

 10

 100

 1000

 10000

Jan/04 Jan/06 Jan/08 Jan/10 Jan/12 Jan/14 Jan/16

P
ea

k
G

F
lo

ps

Release date

GeForce series - single precision

GeForce 7800 GTX

GeForce 8800 GTX
GeForce 9800 GTX

GeForce GTX 275

GeForce GTX 480
GeForce GTX 580

GeForce GTX 590
GeForce GTX 680

GeForce GTX 690

GeForce GTX TITAN Z

Tesla series - double precision

Tesla C1060

Tesla M2050

Tesla K20
Tesla K40

Intel processors - double precision

Lynnfield (Intel Core i7-870)

Sandy Bridge (Core i7-2600)

Ivy Bridge (Core i7-3770)

Haswell (Core i7-4770)

Haswell (Core i7-4790K)

Intel processors - single precision

Figure 3.1 – Recomputed theoretical peak performance trends between Intel CPUs and
Nvidia GPUs.

solely asked to find some good, if not the best, optimizations for a given architecture.
Already this proved to be a difficult matter, mainly due to the lack of information, lan-
guage ambiguity and semantic restrictions. Ideally, modern compilers should provide
architecture optimized codes and provide support to an execution on an heterogeneous
system. However, adding flexibility to a compiler inevitably complexifies decision mak-
ing. For GPUs, involved performance models are by nature more complicated as they
must take communication time and specifics of throughput oriented architectures into
account. To relieve compilers, we propose a runtime system that takes the appropriate
decisions in order to execute a code following a criterion, for instance performance or
energy, during execution.

In this chapter we present the context and the various tools which relate to this
work.

3.1 Genesis of GPU computing

The rapid adoption of computers in businesses and homes in the late 80s, encour-
aged development of intuitive and user-friendly graphical Operating Systems (OS).
Several OSes, such as Mac OS, Windows, AmigaOS and Unix-alikes, proposed their
own Graphical User Interface (GUI). Already, the idea to kick the display computa-

3.1. GENESIS OF GPU COMPUTING 33

tions from the CPU caught on. The first graphics accelerators were primarily output
peripherals, endowed with rather limited functionalities such as rasterization of poly-
gons preprocessed on the CPU. The advent of 3D First Person Shooters (FPS) games,
such as Duke Nukem 3D and Doom, challenged hardware improvement. Flexibility ad-
vances allowed to offload more and more of the graphics pipeline stages, i.e. the set of
operations resulting in graphics objects display, to accelerators. Initially, the graphics
pipeline was consisting in a series of configurable fixed functions stream. The intro-
duction of shaders, small functions intended to be executed on a GPU, in DirectX 8
and OpenGL Extensions, allows programmers to write and run their own programs on
GPUs. The vertex and pixel shaders respectively process geometrical objects vertices
and image pixels while having their own limitations. Soon, hackers came up with an
idea: hijack this tremendous computing power for general purpose calculations [139].
The principle: lure GPUs by passing general computations as graphics treatments.
The operations are described inside a pixel shader, such that processed elements are
considered as pixels. This was reserved to hot-headed computer scientists as it requires
knowledge in shader languages (GLSL, Cg), OpenGL or DirectX and expertise to over-
come the numerous restrictions, such as floating point precision, lack of integers. For
an example of OpenGL implementation, we direct the reader to sort algorithms [108]
implementations. The release of Brook [28], a stream computing language ancestor of
CUDA and OpenCL and built on top of OpenGL and DirectX, was a significant step
towards GPU computing. For further details, the reader may consult an implementa-
tion of a parallel prefix sum [62] in Brook. The graphics processors successive gains in
generality are denoted by the concept of General Purpose Graphics Processing Units
(GPGPU). The natural continuation was the release of the CUDA framework and
OpenCL later-on, to easily harness GPUs as general purpose coprocessors. Yet, GPUs
evolved to complex pieces of hardware, rather complicated to use at full potential. In
fact, graphics processors have the difficult task to accommodate graphics treatments
and generic computations. A performance trajectory between CPUs and GPUs is de-
picted in Fig. 3.1. The plotted values represent the theoretical peak GFlops based
on the constructors hardware specifications. This computing throughput potential has
many applications, particularly in High Performance Computing (HPC). However, the
price to pay w.r.t. development time to achieve a good level of performance is high.
Under these conditions, automatization becomes a requirement, as a mean to optimize
the code, or to distribute the computations over the available computing resources.

Automatic code optimization is by no means a recent research topic. In that field
the polyhedral model broke through due to its mathematical frame and applicability
(although restricted), in comparison to traditional techniques. State of the art tools,
such as PIPS [63], PLUTO [25], Cetus [80], Rose [122] have already been tackling shared
memory processor code optimizations. Concerning GPUs, effective code generation was
enabled by the release of PPCG [145]. The polytope model and tools will be presented
in Section 3.7 and following.

GPGPUs have a particular execution model, in that they explicitly expose a mix
of typical Flynn’s MIMD and SIMD models to the programmer. Execution model is
definitely throughput-oriented: available parallelism serves to hide memory latency.
Accordingly, the user is generally encouraged to run several hundreds of threads. This

34 CHAPTER 3. CONTEXT AND RELATED WORK

contrasts with the traditional multi-core CPU programming habit, since adding more
threads would overwhelm the scheduler. For further details, an overview of the archi-
tecture is given in Section 3.2.1.

Numerous sources have reported huge speedups achieved on GPUs [56, 102]. Al-
though, competitors have complained to the numbers reliability [81]. The scope of this
thesis is not to make an architectural comparison, but to benefit from either CPU,
GPU or both CPU + GPU. The GPUs are arguably an architecture to be looked at in
future hardware design and software should take that into account.

The accessibility of GPUs as a computation medium, gave momentum to a tremen-
dous effort to port algorithms. In a mainstream context: video encoding/decoding,
image transformations, parts of operating systems [136] to more fancy applications,
such as bitcoin mining, have been targeting GPUs. This was not always for the best,
as shown in [111] for porting a lossless compression algorithm to the GPU. However,
good ending stories are legion in scientific context, even with irregular workload, for
instance in finding the collision-free path to displace objects [78], object collision de-
tection and bounding volume [71], Viola and Jones face-detection [59], speech recogni-
tion algorithms [64] and solving boolean-satisfiability (SAT) problems [94, 37], or even
more traditional linear algebra [127, 149] and more generally, scientific calculations [51]
(Molecular Dynamics, Fast Fourier Transform, Dense Linear Algebra). Moreover, as
a demonstration of the longevity of GPGPUs, OpenGL ES 3.1 introduced a compute
shader, allowing general purpose calculations, closely tied to graphics computing (par-
ticularly real time object physics).

3.2 GPU architecture

GPUs philosophically differ from CPUs in their execution models. GPUs, depicted in
Fig. 3.2, are throughput-oriented processors, i.e. they put latency optimization aside
for a better use of the high level of parallelization. Current hardware typically embed
a high number of cores (2496 cores for a Tesla K20). To fit on a single die, these
cores are simplified and the design of the processor is rationalized. Firstly, resources
are shared among multiple cores: 1 double precision unit per 8 CUDA cores, on Fermi
GeForce GPUs. Secondly, there is one instruction dispatch unit shared by multiple
cores, which consequently execute on a SM in a relaxed SIMD fashion, referred to as
SIMT. In SIMT, the execution of threads may diverge; i.e. non-participating threads
are deactivated on conditional branching. Finally, the highly parallel oriented archi-
tecture has hardware support to quickly spawn and schedule threads. On GPUs the
lack of raw Instructions Per Cycle (IPC) is compensated by maintaining a high amount
of concurrent computations inside a single SM, similarly to the functioning of an in-
struction pipeline. Thus, the execution of a whole group of threads (warps or blocks)
does not monopolize the resources continuously. Concretely, memory latency is hidden
by covering accesses with computations of another thread. To backup this execution
model and to serve a huge number of threads concurrently, memory accesses benefit
from a high bandwidth and specific optimizations. While the GPUs are becoming ma-
ture piece of hardware (with the addition of unified virtual addressing, unified memory,
overlapped execution, PTX extensions, etc. on Nvidia GPUs), each microarchitecture

3.2. GPU ARCHITECTURE 35

Figure 3.2 – Nvidia discrete graphics card architecture.

36 CHAPTER 3. CONTEXT AND RELATED WORK

generation adds up new architectural tweakings. In addition, a single microarchitecture
(Tesla, Fermi, Kepler, Maxwell) may offer a variety of products which differ by their
specifications (Geforce, Tesla, Quadro). The notion of Compute Capability (CC) des-
ignates the hardware version through a major.minor revision number. The compute
capability denotes the features exposed by the hardware, and is used to refine the code
at compilation.

In this section we provide an in-depth presentation of the main architectural details
of GPUs. We mainly focus on Nvidia GPUs as it is the architecture targeted in this
thesis (see Section 3.2.6). A thorough understanding of the Nvidia CUDA hardware and
software model is required to broach the design of a performance model, as presented
in Chapter 4.

3.2.1 CUDA

Compute Unified Device Architecture [103] (CUDA) is a framework released in 2007,
to target Nvidia GPU, as coprocessors for general purpose computations. CUDA desig-
nates, a processor architecture, software model and API. Tesla, Fermi, Kepler, Maxwell
device generations are chronological instances of this architecture. A device generation
usually adds several features and hardware modifications, such as processor and mem-
ory organization (e.g. memory banks, SMX), performance and execution conditions
relaxation (e.g. coalescing, recursivity), etc. C-for-CUDA is a C language extension to
program the GPU. The language adds several constructions such as kernel execution
configuration, constructor initializations (e.g. for vector types), templates (e.g. for
texture memory), and numerous built-ins and function qualifiers. The API adds func-
tions to prepare and terminate execution of a CUDA kernel. The toolkit provides the
runtime and driver APIs, which mainly differ by their granularity and expressiveness,
to interact with the GPU.

3.2.2 Processor space

A GPU is a class of many-core, specialized processor constituted by a grid of hierarchi-
cal compute units. A Compute Unified Device Architecture (CUDA) device, is a device
architecture exposing the GPU as a general purpose calculation coprocessor. In the
CUDA paradigm, a GPU is composed of Streaming Multiprocessors (SM), themselves
containing Streaming Processors (SP). A SM, depicted in Fig. 3.3, follows a relaxed
multithreaded Single Instruction, Multiple Data (SIMD) execution model, referred to
as Single Instruction Multiple Threads (SIMT), in the CUDA taxonomy. In SIMT, a
SIMD lane is exposed explicitly as a CUDA core or Streaming Processor (SP).

A CUDA thread, the smallest unit of execution, is mapped on a fully pipelined
SP, comparable to an Arithmetic and Logic Unit (ALU). These scalar threads process
individual elements and may exhibit a divergent execution flow. Thus, a thread pos-
sesses his own context made of a program counter, state registers, etc. required for
its execution and allowing fast switching. Functional units, including Special Function
Units (SFU), double precision floating points, etc. are shared among multiple SPs.
Comparatively, original CPU extensions such as SSE and AVX, encapsulate multiple

3.2. GPU ARCHITECTURE 37

Warp scheduler

Dispatch

Unit

Dispatch

Unit

...

SP

Warp scheduler

Dispatch

Unit

Dispatch

Unit

...

SM

SFU

L1/Shared memory

SP

SFU

SFU

SFU

Constant cache Texture cache

Figure 3.3 – Insight of a Streaming Multiprocessor (SM) organization.

data words into a single wide register to operate on.

Instructions are issued to groups of CUDA threads, namely warps, executed in
lock-step. Multiple warps are run concurrently and independently on an SM. Inside a
warp, divergent execution flow may lower computational intensity or, in the worst case,
require conditional branches to be evaluated sequentially. Non-participating threads
are disabled and standby until the whole branch is executed.

Inter- and intra- SM communications are performed via off-chip device memory
and on-chip programmable scratchpad memory. To hide memory latency (200 ∼ 800
cycles to off-chip memory), hardware schedulers implement multi-level Thread Level
Parallelism (TLP). Memory pending warps or blocks are replaced by their ready-to-go
counterparts, to maintain a high level of computing resources usage. All in all, the
best performance is obtained by using a combination of TLP and ILP (Instruction
Level Parallelism). The programmer has no direct control on the scheduler, decisions
are taken internally by the hardware using heuristics. Fermi (CC 2.1) and Kepler
architectures implement multiple dispatch units per warp scheduler, and thus provide
superscalar capabilities. Two independent instructions can be simultaneously issued to
a single warp. In Fermi, the SM schedules a warp and broadcasts an instruction to 16
cores. The cores hotclock frequency is twice as fast compared to a SM clock, thus a
complete warp is processed in one SM cycle.

Block size should be a multiple of 32 in order to serve full warps on each SM.
Note that, once a block is scheduled, it is executed until the kernel function return.
Occupancy expresses the resource usage according to the hardware constraints based
on register and shared memory usage and block size. It denotes the ratio of the number
of active warps to the maximum number of warps. Intuitively, more occupancy may
be required for memory bound applications, while less occupancy is needed if there is

38 CHAPTER 3. CONTEXT AND RELATED WORK

blockDim.x

blockDim.y

gridDim.y

x

y

gridDim.x

threadIdx.x

threadIdx.y

blockIdx.y

blockIdx.x

Block

(0, 0)

Block

(1, 0)

Block

(0, 2)

Block

(1, 2)

Figure 3.4 – CUDA execution model.

Instruction Level Parallelism (ILP).

3.2.3 Software model

CUDA extends C with several constructions and provides a full API to tackle Nvidia
GPUs. The CUDA software model distinguishes two entities: host and device. The
host controls the execution of the device functions, called kernels. A kernel is a func-
tion, marked with the __global__ qualifier and intended to be executed on the GPU.
Device functions, tagged with the __device__ qualifier, are called from within a ker-
nel and live in the calling thread. By default, a kernel is called by the host and runs
asynchronously. As the memory address space of discrete GPUs (as opposed to inte-
grated Graphics) is separated, the host carries the data movements between central
and the graphics card memory. In accordance with the processor space, the execu-
tion model is decomposed into blocks of threads, constituting a grid, and respectively
mapped on SMs and SPs. Figure 3.4 gives an overview of indexing threads on a 2D
CUDA grid. The execution configuration denotes the number, size and dimension of
the blocks involved in the kernel execution. Also, the size of shared memory to be al-
located dynamically and the order of execution of the kernels, implied by a stream id,
can be passed to the CUDA runtime. Inside a kernel, the thread position in the grid is
retrieved through special registers. The scope of shared memory and synchronization
mechanisms is limited to the block level. Threads are globally synchronized at the end
of a kernel execution.

High-level code is translated into Parallel Thread eXtension PTX, an assembly
language, exposing the entire public GPU programming interface. PTX code may be
inlined into higher level code, inside a device function. The programmer decides on the
type of device code to be embedded in the final binary: binary images and/or PTX
jitting. The code generated by the nvcc compiler is aggregated into a fat-binary. A
fat-binary embeds the binary images and/or PTX of the device code. A binary image is
dedicated to run on a specific microarchitecture designated by its compute capability.
The CUDA runtime is in charge of selecting the binary image compatible with the
targeted GPU. In case the required binary is missing it may compile compatible PTX

3.2. GPU ARCHITECTURE 39

code, if available. In that case, PTX is JIT-compiled by the driver and the output
binary image cached for further executions on a GPU. Note that caching policy can be
controlled by a user flag. As a side note, mainstream compilers such as LLVM, now
implement PTX back-ends to tackle Nvidia GPUs.

A kernel termination is controlled by the CUDA runtime through different polling
policies, possibly controlled by the user. As of now, this includes host thread active
polling, host thread yielding and host thread blocking, each of these having different
impacts on performance (on CPU or GPU side).

3.2.4 Memory space

3.2.4.1 Device memory

To bring data closer to the GPU, discrete graphics cards embed off-chip DRAM mem-
ory, called global memory. Graphics cards support PCIe central memory-global memory
(CPU-GPU) and global memory-global memory (GPU-GPU) copies. A typical use case
consists in copying data to the GPU before execution, for initialization purpose, and
fetching back the results after execution of the kernel. In GPU computing, transfers
via PCIe are generally considered the main performance bottleneck. Actually, it intrin-
sically depends on the kernel temporal memory usage. Computations exposing a bad
execution time
transfer time

ratio, are most likely to perform better on the CPU. Static determination
of this ratio, requires transfer and program behaviour characterization. In addition,
CPU specification and availability should also be known.

To reduce the pressure and the latency on global memory, one may think about
using on-chip memory. L1 and L2 cache levels accelerate memory fetches targeting to
global memory. Global memory transactions are always cached through an L2 memory
of maximum 768KB in current hardware. L1 caching may be disabled at compile time.

Global memory is persistent across successive kernel executions. For efficiency and
productivity purposes, the memory engine of graphics cards supports Direct Memory
Access (DMA). To ensure communications coherency, the range of accessed memory is
pinned into physical memory. Host-initiated memory copies can benefit from this, as
the data path is shorter. The so-called zero-copy technique, allows a running kernel
to issue central memory requests. While this benefits productivity and functionality,
an unconsidered use may severely impact the performance. In fact, constriction on the
PCIe bus may quickly lead to 1200+ cycles per memory access. In CUDA 6.0, unified
memory is an attempt to hide the complexity of the explicit transfers and let the
runtime move the data around through the use of only one pointer. Modern memory
copy engines support bi-directional copies and kernel execution overlapping. Execution-
independent memory copies can be issued asynchronously, in different streams.

To efficiently use buses and reduce the number of independent requests, contiguous
memory accesses are grouped and issued in a single transaction. Throughput efficiency
is an increasing function of the number of on-flight transactions [95]. Fermi and Kepler
devices relax coalescing conditions, so that:

• Accesses can be disordered,

• Multiple threads may access the same address.

40 CHAPTER 3. CONTEXT AND RELATED WORK

Memory requests cached in L1 and L2 are packed into 128 bytes memory transactions,
whereas L2-cached requests are issued in 32 bytes memory transactions.

• 8-bytes accesses by a warp (32 threads) require two 128 byte transactions, one
per half-warp

• 16-bytes accesses by a warp require four 128 byte transactions, one per quarter-
warp

• Misalignment may lead to multiple and fractional 128 bytes memory transactions

For alignment purpose arrays may be padded so that width is a multiple of a warp
size.

The usual capacity of the global memory exceeds several Gigabytes, distributed
among 6 to 8 partitions (similar to banks) in packets of 256 bytes on Tesla architecture.
In fact, on older hardware, this memory organization has highlighted partition camping
effects on performance. This issue arises when memory requests stack up on the same
partition. In that case, memory requests targeting the same partition are serialized.
Indeed, memory is contiguously mapped to the partitions, so that this affects tiled
line-wise accesses. This behaviour is a macroscopic scale of the similar shared memory
bank conflicts, described in Section 3.2.4.3.

Padding the allocation, by the width of the partition size for instance, or rearranging
the coordinate system, can alleviate its effects [126]. Fermi architectures addressed this
problem by introducing a hash-scheme so that consecutive data are distributed among
different partitions. Depending on the block scheduling, memory access pattern and
hash algorithm, these effects might still be encountered.

3.2.4.2 Registers

Registers assigned to a thread are picked from a register file duplicated on each SM.
Register files respectively contain 32K and 64K, 32 bits registers, on Fermi and Kepler.
A thread is limited to a maximum of 63 registers on Fermi and 255 registers on Kepler.
The register pressure is directly proportional to the number of threads in a block. If
so, this might reduce opportunities to hide memory latency with TLP. Also, register
exhaustion1 results in spill code: before reuse, the register content is written back to
memory. Register spills are cached in the L1 and L2 caches. The compiler decides
whether small constant arrays should be expanded into registers.

3.2.4.3 L1/Shared memory

The SMs embed an on-chip, scratchpad memory of 48KB on Fermi and Kepler. This
memory is partitioned into a programmable shared memory and an automatic L1 cache.
The dedicated L1- and shared memory size can be configured by the programmer.

L1/Shared memory is a low latency memory, optimized for concurrent accesses. To
handle parallel accesses, shared memory is composed of 32 banks. The memory banks
deliver 32 bits in 2 cycles on Fermi and 64 bits in 1 cycle on Kepler. Banks are allocated

1Note that 64 bits types consume 2 registers

3.2. GPU ARCHITECTURE 41

in a round-robin fashion, so that address 0000h maps to bank 0 and address 007Ch to
bank 31, on Fermi. There is a bank-conflict when multiple threads of a warp access
different addresses associated to the same bank. In that case, the requests must be
processed serially for each thread. The bank conflict is said N-Way, N describing the
number of conflicts occurring. Note that one conflicting 64 bits access, always results
in a 2-way bank conflict on Fermi. If several threads access the same memory address
there is no conflict, the data is broadcasted.

Under optimal conditions, shared memory has a latency of about 50 cycles, which
makes it more responsive than the underlying global memory. Efficient use of L1/-
Shared memory generally leads to substantial performance improvements. Apart from
hardware limitations, there is no size restriction on the use of shared memory in a
block.

3.2.4.4 Constant memory

Constant memory resides in device memory and is partitioned into a compiler- and user-
accessible area of 64KB each. It is backed by a 8KB non-coherent cache embedded by
each SM. Constant memory is initialized by the host and is read-only from within a
kernel. Constant kernels parameters, __constant__, typically reside in the constant
memory. This memory is designed to efficiently broadcast data accessed simultaneously
by multiple threads. A cache hit is serviced in one cycle, whereas a cache miss is serviced
at global memory speed. Separated accesses are divided into multiple requests and are
serviced sequentially. Using constant cache reduces pressure on global memory by
freeing up memory bandwidth.

3.2.4.5 Texture memory

Texture memory is read-only, resides in device memory, has a dedicated SM cache of
12KB [104] for Fermi and 48KB [105] for Kepler and flows through L2 cache. Constant
memory focuses on temporal locality, whereas texture memory is more adapted to
spatial locality fetches. Just as the constant cache, it can be used to relieve pressure
on global memory. Memory address calculations can be issued to the texture unit
in order to free resources for the actual computation. This memory is most suitable
for unaligned memory accesses, as in other cases, L1 bandwidth is superior. Texture
memory cache is referred to as Read-Only cache in the Kepler GPU generation.

3.2.5 OpenCL

OpenCL is a Khronos group initiative to tackle heterogeneous systems and emerged in
2009. It adds several extensions to the C language with vector types and keywords and
provides an API. A single OpenCL code is aimed to run on either a CPU, GPU or other
accelerator, transparently to the user. OpenCL draws its strength from its adaptability
and portable design. In fact, hardware is abstracted by delaying the compilation to
runtime. Through API calls, the target device is selected and the code compiled
with the suitable driver. For this purpose it provides back-ends for x86 processors,
AMD IL and PTX for Nvidia GPUs, and VHDL. The OpenCL programming model

42 CHAPTER 3. CONTEXT AND RELATED WORK

is inspired from the GPU architectures. Indeed, it exposes hardware particularities,
such as on-chip memory, and follows the GPU execution model. Still, it is possible
to inline assembly code, in exchange for some genericity. For performance purpose, it
is generally advisable to write one version of a code per target processor, to achieve
performance.

3.2.6 CUDA vs OpenCL

CUDA and OpenCL mainly differ in their philosophy rather than programming model.
CUDA is almost entirely dedicated to Nvidia GPUs, with the exception of the recent
support for ARM CPUs. OpenCL is profoundly designed to target multiple processor
architectures. Both programming frameworks almost expose the same level of per-
formance, for similar optimizations [70, 44]. In a biased manner, one could say that
CUDA may be slightly more efficient as it supports the latest GPU constructions to
tackle performance. In the community, there seem to be more interest in CUDA than
in OpenCL. This may be (empirically) emphasized by a google fight over the last few
years. The main argument for us to use CUDA lies in the disposal of PPCG, a ro-
bust polyhedral compiler generating CUDA code, which is one of the basic block of
this work. The major drawback of CUDA is its limitation to Nvidia GPUs. However,
portability towards other architectures was not a huge concern in this thesis, as achiev-
ing performance required us to generate target-optimized codes. This portability issue
can be addressed by frameworks such as Ocelot [40, 39]. CUDA is overall a mature
framework and has great support, despite Nvidia proprietary policy. All in all, we are
confident that most methods developed in this thesis are transposable to OpenCL.

3.3 Directive languages

Following the success of OpenMP for CPUs, introduction of directive-based languages,
such as OpenACC [107] or HMPP [41] have leveraged the programmer task to exploit
accelerators. Through simplified one-liner expressions, the programmer is able to paral-
lelize or port a code to another computational architecture. Thus, language directives,
hide the programming complexity induced by programming models such as CUDA or
OpenCL. In practice, the programmer is generally brought to give hints on memory
movements to be operated. More particularly, the directive languages often provide
performance constructs in the hands of programmers, to generate more efficient code.

Although they provide means to easily target a single device, they generally lack
in straightforward distribution of the computations onto all the available PUs. The
work of Komoda et al. [77] is a first step towards using all resources of a machine with
OpenACC. Still, it needs refinements and requires the implementation of scheduling to
be efficient on heterogeneous systems. OmpSs [43] brings extensions to the OpenMP
standard, in order to run computations on accelerators, while handling load balance.
We aim to automatically generate code and distribute computations on CPU+GPU
architectures using precise performance predictions.

3.4. APPROACHES TO PERFORMANCE MODELLING 43

Listing 3.1– Example of a straightforward matmul OpenACC implementation

void matmul (int ni , int nj , int nk , double ∗A, double ∗B,
double ∗C) {

#pragma acc ke r n e l s copyin (A[0 : n i ∗nk] , B [0 : nk∗ nj]) , copy (
C[0 : n i ∗ nj])

{
#pragma acc loop gang vec to r (32)
for (i = 0 ; i < ni ; i++)

#pragma acc loop gang vec to r (16)
for (k = 0 ; k < nk ; k++)

for (j = 0 ; j < nj ; j++)
C[i ∗ nj + j] = beta ∗ C[i ∗ nj + j] +

alpha ∗ A[i ∗ nk + k] ∗ B[k ∗ nj + j] ;
}

}

3.4 Approaches to performance modelling

Three compilation techniques coexist and are employed in several production compil-
ers. Traditional static compilation methods [89, 52, 25, 82, 15, 145, 61, 133, 93, 35,
141, 143, 57, 8] are often unable to fully exploit hardware. This results from a conser-
vative approach to code optimization: performance is average no matter the execution
context. In fact, lack of runtime knowledge paired with genericity may prevent op-
timization refinements. Parametrized code transformations such as tiling, blocking,
unrolling, fusion, require further knowledge of execution context. In this topic, the
most prominent research involves machine learning techniques. They typically check
for similarities between programs in order to predict performance. The degree of exacti-
tude is unfortunately dependent on the training dataset. Other static compilers employ
less sophisticated methods, based on heuristics, to identify optimization opportunities
(for instance, smart-fuse in PLUTO [25], which determines the level of loop-fusion to
find a balance between locality and parallelism).

Hybrid methods [88, 38, 50, 116, 49, 85, 120, 12, 92, 73, 79, 91] reconcile static
compilation and dynamicity. Time consuming operations are relegated to static or
offline stages, to perform quick decisions at runtime. The program is prepared in
advance, offline collected data or execution history parametrizes a decision algorithm
designed to improve performance; execution context is (at least) partially considered.
A typical technique, iterative compilation, consists in feeding back by information
gathered during dry runs of the target program on the target machine. The code is
improved and a new binary generated by the compiler, until satisfactory results are
obtained. The main grievance against iterative compilation is the expensive search
space traversal. Alternatively, code multiversioning restricts the search space to a few
code versions, which may be profiled offline and selected at runtime.

Dynamic methods [14, 66, 124, 31, 87, 123, 113, 22, 27, 30, 138, 129] postpone and

44 CHAPTER 3. CONTEXT AND RELATED WORK

delegate decision making to a runtime system. Such a system is capable to detect
unexpected system performance fluctuations at runtime. In fact, performance analysis
occurs on partial or complete executions. The original code is prepared or instrumented
by the compiler to facilitate decision making at runtime. One of the most prominent
method, is Just In Time (JIT) compilation. The idea is to bring the traditional static
compilation optimization passes to the runtime, when execution context is known.
The to-be-jitted code is generally in a pre-compiled state, for instance Java byte code,
LLVM Intermediate Representation (IR) or Parallel Thread eXecution (PTX). Some
compilation passes, possibly selected by users, are applied with a view to optimize
execution. However, the compilation overhead should be compensated by the benefits
to be profitable.

3.5 Optimization techniques

Optimization techniques encompass the methods used in order to improve the perfor-
mance of a code. In scientific programs loop nests generally concentrate the execution
time and are favoured by the compilers. In contrast to recursive constructions, loop
nests, made of for-loops in particular, are easier to analyse for compilers. Moreover,
affine loop nests can be represented in a polyhedral format in order to perform legal
transformations. Optimizations typically stem from program transformations which
reshape the structure of a code so that it maximizes the wished property; i.e. perfor-
mance in our case. High-level loop optimizations, such as loop- skewing, vectorization,
fusion/fission, peeling, shifting, unrolling, tiling, blocking, interchange, etc. may be
performed by compilers in order to improve two crucial characteristics: parallelism
and data locality. This is coupled to lower-level optimizations such as loop- invariants
code motion, unswitching and more traditional passes such as constant folding, con-
stant propagation, common sub-expression elimination, etc. The number of possible
transformations and their interactions makes it difficult to precisely determine the ben-
efits. Also, on GPU, on-chip memory usage, memory access patterns and block size
have a tremendous impact on performance. The listed transformations typically rep-
resent the so-called static optimizations. In the literature we identified two additional
classes of optimization techniques: dynamic and hybrid optimizations. Hybrid opti-
mizations take dynamic parameters into account in order to refine the optimizations
during a compilation process or to forward information to a runtime system. Dynamic
compilation techniques discover optimization opportunities at runtime. In this section,
the provided references are not restricted to techniques targeting GPUs.

3.5.1 Hand-tuning vs. Automatic optimization

Hand-tuning a program is a vast and difficult matter and is generally reserved to ex-
perts. To guide programmers, a variety of tools may analyse programs and produce
reports. The most notable CPU oriented tools, are Valgrind and Oprofile. Valgrind [97]
runs a program and simulates the execution of every instruction. Instructions are in-
strumented based on the type of analysis to be performed. Oprofile [83] captures low
level performance counter events with which it annotates the source code. Neverthe-

3.5. OPTIMIZATION TECHNIQUES 45

less, the GPU profiling environment is rather limited. The Nvidia profiler is part of the
CUDA toolkit, and provides help to programmers in order to optimize their code. This
profiler analyses executions of considered kernels in a program. For this purpose it ac-
cesses the GPU performance counters and checks memory transfers. The tool presents
the results in the form of reports, highlighting the performance issues and proposes ad-
vices to address them. The provided hints encompass occupancy, program divergence
issues, computation units and memory bandwidth saturation, computation/commu-
nication ratio, etc. Then, improving the program falls under the responsibility of
the programmers. For performance-critical applications, unreliability, interactions and
fluctuating environments are often the crucial parameters to address. In fact, it is dif-
ficult to forecast the performance of a program after the application of optimizations.
Multiple different transformations result in interactions that may lower the output
performance. System specifications and load, have an impact on performance as well.

A computer is cut out for quickly solving problems. Why not use this principle to
solve these problems even quicker ? Automatic optimization tools relieve the program-
mer from performing code transformations. However, automatic tools cannot solve all
the imaginable problems. They try to achieve their best with the information they are
provided with. Coarse grain program analyses fall short as the program input param-
eters change. In general performance models are trained by running either the target
program or similar codes.

Several papers [51, 54, 149, 150] have studied the performance behavior of codes
ported to GPU. Yet even with the intervention of experts, it is generally a requirement
to run the codes with different execution configurations. In fact, this does not perfectly
fit the fact that varying problem sizes impact code performance. In the scope of this
thesis we leave algorithmic issues on the borderside and focus on means to achieve
performance, by confronting multiple reshaped versions of codes for instance.

3.5.2 Static methods

Achieving performance on GPUs is a problem of finding the right optimization bal-
ance [148]. Compilers, especially in the field of polyhedral compilation, are capable
to generate an optimized version of a code by performing transformations. Among
applied transformations, parametric optimizations generally require the programmer
to perform empirical measurements to obtain further improvements. Due to their cen-
trality to this work we provide a description of the state of the art polyhedral compilers
in Section 3.9 and following.

Interactions inside of the optimization space make it hard to produce optimal code
statically. Interesting results have been presented for programmer-oriented feedback
systems. An analytical model known as MWP-CWP [61] (Memory Warp Parallelism-
Computation Warp Parallelism) tries to consider code and architectural information
in order to provide hints on where to put development efforts [133]. Altough it was
demonstrated as being quite precise, this system is architecture dependent and thus
must be adapted as new generations of GPUs get available. Our objective is to try to
achieve portability over different GPU architectures.

The GROPHECY [93] framework is able to forecast a CPU code performance when

46 CHAPTER 3. CONTEXT AND RELATED WORK

run on a GPU, through its hardware specification. More specifically, from a CPU source
code, the programmer writes a skeleton program. The system then successively applies
common transformations such as gridification, interchange, unrolling and padding. The
system iterates over the transformation parameters space, to find a good performing
set of parameters. Then, the MWP-CWP performance model is fed with the generated
code performance parameters and characteristics to determine an execution time.

Cui et al. [35] also solicit the programmers to provide hints on code portions that
present similarities in their performance characteristics. Compared to these approaches,
we try to automatize the runtime selection.

3.5.3 Hybrid methods

The authors of G-Adapt [88] demonstrate that program input may have an important
influence on the kernel performance. While having similarities with our approach, it
mostly considers pre-optimized codes and relies on optimization hints provided by the
programmer.

Peng Di et al. [38] propose a technique to automatically select a good-performing
tile size on polyhedral codes. They primarily focus on doaccross loops for which
they extract inter-tile and intra-tile wavefront parallelism. The generated codes ex-
pose a specific pattern, which is exploited by their prediction model. This includes
memory movements to/from shared memory and synchronization points (syncthreads,
syncblocks). For their part, computation performances are evaluated during simulated
runs, with full tile executions. The tile size selection process is performed by succes-
sively comparing the execution times of different tile sizes configurations.

Collective mind [50] aims to resemble experiences from the scientific community
in order to rationalize code tuning. The user selects uncharacterised or barely ex-
plored code optimizations and dumps the results along with partial execution context
to a publicly available repository. The history of measurements is modelled through
mathematical tools, such as Multivariate Adaptive Regression Splines (MARS) and
Support Vector Machines (SVM) to highlight relations with the program characteris-
tics. Compiler options can thus be chosen to either maximize performance, or minimize
executable size.

Iterative compilation is generally considered as a heavyweight approach to code
optimization, due to huge compilation times. In fact, even though a problem has
been optimized, for a certain parameter size, it may be judicious to generate multiple
versions. This makes this compilation technique a viable option for embedded systems
and homogeneous systems, which have stable hardware specification.

Pouchet et al. [116] elaborate on an iterative compilation technique in the frame of
the polyhedral model. For this purpose, they design an algorithm that limits the num-
ber of potential loop schedules in the search space. Relevant candidates are executed
with reference parameters in order to find the best version.

Fursin et al. [49] present an alternative iterative compilation technique based on
multiversioning. The proposed system assumes programs performance behaviour is
decomposable into periodically stable phases. This predictable behaviour enables eq-
uitable comparison of the phases of a program performance. Thus optimizations, either

3.5. OPTIMIZATION TECHNIQUES 47

fixed at compilation or at runtime, can be evaluated for several consecutive executions.
The results are bound to an execution context and stored in a database. Program
phases are detected because they expose comparable performance, which enables easy
comparison between several optimization strategies. Iterative compilation is performed
through calls of the initial program to code section of interest. Bodin et al. [24] present
an iterative compilation algorithm for embedded systems. The algorithm considers
unrolling, tiling, and padding and their interactions to minimize execution time. The
algorithm seeks for local execution time minimum through the manipulation of perfor-
mance parameters, to eventually converge to a potential global minimum after a fixed
number of steps.

Li et al. [85] elaborate on a technique that generates multiple variants of code
and tries to find the right variant through empirical measurements. Typical input
parameters are used to train the code selector. This study was limited to gemm. Ryoo
et al. [128] generate multiple code variants and try to prune the search space with
Pareto sets to find good code configurations.

Lomüller et al. [91] present a framework for code tuning. The considered code is
rewritten in a specific language and put in a function called ”compilette“ in order to
be tuned at runtime. An offline profiling phase evaluates the code for different input
configurations to generate variants. To limit the code size and yet ensure performance
the system specializes the code at runtime with deGoal [34].

B. Pradelle et al.’s framework [120] chooses and executes one of the best versions of
a parallel loop nest on a multicore CPU. A python code generator prepares the code
for profiling and prediction. An offline profiling phase is in charge of evaluating the
code, for instance at install time. It produces a ranking table parametrized by the
version and the number of threads. This study demonstrates that load balance is the
most impacting dynamic performance factor on CPUs. Therefore, measurements are
performed by incrementing the number of threads up to the number of available cores.
To avoid cache effects, the size of the iteration domain is increased exponentially until
two consecutive execution times per iteration show stability.

At runtime, as the considered loop nest is reached, the execution flow is trans-
ferred to the prediction code. Simplified versions of the loop nest count the number of
iterations performed by each thread. Then, it computes the number of overlapping it-
erations per quantity of threads. To obtain an approximated execution time the result
is multiplied by the corresponding value in the ranking table. The computation can be
synthesized as:

time =
C
∑

i=1

(iti − iti+1) ∗ rki

where time represents the approximated execution time of the loop nest, C the num-
ber of cores, iti the number of iterations per thread quantity i, and rk the ranking
table storing the average execution time per iteration for i active threads. Note that
itC+1 = 0. Finally, the version of the code that takes the least time is executed. While
these algorithms ensure efficient load-balance on multicore CPUs, our objective is to
design new profiling and selection methods to adapt to the GPU performance char-
acteristics, while keeping the same framework infrastructure. The description of the
proposed framework and a thorough description of Pradelle et al.’s method are available

48 CHAPTER 3. CONTEXT AND RELATED WORK

in Chapter 4.

3.5.4 Dynamic methods

One famous dynamic optimization technique is Just In Time (JIT) compilation. The
jitter regenerates a binary from the target code section, typically a function, while
considering execution context for optimization. This technique counterbalances the
initially conservative approach to code optimization of static compilers. The major
drawback originates from the implied runtime overhead, provoked by the compilation
passes. In fact, the benefit of the optimizations should overcome the overhead to be
profitable.

EvolveTile [138] aims to dynamically select the best performing tile size on CPU
with parametric loop tiling. The tile selection algorithm works by doubling or halving
the tile size until a satisfactory result is found.

Bagnère et al. [14] demonstrate a multiversioning based technique, capable to dy-
namically select the best code version on CPU. For this purpose it makes use of switch-
able schedules, i.e. schedules that share meeting points. The system evaluates each
version by switching from one to the other and successively evaluates them. The version
exposing the lowest execution time is selected for the remaining execution.

Thread Level Speculation (TLS) frameworks are employed to extract parallelism of
codes difficult to analyse statically and perform transformations dynamically. Specu-
lative parallelism techniques are presented in Section 3.15.

3.5.5 Conclusion

Achieving performance on GPUs is a problem of finding the right optimization bal-
ance [148]. Interactions inside of the optimization space make it hard to produce
optimal code statically. Hardware constraints make it particularly difficult to design
an efficient implementation.

Typically, compilers focus on what is actually statically achievable, rather than
scatter on multiple fronts. Tweakings are performed by side tools, which train a per-
formance model to highlight potential performance hints or opportunities. We will
follow this paradigm through a multiversioning technique. Full static systems, al-
though using target specifications, may miss fine-grain performance fluctuations due
to the lack of dynamic information. For instance, in comparison to static compilers,
we try to choose the best block size automatically, at runtime. Moreover, finding a
suitable block size is insufficient: there is no guarantee that the resulting code will have
the best performance. Indeed, choosing a too large block size might drastically reduce
block level parallelism, and prevent hiding memory access latencies. Too small block
sizes might lead to underutilization of streaming multi-processors.

Hybrid techniques take best of the two worlds but require training in order to
provide good results. Iterative compilation, for instance, requires to explore the space
of effective code optimizations, which is time consuming. To solve that, we rely on a
few number of versions, and pick the fastest.

Finally, dynamic methods for code optimizations may add a high level of overhead

3.6. HETEROGENEOUS COMPUTING 49

to the execution compared to the outcome of the optimizations performed on the code.
Furthermore, they may be mislead by performance fluctuations arising from execution
environment.

3.6 Heterogeneous computing

Most modern systems are equipped with directly usable, multiple general purpose
heterogeneous processors. Their specialized architecture, availability and programma-
bility, make them viable alternatives to offload computations originally designed for
the CPU. Typical target codes include compute-intensive subparts of bigger computa-
tions. Whereas operating system execution, input/output operations, peripheral man-
agement, etc., are handled by the CPU. A computer system is said heterogeneous when
processors which it is made of, differ by their Instruction Set Architecture. A CPU,
coupled with FPGAs and/or GPUs, for instance, is such a system. Heterogeneous
computing aims to use these resources in order to improve execution and/or energetic
performance. Efficiently addressing heterogeneity often requires different optimization
strategies to fit the architecture. Indeed, a programmer is usually constrained to pro-
vide, at least, one code version per target processor. Caches with disparate properties
and programmability, memory access and latency hiding mechanisms, functional units
availability and clock-rate, are all to be considered. More fundamentally, internal rep-
resentation of data words, numbers normalization and precision, for example, makes
simultaneous use of the resources difficult in some applications. Also, targeting het-
erogeneity often requires to cope with the constraints of the devices, as for example
memory and execution model restrictions. For board and system level heterogeneity,
the inter-connection of the processors is a critical performance bottleneck.

Although, parallelizing and optimizing a code for a given architecture was already
difficult, usage of multiple heterogeneous (co)processors considerably hardens the task.
The objective is to schedule the programs on these resources, so that execution time is
minimized. Two school of thoughts stand, and orient the design of the schedulers. A
coarse grain approach consists in dispatching a program subparts according to processor
affinities. Code regions are marked, either statically or at runtime and are scheduled
accordingly. The fine-grain approach relies on the execution of the same piece of code
on multiple processors, conjointly. The workload is chunked and distributed to the
available Processing Units (PUs).

Another crucial execution performance factor, beyond data locality, is load balance.
Ensuring load balance, is the art of distributing an application calculation, so that all
the contributing processors are busy and terminate simultaneously. The execution time
of a code must be quantified so that a system is able to distribute the workload. Inter-
actions between the processors, for instance device polling, may substantially impact
one or more resources performance. Numerous works have studied this problem on
computing grids [5, 75, 132]. In the scope of this thesis we will focus on intra-machine
work distribution i.e. PUs inter-connected via a motherboard inside a single machine.

Our target system configuration, consists in one or more multi-core CPUs with one
or more GPUs. Even-though there is a strong correlation between performance and
energy consumption, under-utilization might lead to significantly more power drowning.

50 CHAPTER 3. CONTEXT AND RELATED WORK

To prevent that, a scheduler must detect and eliminate weakly contributing PUs based
on their assigned workload or more elaborate power models. Some codes are evicted
as they do not benefit from dispatching and would exhibit the scheduler overhead.

Scheduling techniques can be classified into three categories: static, dynamic and
hybrid workload partitioning. Static methods range from simple hardware characteri-
zation to more sophisticated machine learning techniques. Fixed scheduling strategies
are tied to a system configuration and dataset size. Program characterization allows
compilers to take decisions based on the executions of other codes. However, inherent
inaccuracies and lack of dynamic context consideration may translate into imbalance.
Dynamic methods compute scheduling information and decision at runtime. Thus, they
are naturally able to take dynamic context into account and distribute the workload
accordingly. A pre-scheduling profiling is used to determine a workload repartition.
Also, work-group size might punctually or systematically underutilize the resources.
Inefficiencies are detected at runtime, through preliminary potentially hindered execu-
tions. As such, it might miss compilation opportunities as everything is deported to
the runtime. Hybrid strategies rely on a static profiling which they base their decisions
on at runtime. These techniques try to take the best of both worlds: performance
and adaptivity. An offline profiling stage allows to quickly take decisions, while as the
execution context is known, the system adapts to input dataset.

We present a thorough list of existing methods and implementations, followed by
our strategy to tackle heterogeneity.

3.6.1 Static partitioning

When the system specifications, the workload size and the resource availability are
known in advance, the problem may be statically partitioned. Tsoi et al. [141] elabo-
rate on an n-Body simulation development process, targeting the Axel heterogeneous
cluster. The nodes of the system comprise a CPU associated to a FPGA and a GPU,
which specifications are known. A generic high level hardware model called Hardware
Abstraction Model (HAM) encapsulates the specifications of the processors. The con-
sidered code arithmetic throughput and communication time are computed for their
target processor and used to determine a minimum execution time. This informa-
tion is used in conjunction with empirical runs to statically decide of a fixed workload
repartition.

A simple work-sharing model, to help programmers to distribute the workload of
stencils on CPU+GPU platforms is described by Venkatasubramanian et al. [143]. The
lack of performance model suggests that the authors estimated the load distribution
through manual experimentations.

The scheme of Grewe et al. [57], includes an AST traversal pass to build a model
of the program, referencing the code features, such as arithmetic operations, memory
accesses, data movements, etc. Arbitrarily selected algorithms are executed on the
target machine to determine a computation partitioning. These codes are run on the
CPU and the GPU, by varying the calculation distribution associated to PU from 0%
to 100%. Programs which share strong affinities are grouped according to a supervised
classification algorithm. The computation balance is chosen at runtime by taking as

3.6. HETEROGENEOUS COMPUTING 51

reference quasi-similar codes.

PIPS [8] is capable to analyse the accessed memory regions and the computational
complexity to give a hint on whether it is efficient to offload or not. To do so, it
performs an asymptotic comparison of the two polynomials denoting an estimation of
memory footprint and computational complexity. Offloading the loops is decided when
computational intensity significantly exceeds memory footprint.

3.6.2 Hybrid partitioning

The StarPU runtime system [12] schedules tasks onto the available computing re-
sources. The programmer has to write the tasks as codelets, provide their dependen-
cies, and decide which scheduling policy to use. To maintain load balance, the heft-tm
strategy [11] relies on a history-based time prediction to assign tasks to PUs, so that
execution time is minimized. In order to characterize performance, multiple actual
target code executions are required, for all execution contexts. Conversely, our frame-
work profiles the code before the first execution of the application, thus immediately
enabling maximum performance for any parameters values at runtime.

Other strategies build a history of the quality of the versions. Kicherer et al. [73]
propose to run the code either on GPU, CPU or any other accelerator based on previous
executions on the same hardware. While being an interesting approach, it does not
consider different versions of codes. Thus it might miss some opportunities to achieve
even better performance.

The Qilin framework [92] dynamically balances the workload to the CPU and GPU.
The system predicts execution times, based on actual code executions. To train the
performance model, the workload is evenly dispatched to the PUs. To quickly model
dataset influence, the PU workload are sliced into subparts. The collected execution
times are stored in a profiling database and linearly interpolated to compute predic-
tions. To balance the load, the CPU execution time prediction is weighted by the GPU
runtime scheduling requirements. Current implementation evidently only supports 2
target processors. The system determines whether work dispatching is benefiting or
not and suitably maps the work to CPU, GPU or CPU+GPU.

In the SKMD system [79] the loop partitioning is computed by generating multiple
combinations of compute device workload until they minimize execution time. To
predict the performance, a table stores performance values expressed in work groups per
millisecond. As mentioned in the paper, the target codes are hand-written. Moreover,
host-device bandwidth is considered constant, which may imply prediction inaccuracies.

3.6.3 Dynamic partitioning

StarSs [113] extends the OpenMP directives with constructions to specifically handle
and offload code portions. The scheduling strategy relies on a training phase dur-
ing which tasks are run on the available processors, and it builds affinities between
processors and tasks. Then, the tasks are associated to the processors so that the
computational load and the overall execution time is minimized. This coarse-grained
approach is best effort as it does not guarantee load balance.

52 CHAPTER 3. CONTEXT AND RELATED WORK

In the HDSS scheduling scheme [22] loops are decomposed into chunks. The first
chunk performs a training phase to model the performance for each compute device
with a logarithmic fit function. This function is then used to determine a weight,
controlling the chunk size associated to each PU. The performance model is coarse
grain, in order to characterize different architectures.

Boyer et al. [27] focus on hardware availability and environment dynamicity but
not on problem size influence. To train the scheduler, work groups aggregated into
chunks, which size is exponentially increased at each step, are run on the target pro-
cessor. Each chunk execution triggers data movements to the target processors. As an
arbitrary threshold is reached the measurements are considered as relevant, training
stops. Due to its dynamic nature, the system is inclined to adapt to certain external
performance-impacting events, for instance, punctual clock rate scaling, processor load,
etc. Based on the last execution times, the scheduler linearly dispatches the rest of the
computations to the PUs. The authors only evaluated their framework for problem
sizes occupying the whole memory.

An approach to heterogeneous computing is to rely on work queues in a producer/-
consumer scheme. Chen et al. [30] have implemented a Molecular Dynamics algorithm
on GPU. The execution control and computation feeding is operated by the CPU. GPU
threads are spawned and are persistent across the computation. The CPU enqueues
tasks, while the GPU actively polls for work. The end of the execution is notified by a
termination message. The execution configuration is fixed and determined empirically.
Tasks are finely chunked so that load balance is ensured.

3.6.4 Conclusion

The profusion of tools to address heterogeneity attests to the interest of distributing
calculations. To our knowledge, the main gap concerns the lack of fully automated
technique: from code generation to the execution on a heterogeneous platform. To
address this challenge we demonstrate several techniques in order to run codes, typically
in the form of consecutive loop nests, on CPU + GPU systems.

In the literature, current hybrid methods usually require multiple actual target code
executions, for all execution contexts, in order to characterize performance. Conversely,
we aim to profile the code before the first execution of the application, thus immediately
enabling maximum performance for any parameters values at runtime. However, offline
profiling is more difficult, as the profiling space needs to be taken care of.

On the other hand dynamic methods perform decisions during an actual application
execution. As such, they may weaken performance, due to the series of calls to the
runtime system in order to take decisions.

Overall, in comparison to the task-based StarSs [113] and StarPU [12] systems,
which may stall on dependencies, we propose a runtime that makes immediate and
continuous use of all the hardware resources; and it is fully automatic, once the pro-
grammer has marked the region of (sequential) code of interest with a pragma. On
the other hand our framework handles only SCoP codes, which can be handled by op-
timizing polyhedral compilers, while StarSs and StarPU can handle any parallel code
that the programmer writes.

3.7. POLYTOPE MODEL 53

3.7 Polytope Model

The polytope model, also called polyhedral model, is a fine-grained mathematical ab-
straction to analyse and manipulate programs. The polytope model primarily targets
affine loop nests: statements enclosed in loops such that all loop bounds and array
references are affine functions of the enclosing loop iterators and loop-invariant param-
eters. Usual program representations, such as Abstract Syntax Tree (AST), Control
Flow Graph (CFG), are not sufficient to model dependencies. Alias analysis and It-
eration Space Graph, do not precisely capture the dependencies or rely on exhaustive
impractical descriptions. In the polytope model, the executions of a statement are
denoted by a set of points, contained in a polytope, defined through a conjunction of
inequalities. Solutions to an optimization problem are found through linear program-
ming techniques.

In this work we focus on statically analyzable for -loop nests, namely Static Control
Parts (SCoPs). A code fits the polytope model if memory accesses and loop bounds are
affine functions of enclosing loop iterators, parameters and integer constants. A param-
eter is a symbolic loop nest invariant; the set of parameters often bounds the problem
size. A polytope is a geometrical object delimited by flat facets. A convex polytope
is the set of solutions of a finite system of linear inequalities. The iteration domain
of a statement is formed by integer points, representing instances of the statement
execution. A dependence polyhedron captures the dependences between these points.
The geometrical properties of polytopes guarantee that the points are preserved across
affine unimodular transformations. A polytope may be defined in two different ways,
depending on the considered problem. The vertex representation defines a polytope as
the convex hull of the vertices. While the half-space representation, defines a polytope
as the intersection of half-spaces. In general we denote a constraint matrix in the form
D = (A|b). An n-dimensional iteration domain is represented by an n-polytope, a poly-
tope of similar dimensionality. The code built from a polyhedral representation, scans
integer points with respect to the dependences. A scattering function encapsulates the
order in which the statements are executed, typically implied by a transformation.

This section provides a basic overview of the polyhedral model. The reader is
invited to consult [19, 26, 117] for further explanations and technicalities involving the
model. First of all, the basic mathematical objects used to characterize polytopes are
defined. To illustrate this in practice we provide an example of code section which fits
the polyhedral model. Then, we show the usefulness of scattering functions to perform
polyhedral transformations on the code. To perform transformations it is crucial to
represent access functions, as they define the dependences ruling a program execution
order.

Definition 1 (Affine function). Function f : Km → K
n is affine iff a matrix A ∈ K

m×n

and a vector ~b ∈ K
n exist, such that:

f(~x) = A~x +~b

Definition 2 (Affine hyperplane). An affine hyperplane is an affine (n−1)-dimensional
subspace in a n-dimensional space. For ~c ∈ K

n with ~c 6= ~0 and a scalar b ∈ K an affine

54 CHAPTER 3. CONTEXT AND RELATED WORK

hyperplane is the set of all vectors ~x ∈ K
n, such that:

~c · ~x = b

It generalizes the notion of planes: for instance, a point, a line, a plane are hyperplanes
in 1-, 2- and 3- dimensional spaces.

Definition 3 (Affine half-space). A hyperplane divides the space into two half-spaces
H1 and H2, so that:

H1 = {~x ∈ K
n|~c · ~x ≤ b}

and
H2 = {~x ∈ K

n|~c · ~x ≥ b}
~c ∈ K

n with ~c 6= ~0 and b ∈ K.

Definition 4 (Convex polytope). A convex polytope is the intersection of a finite
number of half-spaces. We denote A ∈ K

m×n a constraints matrix, b ∈ K
n a constraints

vector and P a convex polytope so that P ⊂ K
n:

P = {~x ∈ K
n|A~x +~b ≥ 0}

Definition 5 (Parametric polytope). A parametric polytope denoted P (~p) is parame-
trized by a vector of symbols denoted ~p. We define A ∈ K

m×n a constraints matrix,
B ∈ K

m×p a coefficient matrix, a vector ~b ∈ K
m and P a convex polytope so that

P ⊂ K
n:

P = {~x ∈ K
n|A~x + B~p +~b ≥ 0}

Definition 6 (Polyhedron image). The image of a polyhedron Pn ∈ K
n by an affine

function f , is another polyhedron Pm ∈ K
m. Notice that this is true when K

n is a
field, but not if it is a ring like Z

n.

Definition 7 (Iteration vector). A statement instance coordinates is defined by a
vector ~s ∈ K

n with n the dimensionality of the loops enclosing the statement.

Note that functions are now replaced by relations in modern implementations (in-
cluding PPCG).

3.7.1 SCoP

Statically analysable code sections are ideal candidates for the application of trans-
formations due to their deterministic behaviour. A typical polyhedral side-effects free
compilation unit is called a Static Control Part (SCoP). Originally, a SCoP is the
longest section of code which gathers consecutive affine loop nests and conditional
structures fitting in the polyhedral model. Now it is relaxed to any part of code that
fits the model. An affine loop nest denotes a subclass of general, possibly imperfect,
nested loops, whose loop bounds and conditionals are expressed in terms of affine func-
tions of the enclosing iterators, parameters and numeric constants. A static control
nest may embed several simple, multi-level statements. More specifically a statement

3.7. POLYTOPE MODEL 55

Listing 3.2– Example of a valid SCoP: gramschmidt kernel

#pragma scop
for (k = 0 ; k < nj ; k++) {

S0 : nrm = 0 ;
for (i = 0 ; i < ni ; i++)

S1 : nrm += A[i] [k] ∗ A[i] [k] ;
S2 : R[k] [k] = sq r t (nrm) ;
for (i = 0 ; i < ni ; i++)

S3 : Q[i] [k] = A[i] [k] / R[k] [k] ;
for (j = k + 1 ; j < nj ; j++) {

S4 : R[k] [j] = 0 ;
for (i = 0 ; i < ni ; i++)

S5 : R[k] [j] += Q[i] [k] ∗ A[i] [j] ;
for (i = 0 ; i < ni ; i++)

S6 : A[i] [j] = A[i] [j] − Q[i] [k] ∗ R[k] [j] ;
}

}
#pragma endscop

is a source code instruction, assigning a value, potentially the result of arithmetic op-
erations, into a memory location. Breaking the control flow with instructions such as
break, goto, return is illegal inside a SCoP. A SCoP may either be flagged manually or
detected automatically [20, 58, 146]. Optimization opportunities are tied to the length
of a SCoP, i.e. the number of affine loop nests a SCoP aggregates.

A typical SCoP polyhedral representation requires three components: a context,
a constraints matrix, and a scattering function, the latter two being bound to each
statement. The context encodes the conditions on the parameters, to prune the result
space. A constraints matrix defines the inequalities bounding an iteration domain.
Each statement possesses its own constraints matrix. Inversely, a constraints matrix is
tied to a statement, i.e. a constraints matrix is meaningless if it is not associated to a
statement. The scattering functions provide an order on the statements in a loop nest.

All in all, these information are gathered in order to characterize the code, to
perform semantically legal transformations, detect parallelism, count the number of
iterations, etc. An example of valid SCoP is provided in Listing 3.2.

Definition 8 (Iteration domain). An iteration domain is the set of integer points
corresponding to the actual executions of a statement. The iteration domain of a
SCoP statement S can be modelled by an n-polytope, DS(~p) ⊂ K

n, such that:

DS(~p) = {~x ∈ K
n|A~x + B~p +~b ≥ 0}

56 CHAPTER 3. CONTEXT AND RELATED WORK

for (i = 0 ; i < M; i++)
for (j = 0 ; j < i + 1 ; j

++)
i f (i + j < 7) {

S0 (i , j) ;
}

}
}

(a) for-loop affine nest
M - 1

j < i + 1

0 1

0

1

i + j < 7

i >= 0

j >= 0

i < M

i

j

M-1

(b) polyhedron

Figure 3.5 – Illustration of a loop nest and its associated polyhedron































i ≥ 0
j ≥ 0
−i + M − 1 ≥ 0
−j + i ≥ 0
−j − i + 6 ≥ 0

DS0(M) =































(

i
j

)

∈ K
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

















1 0 0 0
0 1 0 0
−1 0 1 −1
1 −1 0 0
−1 −1 0 6



























i
j

M
1











≥ 0































Figure 3.6 – Constraint inequalities and associated constraint matrix

3.7.2 Polyhedral model illustration

Fig. 3.5 depicts a toy affine loop nest and its associated polyhedron. The statement
named S0 is enclosed by a two dimensional loop nest. A conditional restricts its execu-
tion when i + j < 7. The half-spaces intersection forms a triangular iteration domain
shown in Fig. 3.5b. Every integer point (dot in the figure) corresponds to an instance
of the statement. M is a parameter of the loop nest. The j-loop is bound by the
outer-loop iterator, i. To express an iteration domain, the bounds are syntactically
extracted to form a system of inequalities. The resulting constraint matrix encodes
a canonical form of the affine inequalities of a loop nest. The polyhedron associated
to statement S0 (see Fig. 3.6) has the same dimensionality as the loop nest, 2 in this
example.

3.7.3 Access functions

A statement expression groups a set of arithmetic operations on operands (memory
fields or scalars) and stores the result into a memory field. Access functions of arrays are
essential to determine loop-carried dependences. At the source level, a single statement
may aggregate multiple arithmetic operations, whose operands are arrays or scalars.
In a SCoP a memory access can be characterized by an affine function. A general

3.7. POLYTOPE MODEL 57

Listing 3.3– Example to illustrate memory access functions

for (i = 0 ; i < n ; i++)
for (j = 0 ; j < n ; j++)

x [i] = x [i] + beta ∗ A[j] [i] ∗ y [(n − 1) − j] ;

linearized access function, for contiguously row-major allocated arrays, can be written
as:

BA + (~s[n]× ~d[n]× ...× ~d[1] + ... + ~s[1]× ~d[1] + ~s[0])× sizeof(*BA)

With ~s, a vector containing the subscripts of the BA array, and ~d containing the size
of the array. To be polyhedral model compliant, each entry of ~s must be an affine
expression. This can be denoted in a matrix format. We characterize an affine access
function, so that:

f{R,W }(~x) = F~x + ~f

where F ∈ K
d×v is a coefficient matrix of the array subscripts, v = dim(~x), ~x is an

iteration vector and ~f is a constant vector. R, W , indicate either a Read or a Write
from/to the indiced memory field. In a compacted form ~x′ denotes the concatenation

~x′ =







~x
~p
~1





, of the iteration vector ~x, the parameter vector ~p and a constant vector ~1,

so that:

f{R,W }(~x′) = F ′~x′

and their assignation to a memory field. This gives the following results for Listing 3.3:

fW x(~x) = fRx(~x) =
(

1 0 0 0
)











i
j
n
1











⇔ x[i]

fRA(~x) =

(

0 1 0 0
1 0 0 0

)











i
j
n
1











⇔ A[j][i]

fRy (~x) =
(

0 −1 1 −1
)











i
j
n
1











⇔ y[(n− 1)− j]

fRbeta(~x) =
(

0 0 0 0
)











i
j
n
1











⇔ (&beta)[0]

58 CHAPTER 3. CONTEXT AND RELATED WORK

3.7.4 Scattering matrix

To express the position of a statement within a loop nest, an iteration vector is not
sufficient. In fact, consecutive statements, nested in the same loop cannot be totally
ordered. Also assigning a single integral position to a statement reveals impractical.
Feautrier [47] proposes to encode a statement position in a loop nest through a multi-
dimensional timestamp. A timestamp is a logical date, similar to the conventional time
system, e.g. hour:minute:seconds. To address the shortcoming of using only iteration
vectors, a simple idea is to add a constant to each dimension. A statement position is
then characterized by a 2-uplet per dimension: the dimension iterator and a constant.
A schedule, or scattering function, gives the order of execution of the statements inside
of a loop nest. The lexicographic order, denoted with ≪, defines the sequential (total)
execution order of the statements, so that:

(a1, . . . , an)≪ (b1, . . . , bn)⇔ ∃i : 1 ≤ i ≤ n, ∀m : 1 ≤ m < i, am = bm ∧ ai < bi

This encoding expresses a relative order between the statements. A total execution
order is deduced from the order, components by components, between the timestamps,
starting from the most significant component. In other words, a statement precedes
another, if one of its timestamp component is less than that of the follower and pre-
ceding m dimensions are equal. If two statements possess equal timestamps, they can
be executed in any order, i.e. they can be executed in parallel. Also, it describes the
location of a statement within a loop nest. To understand the concept of timestamps,
we provide the exact schedule of Listing 3.2:

θS0(~x) = (0, k, 0, 0, 0, 0, 0)

θS1(~x) = (0, k, 1, 0, 0, i, 0)

θS2(~x) = (0, k, 2, 0, 0, 0, 0)

θS3(~x) = (0, k, 3, 0, 0, i, 0)

θS4(~x) = (0, k, 4, j, 0, 0, 0)

θS5(~x) = (0, k, 4, j, 1, i, 0)

θS6(~x) = (0, k, 4, j, 2, i, 0)

Definition 9 (Affine schedule function). An affine schedule function maps a date in
the initial iteration domain to another in the transformed domain, so that:

∀~x ∈ DS, θS(~x) = ΘS~x + ~t

Cohen et al. [32] propose a canonical form of the scheduling matrix. Such a ma-
trix is associated to each statement in the SCoP. The textual position information is

3.7. POLYTOPE MODEL 59

Listing 3.4– Example schedule: syrk from PolyBench 3.2

#pragma scop
for (i = 0 ; i < ni ; i++)

for (j = 0 ; j < ni ; j++)
S0 : C[i] [j] ∗= beta ;

for (i = 0 ; i < ni ; i++)
for (j = 0 ; j < ni ; j++)

for (k = 0 ; k < nj ; k++)
S1 : C[i] [j] += alpha ∗ A[i] [k] ∗ A[j] [k] ;

#pragma endscop

interleaved with the rest of the definition.

ΘS =





























0 · · · 0
AS

1,1 · · · AS
1,d

0 · · · 0
AS

2,1 · · · AS
2,d

...
. . .

...
AS

d,1 · · · AS
d,d

0 · · · 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 · · · 0
ΓS

1,1 · · · ΓS
1,p

0 · · · 0
ΓS

2,1 · · · ΓS
2,p

...
. . .

...
ΓS

d,1 · · · ΓS
d,p

0 · · · 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

βS
0

ΓS
1,p+1

βS
1

ΓS
2,p+1
...

ΓS
d,p+1

βS
d





























By convention, this matrix is defined by three sub-matrices, such that:

• AS ∈ K
dS×dS

the coefficient sub-matrix, with dS the depth of statement S, is
applied to the iteration vectors.

• ΓS ∈ K
dS×(dp+1) the coefficient sub-matrix, with dp the number of global param-

eters, is applied to the parameters.

• βS ∈ K
dS+1 the constants sub-matrix, encodes the textual order.

Modifications in the three sub-matrices, AS, ΓS and βS imply different transformations.
One may obtain one or more transformations by applying a combination of changes
in the sub-matrices. Loop interchange, skewing or reversal are defined in AS. A
modification in ΓS allows to define a loop shifting. Finally, modifying βS, is equivalent
to loop fusion or fission. AS and ΓS are dynamic components as they affect instances
of the iteration domain, whereas βS is called the static component, as it describes the
statement textual order, fixed at code generation.

To understand the utility of scheduling, we propose a concrete example. Listing 3.4
shows an implementation of the symmetric rank-k (syrk) kernel; in Listing 3.5 initial-
ization loop was fused with the main computation loop. The transformed schedule can
be described with the three matrices, AS, ΓS and βS, so that:

AS0 =







1 0 0
0 1 0
0 0 0





ΓS0 =







0 0 0
0 0 0
0 0 0





βS0 =











0
0
0
0











60 CHAPTER 3. CONTEXT AND RELATED WORK

Listing 3.5– Simple re-scheduled example: syrk from PolyBench 3.2

#pragma scop
for (i = 0 ; i < ni ; i++)

for (j = 0 ; j < ni ; j++)
S0 : C[i] [j] ∗= beta ;
for (k = 0 ; k < nj ; k++)

S1 : C[i] [j] += alpha ∗ A[i] [k] ∗ A[j] [k] ;
#pragma endscop

Listing 3.6– Toy example benefiting from loop-shifting

#pragma scop
for (i = 0 ; i < M; ++i) {

for (j = 0 ; j < N−1; ++j) {
A[i] [j] = 0 ;

}
for (j = 0 ; j < N−1; ++j) {

A[i] [j +1] += . . . ;
}

}
#pragma endscop

AS1 =







1 0 0
0 1 0
0 0 1





ΓS1 =







0 0 0
0 0 0
0 0 0





 βS1 =











0
0
1
0











The imperfect loop nest in Listing 3.6 is a candidate for loop-shifting. The idea is
to fuse the j loops to benefit from data locality on array A. To do so, a prologue and
epilogue must be generated (loop peeling); initialization of array A to 0 is performed
before summation. At each iteration of the fused j loop, the same memory field of A
is accessed. The code in Listing 3.7 reflects the changes, for the sub-matrices AS, ΓS

and βS, equal to:

AS0 =

[

1 0
0 1

]

ΓS0 =

[

0 0 0
0 0 0

]

βS0 =







0
0
0







AS1 =

[

1 0
0 1

]

ΓS1 =

[

0 0 0
0 0 −1

]

βS1 =







0
0
1







3.7. POLYTOPE MODEL 61

Listing 3.7– Rescheduled toy example to allow fusion of the j loops

i f (N >= 3) {
for (t1 =0; t1<=M−1; t1++) {

A[t1] [0] = 0 ;
for (t2 =1; t2<=N−2; t2++) {

A[t1] [t2]=0;
A[t1] [t2] + = . . . ;

}
A[t1] [N−2+1]+=... ;

}
}

3.7.5 Dependence

Definition 10 (Data dependence). There is a data dependence whenever two state-
ments Si(~xi) and Sj(~xj) access the same memory location, and at least one access is a
write, so that an execution order is imposed.

Dependence analysis is the process that aims to detect data dependences between
statements. The Bernstein conditions enumerate the requirements for two statements
to be parallel:

(i) R(Si) ∩W (Sj) = ∅

(ii) W (Si) ∩R(Sj) = ∅

(iii) W (Si) ∩W (Sj) = ∅

With WS the set of write-accesses in statement S and RS the set of read accesses in
statement S, and θSi(~xi) ≪ θSj (~xj). A dependence, so that, a memory location is
write-after-read (i) is called an anti-dependence. A read-after-write (ii) to the same
memory location is called a true-dependence or flow-dependence. Finally, a write-after-
write (iii) is called an output-dependence. Output and anti-dependence may be solved
through variable renaming techniques, scalar expansion [109] or array expansion [45].
Flow-dependence fix the semantics of the program and thus, must be respected. Read-
after-read pseudo-dependence, may also be considered to improve memory locality
for instance, as reordering does not affect the program semantics. A legal schedule
combines transformations so that the sequential execution order of dependences is re-
spected. A loop carried dependence arises when two different iterations of the loop
access the same memory location. A data dependence graph defines the statement de-
pendences, so that vertices represent the source and the target statements and edges
the inter- and intra-statement dependences. An edge e can be translated into a depen-
dence polyhedron [46] Pe, containing the exact instance dependencies. In other words,
a dependence polyhedron expresses the dependence relation between two statements.
Note that Pe is a subset of the cartesian product of the iteration domains. Let us

62 CHAPTER 3. CONTEXT AND RELATED WORK

denote Si, the source and Sj the target of the dependence. A valid formulation of a
dependence polyhedron must respect the lexicographic order, θSi(~xi)≪ θSj (~xj). Also,
the instances generating the dependency must exist, ~xi ∈ DSi and ~xj ∈ DSj . Eventu-
ally, the memory accesses must touch the same memory location, fSi(~xi) = fSj (~xj).
The code presented in Listing 3.4 contains a flow-dependence, between WS0

(C[i][j])
and RS1

(C[i][j]). After computing the access domain, that is to say the image of the
accesses, the following dependence polyhedron describes this dependence:

Pe =







































((i1, j1), (i2, j2, k2))

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 ≤ i1, i2, j1, j2 ≤ ni− 1
0 ≤ k2 ≤ nj − 1

i1 = i2

j1 = j2

i2 ≤ i1

j2 ≤ j1







































3.7.6 Transformations

Definition 11 (Transformation). A transformation maps a statement instance logical
date, to a date in the transformed space, with respect to the original program semantics.
Transformations are typically applied to enhance data locality, reduce control code and
expose or improve the degree of parallelism. The new schedule ΘS~x might express a
new execution order on statement S.

Lemma 1 (Affine form of the Farkas lemma). Let D be a non-empty polyhedron,

defined by the inequalities A~x +~b ≥ 0. Then, any affine function f(~x), is non negative
everywhere in D iff it is a positive affine combination:

f(~x) = λ0 + ~λ(A~x +~b), with λ0 ≥ 0 and λ ≥ 0

where λ0 and ~λ are called Farkas multipliers.

During an optimization process, iterations might be rescheduled to expose better
performance characteristics. The polyhedral model provides a frame to achieve high-
level transformations. Such transformations are applied to higher level code represen-
tations, possibly reconstructed from binary [121]. A set of frequent and worthwhile
high-level transformations encompass tiling, interchange, skewing, shifting, fission, fu-
sion. Transformations may be generated and their validity tested thereafter. However,
a typical way to find transformations, is to restrict the search space to legal sched-
ules. Intuitively, the dependence vector orientation should be non-negative, meaning
that the execution order remained equivalent, i.e. only the dependence distance may
have changed. More formally, the difference of the schedules ΘSj ~xj and ΘSi ~xi must
be positive, such that, ∀~xi, ~xj ∈ Pe, ΘSj ~xj − ΘSi ~xi ≥ 0 [48]. In this formulation the
entries of the iteration vectors ~xj and ~xi have unknown coefficients defined by the
generic scheduling matrices ΘSj and ΘSi. The problem is reformulated to involve the
dependence polyhedron and is linearized with the affine form of the Farkas lemma. Ac-
cording to the Farkas lemma the inequality may be described by an equality involving
the Farkas multipliers, such that:

∀~xi, ~xj ∈ Pe, ΘSj ~xj −ΘSi ~xi = λ0 + ~λ(A(~xi|~xj) +~b), with λ0 ≥ 0 and ~λ ≥ ~0

3.7. POLYTOPE MODEL 63

Eventually, the Fourier-Motzkin algorithm is applied to eliminate the Farkas multipli-
ers. The set of solutions describes the space of the legal transformations. To illustrate
the usefulness of the Farkas Lemma, we take the previously defined dependence polyhe-
dron Pe. For convenience, the target statement iterators and redundant or unnecessary
constraints are eliminated from the calculation. The application of the Farkas Lemma
gives the following equation:

f(~x) = λ0 + ~λ











i1

j1

−i1 + ni− 1
−j1 + ni− 1











= λ0 + λ1 ∗ (i1) + λ2 ∗ (j1) + λ3 ∗ (−i1 + ni− 1) + λ4 ∗ (−j1 + ni− 1)

where i1 = i2, j1 = j2 and λ0, λ1, λ2, λ3, λ4 ≥ 0. A transformation shape is expressed
by the function, f(~x), which defines two coefficients c1 and c2 on i1 and j1, and a
constant c3. From there, we deduce the equalities involving the Farkas multipliers and
the coefficients:

f(~x) = c1 × i1 + c2 × j1 + c3 such that,



















λ1 − λ3 = c1

λ2 − λ4 = c2

λ3(ni− 1) + λ4(ni− 1) = c3

λ0, λ1, λ2, λ3, λ4 ≥ 0

The resulting system can then be used to bound the coefficients, through Fourier
Motzkin elimination. Yet, any transformation picked from the resulting legal transfor-
mation space must be legal w.r.t. the other statement dependence.

A statement instance dependence must not cross iterations, for a loop dimension
l to be parallel. Consequently, a polyhedron ∀~xi, ~xj ∈ Pe, ΘS

i [l..∗] < ΘS
j [l..∗] must be

empty, meaning that the loop does not carry a dependence. Intuitively, this means
that there must not be two successive iterations accessing the same data in the same
loop level, one access being a write. A dependence polyhedron can be augmented with
this condition to check for parallelism.

3.7.7 Integer points counting

Counting the number of points in a polyhedron is an important problem. The number
of integer points may describe the memory access counts, the communication volume,
or the number of iterations of a statement. Counting the number of integer points
in a polytope has a tremendous impact in code performance. Barvinok [147] is a
polyhedral integer points counting library based on isl [144]. The core algorithm is
based on the proposal of Barvinok to enumerate the number of points in a polytope.
The result is a parametric piecewise quasi-polynomial whose coefficients are periodic
numbers. Polylib [90], is another library capable to generate Ehrhart polynomials from
a polyhedral description. In the scope of this work, these polynomials are mainly used
to count the number of integer points in a polytope. Load balance and execution time
per iteration calculation, are the two main applications of the polynomials in this work.

64 CHAPTER 3. CONTEXT AND RELATED WORK

3.8 CLooG

A typical polyhedral compilation workflow, consists in taking a polyhedral code, trans-
late it to a polyhedral representation, apply transformations and generate the new
code. The Chunky Loop Generator (CLooG) [18] generates the loop nests scanning
a union of polyhedra described in the polyhedral format. This tool is used by many
polyhedral compilers, from PLUTO to mainstream projects such as Graphite or Polly.
An equivalent alternative named Pet is found in PPCG for instance. CLooG provides
optimizations, to avoid control redundancy. Also, the user can provide the degree of
fusion of a loop nest. CLooG takes as input a polyhedral representation, defined by a
context, constaint matrices and scattering functions.

3.9 PLUTO

PLUTO [25] is an automatic polyhedral source-to-source parallelizer and optimizer.
The compiler takes a subset of C annotated with #pragma scop...#pragma endscop
namely Static Control Part (SCoP). Clan [17], a C parser, extracts the marked code
sections and generates a polyhedral representation. The loop dependencies are anal-
ysed with Candl [16], which produces a dependency polyhedron. The framework is
designed to extract synchronization-free data-parallelism, or pipelined parallelism from
loop nests. Transformations are expressed as hyperplanes and guarantee that the ini-
tial dependencies are preserved. The PLUTO core scheduler performs a broad range
of transformations, such as skewing, fusion, reversal, shifting as well as permutation.
A common technique to improve data locality consists in partitioning the iteration
domain into tiles. From the legality conditions, PLUTO determines the shape of the
tiles, so that, while exposing coarse parallelism, inter-tile communications and reuse
distance are minimized. For this purpose, it expresses an upper bound of the re-
quired inter-tile communications. Basically, the cost function consists in diminishing
the number of traversed hyperplanes by changing the direction of the dependence vec-
tors. ClooG, translates the polyhedral representation into C or Fortran code, carrying
the transformations. A post-processing phase, annotates the source code with adequate
#pragma omp directives. The output code may also be prepared for unrolling and
vectorization.

C-to-CUDA [15] is a CUDA code generation extension of PLUTO. The core algo-
rithm is similar to that in PLUTO, with some GPU specific additions. The system
looks for parallel loops in the tiled dimensions. This allows to map the tiles onto the
CUDA blocks of threads, i.e. each parallel loop instance is mapped to a thread. Also,
the cost function is extended to take coalescence of the accesses into consideration. To
avoid expensive global memory accesses, a shared memory buffer is allocated based
on the size of accessed data. The shared memory usage consists in a fetch, compute,
store scheme with adequate block synchronization. The framework provides a mean
to globally synchronize the threads as it may migrate sequential loops onto the GPU.
The actual implementation does not consider data reuse and thus caches all the global
accesses into shared memory, except for the following cases. Read only arrays which
access function is independent w.r.t the parallel loops, are stored into constant mem-

3.10. PAR4ALL 65

ory. Keep in mind that independent accesses to the constant cache are serialized into
several memory transactions. Conversely, array accesses scanned by the parallel loop
iterators are stored in registers, as they live the whole thread life. Here, the notion of
tile and block is the same, the choice of size is delegated to the programmer. All in all,
the framework leaves empirical tweaking to the programmer.

3.10 Par4All

Par4All [7, 9] is a python source-to-source compiler, mainly oriented towards hetero-
geneous architectures: CUDA, OpenCL and OpenMP code generation is supported.
To extract parallelism and control data-movements, it is based on a inter-procedural
analysis framework called PIPS [63]. This tool is capable to analyse for and while
loops with complex control flow and determine an over-approximation of the mem-
ory access hull. Parallel loops are detected statically using an array regions analysis
without performing any particular code transformation. The parallelization process is
followed by a loop fusion pass. For accelerators, Par4All extracts the parallel loops into
a function and prepares the code so that it is CUDA/OpenCL-compliant, i.e. parallel
loops are replaced by guards and their iterators are mapped on the thread grid (grid-
ification). Par4All uses its own abstraction for the common GPU operations, such as
memcpy, kernel launch and function attributes. The current implementation does not
take advantage of shared memory in CUDA/OpenCL kernels. To avoid redundant data
movements the compiler copies data to GPU as early as possible, and delays copy-back
as late as possible.

3.11 R-Stream

R-Stream [131] is a polyhedral compiler developed by Reservoir Labs. To optimize
code towards the target architecture, the compilation process is driven by architecture
information stored inside XML files [82]. This makes it unsuitable for building a single
generic executable and launching it on several cloudy heterogeneous target machines.

3.12 PPCG

PPCG for Polyhedral Parallel Code Generation [145], is a source-to-source polyhedral
compiler supporting CUDA, OpenMP to a lesser extent and OpenCL recently. For
GPUs, it generates host and device code from static control loops written in C. PPCG
uses Pet, a Polyhedral Extraction Tool [146], to extract a polyhedral representation
from the original source code. It builds the constraints on the domain, fetches the loops
schedule and computes memory access dependencies. Pet relies on Clang as a frontend
for C code. During a preprocessing phase Clang performs macro expansion on the
original source code. The PPCG scheduler is largely based on the PLUTO algorithm.
To comply with the CUDA model, multidimensional parallelism is extracted from the
tilable bands. The tiles are then mapped to blocks and scanned by the threads. Tile
and block sizes are independent, thus allowing more flexibility in finding an efficient

66 CHAPTER 3. CONTEXT AND RELATED WORK

combination. For instance, mapping a bigger tile size w.r.t a block, translates into
unrolling the thread statements. User-specified scheduling policies such as maximal
or minimal fusion can be forwarded to the compiler. For minimizing global memory
access contention, data reusability is detected and appropriate shared memory code is
generated. Also, originally non-coalesced accesses can be fetched into shared memory
in a coalesced way, for later use. Data depending only on parallel iterators are mapped
to registers. If these conditions are not met, accesses are directed to global memory.
The shared memory usage scheme is similar to that in PLUTO, and makes use of
intra-block synchronization points. For now, PPCG only supports shared memory and
register usage. By default, PPCG sizes the grid according to the problem parameters
and uses a generic block size, to compute the memory requirements. All in all, PPCG
allows users to provide hints on the tile, block sizes and scheduling policy. Outer
sequential loops are run outside of the kernel, i.e. they contain a kernel call statement
if a parallel loop was detected. PPCG is the state of the art polyhedral compiler
targeting heterogeneous platforms. Therefore, it will be extensively used in the scope
of this work.

3.13 Skeleton compilers

Skeleton compilers rely on classes which match to particular code patterns. Basically,
to one code pattern is associated a semantic rule, which allows a restricted set of
transformations. Thus, once a code is determined to belong to a class, a transformation,
valid for that class may be applied. This is illustrated in the work of Nugteren et
al. [101], who propose Bones a skeleton source-to-source compiler. To apply valid code
transformations, the class of a code is provided by the programmer through directives.
The generated code is prepared to run on GPU. The decision to run a code on GPU is
made through a derivative of the roofline model called boat hull model [100].

3.14 Libraries

Thrust [21] is a library porting some of the C++ Standard Template Library opera-
tions on the GPU. Common functions include data reordering (e.g. radix sort), reduc-
tions and scan operations, generators (e.g. sequence of numbers) and transformations
(e.g. vector addition, multiplication), etc. Thrust is built upon CUDA, and provides
abstractions to common functions, for convenience. For example, adequate data move-
ments must be called by the user. The library does not natively support multi-GPU
parallelization. Yet, to enable multi-GPU support, the user manually transforms an
application through the usage of CUDA Streams or OpenMP. CUB [1] and CUDPP [2]
libraries provide similar functionalities as Thrust.

Recently, there has been a lot of interest in providing multi-GPU accelerated math-
ematical libraries. The available functions are often building blocks for scientific com-
putations. CuBLAS-XT [106] is an Nvidia multi-GPU capable BLAS library, however,
it is not clear wether load balance is maintained on heterogeneous GPUs configura-
tion. MAGMA [142] is a similar linear algebra library that manages heterogeneous

3.15. SPECULATIVE PARALLELIZATION 67

CPU+GPU platforms by relying on dynamic scheduling provided by StarPU [12].

3.15 Speculative parallelization

The early speculative parallelization techniques rely on the inspector/executor meth-
ods. The idea is that the inspector first computes all the accesses performed by the
threads. Then, it checks whether the code can be parallelized by looking at the depen-
dence exposed by such accesses.

Rauchwerger et al. [124] use syntactical pattern matching on the statements in order
to find reductions. This is followed by a dependence analysis to check that the variable
is not used elsewhere in the nest. For deciding whether or not it would be good to
parallelize, the authors suggest profiling or static analysis of the considered loop nest.
Ratio of sequential code/parallelized code must be very low to perform speculative
execution, so that it’s worth it.

Cintra et al. [31] propose to check the dependencies entirely through software. The
threads act on memory cells which is logged by the system. The detection of a conflict
is performed by looking at the recording data-structures. Execution is performed by
a window of chunks which are assigned to threads, in order to handle load balance.
Liu et al. [87] pre-select tasks based on a profiling stage: evaluates prefetch ability
and task potential not to be re-executed. They use a Thread Level Speculation (TLS)-
enabled simulator in order to validate their proposal. In fact they assume that hardware
supports TLS. Processor speedup is obtained by running tasks concurrently. The
system of Raman et al. [123] targets loops, tries to execute them speculatively. Requires
hardware to handle memory conflicts. This tool is capable to handle load balance.

Parangon [129] is a speculative framework that uses either CPU or GPU to perform
a computation. In case of a speculative execution, the code is simultaneously executed
in parallel on the GPU, and in sequential on the CPU. Memory accesses are tagged
during the actual parallel computation for subsequent dependency verification.

VMAD (Virtual Machine for Advanced Dynamic analysis) [66], is a TLS framework
combining a static component and a virtual machine. Multiple versions of a loop nest,
differing by the applied instrumentations are statically generated. These versions com-
municate with the virtual machine via callbacks. Switching from one version to the
other is transparent to the original application. During execution, a sample of the iter-
ation domain is profiled in order to build affine prediction functions of the loop bounds
and memory accesses. After that, a dynamic dependence analysis stage computes the
legality of code transformations and extracts the available parallelism. Based on the
dependence analysis the code is run in parallel after a dynamic code generation. In
case of a misprediction of the speculative functions, a backup mechanism replaces the
computed data with the original ones. A detailed description of the framework may
be found in Chapter 6.

68 CHAPTER 3. CONTEXT AND RELATED WORK

Chapter 4

Code versioning and profiling for
GPU

4.1 Introduction

It is a difficult and tedious task to ensure program performance, especially when writ-
ing a program to be run on complex hardware such as multicore CPUs and accelerator
cards. It is even more difficult in varying contexts – for example when the available
hardware changes, when a binary is compiled once to be distributed on various archi-
tectures; or when the program execution itself depends on parameters that vary from
one run to another or in different phases of its execution. In all these cases, programs
must be able to adapt to the current context to ensure performance.

For these reasons, compilers cannot take static optimization decisions. Iterative
compilation helps to choose the best performing version in a particular context, but if
the input parameters or the available hardware varies it is of no help. The compiler
should provide a way to adapt to the running program, by using for example dynamic
compilation or multiversioning. Dynamic compilation and in particular just-in-time
(JIT) compilation have the drawback of inducing a possibly large startup delay, espe-
cially when doing aggressive optimizations. Dynamic compilation is especially suited
for object languages, that need runtime specialization and optimization. But if the
user’s concern is only performance, he would probably prefer the second alternative.
In multiversioning, the compiler generates many different versions of the same piece of
code or function, and the best performing one should be chosen at runtime.

This problem has been tackled by B. Pradelle et al. [120] in the scope of CPUs.
At compile time their framework generates many different versions of a loop nest,
analysed and transformed using the polyhedral model, with different parallel schedules
and tile sizes. These versions are profiled in different execution contexts at install
time. At runtime, the execution time of the different versions are predicted using the
profiling results in the current execution context, and the best version is then run
on the available CPU cores. Our goal is to extend this framework to heterogeneous
architectures including GPUs. While the main dynamic performance factor identified
on CPU was load-balance, we had to take into account other factors such as the block
size, the kernel execution time variations and the memory communications, making

69

70 CHAPTER 4. CODE VERSIONING AND PROFILING FOR GPU

 0.01

 0.1

 1

 10

100 101 102 103 104

ex
ec

ut
io

n
tim

e
pe

r
ite

ra
tio

n
(n

s)

number of blocks

32x16 - 32x16
32x32 - 32x32
64x16 - 64x16
16x16 - 16x16
16x16 - 32x32
16x16 - 64x64

Figure 4.1 – Comparison of actual execution time per iteration for several block - tile
sizes for gemm (matrix size = 1024 ∗ 1024).

the profiling and the prediction algorithms completely different from Pradelle et al.’s
work.

In the context of GPU computing, the problem of statically generating efficient
code is crucial: decisions to be taken by the compiler are more difficult than for mul-
ticore CPUs. There are many hardware constraints of GPUs that need to be taken
into account to generate the best performing code, such as choosing the right block
size, avoid conflicting memory accesses in the generated kernels, minimize the memory
transfers between main memory and device memory, etc. Different versions can provide
the best performance depending on the context. Figure 4.1 depicts the performance
variations of gemm with different block-tile configurations. Solid lines are associated
to code versions which exploit superscalar capabilities of GPUs. One may observe that
versions of equal block and tile size, for instance 64 ∗ 16 and 32 ∗ 32, expose similar
execution times per iteration.

According to the input data size, the same piece of code should be run on the mul-
ticore CPU in some cases and on the GPU in others, or even taking advantage of both
CPU and GPU when possible [22]. This chapter presents one of the main contributions
of this work: a reliable and precise execution time prediction of parallel loop nests on
GPUs, using profiling information. In chapter 5 we will make use of this prediction
method to distribute workload and select versions on CPU+GPU configurations.

The prediction framework that we implemented relies on three stages: an automatic
static code generation, an offline profiling and a runtime prediction.

4.2. RELATED WORK 71

4.1.0.1 Code generation

We used PPCG, the Polyhedral Parallel Code Generator [145] to generate different
versions of CUDA code, starting from static control loop-nests written in C. The kernels
themselves differ in the tiling that is applied to the loop nests, in the parallel schedules
– that may change the loop depths of the kernel calls –, and in the fusion or fission
applied to all statements of the loop nests. To do so, we generate the different versions
by hand, by passing adequate arguments to PPCG. Block size should be a multiple of
the warp size (32 threads in Fermi and Kepler) to only occupy full warps. The kernel
calls are also parametrized by the block size of the code to be run on GPU. We designed
python scripts to automatically generate the profiling and the prediction codes.

4.1.0.2 Profiling

At install time, the different versions are run with different parameters to measure their
execution times on the target architecture. To predict an accurate execution time, all
stages of the execution need to be considered. First, the memory copies are profiled
and a table of transfer time (in both ways) per byte is filled in. Then, the different
kernels are run with different values of the program parameters and using different grid
sizes. We deduce from these runs the average execution time per iteration, depending
on the grid size.

4.1.0.3 Prediction

At runtime, each time before running the code of the targeted loop nest, a fast predic-
tion nest is run for each version, that computes a predicted execution time using the
profiling results. Then, the fastest version is selected and run on the GPU and/or on
the CPU as presented in Chapter 5.

This chapter is organized as follows. In Section 4.2 we detail B. Pradelle et al.’s
framework. Then, the heart of our framework is presented in Section 4.3 and 4.4 for
the offline profiling and in Section 4.5 for the runtime selection. Our experiments
on the polyhedral benchmark suite are given in Section 4.6, and the perspectives in
Section 4.7.

4.2 Related Work

One of the objectives of our work is to pick the fastest GPU kernel among multi-
ple versions, differing by their performance characteristics. To achieve this goal, our
framework is able to predict execution and transfer times.

The fundamentals of our method are based on B. Pradelle et al.’s framework [120]
which chooses and executes one of the best versions of a parallel loop nest on a multicore
CPU. A python code generator prepares the code for profiling and prediction. An
offline profiling phase is in charge of evaluating the code, for instance at install time.
It produces a ranking table parametrized by the version and the number of threads.
This study demonstrates that load balance is the most impacting performance factor
on CPUs. Therefore, measurements are performed by incrementing the number of

72 CHAPTER 4. CODE VERSIONING AND PROFILING FOR GPU

Num. threads Execution time per iteration (ns)
1 1.265918
2 0.655208
3 0.439858
4 0.335243
5 0.383580
6 0.328795
7 0.343022
8 0.302826

(a) CPU gemm ranking table

Thread Num. iterations (id) Time (ns)
1 2048000 0
2 2048000 0
3 2048000 0
4 2048000 0
5 2048000 0
6 2048000 0
7 2048000 384000 ∗ 7 ∗ 0.343022
8 1664000 1664000 ∗ 8 ∗ 0.302826

0 Total: time = 4953262, 848

(b) CPU gemm prediction

Figure 4.2 – Example of a CPU ranking table and prediction for gemm.

threads up to the number of available cores. To avoid cache effects, iteration domain
size is increased exponentially until two consecutive execution times per iteration show
stability.

At runtime, as the considered loop nest is reached, the execution flow is trans-
ferred to the prediction code. Simplified versions of the loop nest count the number of
iterations performed by each thread. Then, it computes the number of overlapping it-
erations per quantity of threads. To obtain an approximated execution time the result
is multiplied by the corresponding value in the ranking table. The computation can be
synthesized as:

time =
C
∑

i=1

(iti − iti+1) ∗ rki

where time represents the approximated execution time of the loop nest, C the number
of cores, iti the number of iterations per thread quantity i, and rk the ranking table
storing the average execution time per iteration for i active threads. Note that itC+1 =
0. Figure 4.2 presents an example of CPU execution time prediction.

Finally, the version of the code that takes the least time is executed. While these
algorithms ensure efficient load-balance on multicore CPUs, we had to design new
profiling and selection methods to adapt to the GPU performance characteristics.

4.3. FRAMEWORK OVERVIEW 73

Extract

scop

#pragma scop

for(...)

 for(...)

 for(...)

#pragma endscop

/* scop */

GPU_select(...);

/* endscop */

Offline profiling

Profile

kernels

Profile

memcpy

version 0

memcpy

duration

Ranking

table

Bandwidth

table

Runtime prediction

+

Kernel

duration

version 2

version 0version 1

Application binary

object file

...

/* scop */

call GPU_select(...)

/* endscop */

...

Static code generation

Build

templates

void scop_0(...)

Launch

PPCG

Execution

configuration

2

Profile files

Figure 4.3 – Global framework workflow overview.

4.3 Framework overview

Our framework relies on three consecutive stages which we will develop thoroughly. It
is summarized in Fig. 4.3.

As a first step, multiple and semantically equivalent versions of parallel loop nests
are generated statically. For this purpose, we rely on PPCG, a source-to-source poly-
hedral compiler [145]. It produces CUDA host and device code from static control
loops written in C. To comply with the CUDA model, multidimensional parallelism is
extracted from the tilable bands. The tiles are then mapped to blocks and scanned
by the threads. Tile and block sizes are independent, thus allowing more flexibility
in finding an efficient combination. For minimizing global memory access contention,

74 CHAPTER 4. CODE VERSIONING AND PROFILING FOR GPU

data reusability is detected and appropriate shared memory code is generated. While
applying complex transformations to the input code, PPCG allows users to provide
hints on the tile and block sizes and scheduling policy. These parameters are stored in
a file and passed to PPCG for generating the code versions.

We slightly modified PPCG so that it outputs context and iteration domain infor-
mation of the considered kernels. For each of them, it furnishes the loop nest parameters
involved in the sequential and parallel dimensions. We used the Barvinok counting li-
brary [147] for computing the number of times each statement is executed, expressed as
parametric piecewise quasi-polynomials. Those polynomials will be instantiated in the
profiling and prediction codes to respectively compute an average execution time per
iteration and propose an approximation of the kernels duration. It is also convenient
to keep trace of the CUDA grid size computed by PPCG. This will be useful to find
back appropriate parameters size in the profiling and seek for a precise execution time
per iteration in the prediction stage.

It is essential to prepare the code in order to evaluate the CUDA kernels and pre-
dict their duration. PPCG uses Pet, the polyhedral extraction tool [146], to extract a
polyhedral representation from the original source code. Pet builds the constraints on
the domain, fetches the loops schedule and computes memory access dependencies. It
relies on Clang as a frontend for C code. During a preprocessing phase Clang performs
macro expansion on the original source code. While allowing PPCG to produce opti-
mized CUDA kernels, this behaviour prevents us from doing measurements on codes
involving macros as parameters. Therefore, right before code compilation by PPCG, a
python script replaces those macros by plain variables. Thus, it is possible to preserve
their symbolic name for their evaluation.

With the help of the pycparser module, python scripts extract the static control
part in the original source into a function. Then, for each version to generate, PPCG is
called and fed with the function created in the previous step. The versions are given as
a set of furnished PPCG configuration files. They describe the tile size, the block size
and the scheduling algorithm to employ. The scripts collect the context and domain
information dumped by our modified version of PPCG in order to build the profiling
codes.

The second step of our framework consists in an offline profiling, that runs prelimi-
narily on the target machine. This step will be described more precisely in Section 4.4.
First, a microbenchmark models the available bandwidth between host and device.
Since bandwidth depends on the message size, we build up a table representing a
piecewise affine function of the message size. Second, the kernels are evaluated by
simulating their execution for different execution contexts. We determined multiple
performance factors that are decisive in order to make accurate predictions. Our sys-
tem neglects the kernel call overhead and cache effects by increasing the domain size.
However, the profiler needs to take the number of blocks into account to consider hard-
ware memory latencies covering. Only the parallel dimensions are fixed for a given
grid size, leaving freedom to the size of the other independent dimensions. The related
memory incidences must also be characterized by the profiler. To diminish the num-
ber of measurements the profiler detects linear portions and automatically adjusts its
behaviour.

4.4. PROFILING 75

 0.035

 0.04

 0.045

 0.05

 0.055

 0.06

 0 1000 2000 3000 4000 5000 6000 7000 8000
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

ex
ec

ut
io

n
tim

e
pe

r
ite

ra
tio

n
(n

s)

de
vi

at
io

n
(%

)

number of blocks

execution time
deviation

Figure 4.4 – Comparison (top) and deviation (bottom) of actual execution time per
iteration to empirically demonstrate commutativity of the block dimensions for gemm,
Block/Tile size: 32× 16/32× 16, NK = 2000.

The last stage of our framework, at runtime, will be described more precisely in
Section 4.5. In this step, we compute an approximation of the global execution times
for each kernel. For this purpose, the prediction code uses the ranking and bandwidth
tables forwarded by the profiler. In order to compute the execution times, the mea-
surements are interpolated linearly. Once all the versions have been evaluated the one
predicted as the fastest is run. At this point, we do not know whether it is better to
run the code on the CPU or on the GPU.

4.4 Profiling

An offline profiling stage fetches the memory bandwidth and simulates the execution
of the kernels. This step preceeds any start of the original application, at install time,
for instance. Through experiments we identified multiple factors as having an influence
on the execution.

4.4.1 Equity

To compare the different versions of the code it is essential to maintain equity. Instead
of relying on low level hardware specificities, that would become obsolete as the hard-
ware evolves, our framework manipulates execution times. Experiments highlighted
that the performance of the codes was mostly driven by the number of threads.

To design our profiler we empirically checked the grid dimension commutativity

76 CHAPTER 4. CODE VERSIONING AND PROFILING FOR GPU

properties for codes. The results demonstrated that the number of blocks per dimension
szx,y, had no major impact on code performances perf :

perf(szx ∗ szy) ∼ perf(szx′=y ∗ szy′=x)

Figure 4.4 depicts execution time per iteration and deviation when commuting the grid
dimensions, for gemm. However, it highlighted that the performance of the codes was
mostly driven by the number of threads. Thus, we decided to delegate block size to
the version of code.

During profiling, the whole kernel duration is considered, from its call up to its
completion. The recovered time is then divided by the sum of each statement domain
size. The result of this computation is an average execution time per statement.

We distinguish sequential parameters involved in the sequential loops inside and
outside of the kernels from parallel parameters appearing in the parallel dimensions.
The parallel parameters determine the grid size. In the profiler, for maintaining homo-
geneity, the parallel parameters are computed to fit the required number of blocks per
dimension. Sequential parameters are increased separately, until their impact becomes
stable. Through experiments we observed that they follow linear patterns and thus we
approximated them by linear regression. Furthermore, we observed that incomplete
tiles seem not to have much incidence on the execution time.

4.4.2 Static performance factors

Static performance factors have a constant impact over the execution of the kernel.
They are by nature taken into account by our framework as we measure execution
times. They encompass the time taken by all instructions: arithmetic and floating
point operations, branching instructions (including prediction), etc. Note that latency
to execute an instruction, arising from dependencies on the input operands, may be
variable. Also we ignore small variations due to constriction of the arithmetic units for
instance. They always represent the same quantity of time in the execution time per
iteration.

4.4.3 Dynamic performance factors

The execution time of a kernel may vary from an execution to another depending on
dynamic performance factors. External factors depict the variation in the environment,
and internal factors the kernel parameters in the application itself:

4.4.3.1 External dynamic performance factors

External dynamic performance factors may appear randomly during the execution of
the kernels, making it difficult to predict them. Their frequency and duration alter the
quality of the measurements. As an example, a running X server may cause efficiency
fluctuations on a GPU, due to its accesses to the device. We noticed that host-to-
device transfers have a performance penalty when an X server is running. Surprisingly,
device-to-host communications actually seemed to benefit from a running X server on

4.4. PROFILING 77

one of our testing platforms. Concurrent kernel execution, GPU polling strategy, CPU
charge or bus charge may also disturb the profiling, leading to less accuracy. Thus,
to adapt to environment changes, the profiling data may be recomputed at a given
frequency or when many wrong predictions occur. This is the only way that we take
coarse grain external dynamic factors into account.

4.4.3.2 Internal dynamic performance factors

Internal dynamic performance factors need to be addressed specifically, unlike static
performance factors. GPUs expose a complex memory hierarchy with advanced proper-
ties, such as access coalescing and SRAM memory banking. Memory access coalescing
consists in issuing many simultaneous memory transactions per warp, to compensate
the memory access latency penalty. Coalescing needs memory access patterns to respect
certain contiguity conditions, depending on the device generation. Although multiple
threads are able to access SRAM simultaneously, it is subject to bank conflicts. When
multiple threads access the same bank concurrently, accesses are serialized and data
is sent to all the threads that provoked the conflict, leading to as many broadcasts as
there are conflicts. Many other dynamic parameters can affect code performances, we
will focus on the most impacting ones.

Fermi architecture introduced an L2 cache level for global accesses and an L1 cache
level coexisting with shared memory for local accesses. In this work we mostly consider
larger problem sizes which represent the conventional use case of GPUs. In fact, prob-
lem sizes that fit in the cache levels have more chances to run faster. Moreover, for
relatively small data sizes, cache algorithms usually introduce artifacts in the measure-
ments, which may affect the prediction results. Finally, kernel calls overhead is quite
significative for very short kernels. Thus, to avoid cache effects arising out of small
problem sizes, kernel calls overhead and to alleviate coalescing and bank conflicts, the
sequential parameters (tuning the kernel size itself) are increased until measurements
become stable.

Preliminary experiments revealed that the predictor requires two dynamic perfor-
mance factors to approximate execution times accurately. The first one deals with
memory accesses contention and bank conflicts. Since the parallel parameters are
computed to best fit the required number of blocks, the memory footprint they in-
duce becomes encapsulated in the measurement. Sequential parameters need a specific
treatment since their value varies for one given grid size. This mainly stems from
memory access contention and bank conflicts. Also, their influence is not necessarily
constant. The tests have shown variations following a linear scheme for the collected
execution times per iteration. As their impact is moderate, their influence is modelled
via a linear regression function. To take this into consideration, the ranking table is
filled with linear functions of the sequential parameters.

The hardware block and warp scheduler is able to hide memory latencies by covering
the blocks or warps waiting on memory accesses with other computations. Block level
load balance is therefore the second dynamic performance factor to consider. For this,
the measurements are performed for different grid sizes. We detect the linear portions
of the measurements to improve the profiling speed. For each of these measurements
we put an entry in the ranking table, containing a linear function of the sequential

78 CHAPTER 4. CODE VERSIONING AND PROFILING FOR GPU

parameters.
Figures 4.5 to 4.8 show that the ranking table values interpolations (plain line)

overlap the measurements (dashed line) and thus capture the performance variations.
In Fig. 4.5 and 4.6, the horizontal axis represents the number of blocks and the vertical
axis the execution time per iteration in nanoseconds; the scale is logarithmic. In our
experiments, the CUDA kernel profiling duration ranges from 15 minutes to 5 hours
per code version, depending on the kernel durations and on the number of required
kernel runs.

Figures 4.5a, 4.5d and 4.6d demonstrate the incidence of sequential parameters as
the predicted and effective execution times per iteration do not perfectly overlap. Also,
we noticed that increasing or decreasing a sequential parameter value by 1 may change
the performance by more than 10%, especially around the powers of 2. Figure 4.7
highlights the fluctuations of the execution time per iteration for different values of the
sequential parameters. To accurately map the global tendency of the curve, the linear
regression computation has to get rid of noisy measurements.

4.4.3.3 Memory transfers

Memory transfer bandwidth is closely dependent on the underlying hardware. Moth-
erboard specifications and data bus capabilities may have a strong influence on the
available throughput. In the case of multi-GPU systems, PCI express lanes could be
shared accross the graphics cards, thus drastically increasing the transfer time.

Figure 4.8 depicts the bandwidth as a function of the data size, for an Nvidia GTX
680 and an Asus GTX 590. Both devices were put into second generation PCI express
slots. The observed throughput differences between the cards mainly reside in the lane
width negotiation. Indeed, the GTX 590 is assigned only half of the bus link size (x8)
due to the presence of another graphics card.

Through investigation, we observed that the bandwidth is not symmetric: host-
to-device and device-to-host throughput can noticeably differ as depicted by Fig. 4.8.
On the presented plot, the maximum gap between the two transfer directions is of 20
percent. Therefore, we will compute a bandwidth table per transfer direction. Besides,
bandwidth is not an affine function of the transferred data size. Indeed, throughput
grows and tends to the asymptotic bandwidth as we increase the size of the data. Small
transfers achieve distinctly lower performance, as expected.

These parameters need to be taken into consideration, especially for codes that are
bound by communications between CPU and GPU, such as transpose, gemver, bicg or
covariance in the PolyBench suite [118]. The evaluation consists in launching a series
of measurements on the target machine. Presently, as PPCG (version 0.01) does not
take advantage of DMA, we only focus on non-pinned memory. Memory bandwidth is
independent of the running codes, and thus it is not necessary to measure it for each
code version.

To ensure prediction accuracy it is important to consider the bandwidth variations.
A good compromise consists in modelling it as a piecewise affine function. A dedi-
cated microbenchmark collects the bandwidth measurements for various message sizes
to transfer. The algorithm starts by evaluating the bandwidth for a message size of 1
byte. Further measurements are performed by increasing the message sizes with a fixed

4.4. PROFILING 79

 0.01

 0.1

 1

100 101 102 103 104 105

actual (1024)
profiled (1024)

(a) gemm (seq.: 1024)

 0.01

 0.1

 1

100 101 102 103 104 105

actual (2000)
profiled (2000)

(b) gemm (seq.: 2000)

 0.01

 0.1

 1

100 101 102 103 104 105

actual (4000)
profiled (4000)

(c) gemm (seq.: 4000)

 0.1

 1

 10

100 101 102 103 104 105

actual (1024)
profiled (1024)

(d) syrk (seq.: 1024)

 0.1

 1

 10

100 101 102 103 104 105

actual (2000)
profiled (2000)

(e) syrk (seq.: 2000)

 0.1

 1

 10

100 101 102 103 104 105

actual (4000)
profiled (4000)

(f) syrk (seq.: 4000)

Figure 4.5 – Comparison between profiled and measured execution times per iteration
(1).

stride. As the algorithm progresses, it computes linear regression functions with the
preceding points. If consecutive points follow an affine pattern, the stride is increased
and measurements continue. A measurement is determined as belonging to the func-
tion if the gap between the expected bandwidth, computed by solving the regression
function and the real measurement does not exceed ten percent. In the case where
this condition is not fulfilled, the stride is divided and we start back at the previous
measurement in order to fetch the possible intermediate variations. The use of least
square approximation allows a reduction in the incidence of noise in the measurements
and enables the system to take proper decisions. This algorithm continues until it
reaches the memory size of the GPU.

80 CHAPTER 4. CODE VERSIONING AND PROFILING FOR GPU

 0.1

 1

 10

100 101 102

actual (4000)
profiled (4000)

(a) mvt (seq.: 4000)

 0.1

 1

 10

100 101 102

actual (6000)
profiled (6000)

(b) mvt (seq.: 6000)

 0.1

 1

 10

100 101 102

actual (8000)
profiled (8000)

(c) mvt (seq.: 8000)

 0.1

 1

 10

100 101 102

actual (128)
profiled (128)

(d) doitgen (seq.: 128)

 0.1

 1

 10

100 101 102

actual (256)
profiled (256)

(e) doitgen (seq.: 256)

 0.1

 1

 10

100 101 102

actual (512)
profiled (512)

(f) doitgen (seq.: 512)

Figure 4.6 – Comparison between profiled and effective execution times per iteration
(2).

We show the accuracy of our method by showing the real and profiled measures in
Fig. 4.8. As can be observed, the profiled piecewise affine curve closely follows the real
transfer curve on two test platforms, and thus guarantees the quality of the subsequent
predictions.

4.4.3.4 Kernel execution

Every kernel is evaluated by simulating its execution and modelling its behaviour, as
shown in Fig. 4.9. To fetch the hardware capabilities the profiling is run directly on
the target machine. Unlike some other methods which rely on hardware counters, our
system expresses results as execution times, which ensures portability. A ranking table

4.4. PROFILING 81

 0.01

 0.1

 1

 64
 128

 192
 256

 320
 384

 448
 512

 576
 640

 704
 768

 832
 896

 960
 1024

 1088
 1152

 1216
 1280

 1344
 1408

 1472

(e
)x

ec
ut

io
n

tim
e

pe
r

ite
ra

tio
n

(n
s)

(p)arameter value

e=f(p)

(a) Evolution of execution time per iteration on sequential param-
eter variation for syrk, Block/Tile size: 32× 16/32× 32

 0.01

 0.1

 1

 64
 128

 192
 256

 320
 384

 448
 512

 576
 640

 704
 768

 832
 896

 960
 1024

 1088
 1152

 1216
 1280

 1344
 1408

 1472

(e
)x

ec
ut

io
n

tim
e

pe
r

ite
ra

tio
n

(n
s)

(p)arameter value

e=f(p)

(b) Evolution of execution time per iteration on sequential param-
eter variation for syrk, Block/Tile size: 32× 16/32× 16

Figure 4.7 – Sequential parameters influence for different tile configurations for syrk.

contains functions which correspond to execution times per iteration.

Algorithm 4.1 details the functioning of the profiling. The kernels are evaluated
outside any sequential enclosing loop. We consider each kernel total execution time,
from the kernel call to its termination. Before execution, arrays are filled with arbitrary
values. The device is reset after each evaluation to avoid any incidence on the next run.
The execution time per iteration is computed by dividing the kernel execution time by
the sum of the number of iterations of each statement [147]. The result is expressed as
an average statement execution time per iteration, which we refer to as execution time
per iteration.

82 CHAPTER 4. CODE VERSIONING AND PROFILING FOR GPU

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

10-4 10-3 10-2 10-1 100 101 102 103 104 105 106 107

ba
nd

w
id

th
 (

M
B

/s
)

size (KB)

real dev-host GTX590
real host-dev GTX590

prof. dev-host GTX590
prof. host-dev GTX590
real dev-host GTX680
real host-dev GTX680

prof. dev-host GTX680
prof. host-dev GTX680

Figure 4.8 – Bandwidth evaluation on Asus P8P67-Pro motherboard with Asus GTX
590 GPU and Asus P8P67-Deluxe with Nvidia GTX 680 GPU.

The profiling code performs different measurements by controlling the grid size.
Parallel parameters are calculated thanks to piecewise affine functions counting the
iterations of the parallel dimensions. The combination of parameter values that first
fit the grid size in each dimension is selected.

Due to the potentially high number of combinations, it is necessary to restrict the
profiling domain to representative data. We use the grid commutativity property in
order to avoid repeating measurements for the same number of blocks.

In addition, the profiler detects linear patterns in successive measurements. To that
end, it computes the linear regression of some previous measurements. In this case,
the stride is increased by a function of the error.

The behaviour observed in empirical measurements suggests that the execution
time per iteration follows a piecewise affine function, see Fig. 4.1. More specifically the
curves generally follow a sawtooth shape for the lower grid sizes. They have certain
characteristics allowing to bound the profiling space. In fact, the profiler detects linear
patterns in successive measurements. For a small number of CUDA blocks, the curve
presents strong sawtooth variations. As the hardware is able to more efficiently cover
memory latencies with computable blocks, this behaviour tends to fade. Eventually,
execution time per iteration stabilizes for higher number of blocks. The profiler stops
when it reaches the maximum number of blocks supported by the hardware.

Let F be a linear regression function computed with the least squares method,
on the N last measured points (N = 5 in the current implementation). A point
p is said to belong to the regression function, if the distance of p to the regression
function, denoted D(p.y,F(p.x)), is lower than an arbitrary threshold (10% in the
current implementation). Note that the deviation is accumulated to consider weakly

4.4. PROFILING 83

Figure 4.9 – Profiling flow chart.

84 CHAPTER 4. CODE VERSIONING AND PROFILING FOR GPU

Algorithm 4.1 Profiling algorithm
for gdim← 1 to P do

for gdimx ← gdim ∗ S to (gdim− 1) ∗ S do

for gdimy ← gdim ∗ S + 1 to (gdim− 1) ∗ S do

if is_dim_nok(wdim, gdimx, gdimy) then

seek_dim(wdim, &gdim)
continue

end if

set_parallel_param_size()
while is_measurement_nok do

init_array(..., memsz0)
init_array(..., memsz1)
cudaMemcpy(..., memsz0, HostT oDevice)
cudaMemcpy(..., memsz1, HostT oDevice)
start← time()
kernel0 <<< dim3(gdimx, gdimy), dim3(dim0x, dim0y) >>> (...)
cudaDeviceSynchronize()
end← time()
p.x← gdimx ∗ gdimy

p.y ← (start− end)/cardkernel0(...)
CHECK_SEQUENT IAL_P ARAMS()
cudaDeviceReset()

end while

NEXT _GRID_SIZE()
end for

end for

end for

fluctuating curve vertices. The system then proceeds to a sixth measurement, two
options are available. The measurement belongs to F , next measurement is performed
for a larger grid. Otherwise, it is compulsory to recheck the preceding intervals in case
fluctuations would have been missed.

The interval between measurements is computed by increasing a stride, expressed
as a number of blocks, by a certain percentage. Either the point belongs to the regres-
sion function, and in this case the stride between two measurements is increased by
T (E(p.y,F(p.x))) or the profiler needs to take actions. T (x) is an inverse function of
the error, defined on 1. ≤ T (x) ≤ 2., so that the algorithm progresses slowly when the
error is high, and quickly when the error is low. Also, the pseudo-random behaviour of
the function limits the influence of side effects which would arise on periodic patterns
(i.e. number of blocks being a power of two) with a fixed pattern.

In the other case, the algorithm may have missed inflections, not only between the
current point C, and C−1, but also potentially between the M last points. Intuitively,
such cases can be handled with a sliding window. The idea is to jump back to the C−J
point with J = stride/(2 ∗ N), 1 ≤ J ≤ N and to divide the stride by 2 ∗ N . The
integer division by 2 ∗N allows to adjust the window size according to the stride; the
larger the stride the larger the window. Note that, the stride does not strictly follow
square function due to systematic measurements error.

The most accurate profiling results were obtained for N = 5. Note that this mod-
erately impacts the duration of the profiling. Also, on recovery, the stride is increased

4.4. PROFILING 85

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

101 102 103 104

actual
profiling (sliding window - 10%)

profiling (10%)
profiling (5%)

Figure 4.10 – Demonstration of the capability of our profiler to map the actual execution
time per iteration measurements (solid) for gemm, Block/Tile size: 16 × 16/128 ×
128, NK = 2000. The profiler makes use of a parametric sliding window to perform
measurements in a wider spectrum (solid, cross). This configuration is compared to a
single point based decision, with a maximum allowed deviation of 10% (dashed, square)
and 5% (dashed, circle).

by a percentage of the number of blocks in the interval in which the measurement
falls. This reduces the profiling duration, especially when there is a failure for a larger
number of blocks. This behaviour is synthesized in Algorithm 4.2.

Figure 4.10 demonstrates the capability of our profiler to accurately map the linear
interpolation to the actual execution times on three experiments. Also, it provides a
comparison to three decision methods (easily changeable via parameters). The first
profiling (sliding window - 10%) is based on a parametric sliding window and takes its
decisions on the N = 5 previous points. If a deviation is detected, the next measure-
ment is performed right after the (C − J)th measurement. In the 30 block range, the
profiler sliding window strategy missed the edge, since it converged to a different set
of sequential parameters to perform the measurements. Small inflections are left aside
starting at the 200 blocks range, however, this does not harm much the accuracy of
predictions. Also, this could be captured by restraining the maximal deviation. The
second and third profiling which respectively accept a maximal deviation of 10% and
5%, only rely on the previous measurement to take decisions. Fluctuations are clearly
missed in the block interval [60, 400]. These experiments show that it is insufficient to
only tune the maximal deviation, as variations may be missed. The sliding window
technique provides a mean to detect most of the variations and thus provide better
accuracy at runtime. By the way, getting exactly the same results from one simula-
tion to the other is difficult due to the indeterministic nature of the profiler. Some

86 CHAPTER 4. CODE VERSIONING AND PROFILING FOR GPU

Algorithm 4.2 Grid size calculation, for next measurement

procedure NEXT_GRID_SIZE()
if p.y ∈ F then

stride← stride ∗ T (E(p.y,F(p.x)))
wdim← p.x + stride

else
R← fast_recovery(C, C − 1)
J ← stride/(2 ∗N) ⊲ 1 ≤ J ≤ N
stride← max(J, R) ⊲ stride ≥ 1
wdim← seek_point_x(C − J)

end if
end procedure

inaccuracies also arise from sequential parameters.
Sequential loops influence is characterized by making the sequential parameters

vary. They are incremented by a fixed stride until stabilization. To prune measurement
artefacts, a linear regression is calculated and an average error is computed. If the
error is below a given threshold, the linear regression is validated. If it is not, the
measurements continue, and the stride can be increased if the number of measurements
becomes too large. In case no stabilization was found, half of the points are removed
and measurements continue. The functioning is described in Algorithm 4.3.

Measures are considered stable when the geometric average of deviation to the linear
best fit tends to 1. The profiler generates linear regression functions with combinations
of points obtained for a fixed CUDA grid size. For each combination, a certain number
of points are eliminated (20% in the current implementation). The linear regression
function exposing the lowest standard deviation is selected and put in the ranking table.
The presumably bad points are blacklisted to avoid them in the next measurements.

Furthermore, we exploit the parallelism of these computed linear regressions for
consecutive grid sizes. Thus, it is possible to limit in-depth analysis to some grid sizes,
in order to hold in profiling duration.

4.4.4 CUDA grid size evaluation

In CPU code parallelization, it is a common practice to only parallelize the outermost
parallel loop. On CUDA architectures, the thread execution grid is multi-dimensional;
consecutive enclosed parallel loops may be mapped to the CUDA grid. The CUDA
grid size is expressed by the product of the number of blocks in each dimension, which
forms a rectangular box. To most closely fit the potentially encountered grid sizes, the
profiler must generate and perform measurements for a wide variety of grid sizes. The
grid size, advocated by the profiler for the next measurement, is 1-dimensional (see Al-
gorithm 4.2). In fact, predicting the total number of blocks for the next measurement,
rather than each dimension size separately, simplifies decision making. Otherwise, one
would have to increase the n dimensions and end up with a grid size that grows expo-
nentially. Moreover, in the ranking table, we associate the total number of blocks to
the measurement. This has two implications: the profiler must size the grid dimensions

4.4. PROFILING 87

Algorithm 4.3 Sequential parameters measurement noise removal
procedure EliminateNoise(f , p, rm, n)

ev = 0.2 ∗ n
combinations(f, p, rm, n, ev)

end procedure

procedure CHECK_SEQUENTIAL_PARAMS()
EliminateNoise(f, p, rm, n)
if is_stbl(f, p, n) = False then

#Check n the number of measurements in array p - Remove and drop noisy points
if (n mod V) = 0 then

remove_bad_pt(rm, p)
drop_pt(p, rm)

end if

#Check total number of measurements tn for current grid size (W = 40)
#Remove half of the points
if (tn mod W) = 0 then

rm = half(p, n)
end if

else

is_measurement_nok ← False
end if

SEQ_P ARAM = NEXT _SEQ_P ARAM()
end procedure

so that the total number of blocks tends to the profiler request, and to a lesser extent,
size the dimensions to avoid large disparities. Two variants were studied:

4.4.4.1 Divisors lookup

Let us take an integer n > 1, which does not belong to the set of prime numbers. The
problem is to find the multiples of n. We use the property in that, dividing n by a
multiple gives another multiple of n. In the generated set take the pair of multiples,
which maximizes a and b for the product n = a ∗ b. This product has the property
of giving an exact solution to the number of blocks to reach. In a systematic integer
divisors enumeration algorithm, the first multiple a ≤ √n with a ∈ N

∗ starting from√
n is picked. The expectations are that the gap in blocks, between the x-dimension and

the y-dimension is reasonably low. To handle disparity between the grid dimensions
and the prime numbers case, one can find a more suitable grid size, close to the one
requested by the profiler. For problems with dimensionality exceeding 2, that same
approach may be employed recursively on the operands, b and/or a.

4.4.4.2 Iterative lookup

The current implementation uses an iterative approach to find suitable grid dimension
sizes. For this purpose we generate the grid sizes with several enclosed loops, in a
similar way to a tiling. An external loop gives the current search tile, enclosed loops
scan the tiles. Search stops at first suitable grid size, i.e. a grid size smaller than- or

88 CHAPTER 4. CODE VERSIONING AND PROFILING FOR GPU

equal to the one requested by the profiler. As the profiler grid size request may be
lower or higher, the current search tile index is adjusted. Adjusting the search tile size
has an incidence on the precision of the lookup ; the gap between two consecutive grid
sizes as we go increase the tile size. A window size of 1 comes down to generating a
squared grid size. By the way, the total number of blocks supported by the hardware
is assumed to be equal to 65535. To summarize, the following combinations of grid
dimensions are generated to suit the profiler grid size request for a 2D kernels with
gdim = 1 and a window size of S = 10:

for gdim = 1, ∀(dimx, dimy) ∈ {10, 9, ..., 2, 1} × {11, 10, ..., 2, 1},

dimx ∗ dimy = {110, 90, ..., 3, 2, 1}

4.5 Runtime prediction

Our code generator automatically replaces the original static control part of the pro-
gram with a function call to the evaluation of the versions: GP U_select().

The function calls the prediction code and then executes the fastest version on
GPU. The predictor computes a global approximate execution time, equal to the sum
of all the predicted execution and transfer times per code version. At this time the
execution context is entirely known. Thus, it is possible to instanciate the Ehrhart
polynomials representing the domain size and the required grid size. The execution
time per iteration, estimated for the current number of blocks, is fetched and multiplied
by the number of iterations. The transfer time is computed from the size of the data
to copy. As we reach a faster version, a pointer to the kernel wrapper is updated.

4.5.1 Prediction

Simplified loop nests serve to compute the global execution time of a code version.
They are built by replacing the original kernel and memory transfer calls with their
associated calculation, as shown in the example Fig. 4.11. The transfer time is com-
puted by ttime() which makes a linear interpolation of the measurements provided by
the profiler. Function ttime() takes as input the bandwidth table bt, the size of the
message memsz, and, as host-to-device and device-to-host bandwidth are asymetric a
third parameter indicates the direction of the transfer.

Function etime() calculates one kernel execution time, using its associated ranking
table rk and domain size domsz. First, it fetches the functions of the sequential
parameters by seeking for an interval of number of blocks to which gridsz belongs.
The functions are solved for the average sequential parameters value, seqsz. The
results are then interpolated to compute the intermediate execution time per iteration.
This latter value is multiplied by the domain size to deduce an execution time. The
sum of the transfer time and the execution time gives an approximated total execution
time.

To illustrate the functioning of the predictor we provide an example with the ranking
tables in Table 4.1-4.2. Each ranking table corresponds to a specific version of gemm.

4.5. RUNTIME PREDICTION 89

function Original()
cudaMemcpy(..., memsz0, HostToDevice)
cudaMemcpy(..., memsz1, HostToDevice)
for ... do

kernel1 <<< (blk0, blk1), ... >>> ()
end for
kernel2 <<< (blk2, blk3), ... >>> ()
cudaMemcpy(..., memsz2, DeviceToHost)

end function
(a) Original code

function Prediction(rk, bt)
e← 0
t← 0
t← t + ttime(bt, memsz0, hosttodevice)
t← t + ttime(bt, memsz1, hosttodevice)
for ... do

e← e + etime(rk0, blk0 ∗ blk1,
domsz0, avg(seqsz0))

end for
e← e + etime(rk1, blk2 ∗ blk3, domsz1,

avg(seqsz1))
t← t + ttime(bt, memsz2, devicetohost)
return (e + t)

end function
(b) Prediction code

Figure 4.11 – A code version (a) and its associated prediction code (b).

Table 4.1 – Ranking table version 1 (v1)

grid sz reg. fct

1248 -0.000000*seqsz+0.037797

1681 -0.000000*seqsz+0.037609

2303 -0.000000*seqsz+0.037665

3068 -0.000000*seqsz+0.037559

Table 4.2 – Ranking table version 2 (v2)

grid sz reg. fct
567 -0.000000*seqsz+0.038413
841 -0.000000*seqsz+0.038183

1147 -0.000000*seqsz+0.038076
1681 -0.000000*seqsz+0.038060

90 CHAPTER 4. CODE VERSIONING AND PROFILING FOR GPU

 0

 1e+06

 2e+06

 3e+06

p r p r p r p r p r p r p r p r p r p r p r p r p r p r p r p r p r

tim
e

(n
s)

execution time
transfer time

gesumv3
gesumv2

gesumv1
mvt3

mvt2
mvt1

gemver3
gemver2

gemver1
bicg3

bicg2
bicg1

gemm3
gemm2

gemm1
syrk3

syrk2
syrk1

Figure 4.12 – Comparison between prediction (left bar) and real (right bar) execution
times on PolyBench with small dataset on GTX590.

These versions differ by their block sizes, blkv1 = (16, 32) for version 1, blkv2 = (32, 32)
for version 2. The loop nest parameters are set to 1024 in the original source file, thus
seqsz = 1024. The grid size of each version is equal to, gridszv1 = 10242

16∗32
= 2048 and

gridszv2 = 10242

322 = 1024.
To begin with, the predictor seeks an interval in the ranking table, such that

gridszv ∈ [gridszv,lb; gridszv,ub]. The execution times per iteration are interpolated
by solving the lower and upper bound regression functions, itv1 = rkv1,lb1 + (rkv1,ub1 −
rkv1,lb1) ∗ ((gridszv1 − gridszv1,lb)/(gridszv1,ub− gridszv1,lb)) = 0, 037642 ns and itv2 =
0.038119 ns. Then, a prediction of the execution time is computed by using the do-
main size, ev1 = itv1 ∗ domszv1 = 0.037642 ∗ (10242 + 10243) ≃ 40, 457, 260 ns and
ev2 = itv2 ∗ domszv2 ≃ 40, 969, 935 ns.

Bandwidth table interpolation enables us to compute the transfer time, t = 2 ∗
3, 326, 162 + 3, 324, 061 = 9, 976, 385 ns; two transfers from host to device of 3, 326, 162
ns and one from device to host of 3, 324, 061 ns. The transfer time is similar for both
kernels, thus the total execution times can be computed, totv1 = ev1 + 9, 976, 385 =
40, 457, 260 + 9, 976, 385 = 50, 433, 645 ns and totv2 = 50, 946, 320 ns. Consequently,
version 1 is selected since it has been determined as being the fastest version.

4.6 Experiments

4.6.1 Testbed

The first test platform is composed of two Asus GTX 590 plugged into an Asus P8P67-
Pro motherboard. Each GTX 590 card is composed of two GPUs sharing 3 GB of
GDDR5 and relying on the Fermi architecture. Note that for the benchmarks only a
single GPU was used. Each graphics processor on the GTX 590 embeds a total of 512
Streaming Processors1 (16 SM ∗ 32 SP). The motherboard provides a PCIe 2.0 x16
bus for connecting the peripherals. The two graphics card individually support PCIe
x16 and share half of the bus width (x8) in our configuration. The host processor is

1SM: Streaming Multiprocessors, SP: Streaming Processors

4.6. EXPERIMENTS 91

 0

 1e+08

 2e+08

 3e+08

p r p r p r p r p r p r p r p r p r p r p r p r p r p r p r p r p r p r

tim
e

(n
s)

execution time
transfer time

gesumv3
gesumv2

gesumv1
mvt3

mvt2
mvt1

gemver3
gemver2

gemver1
bicg3

bicg2
bicg1

gemm3
gemm2

gemm1
syrk3

syrk2
syrk1

Figure 4.13 – Comparison between prediction (left bar) and real (right bar) execution
times on PolyBench with standard dataset on GTX590.

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

 3.5e+09

tim
e

(n
s)

execution time
transfer time

gesumv3
gesumv2

gesumv1
mvt3

mvt2
mvt1

gemver3
gemver2

gemver1
bicg3

bicg2
bicg1

gemm3
gemm2

gemm1
syrk3

syrk2
syrk1

Figure 4.14 – Comparison between prediction (left bar) and real (right bar) execution
times on PolyBench with large dataset on GTX590.

an Intel core i7-2700 with 4 hyperthreaded cores. For this platform, the codes were
compiled with the CUDA 5.0 compilation tools.

The second test platform contains one Nvidia GTX 680 plugged into an Asus P8P67-
Deluxe. The GTX 680 GPU is based on the Kepler architecture and embeds a total
of 1536 Streaming processors (8 SM ∗ 192 SP) connected with 2 GB of GDDR5. This
series of GPU support dynamic overclocking and adapt their clock frequency from 1006

92 CHAPTER 4. CODE VERSIONING AND PROFILING FOR GPU

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

tim
e

(n
s)

execution time
transfer time

gesumv3
gesumv2

gesumv1
mvt3

mvt2
mvt1

gemver3
gemver2

gemver1
bicg3

bicg2
bicg1

gemm3
gemm2

gemm1
syrk3

syrk2
syrk1

Figure 4.15 – Comparison between prediction (left bar) and real (right bar) execution
times on PolyBench with small dataset on GTX680.

 0

 1e+08

 2e+08

 3e+08

 4e+08

tim
e

(n
s)

execution time
transfer time

gesumv3
gesumv2

gesumv1
mvt3

mvt2
mvt1

gemver3
gemver2

gemver1
bicg3

bicg2
bicg1

gemm3
gemm2

gemm1
syrk3

syrk2
syrk1

Figure 4.16 – Comparison between prediction (left bar) and real (right bar) execution
times on PolyBench with standard dataset on GTX680.

 0

 1e+09

 2e+09

 3e+09

 4e+09

tim
e

(n
s)

execution time
transfer time

gesumv3
gesumv2

gesumv1
mvt3

mvt2
mvt1

gemver3
gemver2

gemver1
bicg3

bicg2
bicg1

gemm3
gemm2

gemm1
syrk3

syrk2
syrk1

Figure 4.17 – Comparison between prediction (left bar) and real (right bar) execution
times on PolyBench with large dataset on GTX680.

to 1058 Mhz depending on the load and TDP. The motherboard provides a PCIe 2.0
x16 bus for connecting the peripherals. The host processor is an Intel core i7-2600 with

4.6. EXPERIMENTS 93

4 hyperthreaded cores. For this platform, the codes were compiled with the CUDA 4.0
compilation tools.

For our tests, we used the -O3 optimization flags and compiled the code directly
for the target architecture. The codes used a partitioning of 48 KB of shared memory
and 16 KB of L1 cache.

4.6.2 Prediction accuracy

The benchmarks are taken from the polyhedral benchmark suite [118]. We tested our
predictor on three versions of each of the six codes that we run: syrk, gemm, bicg,
gemmver, mvt and gesummv.

Figures 4.12 to 4.17 illustrate the accuracy of our prediction. Left hand side of each
couple of bars is the predicted execution time, and the right hand side is the measured
execution time. Each bar is divided into two components: a communication time and
a kernel execution time.

We notice that our predictor often underestimates the communication time for small
datasets (Fig. 4.12 and 4.15), probably due to some overhead of the communication
function that was not taken into account by the profiling. However, and even for those
very small datasets and short execution times (around 1ms total execution time), the
estimation is pretty accurate. Notice also that those inaccuracies are similar for all
three versions of each code, so the order from the fastest to the slowest version is
preserved, which ensures that the best one will be elected by the runtime selection.

For the standard datasets (Fig. 4.13 and 4.16), only one example fails to be predicted
accurately: syrk, version number 3 on GTX 590. This is due to the size of the dataset
being equal to a power of 2 in this example: version 3 has a very different execution time
than the neighboring values of dataset sizes that were profiled, and as a consequence,
the predicted execution time is inaccurate. This may happen sometimes, but only in
very specific cases where the dataset size conflicts with some specific configuration of
the GPU. The execution times of the two other versions of syrk are predicted accurately.

Predictions are very accurate on GTX 590: within a margin of error of 30% for
the small datasets, and less than 4% percent for the standard datasets when excluding
the atypical syrk3 example. The average error on the standard dataset is 2.3%, and
it drops to 1.13% when excluding syrk3. We made similar experiments on the large
dataset and got an average error of less than 2%.

On GTX 680 (Fig. 4.15 to 4.17) the average error for standard and large dataset
is of 5.8%. In comparison with the GTX 590 the slight loss of accuracy of the pre-
dictions might be due to the GPU dynamic overclocking capability. Regarding the
small dataset, the average error is of 15% which is satisfactory considering that these
measures are more vulnerable to execution variations. These experiments demonstrate
that our method keeps relevant in case of hardware dissimilarities thanks to overall
very accurate predictions.

We measured that the runtime prediction overhead does not exceed 15µs per ver-
sion, for the considered codes. This ensures that our prediction code has a negligible
impact on the code performance for those codes.

Our experiments show that different versions may achieve the best performance

94 CHAPTER 4. CODE VERSIONING AND PROFILING FOR GPU

for different dataset sizes: gemver1 is fastest for the small dataset (Fig. 4.12) while
gemver3 is the fastest for the standard dataset (Fig. 4.13) on GTX590. As we compare
Fig. 4.13 and Fig. 4.16, it is noticeable that some code versions perform differently on
the two architectures: bicg1 vs bicg3, gemver3 vs gemver2, mvt1 vs mvt2, gesumv1 vs
gesumv2, are respectively the fastest on GTX 590 vs GTX 680. syrk1 and gemm1 are
the fastest on both architectures.

4.7 Perspectives and conclusion

We presented a method that is capable to select the most efficient version of a code on
the GPU. The selection is based on a very accurate prediction of the kernel transfer
and execution times on GPU, based on an offline preliminary profiling. While there
are many other methods to tune programs for GPUs, none have demonstrated such an
accuracy and portability to our knowledge.

Despite the fact that it is currently written in CUDA we are confident it could easily
be transposed on AMD devices, for instance by using the Ocelot libraries. Our future
plans include improvements in reducing the profiling duration. The profiling could be
done on some predefined configurations and distributed to the end users, who would
only need to select the closest one to their architecture. However, this would probably
lead to some inaccuracies.

The complexity induced by accurately profiling GPUs required several adaptations
and changes to Pradelle et al. method. The prediction mechanism is the cornerstone
of the thesis. It brings capabilities to predict execution times, enabling a broad range
of opportunities in heterogeneous resource exploitation. The primary objective of the
work was to produce accurate predictions. Not only, is it a requirement to reliably select
the best version of a code in a multiversioning context, but also to enable heteroge-
neous computations. The reduction in profiling time, induced by the complexity of
the performance mechanism of GPUs could be brought further. For instance, through,
partial execution of the iteration domain, when the target code permits: for regular
loop nests, in the absence of phases. These elements could be automatically detected
by the compiler, in order to produce an adapted profiling code. Also, periodicity de-
tection mechanisms may help to bound profiling. The time prediction method was
designed assuming that transfers and kernel calls are synchronous. In extension to
the current work, one could consider parallel execution streams (e.g. data movements
hiding, simultaneous kernel execution). Moreover, current solution requires to generate
the versions manually by selecting the size of a block, tile or loop schedule. A compiler
may automatically generate a set of versions which performance are guaranteed to be
good. Also, the improvement priority should be given to a finer consideration of the
statements in a loop nest. The presented methods, characterize an entire loop nest
and produce average execution times per iteration. Thus, this principle works well for
perfect loop nests and workload balanced problem sizes.

Chapter 5

Heterogeneous computing

The wide availability and efficiency of modern coprocessors sets heterogeneous com-
puting to a common practice. In utopia, every code would benefit from such a system
configuration. But lets have feet on the ground ! To achieve maximal performance it
is generally required to rely on automation. From a compiler perspective, it is pretty
hard to determine what applications one architecture is better at executing at. Cur-
rent state of the art automatic polyhedral parallelizers (PLUTO, PCCG, etc.) generate
code optimized towards one architecture. To get the most of heterogeneous systems,
it is mandatory to determine affinities between code and PUs. The characteristics of
a code and the workload size are the dominant factors which determine the target
architecture to be employed.

Computational intensity, hardware resource constraints (register pressure, amount
of memory, amount of functional units, etc.), propensity of code to fit the target archi-
tecture (memory access patterns, SIMD, etc.), hardware availability, energy constraints
and so on, have to be taken care of. We focus on two specific techniques to address the
utilization of heterogeneous resources: CPU vs GPU and CPU + GPU. We demon-
strate a dynamic way of running the codes on the best architecture, taking the impact
of the execution environment into account. This method consists in running CPU and
GPU specific versions of a code on the same dataset and select the fastest version.
For this purpose, we propose an early termination technique to stop the execution of
codes on CPU and GPU. We formalize an hybrid method relying on the execution
time prediction methods on CPU and GPU described in chapter 4. During an offline
profiling, several versions of a code are characterized with their target-specific profil-
ing strategy. At runtime, the code selection mechanism transparently selects the code
version minimizing the predicted execution times. In a general manner, exploitation
of all the computation resources requires to adjust the workload assigned to each PU.
In fact, to be efficient, distribution of a calculus requires to equitably share execution
times. We demonstrate a transparent scheduler guided by execution times predictions
and able, if advantageous, to select the adequate architecture or jointly use multiple
processors to perform a computation. The assigned workload is successively refined,
until predicted execution times are equivalent on all the participating processors.

Finally, we were also interested in energy savings, by demonstrating that our
scheduler can easily be extended with power metrics. The exclusion mechanism is

95

96 CHAPTER 5. HETEROGENEOUS COMPUTING

parametrized by the predicted energy consumption, computed with execution time
predictions. To achieve this, we performed coarse-grain power measurements right out
of the power socket for one specific code version serving as reference. The measured
instant power consumption is then used to estimate the energy consumed over a certain
amount of time.

5.1 CPU vs GPU execution: a dynamic approach

5.1.1 Introduction

With the profusion of alternative architectures, choosing the appropriate (co)processor
is critical to ensure the execution efficiency of a code. Statically choosing an archi-
tecture may lead to performance fluctuations, on a grid server handling several user
jobs for instance. In this section, we demonstrate a dynamic architecture selection
technique. This method simultaneously executes a code on multiple PUs and cancels
the slowest ones. There is no neat way to efficiently terminate running parallel code,
nor with OpenMP neither with CUDA.

Performance may be recorded with the actual parameter values, to build a perfor-
mance history and set task processor affinities. In general, the first run is sacrificed to
train a performance model. Also, this method can be used as a basic block to more
elaborated systems. For critical code portions, part of the workload may be executed
on CPU and GPU simultaneously to discover the fastest architecture. In that case,
the bad performing processor execution should be cancelled so that it terminates. The
actual best architecture should be chosen for the rest of the computation. The un-
derperforming PU may as well be used for other computations. A dynamic Thread
Level Speculation system (TLS), could for example be such a system. Nevertheless,
such a system provides information on which architecture to use. Finally, this selec-
tion method provides a technical solution to interrupt CUDA kernels and OpenMP
parallel code sections. Neither the CUDA API nor the Nvidia proprietary drivers nor
the nouveau drivers [99] easily expose any interface to quickly interrupt a kernel. On
the other hand, forking a process and exiting it is inapplicable as there is a 5 seconds
delay, which is unacceptable for fast kernels.

The execution performance of a program may be affected by external dynamic
performance factors. In some circumstances, execution might be preferable on another
available PU. But not only performance fluctuations are handled by this technique. In
general, it is difficult to statically determine the best architecture, as the input dataset
may have an influence on performance. As such, this technique is capable of adapting to
dynamic constraints and selecting the best architecture for the input dataset. However,
this technique adapts best to dynamicity at the price of higher power consumption. A
more power efficient technique is presented in section 5.3 with a scheduling technique
capable to select and distribute computations.

5.1. CPU VS GPU EXECUTION: A DYNAMIC APPROACH 97

procedure election(f, e, n)
r ← atomicAdd(e)
if r = −1 then

while n < T − SM ∗B do
s← poll(f)
if s = 0 then

trap()
end if

end while
end if
computation()
n← atomicAdd(n)

end procedure

Figure 5.1 – GPU kernel termination algorithm with thread election.

5.1.2 CPU vs GPU attempt

Primarily thought as an extension to the version selection framework (Chapter 4), we
propose to select the best architecture between CPU and GPU with a "fastest wins"
algorithm. To achieve this, the codes must be stopped as soon as one architecture
finishes its work. Two control threads simultaneously launch the execution on the
CPU and on the GPU. The first control thread that detects the termination of its
version is declared the winner and signals the other one to stop. If the fastest code was
run on a GPU, it is then allowed to copy the results back to main memory. This is a
first attempt to a fully dynamic way to implement a CPU vs GPU mechanism.

5.1.2.1 CPU code

We use PLUTO [25] to generate OpenMP code for the CPU parallel loop nest. But
OpenMP does not allow early exit from parallel loops. To circumvent this problem we
inserted guards at the outermost sequential loop level that prevent the inner nested
loops being executed. The condition in the guard polls a flag in main memory to know
whether or not the execution should continue. Through this method it is possible to
stop the execution with low overhead.

5.1.2.2 GPU code

Since neither OpenCL nor CUDA API provide a neat way to stop running kernels, we
implemented our own method, similar to the one we used on CPU. Modern Nvidia
GPUs are capable of directly accessing main memory (DMA). Therefore, it is possi-
ble to communicate with GPUs during kernel execution. A flag notifies the end of
the execution to the GPU. As one can expect, letting all the threads poll a flag in
main memory would cause an important overhead due to the high access latency. We
solve this problem thanks to the hardware mecanism to hide access latency. Only one
thread takes charge of the flag polling, while the others do the real computations. Once

98 CHAPTER 5. HETEROGENEOUS COMPUTING

Table 5.1 – CPU vs GPU execution times

version syrk gemm bicg gemver mvt gesummv

standard
CPU 159.8 ms 125.5 ms 26.1 ms 77.2 ms 26.4 ms 30.3 ms
GPU 100.0 ms 128.9 ms 40.1 ms 77.7 ms 40.1 ms 80.0 ms

Winner GPU GPU CPU CPU CPU CPU

large
CPU 910.4 ms 701.4 ms 88.7 ms 305.3 ms 69.7 ms 87.8 ms
GPU 699.5 ms 712.9 ms 156.8 ms 305.8 ms 164.3 ms 312.5 ms

Winner GPU GPU CPU CPU CPU CPU

a block is selected by the scheduler it is executed until the end. As mentioned ealier,
an exception to that occurs when access latency must be hidden. However, there is
no guarantee on the order in which the blocks are executed. An election algorithm,
described in Figure 5.1 takes care of choosing the right thread. To achieve this, we
increment a global variable set to −1 beforehand, with the atomicAdd intrinsic. The
first thread that executes the atomic operation sees −1 as the previous value of the
variable and is chosen to poll main memory. The other threads continue to the compu-
tation and increment another global variable n as they finish. To maintain some load
balance the polling stops whenever n reaches T −SM ∗B, T being the total number of
threads, SM the number of streaming multiprocessors, B the number of threads per
block.

5.1.2.3 Experimentations

Once the best GPU version has been selected, our system runs it simultaneously with a
CPU version. Table 5.1 depicts actual execution times for the different GPU and CPU
versions. It contains total execution times representing the duration of the codes up
to their termination. As mentioned earlier, termination may be activated prematurely:
as soon as a code finishes the other concurrent code is asked to stop. Let us illustrate
this with an example. For syrk, the kernel and transfers complete after 100.0 ms on
the GPU. Thus, a minimum of 159.8 − 100.0 = 59.8 ms were necessary to terminate
the CPU code version. For gemm the provided times seem to be more advantageous
to the CPU, although the GPU won. In this particular case, the quick termination of
the CPU code highlighted the data transfer time from the GPU. Indeed, in order to
avoid data races the CPU acknowledges the stop request so that results can be fetched
back from the GPU. Finally, the GPU wins on two codes, syrk and gemm for which it
achieves good performances.

The delay until the codes actually stop seems high in some cases, but it is not
inevitably disabling. In case the CPU wins, it can directly run another code and
reuse GPU as it becomes available again. If GPU is the winner, other threads can be
launched on the available cores. In this case, the performance hit may promote the
GPU.

Still, the overhead shows the limit of artificial techniques to stop the kernels. One of
the main problems arise when the hardware is unable hide latencies with ready blocks.
We solve this issue and elaborate on a more robust technique in section 5.1.3.

5.1. CPU VS GPU EXECUTION: A DYNAMIC APPROACH 99

Algorithm 5.1 CPU code shape after instrumentation

function CPU Parallel section()
tid← omp_get_thread_num()
threadT id[tid]← pthread_self()
time2go2bed← setjmp(threadJmp[tid])
omp_lock_unset(&threadLocks[tid])
if time2go2bed = 1 then

goto bed
end if
compute_schedule()
...
computation()
...
omp_lock_set(&threadLocks[tid])
label bed

end function

5.1.3 Early termination of CPU and GPU codes

The problem of the strategy exposed in 5.1.2 resides in monopolizing a warp for polling
the central memory. The following strategy, avoids the use of zero-copy memory to
achieve the same goal.

To avoid race conditions, each PU works on its own copy of the original arrays. On
GPU victory, the computed data are transferred to the host, and the original arrays
content is overwritten. Otherwise, arrays touched by CPU code are kept as is. The
computation is launched on separate OpenMP threads, nested parallelism activated.
To automate the code generation procedure, CPU and GPU codes are respectively
generated with PLUTO and PPCG. All the code transformations are automatically
generated from the source code.

5.1.3.1 CPU code

Cancellation points were introduced in OpenMP 4.01. The programmer can set static
cancellation points which terminate a parallel region. In order to avoid active polling,
we conjugate the use of signal handlers and long jumps. This has the advantage of high-
lighting a low overhead on outermost parallel loop nests, as only very few operations
are needed.

In that case, mostly non-outermost parallel codes are affected by the termination
handling technique exposed. The python scripts transform parallel for constructs into a
parallel section equivalent. Restriction to put a for-loop following the OpenMP pragma
is consequently relieved. Nevertheless, the workload is distributed with respect to the
original static OpenMP schedule.

On most implementations (including linux GOMP) the OpenMP runtime relies on
POSIX threads, which allows to make use of certain traditional pthread operations, in

1http://openmp.org/mp-documents/OpenMP_Examples_4.0.1.pdf

100 CHAPTER 5. HETEROGENEOUS COMPUTING

Algorithm 5.2 GPU host code shape after instrumentation

function Host code()
cudaMemcpyAsync(..., cudaHostToDevice, stream1)
if time2go2bed = 1 then

goto bed
end if
...
kernel <<< (blk0, blk1), ..., stream1 >>> ()
cudaStreamSynchronize(stream1)
if time2go2bed = 1 then

goto bed
end if
...
label bed

end function

particular signal handling. At the beginning of a parallel code section, the threads are
registered with their system-wide thread ID and save their execution context (program
counter, stack frame, stack pointer, etc.) in prevision to a long jump, see Algorithm 5.1.
When the GPU completes a computation first, it executes a function initiating the
thread cancellation. Every CPU computing thread is notified with a POSIX signal
which redirects its current execution to a signal handler. The signal handler then
performs a long jump back to the end of the parallel section2. Thus, the threads are
not cancelled, to avoid undefined behaviours, but their execution flow is redirected to
the end of the parallel section. Also, a flag is set to indicate the artificial termination
of the parallel section. Again, out of a parallel section, the execution flow is redirected
to the end of the CPU code function.

However, threads that returned from the computation function must not be forced
back in the parallel section. In that case, a long jump would corrupt the stack and
result in undefined behaviour. Also, following the standard, OpenMP requires longjmp
not to violate the entry/exit criteria. Non-parallel sections are thus protected by a lock
to forbid this behaviour. As a computing thread enters or leaves the parallel section, it
unsets or sets its associated lock. On termination request, if free, the lock is set so that
the computing thread cannot leave the function. To avoid deadlocks, the termination
function tests the lock beforehand, so that it is only set if it is free.

5.1.3.2 GPU code

To control the execution of CUDA kernels and favour quick reaction, an if condition is
injected into the second loop level. Thus, every iteration of the instrumented loop all
the active threads poll a flag located in the device off-chip memory. As demonstrated
in Fig. 5.2 zero-copy memory latency is quickly increasing as the number of threads ac-
cessing memory increases. One-dimensional loop nests are discarded, as they generally
evaluate quickly. By default, the flag is set to continue the computation.

2http://www.gnu.org/software/libc/manual/html_node/Longjmp-in-Handler.html

5.1. CPU VS GPU EXECUTION: A DYNAMIC APPROACH 101

104

105

106

107

108

109

1010

100 101 102 103 104 105

tim
e

(n
s)

threads

zero-copy (DMA)
device memory

Figure 5.2 – Comparison of execution time between zero-copy (accessing central me-
mory) and memcpy (accessing device off-chip memory) techniques when varying the
number of threads.

The polled flag is set volatile, so that it is not optimized into a register. The
first threads to detect the value flip of the flag, execute the trap PTX instruction,
which terminates the whole kernel execution with unspecified error code. On kernel
termination, a similar flag is checked to redirect the execution to the end of the CUDA
host code. Note that, in that case, GPU computed results are not transferred back to
host.

Host-device communications are hardly interruptible. To handle this case memcpy
are consistently followed by a check instruction.

The CUDA runtime implicitly creates a context for each device of a system, called
primary context. This context enables interactions between CUDA and the device
drivers and contains information such as the memory mapping. Noticeably, since
CUDA 4.0, a primary context is shared between the host threads for the default com-
pute mode. Therefore, running multiple contexts to harness a single device would force
the operations to be serialized. Thus, commands are issued to different computing
streams in order to be overlapped. For this purpose, the code generated by PPCG is
refactored to use appropriate function calls, so that memcpy and kernel are enqueued
in a stream. Eventually, the capacity of a device to overlap computations and com-
munications relies on specific hardware resources. With these requirements, the CPU
thread can perform a memcpy asynchronously w.r.t. the running CUDA kernels. Thus,
on completion, the main thread, dedicated to CPU computation performs a memcpy to
the GPU computing device to change the value of the flag residing in off-chip memory,

102 CHAPTER 5. HETEROGENEOUS COMPUTING

to provoke GPU execution termination.

This method is best effort as there is no guarantee the memcpy will overlap the
kernel execution, due to potential resource constrictions.

5.1.4 Experimentations

We evaluate our technique on the PolyBench benchmark (3.2). Optimized and target
specific codes are automatically generated by PLUTO (0.9.0) and PPCG (0.1). On
PPCG all the code samples where compiled with min-fusion, default block and tile
size set. On PLUTO, we used one level of tiling, default tile size and use heuristic for
fusion (i.e. smart fusion). Take note that PPCG takes advantage on macro expansion
to make further simplifications. Codes for which compilation failed were set aside. The
following results are presented by removing the context initialization and liberation as
this inevitably adds up a 500ms overhead on CUDA codes.

Figures 5.3 and 5.4 show execution times normalized to the fastest code. We observe
that for the standard dataset covariance, 2mm, 3mm, doitgen, gemm, syr2k, syrk,
reg-detect, fdtd-2d, jacobi-1d-imper and jacobi-2d-imper run better on GPU. On the
opposite, atax, bicg, gemver, gesummv, mvt, trmm, lu, floyd-warshall and fdtd-apml
run better on CPU. Interestingly, the CPU was slightly faster than the GPU on fdtd-
2d with large dataset, while it was the opposite on standard dataset. This is due to the
volume of communication, since CPU computational rate outperforms the bandwidth
of memory movements. When the GPU wins, the maximum speedup is 10.46x for
2mm, while the minimum is 1.32x for fdtd-2d. When the CPU wins, the maximum
speedup is 2, 96x for floyd-warshall, while the minimum is 1.02x for bicg. In average
the speedup is of 1.57x, and 3.88x when respectively, the CPU or the GPU wins. For
the large dataset, the speedup to slowest PU surprisingly increases to 1.70x when CPU
wins and drops to 3, 34x when GPU wins.

Figures 5.5 and 5.6 depict the overhead implied by the additional instructions and
concurrent execution. Overall, the overhead is rather low, barely reaching 10%. To
detect a cancellation request, there is no active polling on the CPU side, which induces
that the overhead should be really low for the outermost parallel loop nest. In fact
the termination request is done through signal handling. Also, checking a flag in GPU
global memory is not much impacting performance. Noticeable is the low overhead
of lu for which 2nd loop dimension is parallel and trmm, floyd-warshall for which
3rd loop dimension is parallel, when run on the CPU. That demonstrates that our
technique to interrupt OpenMP parallel sections has a very small impact on the code
performance, even when enclosed by sequential loops. The overhead observable for
atax, bicg, gemver, gesummv, mvt mainly stems from communications between CPU
and GPU. On the opposite, GPU codes themselves are not much affected from CPU
simultaneous execution, as shown for small codes, such as jacobi-1d-imper and jacobi-
2d-imper. When GPU wins the race, the overhead is of about 4.75% and 2.85% for
standard and large dataset respectively. On GPU the incidence of loading a volatile
variable inside the parallel loops is fairly low. When CPU wins the race, the overhead
is of about 35.36% and 32.49% for standard and large dataset respectively. Note that
fdtd-apml gets removed from the large dataset results, as there is not enough memory

5.1. CPU VS GPU EXECUTION: A DYNAMIC APPROACH 103

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

covariance

2m
m

3m
m

atax
bicg

doitgen

gem
m
gem

ver

gesum
m

v

m
vt

syr2k
syrk

trm
m

lu floyd-warshall

reg-detect

fdtd-2d

fdtd-apm
l

jacobi-1d-im
per

jacobi-2d-im
per

no
rm

al
iz

ed
 e

xe
cu

tio
n

tim
e

CPU
GPU

Figure 5.3 – Normalized execution time for the PolyBench standard dataset.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

covariance

2m
m

3m
m

atax
bicg

doitgen

gem
m

gem
ver

gesum
m

v

m
vt

syr2k
syrk

trm
m

lu floyd-warshall

reg-detect

fdtd-2d

jacobi-1d-im
per

jacobi-2d-im
per

no
rm

al
iz

ed
 e

xe
cu

tio
n

tim
e

CPU
GPU

Figure 5.4 – Normalized execution time for the PolyBench large dataset.

104 CHAPTER 5. HETEROGENEOUS COMPUTING

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

covariance

2m
m

3m
m

atax
bicg

doitgen

gem
m
gem

ver

gesum
m

v

m
vt

syr2k
syrk

trm
m

lu floyd-warshall

reg-detect

fdtd-2d

fdtd-apm
l

jacobi-1d-im
per

jacobi-2d-im
per

ov
er

he
ad

Figure 5.5 – Overhead to the single-PU execution time for the PolyBench standard
dataset.

 0

 0.2

 0.4

 0.6

 0.8

 1

covariance

2m
m

3m
m

atax
bicg

doitgen

gem
m

gem
ver

gesum
m

v

m
vt

syr2k
syrk

trm
m

lu floyd-warshall

reg-detect

fdtd-2d

jacobi-1d-im
per

jacobi-2d-im
per

ov
er

he
ad

Figure 5.6 – Overhead to the single-PU execution time for the PolyBench large dataset.

5.1. CPU VS GPU EXECUTION: A DYNAMIC APPROACH 105

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

covariance

2m
m

3m
m

atax
bicg

doitgen

gem
m
gem

ver

gesum
m

v

m
vt

syr2k
syrk

trm
m

lu floyd-warshall

reg-detect

fdtd-2d

fdtd-apm
l

jacobi-1d-im
per

jacobi-2d-im
per

de
la

y

Figure 5.7 – Delay to shut the computation down on the PU that lost the race, for
standard dataset.

to fit the data on GPU. The geometric average overhead for standard dataset is of
17.55% and decreases to 5.20% when removing atax, bicg, gemver, gesummv, mvt for
which a first run should disable automatic selection due to overhead. These number
respectively drop to 15.96% and 1.95% for the large dataset. For these codes, kernel
execution is extremely fast. The bottleneck comes from the communication between
CPU and GPU. Although host memory is pinned, there are interactions with CPU
running computations, as the transfers get through the cache. Also, CUDA default
device scheduling mode was left enabled, as performance of iteratively called kernels
was impacted.

The average delay to shut the computation down, shown in Fig. 5.7 and 5.8 is
of 6.99% for standard dataset and 3.57% for large dataset, which is acceptable and
allows the processor to be reused quickly afterwards. The stop delay, drastically drops
from 90.62% to 3.34%, for gesummv when comparing the standard to the large dataset
figures. This most probably originates from uninterruptible memory transfers, as in
the large dataset case, the termination request is probably caught in between transfers
or during kernel execution.

5.1.5 Perspective and limitations

We showed a method to quickly terminate OpenMP and CUDA kernels run simulta-
neously. This method is appropriate on punctually stressed systems, for which one
wants to still ensure good performance, by choosing the right processor. Potentially,

106 CHAPTER 5. HETEROGENEOUS COMPUTING

 0

 0.2

 0.4

 0.6

 0.8

 1

covariance

2m
m

3m
m

atax
bicg

doitgen

gem
m

gem
ver

gesum
m

v

m
vt

syr2k
syrk

trm
m

lu floyd-warshall

reg-detect

fdtd-2d

jacobi-1d-im
per

jacobi-2d-im
per

de
la

y

Figure 5.8 – Delay to shut the computation down on the PU that lost the race, for
large dataset.

this technique may add up to the stress of the system especially to the memory, when
the CPU wins. Also, this technique can be used punctually to train a performance
model or be used in a dynamic system as a complement to evaluate CPU and GPU
performance. We showed that the overhead was low, especially as there are some
instructions that have been added. Also the processors are quickly reusable after a
termination request, to perform further computations. Yet, if energy consumption is
an issue, this method is not suited, as processors are run simultaneously to perform
the exact same computation.

Figure 5.9 depicts an estimation of maximum potential energy consumption. This
energy consumption is an estimation which originates from the product of maximal
device consumption (measured for a reference code at wall socket) by execution time.
This plot gives a broad idea of power consumption, and more accurate results may be
achieved by including host code and memory movements energy consumption. Never-
theless, one can see that for 10 codes the slowest PU consumes more than the combined
CPU and GPU power consumption in CPU vs GPU strategy. Patently, the larger the
performance disparity, the better the power consumption in the CPU vs GPU strategy.

5.2 CPU vs GPU execution: a hybrid approach

Through our prediction scheme (Chapter 4) it is possible to accurately predict the ex-
ecution time of a kernel. Also, Pradelle et al. [120] implemented a prediction method,

5.2. CPU VS GPU EXECUTION: A HYBRID APPROACH 107

 0.1

 1

 10

 100

 1000

 10000

 100000

covariance

2m
m

3m
m

atax
bicg

doitgen

gem
m
gem

ver

gesum
m

v

m
vt

syr2k
syrk

trm
m

lu floyd
reg-detect

fdtd-2d

fdtd-apm
l

jacobi-1d-im
per

jacobi-2d-im
per

W
at

ts
 s

ec
on

d

CPU vs GPU
max
min

Figure 5.9 – Energy consumption resulting from simultaneously running CPU and GPU
codes, for standard dataset. Energy consumption is expressed in Watts second and
originates from the product of maximal device consumption (measured for a reference
code at wall socket) by execution time.

which gives pretty accurate results on tiled polyhedral codes. In section 5.1 we pre-
sented a fully-dynamic method to select the best target architecture. The major draw-
backs of such a method is rather clear: energy consumption is high and GPU memory
transfers impact the CPU code performance. This leads towards other methods, which
predict performance beforehand. To handle multiple architectures, the CPU and GPU
prediction methods presented in Chapter 4 may be employed. During code generation,
the compiler considers CPU- and GPU-targeted codes as different versions of code. At
runtime, the selection mechanism, transparently selects the code version based on pre-
dicted execution times; the targeted processor is implied by the underlying generated
code.

Each prediction nest is enclosed in a function and evaluated at runtime. A function
pointer, which wraps the computation, is assigned to a variable, referencing the best
code version to execute. A code sample is shown in Listing 5.1. Such a technique is
advantageous: although it is very lightweight at runtime, we may still obtain drastic
performance improvements. In fact, this strategy allows to quickly dispatch the compu-
tations to the adequate architecture while keeping the multiversioning capability. We
expect that despite slight mispredictions the right architecture is chosen. To cope with
moderate dynamic behaviour, the ranking tables used for prediction could be adjusted
at runtime.

Although this architecture selection method is straightforwardly implemented, nu-

108 CHAPTER 5. HETEROGENEOUS COMPUTING

Listing 5.1– Code handling architecture selection and multiversioning

{
mint = MAX_DBL;
t = predict_cpu_v0 (. . .) ;
i f (t < mint) {

ptr = cpu_v0 ;
mint = t ;

}
// . . .
predict_gpu_v0 (. . .) ;
i f (t < mint) {

ptr = gpu_v0 ;
mint = t ;

}
exec (ptr) ;

}

merous works have tackled this problem and current state of the art has become the
distribution of computation over multiple heterogeneous. To that extent, we present a
more general method in section 5.3

5.3 CPU + GPU joint execution

5.3.1 Introduction

Efficient exploitation of heterogeneous computing resources is a difficult problem, es-
pecially when the processing units (PUs) run different compilation and runtime envi-
ronments, in addition to different hardware. On multicore CPUs, efficient computing
relies on parallelization (using OpenMP for example), cache locality exploitation (loop
tiling for example), low-level optimizations (vectorization, instruction reordering, etc.);
while exploitation of GPUs requires optimization of memory transfers between host and
device, distribution of the computations on a grid of SIMD blocks with limitations on
their sizes, explicit memory hierarchy exploitation, global memory accesses coalescing,
etc.

Scientific codes are sensitive to their dynamic context. Dynamicity arises for two
main reasons: the execution environment variations (e.g. hardware characteristics and
availability, compiler optimizations) and input data size variation (e.g. from a call to
a function to another). On the other hand, compilers have to take static decisions to
generate the best possible performing code. But, as a result of the dynamic context,
they miss many optimization opportunities.

In this work, we aim to address these issues automatically, namely to generate effi-
cient code, that will run on multiple PUs and fully exploit the hardware, in a dynamic
context. The most difficult problem is to achieve load balance between heterogeneous
PUs. We rely on execution time predictions on each PU, based on a static code gener-

5.3. CPU + GPU JOINT EXECUTION 109

ator, an offline profiling and a runtime prediction and scheduling. Our current devel-
opment platform targets shared memory cores (one- or multi-socket multicore CPUs)
and one or multiple CUDA GPUs.

For achieving execution time prediction and distribution of computations, we target
static control parts (SCoPs) of programs, namely polyhedral codes [25]. Computation
distribution is made possible by polyhedral dependence analysis and scheduling: poly-
hedral compilers like PLUTO [25] or PPCG [145] take a SCoP as input and generate
nests of parallel and sequential loops. The outermost parallel loops are chunked into
controllable size partitions and executed independently on different PUs.

The execution time of a chunk on a given PU is predicted at runtime, at each run
of the target code. This computation is based on: (1) the loop size (i.e. number
of iterations and accessed data), evaluated using polyhedral tools; (2) the average
execution time per iteration and per accessed data, based on tables that are generated
automatically during profiling and depending on the context of the execution (number
of blocks on GPUs, load balance between cores on CPU). Finally, load balance between
different PUs is obtained by adjusting the size of the chunks such that their predicted
execution times are as close as possible.

The main contribution of this work is an automatic framework for data-parallel
workload partitioning and balancing on CPU+GPU systems. The runtime implements
a low overhead dynamic scheduler, driven by pre-collected profiling data and by the
program parameters. Completely ineffective PUs are automatically eliminated accord-
ing to the prediction of their performance. Our system integrates a multiversioning
mechanism capable to select the best performing combination of code versions, dif-
fering by their performance characteristics. Moreover, our implementation combines
automatic polyhedral tools to tackle heterogeneous architectures (CPUs and GPUs)
transparently.

A typical use-case of this framework is to compile a library, like a BLAS library.
Compile and profile time is not an issue, but performance on the machine hardware
and adaptivity to different parameters are crucial: the user of this library wants to
exploit efficiently all available resources of his machine, in all the calls he will make to
the library, possibly using different parameters (like matrix sizes). For compiling such
a library in our framework, one would first mark all computationally intensive SCoPs
in the source, then call the script that generates the profiling and executable codes and
distribute them. The user of the library would run the profiling code on his computer
at installation time, and then the code of the library would automatically adapt to the
hardware environment (multicore CPUs, number of GPUs, relative performance) and
to the dynamic parameters of each call to the library at runtime.

5.3.1.1 Work comparison

We provide a comparison of our method to the one of Boyer et al. [27] in the form of
an unrolled example, to show that their method can suffer from prediction errors. We
quickly recall the algorithm and the paper original parameters. For training, the system
executes an arbitrary number of runs, denoted by R, on each target architecture. The
initial chunk represents 7% of the size of the total work and serves as a warm-up. After
each execution, the system checks whether the other PUs reached R steps or not. If

110 CHAPTER 5. HETEROGENEOUS COMPUTING

 0.01

 0.1

 1

100 101 102 103 104 105

ex
ec

ut
io

n
tim

e
pe

r
ite

ra
tio

n
(n

s)

number of blocks

actual (1024)
profiled (1024)

Figure 5.10 – Evaluation of the execution time per iteration for gemm for various block
sizes and sequential parameter fixed to 1024

it did, the system balances and dispatches the remaining work, based on the last run
execution time per work group. Otherwise, the task size is increased by 50% and the
process is repeated.

We consider a work group size to be equivalent to the size of a single block of
32 × 16. We reasonably assume that the algorithm stops at the second step for the
studied GPU. Execution times per work group are replaced by equivalent execution
time per iteration. For ease of reading, we introduce a fictive PU with id. 1 in the
calculations. Also, to keep it simple, only two PUs are considered and transfer times
are ignored, as we focus on computation time prediction errors.

In this comparison we use the results obtained in Fig. 5.10 for gemm. Parameters NI,
NJ and NK are set to 512× 512× 1024, with NK the innermost sequential parameter.
Let Ball = ⌈512/32⌉ × ⌈512/16⌉ = 512, be the number of blocks required for the
computation. The PU 0 reference execution time fetched for Bref0 = ⌈0.07 × 1.5 ×
Ball⌉ = 54 blocks, equals Eref0 = 0.063616 ns per iteration. Yet there are Brem =
Ball − 2 × (Bref0 + ⌈0.07 ∗ Ball⌉) − BP U1 = 251 blocks, with BP U1 = Bref0 ∗ 1.5 = 81
the number of blocks computed by PU 1. Let us assume that PU 1 is slightly faster,
at Eref1 = 0.061345ns per iteration. We compute that PU 0 and PU 1 finish their two
steps at 3, 227, 082ns and 3, 022, 797ns. From PU 0 point of view, the third step of PU 1
is assumed to take 0.061345 ∗ 81 ∗ 512 ∗ 1024− (3, 227, 082− 3, 022, 797) = 2, 400, 872.
From this, we find that the last chunk distribution is of 50.92% and 49.08% of the
remaining iterations Brem, for PU 0 and PU 1. Actually, PU 0 approximately takes
Erem0 = 0.052ns per iteration for Brem/2, that is to say a misprediction of around 20%.

5.3. CPU + GPU JOINT EXECUTION 111

Assuming that PU 1 execution time is accurately predicted, PU 0 and PU 1 should
share 56% and 44% of the remaining chunck. In fact, PU 1 third step and remaining
work predictions can be wrong, thus accentuating the load imbalance in Boyer et al.’s
method. For this case, the GPU prediction error of our system stays within 5%.

5.3.2 Code generation

In this section we present how we automatically generate OpenMP code for CPU and
CUDA code for GPU. A set of python scripts orchestrates the code generation process
for its execution on a heterogeneous configuration. To provide source code analysis
and modification capabilities, the scripts implement a wrapper on pycparser [23], a C
parser written in python. We extended it to handle C for CUDA and a pragma to mark
the regions of code of interest. To build the target code, the generator makes extensive
use of template files. For specializing the parallel loop nests we rely on PLUTO [25]
and PPCG [145], two source-to-source polyhedral compilers. Both compilers generate
optimized parallel code from static control loops written in C. PLUTO is focused
towards parallelizing sequential codes with OpenMP and is devoted to the application
of a broad range of transformations such as loop tiling, loop unrolling, loop fusion or
fission, and linear transformations (reversal, skewing, interchange). PPCG produces
CUDA host and device codes from sequential loops, using the same transformations.
To comply with the CUDA model, multidimensional parallelism is extracted from the
tilable bands. The tiles are then mapped to blocks and scanned by the threads. To
improve data locality, it generates code to exploit shared memory on CUDA GPUs.

During a first stage, the code is parallelized using the OpenMP C backend of PPCG.
Artificial parametric loop bounds are injected in the parallel loops to control the it-
eration domains. This enables the iteration domains of the parallel loops to be cut
into chunks. At runtime, each chunk will be assigned a PU and sized to ensure load
balance. To this end, PLUTO and PPCG generate specialized versions of the parallel
chunks, optimized towards CPU and GPU. As the chunks can be executed in any or-
der, the code semantics is preserved and they can be safely distributed on the available
PUs. Our scripts also compute the geometrical bounding box of the accessed arrays
to generate minimal data communications between CPU and GPUs. This operation is
performed through calls to the isl library [144] via its python bindings islpy [76] and a
loop nest polyhedral representation extracted with Pet [146].

Figure 5.11 shows an example of a chunked parallel loop nest and its associated array
access polyhedron. Points with integer coordinates {i, j : i >= 1, i < M, j >= 1, j <
N, (i, j ∈ Z)} represent the elements written to array A. Loop chunking infers on the
array regions accessed by the PUs. In case of multidimensional arrays, attention must
be paid to multiple PUs writing column-wise to chunked array regions, as illustrated in
Fig. 5.11b. Indeed, to preserve consistency, it is illegal to call cudaMemcpy as presented
in Listing 5.3, since it would overwrite the CPU computations. Introduction of loops
performing an exact copy is required in this case, as shown in Listing 5.4, but may lead
to performance issues.

For iteratively called parallel codes, the amount of data to transfer is adjusted
so that we avoid redundant copies. Specifically, the scripts determine which array

112 CHAPTER 5. HETEROGENEOUS COMPUTING

Listing (5.2)Chuncked loop nest

f or a l l (i = 1 + lb ; i < min (ub , M) ; ++i) {
for (j = 1 ; j < N; ++j) {

A[j] [i] = . . . ;
}

}

(a) Example of a chunked parallel code writing to array A.

N - 1

i

j

1

1 +
 lb_gpu

Row major (array order)

Col. major

A[1][1]

A[5][4]

GPU CPU

ub_gpu - 1

1 +
 lb_cpu

m
in(ub_cpu, M

) - 1

(b) A parametric write accesses bounding box.

Figure 5.11 – Illustration of the mechanisms required for communication.

elements have been modified outside of the parallel code and need to be transferred
to the GPU. For the remaining transfers, only missing data, due to repartitioning, are
sent to the GPU by checking the partitioning parameters. All in all, GPU results are
systematically copied back to the CPU memory.

One single version of a code may not perform well under all circumstances. Mul-
tiversioning is an adaptive technique consisting in generating semantically equivalent
versions of a code, differing by their performance characteristics. The versions are built
by PPCG and PLUTO, launched with version-specific arguments, such as the tile size,
tiling level, block size and schedule. The scripts generate all the version combinations
by successively assigning the parallel and prediction code function pointers to internal

Listing 5.3– Standard memcpy generated for row-major

cudaMemcpy(&A[1] [0] , &dev_A [1] [0] ,
(N−2)∗(M−1)∗ s izeof (∗A) , D2H) ;

5.3. CPU + GPU JOINT EXECUTION 113

Listing 5.4– Handling special memcpy case depending on chuncked dimension

for (c0 = 1 ; c0 < N; ++c0) {
cudaMemcpy(&A[c0] [lb_gpu + 1] ,

&dev_A [c0] [lb_gpu + 1] ,
((ub_gpu−1)−(lb_gpu+1)+1)∗(s izeof (∗A)) , D2H) ;

}

structures. For each combination it places a call to the scheduler and the selection
function. The combinations are scheduled at runtime, supposedly the best is executed
on CPU+GPU. The snippet in Listing 5.5 shows the code generated for gemm.

Listing 5.5– Code handling multiversioning

{
tdt0−>x s i z e = dt0−>x s i z e = M − 1 ;
min_etime = DBL_MAX;
r e s e t (tdt0−>pus , GPU, gpu_etime_0_0 , gpu_call_0_0 , domsz_0) ;
r e s e t (tdt0−>pus , CPU, cpu_etime_0_0 , cpu_call_0_0 , domsz_0) ;
etime = cuschedu le (dt0_tmp) ;
mv_select (etime , &min_etime , dt0 , tdt0) ;
r e s e t (tdt0−>pus , GPU, gpu_etime_0_0 , gpu_call_0_0 , domsz_0) ;
r e s e t (tdt0−>pus , CPU, cpu_etime_0_1 , cpu_call_0_1 , domsz_0) ;
etime = cuschedu le (dt0_tmp) ;
mv_select (etime , &min_etime , dt0 , tdt0) ;
// . . .

}

The reset function reassigns execution time prediction and kernel call functions for
each combination. mv_select is in charge of setting dt0 if a better combination is found.
Each combination partitioning is computed by a call to the scheduler cuschedule.

5.3.3 CPU+GPU Runtime

5.3.3.1 Scheduler

The scheduler implements a work sharing mechanism similar to the OpenMP static
scheduling strategy. The quantity of work of each PU, controlled by the chunk size, is
determined before the execution of the loop nest.

The scheduler relies on the execution time predictions to distribute iterations to the
PUs. Let Ti = ti ×Q(Pi) + C(Pi) be the chunk i predicted duration, where 0 ≤ i < n,
n being the number of PUs. Function Q(Pi), generated with the barvinok counting
library [147], computes the number of iterations of the union of the statements iteration
domains: it is a symbolic piecewise quasipolynomial instantiated with the parameters
values Pi at runtime. ti is the execution time per iteration. Function C(Pi) is in charge
of estimating the data transfer time on GPUs; for CPUs it returns 0.

For a given parallel loop nest, the load balance problem can be expressed as an
equality between the chunks durations: T0 ≈ T1 ≈ ... ≈ Tn−1. The upper parallel

114 CHAPTER 5. HETEROGENEOUS COMPUTING

loop bound of each chunk i is the lower bound of chunk i + 1. The execution time
per iteration ti of each chunk fluctuates non-linearly depending on the chunk size as
described in Chapter 4. As a consequence, there is no direct method to compute the
chunk sizes, but this optimization problem requires iterative refinements.

Through problem reformulation, achieving load balance comes down to make Ti

tend to Tall/n, where Tall is the sum of the PUs execution times: Tall =
∑n−1

i=0 Ti.
We implemented a low overhead iterative algorithm in three steps: initialization, re-
finement and partitioning. The refinement and partitioning stages are repeated until
convergence is reached, or a maximum of 15 steps is attained. In the initialization
phase, the iterations of the chunked loops are equally distributed between the PUs. No
preliminary assumptions can be made concerning the chunks execution times.

The refining stage starts by computing each chunk execution time Ti and their
sum Tall. Each chunk execution time proportion Ri = Ti/Tall must tend to o = 1/n
to achieve load balance. Note that an optimal predicted load balance is obtained for
Ri = o for all i. Each chunk size is then ajusted by multiplying it by o/Ri, to get closer
to optimal load balance. However, these adjustments are computed independently for
each chunk, and this leads to situations where the sum of the chunk sizes is not equal
to the total number of iterations. Thus, the partitioning phase normalizes the chunk
sizes so that all iterations of the chunked loop are processed. Iterations eliminated by
integer rounding are assigned to an arbitrary PU (the CPU by default in our current
implementation).

To get rid of very inefficient PUs faster, a chunk smaller than x times the biggest
chunk is eliminated: x = 10% by default in our implementation. It can be increased if
energy consumption is an issue: in that case one will want to eliminate inefficient PUs
faster.

The full algorithm is presented in Alg. 5.3, and Fig. 5.12 shows two typical examples
of the scheduler steps. Two PUs are considered: 1 GPU (on the left of each couple
of bars) + 1 CPU (on the right). The blue bars represent the size of the iteration
domains of each chunk (Q(Pi)), and the red bar the corresponding execution times
(Ti). In Fig. 5.12a, the GPU is assigned much more iterations for approximately the
same execution time than the CPU, in 6 steps of the scheduler. In Fig. 5.12b, the GPU
is so inefficient (more than 10 times slower than the CPU) that it is eliminated at the
first step.

5.3.3.2 Dispatcher

The dispatcher is in charge of launching the codes on the different PUs. Each PU is
assigned a thread using OpenMP parallel sections. Before launching the computation,
a device initialization function is called. On CPUs it sets the number of threads
required for the computation and activates nested parallelism. For GPUs, it selects
the device and modifies the CUDA device scheduling policy. Indeed, we observed that
the scheduling policy has an impact on the CPU threads performance. By default
it will busy-wait if enough processing resources are available and yield the threads
otherwise. To get rid of any overhead, we chose another strategy which blocks the
polling threads until the device finishes its work (i.e. blocking synchronization). Due
to device initialization purposes, the first called CUDA function (e.g. cudaMalloc(...))

5.3. CPU + GPU JOINT EXECUTION 115

Algorithm 5.3 Scheduler algorithm

#step 1: initialize to equal distribution
chnk_size← (ub− lb)/num_pu
for i← 0 to num_P U − 1 do

P Us[i].lb← i ∗ chnk_size
P Us[i].ub← P Us[i].lb + chnk_size

end for

#step 2: refine
for s← 0 to MAX_ST EP S do

time← 0.
for i← 0 to num_P U − 1 do

P Us[i].size = P Us[i].ub− P Us[i].lb
if P Us[i].size 6= 0 then

P Us[i].time_val = P Us[i].time(P Us[i].lb, P Us[i].ub)
time← time + P Us[i].time_val

end if

end for

for i← 0 to num_P U − 1 do

if P Us[i].time_val 6= 0 then

adjst = time/(num_P U ∗ P Us[i].time_val)
P Us[i].size = P Us[i].size ∗ adjst

end if

end for

#normalize the chunk bounds
(P Us, max_card)← normalize(P Us)
for i← 0 to num_P U − 1 do

if P U.cardP U/max_card < 0.1 then

P Us← eliminate(P Us, i)
end if

end for

reg ← register_schedule(P Us)
end for

#step 3: select schedule
P Us← select_schedule(reg)

116 CHAPTER 5. HETEROGENEOUS COMPUTING

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6

-w
or

kl
oa

d
pr

op
or

tio
n

| e
xe

c.
 ti

m
e

pr
op

or
tio

n

step

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6

-w
or

kl
oa

d
pr

op
or

tio
n

| e
xe

c.
 ti

m
e

pr
op

or
tio

n

step

(a) gemm

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2

-w
or

kl
oa

d
pr

op
or

tio
n

| e
xe

c.
 ti

m
e

pr
op

or
tio

n

step

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2

-w
or

kl
oa

d
pr

op
or

tio
n

| e
xe

c.
 ti

m
e

pr
op

or
tio

n

step

(b) gesummv

Figure 5.12 – Scheduler algorithm steps for gemm and gesummv. GPU is eliminated
after first step in gesummv.

consumes more time. To avoid noise in the measurements, we introduced a fake runtime
call. At the end of the computation, the threads are synchronized using a barrier. All
data movements are carried by the thread handling each PU.

5.3. CPU + GPU JOINT EXECUTION 117

5.3.4 Evaluation

5.3.4.1 Benchmarks

The test platform is composed of two Asus GTX 590 plugged into an Asus P8P67-Pro
motherboard. Each GTX 590 card is composed of two Fermi GPUs sharing 3 GB of
GDDR5. Each graphics processor on the GTX 590 embeds a total of 512 Streaming
Processors3 (16 SM × 32 SP). The motherboard provides a PCIe 2.0 x16 bus for
connecting the peripherals. The two graphics cards individually support PCIe x16 and
share half of the bus width (x8) in our configuration. The host processor is an Intel
core i7-2700 (Sandy Bridge) with 4 hyperthreaded cores for which we enabled dynamic
overclocking.

The benchmark programs that we run are taken from the Polyhedral Benchmark
suite [118]. We used the extra-large dataset size by default, reducing it on some of the
tested programs so that they fit the GPU memory. We did not consider some programs
because they are very inefficient on GPU: the CPU version is much faster in any case,
and there is no point in trying to exploit a GPU version of them. We did however
include some benchmarks that fall in this category in our experiments (gesummv, mvt
and gemver). All loop nests of depth 1 are ignored by our framework.

We compiled the benchmarks using gcc version 4.4.6 with -O3 -march=native op-
timization flags. On GPUs, the codes were compiled with the CUDA 5.5 compilation
tools. The GPU on-chip memory partitioning was set to 48 KB of shared memory and
16 KB of L1 cache. In our first experiment presented in Fig. 5, only one code version
was generated. To generate CUDA code, the minimum loop nest fuse flag was provided
to PPCG and automatic cache management code generation was enabled. The CUDA
block and tile sizes have been set to the default provided by PPCG. Communications
between host and device are handled with synchronous non-pinned memory copies.
Similarly, we run PLUTO with the default parameters, and disabled tiling for mvt,
gemver and gesummv as these tiled CPU codes are strongly affected by performance
fluctuations. For the multiversioning experiments presented in Fig. 5.15 and following,
we generated CUDA codes with different couple (block size, tile size) respectively for
the (c1, c2, c3), (c4, c5, c6), (c7, c8, c9) combinations. CPU versions were generated
with one level of tiling, of size 32, 64 and 128, respectively for the (c1, c4, c7), (c2, c5,
c8), (c3, c6, c9) combinations. Table 5.2 and 5.3 describe all the versions used in this
experimentation. We averaged all measurements on five runs.

Figure 5.13 depicts the speedup obtained by using different combinations of PUs
compared to the execution time on CPU alone or on GPU alone. Our system achieves
a maximum speedup of 20x for gemm and a speedup of 7x on average comparing the
best and worst execution times. These results show that gemm, 2mm, 3mm, syrk,
syr2k (the five on the left of Fig. 5.13) better suit the GPU while doitgen, gesummv,
mvt, gemver better suit the CPU. Note that doitgen better suits the CPU because
of a lower computation time on CPU than on GPU, and not because of the data
transfer times. It is interesting to notice that combined CPU+GPU execution provide
noticeable benefits for three benchmarks (syr2k, doitgen and gemver). When the GPU
version is faster, the average speedup of our system on CPU plus 4 GPUs against 1

3SM: Streaming Multiprocessors, SP: Streaming Processors

118 CHAPTER 5. HETEROGENEOUS COMPUTING

Versions (block size, tile size)
code (c1, c2, c3) (c4, c5, c6) (c7, c8, c9)

gemm

(32× 16, 32× 16) (32× 16, 64× 64) (32× 32, 32× 32)
2mm
3mm
syrk
syr2k (32× 16, 32× 16) (32× 16, 64× 64) (16× 16, 16× 16)

doitgen (32× 16, 32× 16) (16× 16, 16× 16) (32× 32, 32× 32)
gesummv

(512, 512) (256, 256) (128, 128)
mvt

gemver (64, 64) (32, 64) (128, 128)

Table 5.2 – GPU code versions description

Versions tile size
code (c1, c4, c7) (c2, c5, c8) (c3, c6, c9)

gemm

32 64 128

2mm
3mm
syrk
syr2k

doitgen
gesummv

untiled untiled untiledmvt
gemver

Table 5.3 – CPU code versions description

5.3. CPU + GPU JOINT EXECUTION 119

 0

 5

 10

 15

 20

 25

 30

gem
m

2m
m

3m
m

syrk
syr2k

doitgen

gesum
m

v

m
vt

gem
ver

sp
ee

du
p

CPU
1GPU

CPU+1GPU
CPU+2GPUs
CPU+3GPUs
CPU+4GPUs

Figure 5.13 – Speedup to execution time on CPU or GPU alone.

 0

 0.2

 0.4

 0.6

 0.8

 1

gem
m

2m
m

3m
m

syrk
syr2k

doitgen

gesum
m

v

m
vt

gem
ver

im
ba

la
nc

e

CPU+1GPU
CPU+2GPUs
CPU+3GPUs
CPU+4GPUs

Figure 5.14 – Execution time imbalance ratio for several combinations of PUs.

120 CHAPTER 5. HETEROGENEOUS COMPUTING

GPU, is 3.4x and is greater than 4x for syr2k; for the programs where the CPU version
is faster, the average speedup on CPU plus 4 GPUs against 1 CPU is negligible, as
in these case GPUs were generally unused. Also notice that, apart from 2mm (for
which CPU was unused), the 1 CPU + 1 GPU version is always faster to the CPU
alone and GPU alone versions. Figure 5.14 shows the imbalance ratio between the
total longest and shortest execution times of the different PUs. In 2mm the CPU was
eliminated, and in gesummv and mvt the GPU was eliminated4. Figure 5.14 shows an
average of 12% load imbalance. The imbalance is mostly due to prediction inaccuracies
rather than bad scheduling decisions. In fact, the sum of the absolute prediction errors
drives imbalance. In particular, this affects fast codes with shallow loop nests, such
as gemver for which the imbalance peaks at 45% for CPU+4GPUs. These codes are
strongly affected by multiple running GPUs.

Gesummv, mvt and gemver are also noticeable due to the elimination of the GPU
for certain loop nests computation. For gesummv and mvt the whole computation
is run by the CPU. This happens when the ratio between the communication and
the computation times is too high. Also, reducing the problem size may eliminate
non-necessary PUs. Remark that there are performance interactions between CPU
and GPU, especially on the host code side as memory transfers get through the CPU
caches. As an example, the spinning CUDA runtime scheduling policy, set by default,
impacts CPU performance by 30% on gemm with 4 GPUs running. The opposite effect
of using blocking scheduling is that small codes repeatedly executed tend to run slower.

Our system overhead (including all prediction and scheduling calls) is low: it caps
at 2ms for doitgen, that is to say 0.02% of the execution time. It tends to average
below 1ms for most of the codes, which is a reasonable figure for codes that are suited
to run on GPUs (executing for more than a second).

5.3.5 Multiversioning

Our framework is able to generate multiple versions of the CPU and GPU codes and
to select the best performing combination at runtime. The scheduler is called for each
combination and returns its predicted execution time. The runtime selects the sched-
uled combination of versions which minimizes the execution time. As the number of
combinations grows exponentially, we limited our experiments to 3 versions per PU (9
combinations). Note that for syr2k, the maximum scheduler overhead was of 450 ∗ 9 =
3600µs, that is to say less than 0.01% of the execution time. The following description
will focus on gemm and syr2k. Figures 5.15, 5.17, 5.21, 5.23, 5.25, 5.27, 5.29, 5.31
and 5.33 show speedups to the slowest combination of versions. The concurring imbal-
ance is depicted in Fig. 5.16, 5.18, 5.22, 5.24, 5.26, 5.28, 5.30, 5.32 and 5.34. Usefulness
of multiversioning on GPU is emphasized by the performance variations of the GPU
only executions in the (c1), (c4), (c7) combinations in Fig. 5.15 and 5.17. The (all)
bars refer to the final combination selected by our runtime system. At best, it was
able to achieve a 1.53x speedup for gemm and a 3.46x speedup for syr2k against the
slowest combination. For gemm, it is noticeable that best performance were obtained
when CPU was evicted. On the opposite, combinations benefit from the use of CPU

4Figure 5.13 shows small variations of the CPU+nGPU versions due to measurements inaccuracies.

5.3. CPU + GPU JOINT EXECUTION 121

 0

 0.5

 1

 1.5

 2

 2.5

 3

CPU
1GPU

CPU+1GPU

CPU+2GPUs

CPU+3GPUs

CPU+4GPUs

sp
ee

du
p

gemm (c1)
gemm (c2)
gemm (c3)
gemm (c4)
gemm (c5)
gemm (c6)
gemm (c7)
gemm (c8)
gemm (c9)
gemm (all)

Figure 5.15 – Speedup to execution time of slowest code version combination for gemm.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

CPU+1GPU

CPU+2GPUs

CPU+3GPUs

CPU+4GPUs

im
ba

la
nc

e

gemm (c1)
gemm (c2)
gemm (c3)
gemm (c4)
gemm (c5)
gemm (c6)
gemm (c7)
gemm (c8)
gemm (c9)
gemm (all)

Figure 5.16 – Execution time imbalance ratio for several combination of code versions
for gemm.

122 CHAPTER 5. HETEROGENEOUS COMPUTING

 0

 1

 2

 3

 4

 5

 6

CPU
1GPU

CPU+1GPU

CPU+2GPUs

CPU+3GPUs

CPU+4GPUs

sp
ee

du
p

syr2k (c1)
syr2k (c2)
syr2k (c3)
syr2k (c4)
syr2k (c5)
syr2k (c6)
syr2k (c7)
syr2k (c8)
syr2k (c9)
syr2k (all)

Figure 5.17 – Speedup to execution time of slowest code version combination for syr2k.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

CPU+1GPU

CPU+2GPUs

CPU+3GPUs

CPU+4GPUs

im
ba

la
nc

e

syr2k (c1)
syr2k (c2)
syr2k (c3)
syr2k (c4)
syr2k (c5)
syr2k (c6)
syr2k (c7)
syr2k (c8)
syr2k (c9)
syr2k (all)

Figure 5.18 – Execution time imbalance ratio for several combination of code versions
for syr2k.

5.3. CPU + GPU JOINT EXECUTION 123

 0

 0.2

 0.4

 0.6

 0.8

 1

gem
m

 (c1)

gem
m

 (c2)

gem
m

 (c3)

gem
m

 (c4)

gem
m

 (c5)

gem
m

 (c6)

gem
m

 (c7)

gem
m

 (c8)

gem
m

 (c9)

gem
m

 (all)

pr
ed

ic
tio

n
er

ro
r

CPU
GPU

Figure 5.19 – Average prediction error ratio of CPU and GPU for gemm.

 0

 0.2

 0.4

 0.6

 0.8

 1

syr2k (c1)

syr2k (c2)

syr2k (c3)

syr2k (c4)

syr2k (c5)

syr2k (c6)

syr2k (c7)

syr2k (c8)

syr2k (c9)

syr2k (all)

pr
ed

ic
tio

n
er

ro
r

CPU
GPU

Figure 5.20 – Average prediction error ratio of CPU and GPU for syr2k.

124 CHAPTER 5. HETEROGENEOUS COMPUTING

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

CPU
1GPU

CPU+1GPU

CPU+2GPUs

CPU+3GPUs

CPU+4GPUs

sp
ee

du
p

2mm (c1)
2mm (c2)
2mm (c3)
2mm (c4)
2mm (c5)
2mm (c6)
2mm (c7)
2mm (c8)
2mm (c9)
2mm (all)

Figure 5.21 – Speedup to execution time of slowest code version combination for 2mm.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

CPU+1GPU

CPU+2GPUs

CPU+3GPUs

CPU+4GPUs

im
ba

la
nc

e

2mm (c1)
2mm (c2)
2mm (c3)
2mm (c4)
2mm (c5)
2mm (c6)
2mm (c7)
2mm (c8)
2mm (c9)
2mm (all)

Figure 5.22 – Average prediction error ratio of CPU and GPU for 2mm.

5.3. CPU + GPU JOINT EXECUTION 125

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

CPU
1GPU

CPU+1GPU

CPU+2GPUs

CPU+3GPUs

CPU+4GPUs

sp
ee

du
p

3mm (c1)
3mm (c2)
3mm (c3)
3mm (c4)
3mm (c5)
3mm (c6)
3mm (c7)
3mm (c8)
3mm (c9)
3mm (all)

Figure 5.23 – Speedup to execution time of slowest code version combination for 3mm.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

CPU
1GPU

CPU+1GPU

CPU+2GPUs

CPU+3GPUs

CPU+4GPUs

im
ba

la
nc

e

3mm (c1)
3mm (c2)
3mm (c3)
3mm (c4)
3mm (c5)
3mm (c6)
3mm (c7)
3mm (c8)
3mm (c9)
3mm (all)

Figure 5.24 – Execution time imbalance ratio for several combination of code versions
for 3mm.

126 CHAPTER 5. HETEROGENEOUS COMPUTING

 0

 1

 2

 3

 4

 5

CPU
1GPU

CPU+1GPU

CPU+2GPUs

CPU+3GPUs

CPU+4GPUs

sp
ee

du
p

syrk (c1)
syrk (c2)
syrk (c3)
syrk (c4)
syrk (c5)
syrk (c6)
syrk (c7)
syrk (c8)
syrk (c9)
syrk (all)

Figure 5.25 – Speedup to execution time of slowest code version combination for syrk.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

CPU+1GPU

CPU+2GPUs

CPU+3GPUs

CPU+4GPUs

im
ba

la
nc

e

syrk (c1)
syrk (c2)
syrk (c3)
syrk (c4)
syrk (c5)
syrk (c6)
syrk (c7)
syrk (c8)
syrk (c9)
syrk (all)

Figure 5.26 – Execution time imbalance ratio for several combination of code versions
for syrk.

5.3. CPU + GPU JOINT EXECUTION 127

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

CPU
1GPU

CPU+1GPU

CPU+2GPUs

CPU+3GPUs

CPU+4GPUs

sp
ee

du
p

doitgen (c1)
doitgen (c2)
doitgen (c3)
doitgen (c4)
doitgen (c5)
doitgen (c6)
doitgen (c7)
doitgen (c8)
doitgen (c9)
doitgen (all)

Figure 5.27 – Speedup to execution time of slowest code version combination for doitgen.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

CPU
1GPU

CPU+1GPU

CPU+2GPUs

CPU+3GPUs

CPU+4GPUs

im
ba

la
nc

e

doitgen (c1)
doitgen (c2)
doitgen (c3)
doitgen (c4)
doitgen (c5)
doitgen (c6)
doitgen (c7)
doitgen (c8)
doitgen (c9)
doitgen (all)

Figure 5.28 – Execution time imbalance ratio for several combination of code versions
for doitgen.

128 CHAPTER 5. HETEROGENEOUS COMPUTING

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

CPU
1GPU

CPU+1GPU

CPU+2GPUs

CPU+3GPUs

CPU+4GPUs

sp
ee

du
p

gesummv (c1)
gesummv (c2)
gesummv (c3)
gesummv (all)

Figure 5.29 – Speedup to execution time of slowest code version combination for ge-
summv.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

CPU
1GPU

CPU+1GPU

CPU+2GPUs

CPU+3GPUs

CPU+4GPUs

im
ba

la
nc

e

gesummv (c1)
gesummv (c2)
gesummv (c3)
gesummv (all)

Figure 5.30 – Execution time imbalance ratio for several combination of code versions
for gesummv.

5.3. CPU + GPU JOINT EXECUTION 129

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

CPU
1GPU

CPU+1GPU

CPU+2GPUs

CPU+3GPUs

CPU+4GPUs

sp
ee

du
p

mvt (c1)
mvt (c2)
mvt (c3)
mvt (all)

Figure 5.31 – Speedup to execution time of slowest code version combination for mvt.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

CPU
1GPU

CPU+1GPU

CPU+2GPUs

CPU+3GPUs

CPU+4GPUs

im
ba

la
nc

e

mvt (c1)
mvt (c2)
mvt (c3)
mvt (all)

Figure 5.32 – Execution time imbalance ratio for several combination of code versions
for mvt.

130 CHAPTER 5. HETEROGENEOUS COMPUTING

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

CPU
1GPU

CPU+1GPU

CPU+2GPUs

CPU+3GPUs

CPU+4GPUs

sp
ee

du
p

gemver (c1)
gemver (c2)
gemver (c3)
gemver (all)

Figure 5.33 – Speedup to execution time of slowest code version combination for gem-
ver.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

CPU
1GPU

CPU+1GPU

CPU+2GPUs

CPU+3GPUs

CPU+4GPUs

im
ba

la
nc

e

gemver (c1)
gemver (c2)
gemver (c3)
gemver (all)

Figure 5.34 – Execution time imbalance ratio for several combination of code versions
for gemver.

5.3. CPU + GPU JOINT EXECUTION 131

and GPUs for syr2k.
Imbalance shown in Fig. 5.16 and 5.18 mainly results from fluctuations in CPU

time predictions. Despite the good accuracy of predictions, as confirmed by Fig. 5.19
and 5.20, slight changes in the partition size can significantly alter the predicted exe-
cution time and mislead the scheduler. This behavior is highlighted in gemm (c7), for
which the imbalance reaches 22%. However, imbalance is acceptable as it averages out
at 5% and 8% for all the combinations of gemm and syr2k. Accuracy of our execution
time prediction methods for gemm and syr2k is shown in Fig. 5.19 and 5.20. The plot-
ted prediction errors are derived from the average error for all the PUs combination.
Those results validate our methods for accurately predicting execution times.

Overall, the experiments show that our multiversioning system was systematically
selecting the best version, thus improving performance. The design and low overhead
of our runtime system allows the comparison of multiple schedules, combining different
code versions, during execution.

5.3.6 Power-guided scheduling

W

C
o
m

p
u
te

r

Figure 5.35 – Scheme of the measurement platform circuit with Wattmeter.

Energy consumption is the current hot-topic in computer system research, on ac-
count of power envelope, budget and ecological concerns. Energetic efficiency, is in
general strongly correlated to the performance of a program. The faster the code,
the lower the energy consumption, whatever architecture lies underneath. The GPUs
generally expose a high absolute energy consumption, generally in several hundreds
of watts: 365W 5 for the GTX 590 (dual GPU), 195W 6 for the GTX 680. Despite a
potentially high peak power consumption, GPUs compensate by exposing a high flop
per watt rate. In a heterogeneous context, schedulers may favour energy efficient ar-
chitectures, when power consumption is a concern. In that case, PUs that expose an
acceptable computing/energy consumption ratio are part of the computation. Others
are kept idle, and can be fed with more appropriate work.

Why is the power consumption parameter important ? Because it allows the sched-
uler to take architecture selection decisions based on consumption. In particular, the
decision point, which indicates whether to sideline a processor or not, shifts as we
change the nature of the selection. For that purpose we introduce a new unit: watts
per iteration. In that relation, time is left aside, as the role of the scheduler is to size

5http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-590/specifications
6http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-680/specifications

132 CHAPTER 5. HETEROGENEOUS COMPUTING

chunks so that they have similar duration. The higher the number of iterations the
more energy efficient the PU. This technique is sufficient to tap out inefficient PUs
from the computation. The number of iterations is computed by Ehrhart polynomials
which divide the appropriate device maximum energy consumption.

In this method the elimination of a PU may not always lead to a lower total energy
consumption. To handle this, the scheduler could be called back recursively with the
new PU configuration. The chosen configuration is the one for which predicted energy
consumption is the lowest. This case is marginal, but it may happen when the PUs
have strong power consumption disparities, therefore we use the simpler approach.

Energy-related experimentations targeting GPUs are rather difficult. In fact, to
provide documentation Peres [112] describes the power management mechanism, which
was reverse-engineered in the frame of the nouveau driver. In our test platform ap-
propriate hardware counters are not exposed to the programmers. Measurements were
performed with a Fluke 41B digital wattmeter. Measurements are performed in an up-
stream wattmeter electrical installation described in Fig. 5.35. The current is measured
via an ammeter clamp, set up between socket and power supply. As usual, voltage is
measured in parallel to the power supply. For this purpose we modified a traditional
multi-socket in order to perform the measurements, right out of the wall socket. The
measured phase shift is cos(φ) = 0.9 on average and remained stable at ±0.02. Pro-
vided numbers state active power, traditionally referred to as P = U × I × cos(φ).

In order to take energy into consideration, the proposed scheduler only requires
slight modifications. The original processor exclusion mechanism bases its decisions on
the relative number of iterations performed by a PU, in comparison to the maximal
number of iterations. The PUs that execute less than 10% of the biggest chunk, are
excluded from the computation. We apply the same principle by comparing the chunks
power per iteration. This brings the low energy consuming PUs in front, with a good
level of performance.

A more accurate energy consumption model would be unnecessary and impractical
for the coarse-grain decisions taken by our scheduler. Also, building such a model re-
quires thorough manual experiments in order to provide accurate energy consumption
predictions. As performance is our main concern, we decided to take a single reference
code version, and sticked to it during the energy experimentations. Extensive mea-
surements were operated for gemm, syrk and doitgen. The scheduler is parametrized
by the maximal power consumed during the experiments as reference. Also, communi-
cations and processor usage are considered equal in terms of power consumption. This
is a first glimpse towards handling the energy case in a CPU+GPU scheduler. Further
refinements to this model will be provided in future work.

An increase in the number of blocks, provokes an increase in power consumption,
as demonstrated by Fig. 5.36 and Fig. 5.37. For comparison, we provide the power
consumed by the host core i7 2700k processor, referred to as CPU norm., for 8 active
threads. A PU active power is given by the relation, PP U = Pa − Ba where Ba, the
basic active power of the system is subtracted from the measured active power Pa.
During the experiments, only the tested device was stressed. We considered execution
environment variations as insignificant.

Through experiments we noticed that gemm was consistently draining more power

5.3. CPU + GPU JOINT EXECUTION 133

 0

 100

 200

 300

 400

 500

 600

101 102 103 104 105
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

ac
tiv

e
in

st
an

t p
ow

er
 (

W
at

ts
)

no
rm

al
iz

ed
 fl

op
s

(f
lo

ps
/n

s)

number of blocks

GPU max.
GPU norm.
CPU norm.

flops

Figure 5.36 – Instant power consumption (y) and normalized flops (y2) for gemm.

 0

 100

 200

 300

 400

 500

 600

100 101 102 103
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

ac
tiv

e
in

st
an

t p
ow

er
 (

W
at

ts
)

no
rm

al
iz

ed
 fl

op
s

(f
lo

ps
/n

s)

number of blocks

GPU max.
GPU norm.
CPU norm.

flops

Figure 5.37 – Instant power consumption (y) and normalized flops (y2) for doitgen.

134 CHAPTER 5. HETEROGENEOUS COMPUTING

than other codes. This observation may be related to the intensive computational re-
source usage of this particular code. On our dual-GPU card platform (GTX 590), it
appeared that the driver was setting the card at maximum performance when submit-
ting CUDA commands, see GPU max. in Fig. 5.36 and 5.37. This punctually leads to
a huge energy consumption overhead when only one over two GPUs is targeted. This
overconsumption lasts between 10 to 15s in general, and is denoted with dashed lines.
As this behaviour seems strongly coupled to our test platform, it is not taken into ac-
count by the scheduler. The power requirements of the sole computation are denoted
by the solid curves. We noticed that there is no direct relationship between the flops
and the energy consumption, preventing the reduction of manual measurements.

For the considered codes, the CPU energy consumption tops when the number of
threads reaches the number of physical cores. The energy consumption stabilizes at
∼ 64W , when the virtual cores are used (Hyper-Threading).

The consideration of energy constraints by the scheduler, produces the speedups
presented in Fig. 5.38, 5.39 and 5.40, for respectively gemm, syrk and doitgen. In the
same order, energy consumption is depicted in Fig. 5.41, 5.42 and 5.43. Since running
gemm on the CPU requires significantly more power it is eliminated. In fact, there is
approximately a factor of 4 between the CPU and GPU computed watts per iteration.
However, as is noticing in the plot, CPU was already eliminated with the iteration count
based strategy due to its weaker performance for that particular code. In that particular
case, with only GPUs running, imbalance averages to 2%. Conversely, the GPUs are
eliminated from the computation for doitgen, as observable in Fig. 5.43. By the way,
impact on the speedup is reasonable, especially compared to the power consumption
improvement. For syrk, the scheduler chooses to pursue the computation on the CPU
and GPU except for versions 4, 5 and 6. This is confirmed by the speedups showed in
Fig. 5.25. The scheduler overhead is similar to the results obtained in section 5.3.4.1.

5.3.7 Perspectives and conclusion

We presented an original method for achieving load balance between CPUs and GPUs
in a dynamic context. It is based on an accurate prediction of the CPU and GPU
execution times of codes, using the results of a profiling of those codes. We implemented
it using Python scripts, calling several polyhedral compilation tools, and we tested it on
the polyhedral benchmark suite, showing that it is effective on a platform composed of
one CPU and 4 GPUs. The scheduler works independently from the prediction method
and allows extensions to other prediction mechanisms in the future.

Also, we propose an extension to our performance-oriented scheduler to take energy
into consideration. We showed that with slight modifications the scheduler was adapted
to improve energy consumption by deactivating the inefficient PUs. The experiments
have shown that it is able to select the right PU based on energy restrictions. This is a
first step towards handling consumption in the scheduler and may be extended in the
future, with hardware exposing more information and fine-grain energy models.

Our future plans include extending this work to handle other types of hardware,
for example Xeon Phi processors and larger systems including 10’s of GPUs and 100’s
of cores.

5.3. CPU + GPU JOINT EXECUTION 135

 0

 0.5

 1

 1.5

 2

 2.5

 3

CPU
1GPU

CPU+1GPU

CPU+2GPUs

CPU+3GPUs

CPU+4GPUs

sp
ee

du
p

gemm (c1)
gemm (c2)
gemm (c3)
gemm (c4)
gemm (c5)
gemm (c6)
gemm (c7)
gemm (c8)
gemm (c9)
gemm (all)

Figure 5.38 – Speedup to execution time of slowest code version combination for gemm
with energy-enabled scheduler.

 0

 1

 2

 3

 4

 5

CPU
1GPU

CPU+1GPU

CPU+2GPUs

CPU+3GPUs

CPU+4GPUs

sp
ee

du
p

syrk (c1)
syrk (c2)
syrk (c3)
syrk (c4)
syrk (c5)
syrk (c6)
syrk (c7)
syrk (c8)
syrk (c9)
syrk (all)

Figure 5.39 – Speedup to execution time of slowest code version combination for syrk
with energy-enabled scheduler.

136 CHAPTER 5. HETEROGENEOUS COMPUTING

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

CPU
1GPU

CPU+1GPU

CPU+2GPUs

CPU+3GPUs

CPU+4GPUs

sp
ee

du
p

doitgen (c1)
doitgen (c2)
doitgen (c3)
doitgen (c4)
doitgen (c5)
doitgen (c6)
doitgen (c7)
doitgen (c8)
doitgen (c9)
doitgen (all)

Figure 5.40 – Speedup to execution time of slowest code version combination for doitgen
with energy-enabled scheduler.

5.3. CPU + GPU JOINT EXECUTION 137

 0

 200

 400

 600

 800

 1000

 1200

 1400

CPU
1GPU

CPU+1GPU

CPU+2GPUs

CPU+3GPUs

CPU+4GPUs

W
at

ts
 s

ec
on

d

gemm (all energy)
gemm (all)

Figure 5.41 – Comparison of energy consumption for gemm between energy enabled
scheduler (left bar) and iteration count based elimination (right bar).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

CPU
1GPU

CPU+1GPU

CPU+2GPUs

CPU+3GPUs

CPU+4GPUs

W
at

ts
 s

ec
on

d

syrk (energy all)
syrk (all)

Figure 5.42 – Comparison of energy consumption for syrk between energy enabled
scheduler (left bar) and iteration count based elimination (right bar).

138 CHAPTER 5. HETEROGENEOUS COMPUTING

 0

 100

 200

 300

 400

 500

 600

 700

CPU
1GPU

CPU+1GPU

CPU+2GPUs

CPU+3GPUs

CPU+4GPUs

W
at

ts
 s

ec
on

d

doitgen (energy all)
doitgen (all)

Figure 5.43 – Comparison of energy consumption for doitgen between energy enabled
scheduler (left bar) and iteration count based elimination (right bar).

Chapter 6

Thread Level Speculation

6.1 CPU speculative execution

This work is the result of a collaboration with Alexandra Jimborean, who defended her
Ph.D. in 2012 in our team. My main contributions reside in the virtual machine: the
memory backup system in Section 6.4 and 6.6 and a part of dynamic code generation in
Section 6.3. A proposal towards the extension of the framework for GPUs is presented
in Section 6.7. This Chapter is mainly taken from our publication [66].

6.1.1 Introduction

Automatically parallelizing sequential code became increasingly important with the
advent of multicore processors. Particularly, the polyhedral model [25], originally de-
signed for compile-time loop optimizations and parallelization, is known to show im-
mense benefits for kernels written as loops with affine control of their iteration counts
and array accesses. However, frequently, even scientific codes embed loop nests with
bounds that cannot be statically predicted, having complex control flows or containing
pointers leading to issues such as memory aliasing. As static analysis is too fragile, one
relies on run-time speculations to achieve a stable performance [74]. Additionally, to
generate highly performing code, it is crucial to perform optimizations prior to paral-
lelization. It is, nevertheless, a challenging task to parallelize code at runtime, due to
the time overhead generated by the required analysis and transformation phases.

Runtime parallelization techniques are usually based on thread-level speculation
(TLS) [124, 86, 123] frameworks, which optimistically allow a parallel execution of
code regions before all dependences are known. Hardware or software mechanisms
track register and memory accesses to determine if any dependence violation occur.
In such cases, the register and memory state is rolled back to a previous correct state
and sequential re-execution is initiated. Traditional TLS systems perform a simple,
straightforward parallelization of loop nests by simply slicing the outermost loop into
speculative parallel threads [124, 86, 69]. As soon as a dependence is carried by the
outermost loop, this approach leads to numerous rollbacks and performance drops.
Moreover, even if infrequent dependences occur, nothing ensures that the resulting
instruction schedule improves performance. Indeed, poor data locality and a high

139

140 CHAPTER 6. THREAD LEVEL SPECULATION

amount of shared data between threads can yield a parallel execution slower than
the original sequential one. To gain efficiency, TLS systems must handle more complex
code optimizations that can be profitably selected at runtime, depending on the current
execution context.

At a higher level of parallel programming, a growing interest has been paid to the
use of algorithmic skeletons [33, 84], since many parallel algorithms can be characterized
and classified by their adherence to one or more generic patterns of computation and
interaction. In [33], Cole highlights that the use of skeletons offers scope for static and
dynamic optimization by explicitly documenting information on algorithmic structure
which would often be impossible to extract from equivalent unstructured programs.
On the other hand, Li et al. propose in [84] a lower level implementation of data-
parallel skeletons in the form of a library, as a good compromise between simplicity
and expressiveness.

According to these features, we extend the concept of algorithmic skeletons in the
following ways. Our skeletons:

• are generated automatically at compile-time and embedded in the final executable
file;

• are specialized to the loop nests that are initially marked in the source code using
a dedicated pragma;

• implement a given combination of polyhedral loop transformations as loop inter-
change, skewing or tiling [25];

• have a fixed algorithmic structure with instructions of three categories: (1) orig-
inal program instructions, (2) polyhedral transformation instantiation and (3)
speculation management, where categories (2) and (3) contain parameterized
code, i.e., with unknown values of some variables;

• are rendered executable at runtime by assigning values to the parameters of
instruction categories (2) and (3).

Such skeletons, embedded in the executable file of the target program, significantly
improve dynamic and speculative parallelization opportunities by allowing very fast
code generation and advanced automatic parallelizing transformations of loop nests.
Unlike previous works [98, 72, 134] which report on simple patterns (templates) with
“holes”, replacing branches, that are filled dynamically, we design skeletons which
dynamically instantiate a polyhedral loop transformation and embed instructions to
manage speculative parallelization. Starting from the skeletons, different, optimized
code versions can be generated, by assigning values to some parameters.

To support the generation and the use of these skeletons, we propose a lightweight
static-dynamic system called VMAD – for Virtual Machine for Advanced Dynamic
analysis and transformation – which is a subclass of TLS systems, devoted to loop
nests that exhibit linear behavior phases at runtime. We define linear behavior phases
as being characterized by outermost loop slices where:

• All accessed memory addresses can be represented as affine functions of the loop
indices;

6.2. OVERVIEW OF OUR SYSTEM 141

• All loop bounds, except the outermost, can be represented as affine functions of
the enclosing loop indices;

• The values assigned to some particular variables, called basic scalars, can also
be represented as affine functions of the loop indices. These scalars are detected
at compile-time as being variables defined by φ-nodes in the LLVM Static Single
Assignment (SSA) intermediate representation. They have the interesting prop-
erty of being at the origin of the computations of all other scalars used in the
loop bodies.

Our contributions can be summarized as:

• Perform dynamic and advanced loop transformations and generate efficiently the
resulting parallel code by using compiler-generated algorithmic skeletons at run-
time;

• Exhibit parallelism in codes that cannot be parallelized in the original form;

• Adapt dynamically to the current behaviour of the code and apply a suitable
skeletal code transformation;

• Exploit partial parallelism, i.e., parallelism that can only be exploited on some
slices of the outermost loop;

• Apply the polyhedral model on for, while and do-while loops that exhibit linear
behaviour phases;

• Do not require any hardware support dedicated to speculative parallelization.

Preliminary ideas of our speculative system are presented in our previous work [67],
while the proposal presented in [68] details the instrumentation and analysis phase,
required for building an abstract model of the loop nest. The current chapter focuses
on using the abstract representation of the loops in order to automatically perform
speculative optimizations and parallelization at runtime. All aspects and details of the
whole framework can be found in [65].

6.2 Overview of our system

This proposal extends our work on designing a TLS framework able to apply polyhedral
transformations at runtime [67], such as tiling, skewing, loop interchange, etc., by
speculating on the linearity of the loop bounds, of the memory accesses and of the values
taken by specific variables, the basic scalars. Speculations are guided by online profiling
phases. The instrumentation and analysis processes are thoroughly described in our
previous work [68]. The system is entirely automatic and attempts the parallelization
of the loop nests without any intervention of the user. Moreover, the programmer can,
but is not required to, specify the loop nests of interest. All code manipulations are
performed in the intermediate representation (LLVM IR), hence our framework is both
programming language and target agnostic.

142 CHAPTER 6. THREAD LEVEL SPECULATION

COMPILE-TIME

source code

multi-versioning
dependence

analysis

parametric chunks

dependence

information

binary code

.

#pragma speculative_parallelization

.

.

.

original

sequential

version

instrumented

version

parallel code

skeleton with

verification

code

LLVM IR code

EXECUTION-TIME

profiling and

interpolation

yes no

dynamic

dependence

analysis

adjust chunk

size and launch

yes

no

patch

adjust chunk

size and launch

yes

no

cancel last chunk

execution

instrumented

version

dependence

information

original

sequential

version

parallel code

skeleton with

verification

code

parallel code

with

verification

code

the code can

be parallelized

all accesses

are linear

rollback

required

Figure 6.1 – Static-dynamic collaborative framework

Using the chunking mechanism presented in Fig. 6.2, we slice the iteration space
of the outermost loop in successive chunks. The bounds of the chunks are determined
dynamically to adapt to different execution phases of a loop. Execution starts with a
profiling phase, whose results are used to validate a suitable polyhedral transformation.
Next, a new transformation is proposed for each phase, and a customized parallel
version is generated, by patching the skeleton. If several parallelizing transformations
are validated, VMAD includes a module dedicated to select the best performing code
version. This is achieved by launching successively small chunks embedding one of
the possible parallel versions, and selecting the best performing one, according to the
resulting average of execution time per iteration. Phase detection is detailed in the
end of this section and relies on the code dedicated to monitor the speculations.

During the speculative execution, the predictions are verified, initiating a rollback
upon a misspeculation and resuming execution with a sequential chunk. If validation
succeeds, a new parallel chunk is launched. The implementation of VMAD consists of
two parts: a static part, implemented in the LLVM compiler [89], designed to prepare
the loops for instrumentation and parallelization, and generate customized parallel
skeletons, and a dynamic part, in the form of an x86-64 runtime system whose role
is to build interpolating functions, perform dynamic dependence analysis and trans-
formation selection, instantiate the parallel skeleton code and guide the execution, as
illustrated in Fig. 6.1. Since the compiler is target agnostic, the framework is indepen-
dent of the target architecture (as long as LLVM provides a back-end), nevertheless,
the runtime system has to be ported on the new architecture.

Static component Our modified LLVM compiler generates customized versions of
each loop nest of interest: original, instrumented and several algorithmic skeletons each
supporting a specific class of polyhedral transformations, together with a mechanism
for switching between the versions (a decision block preceding the code versions).

To complete the loop’s execution and adapt to the current phase, we automatically

6.2. OVERVIEW OF OUR SYSTEM 143

p
ro

fi
li
n

g

parallel

schedule

1

parallel

schedule

1

execution progress

verification
+

validation

verification
+

rollback

dependence

analysis

parallel

schedule

2

parallel

schedule

2

verification
+

validation

...

p
ro

fi
li
n

g

dependence

analysis

sequential

schedule

Figure 6.2 – The chunking mechanism

Figure 6.3 – Alternate execution of different versions during one loop nest’s run

link up at runtime the different versions of the original code. Each version is launched
in a chunk to execute a subpart of the loop and another one continues, as in relay races.
The support for chunking the outermost loop and linking distinct versions is illustrated
in Fig. 6.3. The instrumented, original and two skeletons are built at compile time. At
runtime, one or another version is automatically selected to be executed for a number
of iterations.

We build skeletons from which several parallel code versions can be generated at run-
time, by patching predefined code areas. The skeletons are embedded in the compiler-
generated binary file. The advantages are that the code size is significantly reduced
and that many different parallel code versions can be build dynamically, guided by the
results of the dynamic analysis. Also, patching a binary skeleton is considerably faster
than fully dynamic code generation using JIT (Just-In-Time) compilation. However,
the limitation of this approach is that it can only support a subset of the possible poly-
hedral transformations, namely those preserving a given loop structure and avoiding
to reorder the statements inside the body of the loops. More details on the design of
the skeletons are given in the next section.

A set of polyhedral loop transformations, defined as matrices, is generated stati-
cally and is encoded in the data section of the binary file. Their computation follows a
static dependence analysis, which ensures that the dependences which can be statically
identified will not invalidate the schedules, thus preventing useless scheduling alterna-
tives. Generally, even if no static dependence can be identified to guide the selection
of transformations, it is convenient to consider “classic” transformation matrices that
are unimodular and resulting in combinations of loop exchange and skewing.

Dynamic component The runtime system collaborates tightly with the static com-
ponent. During the instrumentation phase, it retrieves the accessed memory locations,

144 CHAPTER 6. THREAD LEVEL SPECULATION

the values assigned to the basic scalars, and computes interpolating linear functions
of the enclosing loop indices. Instrumentation is performed on samples to limit the
time overhead and to launch parallel code as soon as possible. Thus, the computed
linear functions speculatively characterize the behaviour of the loop. Instrumentation
is followed by a dependence analysis which evaluates whether any of the proposed
polyhedral transformations can be efficiently applied. If successful, the runtime sys-
tem assigns values to the coefficients of the linear functions in the corresponding code
skeleton and launches it.

The dynamic dependence analysis is an incremental process that computes the dis-
tance vectors used in validating polyhedral transformations, based on the actual mem-
ory addresses accessed during the run of an instrumented chunk, and on the functions
interpolating them. In order to ensure that the computed distance vectors entirely
characterize the current code behaviour, the interpolating functions are used to check
if any memory instruction couple, where at least one is a write, and for which no dis-
tance vectors have been computed, may carry a dependence. This is achieved by a fast
value range analysis of the touched memory addresses and a GCD test. Additional
information is available in [65].

The speculative execution is monitored by the runtime system. As soon as a mis-
speculation is identified, it is followed by a rollback which restores the memory to a
correct state. For this purpose, the runtime system creates proactively a copy of the
memory area that is going to be modified by the next parallel chunk, since it can be
predicted using the interpolating linear functions. In case a rollback is performed, the
memory is overwritten with the content of the copy, and the rollbacked iterations are
re-executed using the original sequential schedule; next instrumentation is re-initiated.
Otherwise, a new parallel chunk is launched.

Our system dynamically adapts to each phase of the loop by launching the corre-
sponding code version for a subset (chunk) of iterations. Thus, the size of each chunk
is computed based on the currently observed behaviour of the loop: a stable behaviour
leads to an increase of the chunk size until a fixed threshold, whereas a change in the
behaviour resets the size to a default starting value.

Next, we focus on the dynamic, lightweight code generation of parallel optimized
code using skeletons.

6.3 Binary skeletons

The skeletons are prepared statically (corresponding to Skeleton 1 and Skeleton 2
versions in Fig. 6.3) and instantiated at runtime to generate distinct code versions
(parallel schedule 1 and parallel schedule 2 in Fig. 6.2). For the purposes of clarity,
we start with a pedagogical example in which the code can be statically analyzed, and
we detail in what follows the implications on non-statically analyzable code and our
solutions to handle it.

First, consider the simple two-loop nest, with indices i, j in the first column of Ta-
ble 6.1. Performing the affine transformation (i, j) → (x, y) = (i+j, i) on the original
loops, one obtains a new version. We can then rewrite the code to loops on x and y
instead of i and j, obtaining the skewed routine from Table 6.1, second column. As one

6.3. BINARY SKELETONS 145

Table 6.1 – Simple loop transformations

do i = 1 ,6
do j = 1 ,5
A(i , j) =
A(i −1, j +1)+1

do x = 2 ,11
do y = max(x−5 ,1) ,

min (6 , x−1)
i = y
j = x−y
A(i , j) =
A(i −1, j +1)+1

do x = low_x , upp_x
low_y = max(a∗x+b ,

c s t)
upp_y = min(c∗x+d ,

c s t)
do y = low_y , upp_y

i = e∗x+f ∗y+g
j = h∗x+k∗y+l
A(i , j) =
A(i −1, j +1)+1

can notice, the loop structure remained the same (except the loop bounds and the ini-
tialization code), despite the affine transformation that has been applied. By rewriting
the loop bounds and the memory accesses as generic affine functions of the enclosing
loop indices, we can build a skeleton from which an infinite number of parallelizing
transformations can be applied, provided that the loop structure and the order of the
statements remain unchanged, as shown in the third column of Table 6.1. At runtime,
the coefficients of the linear functions computing the loop bounds and the original it-
erators are assigned values according to the affine transformation to be applied. Each
set of coefficients is equivalent to a new polyhedral transformation. A skeleton could,
for example, support loop skewing combined with loop interchange, in which the the
first loop level is parallel, while another skeleton can combine the same two types of
transformations with the second loop level as parallel. By assigning different values to
the coefficients in the same skeleton, different skewed and/or interchanged loop ver-
sions can be obtained. Similarly, one can design new skeletons to support other classes
of polyhedral transformations.

To be able to handle all types of loops in the same manner, being them for-, while-
or do-while loops, we introduce the notion of virtual iterators. They are canonical
iterators inserted in the loops, starting from 0 and incremented with a step of 1.
They allow us to handle loops that originally did not have any iterators in the code
and to apply polyhedral transformations. As an example, consider the loop nest in
Table 6.2, column 1 (original version) and its equivalent form in column 2 with virtual
iterators (sequential version in Fig. 6.3). The virtual iterators are part of our chunking
mechanism, allowing the runtime system to control the number of executed iterations in
each chunk, independently of the executed version’s nature: instrumented, sequential
or parallel.

To preserve the correct semantics of the original code and to perform the required
speculation management tasks, the skeletons are completed with guarding, initialization
and verification code, as shown in column 3 and detailed below. Additionally, skeletons
include explicit calls to the GOMP/OpenMP library [55] to spawn parallel threads. All
these code manipulations are performed at the intermediate representation level.

146 CHAPTER 6. THREAD LEVEL SPECULATION

Table 6.2 – Simplified skeletons

while (p!=NULL) {
q = q0 ;
while (q!=NULL) {
p−>val += q−>

val ;
q = q−>next ; }

p=p−>next ; }

for i = lowchunk,
uppchunk

for j = 0 , u∗ i+
v

i f (p!=NULL)
. . .
i f (q!=NULL)

. . .

do x = lbx , ubx {
do y = lby , uby {

/ ∗ initialization code ∗ /
p = a ∗ x + b ∗ y + c
i f (! (p!=NULL))

r o l l b a ck () ;
else {
q = q0 ;
i f (guarding code) {
/ ∗ initialization code ∗ /
q = d ∗ x + e ∗ y + f
i f (! (q!=NULL)) {

i f (j 6= αx + βy + γ)
r o l l b a ck () ;

else continue ; }
else {
p−>val += q−>val ;
q = q−>next ; }

i f (guarding code)
p=p−>next ;

} } } }

6.3.1 Guarding code

Since any target loop nest is first transformed as a for-loop nest, the computation of the
new loop bounds of the parallelized loop nest has to be done automatically at runtime,
for any loop nest depth. This is classically done using the Fourier-Motzkin elimination
algorithm [130]. For this purpose, we use an implementation of the algorithm available
in the software library FM [115]. Note that the conditions of the original while loops
are preserved in the code by copying the original loop bodies in the skeleton, thus
ensuring that we do not execute mispredicted iterations. Similarly, we check that all
iterations have been executed, by verifying that the exiting iteration, with respect to
the sequential order, executes when predicted. We call this guarding code and it is
aimed to verify our speculation on the loop bounds, as detailed in Sect. 6.3.3. The not
perfectly nested instructions are embedded in conditionals which ensure that they are
executed only at the right iterations. The guarding code is inserted in the innermost
loop, thus allowing various affine transformations combined with loop interchange.

6.3.2 Initialization code

We use the linear functions obtained from the profiling phase, to initialize the basic
scalars at runtime. In Table 6.1, the basic scalars are the original iterators i and j,
preserved in the skeleton code to ease the computations, while in Table 6.2, the basic
scalars are p, q and j: p and q correspond to the phi-nodes in the original code and

6.3. BINARY SKELETONS 147

their values are employed in the computation of accessed memory locations, whereas j
contributes to the computation of the exit conditions of the subloop.

Our value prediction mechanism is similar to the ones presented in [140, 119]. The
initialization code is equivalent to privatization, since all values that depend on other
iterations are re-declared locally in each thread and initialized using the predicting
linear functions. Thus, the new shape of the loop nest complies with the polyhedral
model and the loops can be further transformed as in the case of statically analyzable
code, by applying an affine, unimodular transformation T . For example, for a loop
nest of depth 2:

T ·
(

i
j

)

=

(

x
y

)

⇔
(

i
j

)

= T −1 ·
(

x
y

)

we obtain a new loop version in x and y. The bounds of the loops and the coefficients
of the linear functions are assigned values dynamically. The coefficients of the linear
functions are computed by applying the transformation matrix T on the predicting
linear functions obtained from profiling and linear interpolation.

6.3.3 Verification code for speculative parallelization

Since all code transformations, including parallelization, rely on speculations, one must
periodically check the predictions in order to validate/invalidate the execution. Not
only we maintain the correct memory state, but we also transform the control flow of
the loop, using new loop iterators and bounds.

The model we propose is based on the linear description of the memory accessing
behaviour. Hence, our speculations consist of the linear functions that predict the
memory addresses being accessed. Validating a transformation is equivalent to verifying
the correctness of the interpolating linear functions. Under these circumstances, it
suffices to compare the actual addresses being accessed, by the original instructions,
to our predictions, given by the linear functions. Recall that the code inside the body
of the loops in the skeletons is a copy of the original code. Thus, the memory accesses
are performed by a copy of the original memory instructions, whose target addresses
are computed directly or indirectly from the basic scalars, which are initialized at each
iteration.

We divide the type of verification in three categories, depending on the instances
being verified:

1. Basic scalars. When the execution of the iteration completes, we verify that
the value computed by the code of the loop body and the value we predict coincide.
For this verification, we compare the actual value with the one expected for the next
iteration according to the sequential order. Validation of basic scalars ensures that
all values computed in the loop reach the predicted values. Hence, the result of the
dependence analysis is preserved as long as the interpolating linear functions used for
initializations and verifications remain valid.

2. Memory accesses. Note that some iterations might execute before being vali-
dated by the preceding iteration according to the sequential order. Hence, one is re-

148 CHAPTER 6. THREAD LEVEL SPECULATION

quired to verify all memory accesses performed in the current iteration to ensure that
each targeted location has been correctly predicted. This has twofold consequences.
First, it ensures that no invalid access is performed. And second, it guarantees that the
memory state can be safely restored, as no modification outside the predicted memory
is done. Although memory accesses are verified prior to being performed, indirect ar-
ray addressing can still be handled by our system, since it is modelled as two separate
memory accesses, each of them verified independently.

3. Loop bounds. The iteration counts of the subloops have a direct role in the
polyhedral transformation being applied. The verification code relies heavily on the
guarding code, presented previously. The transformed loop bounds control the number
of iterations to be executed by each loop of the nest and together with the guarding
code, it must be verified that: (i) each loop executes all its iterations, (ii) but no
loop executes more iterations than it should. Due to the out-of-order execution of the
iterations, the code must allow the execution of the last iteration of a loop (according
to the sequential order) without exiting, as it might be followed by other iterations
according to the parallel schedule. As an example, consider the transformed loop in
the code snippet in Table 6.2. The bounds of the outermost loop cannot be predicted,
therefore a rollback is triggered when the original outermost condition becomes false.
In contrast, the subloops’ bounds are interpolated, and, thanks to this prediction, the
execution order of their iterations can be changed, while precisely controlling the loop
exiting iterations.

6.4 Memory backup

As the execution is speculative, the framework integrates a system of commit/rollback,
equivalent to the mechanisms employed in database. Before any execution of a par-
allel chunk, data are backed-up for the range of written predicted memory addresses.
On rollback, data saved previously are propagated and overwrite any modification
performed during the last chunk execution. After a valid chunk execution, previous
backed-up data are dropped.

To compute the range of memory supposedly touched by the next chunk, one must
determine the bounds. We respectively compute a minimum and maximum lower and
upper bound for each loop level. In fact, the values are successively propagated in the
bounds of the enclosed loop to compute the ranges of the iterators. Finally, we solve
the affine access functions with the min/max values obtained for each iterator. In fact,
the iterator stride is assumed to be monotonically increasing.

As memcpy is a highly optimized function, results may vary depending on memory
address alignments, data to be copied, etc. As a consequence, the threshold for per-
forming either just one call to copy a large array, or several calls to copy smaller chunks
of memory, should be adjusted depending on the data layout for optimal results. We
carried out tests on arrays of 100MB of the form:

|——|xx|——|xx|——|xx|——|xx|...|

6.4. MEMORY BACKUP 149

M1 M2 M3

memcpy memcpy

memcpy

A.

B.

Figure 6.4 – memcpy merging strategy.

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 100 1000 10000 100000 1e+06 1e+07

tim
e

(n
s)

spacing (bytes)

Memcpy micro-benchmark on 100 MB array

102400
502400
1048576
5048576
10485760

Figure 6.5 – memcpy behaviour on multiple spacing configurations, for different chunk
sizes.

where a memory range is represented by: |——|, and the spacing between the ranges
by |xx|. We are interested in determining the point at which it becomes interesting to
fuse the memory copies. Figure 6.5 depicts the time to transfer chunks of fixed sizes
(denoted by the different curves), when varying the spacing between two consecutive
transfers. Performing numerous small memcpy significantly degrades the performance.
The larger the chunk size, the closer is the performance to a full copy (cyan, violet) and
inversely. The best performance are achieved for small chunks, with a wide spacing
(for chunk sizes of 1KB, ∼ 5KB and 1MB). Through these empirical experiments we
observed that it is worth performing a large memcpy as soon as the unnecessarily
saved area is lower or equal to the total memory range to be copied. This strategy
is illustrated in Fig. 6.4. For this purpose, the address ranges are sorted in ascending
order, based on the lowest accessed address. The memory range is then traversed and
interval between two accessed regions is calculated. Regions are fused based on the

150 CHAPTER 6. THREAD LEVEL SPECULATION

Algorithm 6.1 VMAD decision module, backup management

function Backup()
l ← camus_min_max_loop_bounds()
m← camus_min_max_mem_access(l)
m← camus_sort_min_max(m)
m← camus_fuse_mem_access(m)

end function

aforementioned strategy. An overview of the stages executed by the decision module is
presented in Algorithm 6.1. We vary the size of chunks and measure the time taken to
transfer them using several memcpy calls. The black continuous line is the reference
and it represents the time required to copy the entire array (chunks and spacing) in
one memcpy.

6.5 Experimental results

In this section we present the experiments we conducted to evaluate our approach of
applying the polyhedral model at runtime, in the view of speculatively parallelizing the
loop nests. Our benchmarks were run on two architectures. The first platform embeds
two AMD Opteron 6172, of 12 cores each, at 2.1 Ghz, running Linux 3.2.0-27-generic
x86_64, while the second platform is an Intel Xeon X5650 at 2.67GHz, with 12 cores
hyper-threaded, running Linux 3.2.0-24-generic x86_64. We have selected a set of
benchmarks from different sources: the polyhedral benchmark suite [118], the Rosetta
codes [125], the Rodinia benchmark suite [29] and the DSPstone benchmarks [42]. No-
tice that although some of these codes could have been handled statically, they are
used to show the effectiveness of our system. Hence, we have modified them to use
dynamically allocated arrays or pointers, which would prevent static analysis. Our
measurements are given in Table 6.3. We compare the speed-up of our system for the
target loop nests relatively to manual parallelization using OpenMP, when such a par-
allelization is possible, on both architectures, with 12 and 24 threads. Note that the
speed-up obtained by OpenMP code is the highest that can be reached with straight-
forward parallelization (identity transformation matrix), since it does not require any
dynamic analysis, dynamic code generation or support for speculative execution. In
contrast, it places the burden on the programmer to analyze and parallelize the code,
and to ensure its correctness. On the other hand, VMAD is entirely automatic and
does not rely on any hardware support for speculative executions. Thus, it is read-
ily applicable on any target architecture, merely by porting the runtime system, at
the cost of an inherent overhead for offering a purely software support for speculative
parallelization.

One of the interesting outcomes is that the behaviour of the same code on the
two different architectures is very different, in terms of scalability with the numbers
of threads. We observed that this behaviour is not specific to VMAD, as we obtained
similar results when parallelizing the codes manually, with OpenMP. Each processor is
better adapted for a particular type of applications, and the codes benefit differently

6.5. EXPERIMENTAL RESULTS 151

Table 6.3 – Code speculatively parallelized with VMAD, compared to OpenMP

AMD Opteron 6172 Intel Xeon X5650
Program # Speed-up Speed-up Speed-up Speed-up Polyhedral

threads VMAD OpenMP VMAD OpenMP Transf.

adi 12 1.78 13.49 1.80 5.21
(

1 0
0 1

)

24 1.82 13.34 4.09 4.75 identity
1st loop par.

backprop 12 12.53 11.24 1.23 1.83
(

0 1
1 0

)

24 15.62 17.86 1.86 2.05 interchange
1st loop par.

cholesky 12 1.93 N/A 1.67 N/A

(

1 1 0
0 1 0
0 0 1

)

24 1.81 N/A 1.47 N/A polyh. tr.
2nd loop par.

floyd 12 0.77 N/A 0.73 N/A
(

1 0
0 1

)

24 1.43 N/A 0.73 N/A identity
2nd loop par.

fir2dim 12 2.74 N/A 3.29 N/A
(

1 0
0 1

)

24 2.61 N/A 2.93 N/A identity
1st loop par.

covariance 12 4.30 6.19 4.03 5.86
(

1 0
0 1

)

24 7.45 12.07 4.55 8.92 identity
1st loop par.

correlation 12 4.29 6.26 3.88 5.73
(

1 0
0 1

)

24 7.47 12.18 4.64 8.55 identity
1st loop par.

qr_decomp 12 2.87 12.02 2.11 11.03
(

1 0
0 1

)

24 4.69 20.02 2.48 12.22 identity
1st loop par.

grayscale 12 1.81 8.73 1.13 3.59
(

1 0
0 1

)

24 2.03 6.61 1.25 2.28 identity
1st loop par.

152 CHAPTER 6. THREAD LEVEL SPECULATION

1

2

3456
7

Sequential
Parallel execution
Dynamic code generation
Decision
Memory backup
Restore after rollback
Instrum. + interp. + dda

1 1.31%
2 87.04%
3 2.14%
4 0.23%
5 1.91%
6 0.25%
7 7.13%

Figure 6.6 – Runtime overhead of covariance

1

2

3-7

Sequential
Parallel execution
Dynamic code gen.
Decision
Memory backup
Restore after rollback
Instrum. + interp. + dda

1 30.88%
2 67.18%
3 1.24%
4 0.00%
5 0.57%
6 0.02%
7 0.10%

Figure 6.7 – Runtime overhead of backpropagation

1

2

3
4

5

6 7

Sequential
Parallel execution
Dynamic code generation
Decision
Memory backup
Restore after rollback
Instrum. + interp. + dda

1 9.35%

2 22.04%

3 0.01%

4 4.36%

5 64.20%

6 0.00%

7 0.03%

Figure 6.8 – Runtime overhead of adi

6.5. EXPERIMENTAL RESULTS 153

from the hardware support such as the hardware prefetcher, the branch predictor, etc.

Additional experiments with a varying number of threads showed that even without
any transformation other than straightforward parallelization of the outermost loop,
our system outperforms OpenMP, thanks to the execution in chunks of the loops,
which is similar to strip-mining, having a positive effect on data locality (in Table 6.3
we show only the results with 12 and 24 threads). With adi on the Intel processor, the
execution with 16 threads using our system is slightly better than the code parallelized
with OpenMP. However, the benefits of chunking and parallelization are hidden by the
overhead when running adi on the AMD processor. We analyzed the overhead and
concluded that it stems from copying the data prior to parallelization using memcpy.
More details on the overhead of our system are given in the end of this section.

An interesting example is backprop, which can be parallelized in its original form
using OpenMP. This code is handled similarly by any traditional TLS system, by
parallelizing the outermost loop. On the other hand, our system discovers that a
loop interchange is possible, which brings significant performance gains, by improving
data locality. This benchmark underlines the fact that our system can significantly
improve embarrassingly parallel codes, unlike traditional TLS systems, even outper-
forming manual parallelization. Additionally, it shows that the runtime overhead of
the system is hidden by the gains provided by applying the polyhedral transformation.

Another example highlighting this contribution to the state of the art is cholesky,
which is not parallel in its original form. Therefore, previous TLS systems cannot
handle this code, nor can it be manually parallelized with OpenMP, since every loop
carries dependences. In contrast, our system analyses the runtime behaviour of the
code and finds a suitable polyhedral transformation which allows the loop from the
second level in the transformed code to be executed in parallel, as shown in the last
column of Table 6.3. Performance can be further improved by generating a skeleton
handling tiling transformations, which is one of the first targets of our future work.

The example floyd illustrates the capability of our system to adapt dynamically to
the behaviour of the code and to exploit partial parallelism. This benchmark embeds
a conditional that does not allow parallelization because it does not have a predictable
behaviour during the first iterations. Nevertheless, our system executes a sequential
chunk and monitors again the loop. The second profiling phase identifies that one
branch of the conditional is now always executed, and parallelization becomes possible.
Moreover, the result of the dependence analysis indicates the second loop level as being
parallel, which is not handled by traditional TLS systems. Although the inherent
overhead of the system stemming from the support for speculative execution hides the
benefits of parallelization, the benchmark is a suitable candidate to exhibit VMAD’s
capabilities of performing partial parallelization. We detail on the sources of overhead
in the end of the section, emphasizing the main bottlenecks and suggestions on how
the penalties can be reduced.

The benchmark fir2dim contains a loop nest of depth 3 performing memory ac-
cesses via pointers. Arrays are represented as dynamically allocated pointers and their
parsing is performed by using pointer arithmetic. OpenMP fails to parallelize such
codes, due to the impossibility of predicting the starting value of the pointers for each
thread. On the contrary, our system is successful in parallelizing these examples, thanks

154 CHAPTER 6. THREAD LEVEL SPECULATION

to its instrumentation phase, which builds interpolating linear functions.

Other examples, such as covariance and correlation show that codes parallelized
with our system have a good overall performance. Nevertheless, most of the figures
indicate that the speed-up could be considerably improved by reducing the overhead,
thus we plan to revise some of our implementation and design choices.

Various strategies could be employed in order to validate or guide the optimizations
applied dynamically, such as guarding the loop nests with tests and proposing one code
version or another, depending on the some key values unknown statically. However,
we aimed to design a more general approach for codes on which such conditionals
would not suffice. Codes such as fir2dim, qr_decomp and grayscale use dynamic
allocation and pointers that cannot be handled properly using pointer analysis, since
memory access functions depend on the input size unknown at compile-time, thus
making them non-linear, but linear at runtime. The same issue about non-linearity
arises with cholesky. Hence, accurate static dependence analysis is impossible. A
conditional code would even correspond to something close to our system itself. For
backprop, loop interchange is not always beneficial, depending on the size parameters
translating to loop bounds. Flexibility is required. Our system is adapted to component
programming and the use of library code which are becoming prevalent, and not in
favor of pointer analysis requiring the whole program. Also, spurious and infrequently
occurring dependences are treated conservatively with static analysis, to produce sound
results across all inputs. It could not handle codes like floyd. All these facts argue
for our dynamic approach for maximizing parallelism in the multicore era. We ran the
well-known polyhedral static parallelizer PLUTO [25] on the benchmark codes when
possible (for-loops, linear array accesses): on cholesky –that had to be rewritten with
linear accesses–, we outperform PLUTO thanks to our chunking system; PLUTO is
not exchanging loops in backprop; similar execution times are obtained with the other
codes, except adi, where our system is outperformed.

The systems’s runtime overhead As expected, the overhead’s impact strongly
depends on the characteristics of the code, since it is relative to the time of the total
execution. Thus, for loop nests in which the outermost loop has a large number of
iterations, the profiling phases, consisting in instrumentation, interpolation of mem-
ory accesses and dynamic dependence analysis, have almost a negligible overhead. In
practice, we noticed that in many situations, this overhead did not pose significant
problems. In Fig. 6.6, 6.7 and 6.8 we depict the time taken by each phase of executing
codes with our system, relative to the total execution. The Sequential phase refers
to the execution of the last chunk, which is always run sequentially, to ensure that
all iterations of the loop were executed. Dynamic code generation is the time taken
to specialize the skeletons, using runtime information. Decision is the time taken by
the runtime system to select the code version run by the next chunk and to set its
size. Memory backup is the safe copy that is performed before launching a specula-
tive chunk. Restore after rollback is the time required to restore the correct state
of the memory, upon a misprediction. And finally, the time taken to instrument the
code, interpolate the results and run the dynamic dependence analysis is depicted as
Instrumentation + interpolation + dda. In Fig. 6.6, 6.7 and 6.8, the pie chart

6.6. MEMORY BACKUP EXTENSIONS 155

illustrates the total execution time divided in the time taken by each action, when
running on the AMD Opteron 6172. One can notice that dynamic code generation
is negligible, which argues in favor of using binary skeletons. Similarly, the overhead
incurred by instrumentation and dependence analysis is minimal, thanks to our sam-
pling mechanism. Nevertheless, our strategy to back-up memory is costly, and requires
further refinements. A first improvement would be to include back-up each location
independently prior to be speculatively accessed. This strategy would parallelize the
memory back-up process and thus provide better performance.

6.6 Memory backup extensions

We may possibly backup too many data for certain access function, for instance,
column-major access function. The problem is illustrated in some toy accesses, in
Samples 6.1, 6.2, 6.3. In fact, the backup to be performed may not always be applied
on dense memory ranges. To handle that issue, we use a recursive approach which
computes all the access ranges for the next chunk to be executed. The affine access
function is instantiated with the min/max values obtained in the decision module.
The computed list of ranges is then processed by our range fusion heuristic in order to
perform more efficient memcpy. The resulting fused ranges are copied by one of our
implementation of memcpy. A decision mechanism based on empirical experiments,
chooses the right function to execute depending on the memory area to backup: the
basic memcpy, a vectorized version, or a parallel OpenMP version. However, experi-
ments have shown that most of the time the standard memcpy was outperforming an
SSE version of memcpy on our test platform.

[0][0] [0][1] [0][2] [0][3]
[1][0] [1][1] [1][2] [1][3]
[2][0] [2][1] [2][2] [2][3]

(6.1)

[0][0] [0][1] [0][2] [0][3] ... [2][0] [2][1] [2][2] [2][3] (6.2)

[0][0] [0][1] [0][2] [0][3] ... [2][0] [2][1] [2][2] [2][3] (6.3)

6.7 GPU extension proposal

VMAD already tackles multi-core CPUs by speculatively parallelizing sequential codes.
In this section we propose some directions to enable efficient speculative parallelization
on GPUs. In fact, targeting GPUs generally requires drastic transformations for a code
to be efficient.

6.7.1 Verification code

To validate the semantics of the parallel chunks while ensuring performance, one has
to decide of the adequate method. Two interesting techniques may be employed in

156 CHAPTER 6. THREAD LEVEL SPECULATION

order to handle code verification on GPU. Note that since parallel chunks are run on
the GPU in a different address space, asynchronous pointer modifications are hardly
noticeable.

The first possibility is to generate a GPU-specific skeleton that would have the
same characteristics as the CPU skeletons. In that case, the verification code is em-
bedded into the kernel. At each iteration, before any memory access, the address must
be verified to be conform to predictions. Particular attention should be paid to the
memory address space as pointers do not lie in the same memory. In case the arrays
are allocated on the GPU, one should translate the original CPU base addresses, in the
verification code. Scalars are not directly impacted by this policy as they can be treated
as conventional values on the GPU. Any unpredicted memory access could be followed
by a trap instruction or equivalent, terminating the kernel execution (see Section 5.1).
Observe that notifying the GPU threads could also be achieved by injecting a guard
polling on a volatile variable residing in global memory. The high register requirement
would ineluctably limit the number of active threads, due to potential exhaustion of
the register file. To recall the reader, GPUs rely on parallelism in order to hide memory
latencies. Also spill code, may drastically impact the performance of the skeletons. A
high register consumption therefore puts a limit on the number of blocks simultaneously
executed by a multi-processor and exerts pressure on the memory subsystem.

As an alternative, the inspector/executor scheme could become handy, for several
reasons we describe in the following. The inspector thread is run on the CPU before-
hand, possibly asynchronously to the execution on a GPU of a controlled chunk. A
valid verification flags the chunk so that it is marked as ready to execute. As only
memory accesses and scalars are checked, we can reasonably assume verification is
performed quickly. The moderate impact of such a mechanism would still allow to con-
currently run computations on CPU. First of all, this would drastically simplify GPU
code generation. In particular, it would not require an address translation mechanism
to compute the address in the different memory spaces. Many additional verification
instructions, required for code checking, could be dropped, to release pressure on the
registers. Running the verification beforehand also allows to determine the number of
iterations.

6.7.2 Memory address space

In the presented speculative environment, handling the address space and data move-
ment is crucial in order to run codes on GPU. Since the discrete GPU memory resides
in an address space different than that of the CPU, multiple solutions are at disposal
for data movements. The memcpy-based backups have already been proved useful in
Jimborean et al. [65] work, Pradelle et al. [121] work and Section 6.4. In the case of
a GPU-only execution, memory should directly be sent to GPU as no backup is nec-
essary if the central memory stays untouched. In fact, restoring the memory simply
consists in avoiding to fetch the computation from the GPU. In case of a CPU + GPU
computation, the backup copy should be kept in the CPU central memory, as it ensures
faster recovery in case of a rollback.

With zero-copy memory, GPUs can directly access the host central memory. While

6.7. GPU EXTENSION PROPOSAL 157

this technique simplifies code generation, it may significantly impact performance. This
technique possibly works for computation-bound kernels which expose a high reuse po-
tential. Also, through experiments, we noticed that latency of Direct Memory Access
(DMA) central memory from GPU drastically increases as the number of thread re-
quests increase (see Section 5.1). More reliably, performing a memcpy on the area of
the presumably touched arrays seems to be more adapted to our performance require-
ments.

To synthesize, the address ranges computed by the decision module must be copied
to the GPU before the execution, for performance purpose. The coefficients of the linear
functions, patched during execution, can also be copied using the same mechanics. Note
that since CPU and GPU memory reside in different address spaces it is a requirement
to translate the address in the case of the first verification procedure presented in 6.7.1.

6.7.3 Finding adequate block size

To handle the problem of finding adequate block size, one can use parametric tiling
and map the tiles to the CUDA blocks. In this manner, one iteration of the parallel
loop is attached to one CUDA thread. The chunk size should be adjusted in order to
be a multiple of the grid size, while the block size should be a multiple of the warp
size, i.e. 32 threads in current hardware. For small chunks, the blocks should at least
contain several warps, to hide latency; in that case the minimum block size should be
of 64 threads. Finding the optimal block size is difficult in the general case due to side
effects on GPU latency hiding mechanisms and to a lesser extent, hardware constraints.
Actually, to perform reliable choices the hardware should be loaded with a sufficient
number of blocks. This is not always possible, depending on the problem size. Size of
the blocks could be readjusted several times, until a good size is found. To accelerate
the process, a performance model could predict well performing block sizes based on a
few experiments, until convergence.

Note that it is possible to generate multiple tiled skeletons statically, with fixed tile
size, and select the best one at runtime, after a small offline profiling as described in
Section 4.

6.7.4 CPU + GPU execution

To dynamically handle load balance in a CPU + GPU context, an inspiring method is
described in [22] and fits the execution model of VMAD. A first chunk, which size is
defined arbitrarily is run on CPU and GPU. The execution time of the chunks may be
modelled by a logarithmic regression, for instance. In fact, to make the chunk-sizing
steps profitable, one can fit the execution times with a logarithm function to train the
performance model. The training phase is considered valid, if deviation is inferior to
a defined threshold, and should be limited by a certain number of attempts. With
the help of the logarithmic regressions one can find a chunk size which is predicted to
perform well. Handling load balance is tricky as the total number of iterations of the
parallel loop is unknown. To ensure load balancing, chunks should be assigned in a
task-based fashion to PUs; the faster PUs get more tasks so that the execution time is

158 CHAPTER 6. THREAD LEVEL SPECULATION

equally distributed between slower and faster PUs. To achieve maximum throughput
while ensuring load balance, the number of chunks assigned to one or the other PUs
may for instance be based on the worst PU.

Note that if the number of iterations is known in advance, the CPU + GPU tech-
nique presented in Section 5.3 may be applicable. Again, the size of the chunks can be
adjusted based on the worst PU.

6.8 Conclusions and perspectives

In this Chapter, we showed a new use of algorithmic skeletons, as an efficient support
for speculative and dynamic parallelization, and proved that they can be automatically
generated and then specialized to target codes and cover a large class of advanced
runtime code transformations at a low cost.

Thanks to this automatic skeletal parallelization, VMAD provides important con-
tributions and advancements to the state of the art and is successful in optimizing
and parallelizing scientific kernels, that are not accessible to traditional TLS systems
or to static analysis. The system can handle codes in any form and is not hindered
by the type of memory allocation, being capable of handling pointers, static or indi-
rect array accesses, multi-dimensional or linearized arrays, or any types of linked data
structures, as soon as a linear memory behaviour has been detected in some execution
phases. Moreover, unlike OpenMP, we can handle multiple exit loops and pointer-
chasing loops. We conclude by reminding the main contributions, underlined by the
benchmarks.

1. VMAD is able to automatically parallelize codes which do not exhibit paral-
lelism in their original form. Thus, they cannot be handled efficiently by existing TLS
systems (due to numerous rollbacks) and cannot be parallelized manually, unless they
are transformed.

2. VMAD can discover optimization opportunities in codes that can already be
parallelized in the original form. By applying such optimizing transformations prior to
parallelization, the performance of the generated code can be significantly boosted.

3. The overhead of our system can be masked by the performance improvements
provided both by parallelization and by the optimizing polyhedral transformations.

In the near future, we plan to extend the use of skeletons in order to provide more
freedom to the runtime system on the kind of optimizing and parallelizing transfor-
mations. It will consist in building elementary skeletons at compile-time that will be
assembled at run-time, following an enclosing algorithmic skeleton associated to a spe-
cific class of transformations. Transformations that change significantly the structure
of the original sequential code will then also be handled efficiently by the system.

Moreover, since the framework follows a modular approach, it can be easily extended
to target new types of optimizations (e.g. vectorization) following the results of analysis
phases.

To overcome the main flaws of VMAD, the original speculation system has been
redesigned. Transformations were dynamically selected within a set of transformations
at disposal. The system was choosing the first legal transformation in that set. The
order of the available transformation matrices had an influence on the performance.

6.8. CONCLUSIONS AND PERSPECTIVES 159

Also, in its preliminary design VMAD was not properly handling imperfectly nested
loops, this is now solved. Latest extensions by Sukumaran Rajam et al. [135], allow
to handle non-linear codes, by introducing the notion of relaxed polytope. Linear
regression functions are used to get a peek of the memory access behaviour and allow
transformations to be performed by PLUTO. Future improvements include speculative
execution on GPU and other accelerators (Xeon Phi, MPPA, etc.).

160 CHAPTER 6. THREAD LEVEL SPECULATION

Chapter 7

Conclusion

7.1 Contributions

Our main contribution is a multiversioning mechanism that targets GPUs. The selec-
tion between multiple versions is based on an accurate prediction of the execution times
of programs on GPUs. This prediction method takes the raw kernel execution time into
account. Discrete GPUs need to be addressed specifically, as they require data to be
transferred; i.e. they operate on a different memory space than central memory. The
bandwidth of the communications is modelled through a micro-benchmark. Message
size and transfer direction are the important parameters.

We successfully used this method in order to perform code selection. This mech-
anism allows to select the best code version of a loop nest and runs it on GPU. To
achieve that, prediction accuracy is crucial in order to perform the right decision. The
profiler performs several measurements, based on empirically determined performance
characteristics. The profiling stage performs executions of the code on the target ma-
chine, in order to build ranking tables. They are used as a stub to predict execution
times at runtime, when the execution context is known. Overall, the results are good,
the system is accurate in most cases.

• In contrary to iterative compilation techniques which require to explore signifi-
cant parts of the optimization space, our technique is capable to pick the best
performing version at runtime, from a batch of limited number of versions, with
very low overhead. Although, the versions are generated by hand for now (i.e. by
varying compiler options), compilers could eliminate bad-performing versions at
code generation, or generate different versions known to perform well in various
environments.

• The profiler provides a generic way to predict execution times. This is an inter-
esting point since analytic methods require modifications in order to be reliable
for the next generation devices. In fact, it does not rely on any hardware counter
and does not make any assumption tightly coupled to hardware. We make the
hypothesis that the same technique would work similarly for hardware branded
by other manufacturers. Also, we believe that this technique could be adapted
to characterize MPPA processors for instance.

161

162 CHAPTER 7. CONCLUSION

• The added-value of this approach is adaptation to some dynamic internal per-
formance factors. In fact, the code versions expose different optimizations which
behave differently depending on the input dataset. The advantage of hybrid
methods is to bring the most of the work to the offline stage, to relieve the
runtime, while keeping runtime-dependent considerations.

• The regularity of polyhedral codes facilitates execution time prediction. In fact,
execution path is not driven by data values. Also, they are candidates to ana-
lytically compute the number of iterations, through Ehrhart polynomials. This
allows to quickly compute an execution time prediction at runtime, lowering the
overhead.

• The framework is entirely automatic and runs transparently to the user. Profil-
ing and target application codes are generated by an automatic compiler. The
technique could be easily plugged to another compiler, as long as it generates the
required information. Also, an attempt could be made to handle more general
codes, which behave regularly, but do not suit polyhedral analysis. Finally, lin-
ear algebra libraries could benefit from such a system, since it could embed the
selection mechanism, to handle newer hardware architectures.

We developed a CPU vs GPU technique which runs the code simultaneously on
both a multicore CPU and a GPU. This method is well suited to handle dynamic
performance fluctuations.

• We designed a dynamic method, capable to select the best architecture, by run-
ning the code simultaneously on multiple PUs. Such a full-dynamic system is
able to quickly adapt to uncontrollable dynamic performance factors. This con-
trasts to other CPU vs GPU systems, which generate an history of the execution
times, and rely on that to dispatch computations. All in all, we noticed that
running both the codes is in general less power-hungry than running the code on
the slowest PU.

• We have provided a method to terminate running kernels on a CUDA GPU, as
the CUDA API does not expose that feature. Also, we provide a way to terminate
an OpenMP execution, although it is not portable.

• After running the code on the PUs, the fastest PU and problem size should be
paired and recorded. This doublet could be used later, so that the right PU is
automatically selected in future executions. However, this would lead the method
to loose part of its dynamic advantage. To partially handle that case, execution
times should be updated and compared after each execution.

• This dynamic method could be used as a basic block to more sophisticated sys-
tems. In general, history-based load balancing methods run the code once on
each architecture, to train their model. Our technique would guarantee the best
execution times, even for the first execution. In other systems, such as the one
presented in Chapter 6, codes could be run on both architectures simultaneously.

7.2. PERSPECTIVES 163

Around the prediction method we designed an algorithm to distribute work on the
available multicore CPUs and GPUs. The outermost parallel loop is split into chunks.
The chunks are associated to the available PUs. The algorithm manipulates the size
of the chunks in order to balance execution time. To handle dynamic parameters, the
algorithm recomputes predicted execution times after each step.

• We developed a scheduler that is capable to handle more than two PUs, in con-
trary to many tools presented in literature which are limited to 1 CPU + 1 GPU.
This is made possible, thanks to the converging nature of the algorithm, which
relies on affine functions to determine the chunk size, at each step, for all the
PUs.

• The scheduler is not only capable of balancing the load to multiple PUs, it also
has a mechanism to eliminate predictably non-efficient PUs. The fastness of
the scheduling algorithm allows multiple calls to be performed consecutively, in
order to handle multiversioning. The low overhead at runtime allows to confront
combination of versions, ones oriented towards CPU, the others towards GPU,
and select the fastest.

• This technique is a proof-of-concept: we demonstrate that our GPU prediction
method and Pradelle et al. CPU prediction method [120] that were proposed,
are sufficient to achieve acceptable load balance in a CPU + GPU context. More
than to select the best code version, a good accuracy is mandatory to compare
execution times of each architectures.

• We demonstrate that the scheduler can easily be parametrized by energy con-
straints.

• With the scheduler algorithm we provide a way to execute polyhedral codes
cooperatively on CPU + GPU. This is done entirely transparently, from code
version generation, to version combination selection. To our knowledge no such
a method was proposed yet.

7.2 Perspectives

Future works of this thesis include refinement of the code execution time prediction
technique. The profiling may handle the loop bounds independently in order to pro-
vide a per-statement accuracy, rather than an average of the execution time of the
statements. We are confident that this technique is suited to other architectures, such
as MPPA. The efforts should especially be oriented towards portability across GPU
brands, especially with the addition of OpenCL code generation in PPCG. Eventually,
a work should address the lack of multiversioning features in current state of the art
compilers.

We proposed a completely dynamic method to handle the CPU vs GPU case. The
two main concerns of the presented technique are energy and system overload. Tools
such as HDSS and OmpSs tend to consider partial runtime executions. This may

164 CHAPTER 7. CONCLUSION

be sufficient to characterize the code to handle the heterogeneous case and account
external performance factors. We also showed an hybrid CPU vs GPU technique,
based on CPU and GPU execution time predictions. However current state of the
art tools focus on the joint use of CPU and GPU. We do not completely exclude this
method as it may be effective in the case of a task based system.

Finally, we demonstrate an hybrid CPU + GPU technique which makes use of both
CPU and GPU to perform a calculation. To reduce load imbalance, accuracy in the
CPU prediction technique should be improved. Investigations in energy consumption
strategies may help to reduce power consumption through better decision making.
Also, the algorithm should be evaluated on systems with several more PUs to GPU
powered supercomputers in order to demonstrate its scaling capability.

All in all robustness of the implemented tools should be improved in order to provide
a safe and user friendly way to benefit from CPU + GPU systems.

Bibliography

[1] CUB. http://nvlabs.github.io/cub/.

[2] CUDA data parallel primitives library. http://cudpp.github.io/cudpp/2.0/.

[3] The green500 list. http://www.green500.org, June 2014.

[4] The top500 list. http://www.top500.org, June 2014.

[5] Faraz Ahmad, Srimat T. Chakradhar, Anand Raghunathan, and T. N. Vijayku-
mar. Tarazu: Optimizing mapreduce on heterogeneous clusters. SIGARCH Com-
put. Archit. News, 40(1):61–74, March 2012.

[6] C. Akel, Y. Kashnikov, P. de Oliveira Castro, and W. Jalby. Is source-code
isolation viable for performance characterization? In Parallel Processing (ICPP),
2013 42nd International Conference on, pages 977–984, Oct 2013.

[7] Mehdi Amini. Source-to-Source Automatic Program Transformations for GPU-
like Hardware Accelerators. PhD thesis, Ecole Nationale Supérieure des Mines de
Paris, 2012.

[8] Mehdi Amini, Corinne Ancourt, Fabien Coelho, Béatrice Creusillet, Serge Guel-
ton, François Irigoin, Pierre Jouvelot, Ronan Keryell, and Pierre Villalon. PIPS
is not (just) polyhedral software adding GPU code generation in PIPS. In First
International Workshop on Polyhedral Compilation Techniques (IMPACT 2011)
in conjonction with CGO 2011, Chamonix, France, April 2011. 6 pages.

[9] Mehdi Amini, Béatrice Creusillet, Stéphanie Even, Ronan Keryell, Onig Goubier,
Serge Guelton, Janice Onanian McMahon, François-Xavier Pasquier, Grégoire
Péan, and Pierre Villalon. Par4all: From convex array regions to heterogeneous
computing. In IMPACT 2012: Second International Workshop on Polyhedral
Compilation Techniques HiPEAC 2012, 2012.

[10] M. Arora, S. Nath, S. Mazumdar, S.B. Baden, and D.M. Tullsen. Redefining the
role of the CPU in the era of CPU-GPU integration. Micro, IEEE, 32(6):4–16,
Nov 2012.

[11] Cédric Augonnet, Samuel Thibault, and Raymond Namyst. Automatic calibra-
tion of performance models on heterogeneous multicore architectures. In 3rd
Workshop on Highly Parallel Processing on a Chip (HPPC 2009), Delft, Nether-
lands, August 2009.

165

http://nvlabs.github.io/cub/
http://cudpp.github.io/cudpp/2.0/
http://www.green500.org
http://www.top500.org

166 BIBLIOGRAPHY

[12] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacre-
nier. StarPU: A unified platform for task scheduling on heterogeneous multicore
architectures. In EuroPar 2009, LNCS, Delft, Netherlands, 2009.

[13] Soufiane Baghdadi, Armin Größlinger, and Albert Cohen. Putting Automatic
Polyhedral Compilation for GPGPU to Work. In Proceedings of the 15th Work-
shop on Compilers for Parallel Computers (CPC’10), Vienna, Austria, July 2010.

[14] Lénaïc Bagnères and Cédric Bastoul. Switchable scheduling for runtime adap-
tation of optimization. In Fernando Silva, Inês Dutra, and Vítor Santos Costa,
editors, Euro-Par 2014 Parallel Processing, volume 8632 of Lecture Notes in
Computer Science, pages 222–233. Springer International Publishing, 2014.

[15] Muthu Manikandan Baskaran, J. Ramanujam, and P. Sadayappan. Automatic
C-to-CUDA code generation for affine programs. In Proceedings of the 19th
Joint European Conference on Theory and Practice of Software, International
Conference on Compiler Construction, CC’10/ETAPS’10, pages 244–263, Berlin,
Heidelberg, 2010. Springer-Verlag.

[16] C. Bastoul. Chunky ANalyzer for Dependences in Loops. http://icps.

u-strasbg.fr/~bastoul/development/candl/, 2008. Related to the candl tool.

[17] C. Bastoul. Extracting polyhedral representation from high level languages. Tech-
nical report, LRI, Paris-Sud University, 2008. Related to the Clan tool.

[18] Cedric Bastoul. Code generation in the polyhedral model is easier than you think.
In Proceedings of the 13th International Conference on Parallel Architectures and
Compilation Techniques, PACT ’04, pages 7–16, Washington, DC, USA, 2004.
IEEE Computer Society.

[19] Cédric Bastoul. Improving data locality in static control programs. Thèse de
doctorat, Université Paris 6, 2004.

[20] Cédric Bastoul, Albert Cohen, Sylvain Girbal, Saurabh Sharma, and Olivier
Temam. Putting polyhedral loop transformations to work. In LCPC’16 Inter-
national Workshop on Languages and Compilers for Parallel Computers, LNCS
2958, pages 209–225, College Station, Texas, october 2003.

[21] Nathan Bell and Jared Hoberock. Thrust: A productivity-oriented library for
CUDA. GPU Computing Gems, 7, 2011.

[22] Mehmet E. Belviranli, Laxmi N. Bhuyan, and Rajiv Gupta. A dynamic self-
scheduling scheme for heterogeneous multiprocessor architectures. ACM Trans.
Archit. Code Optim., 9(4):57:1–57:20, January 2013.

[23] E. Bendersky. pycparser. https://github.com/eliben/pycparser, 2010.

[24] François Bodin, Toru Kisuki, Peter Knijnenburg, Mike O’Boyle, and Erven Ro-
hou. Iterative compilation in a non-linear optimisation space. In Workshop on
Profile and Feedback-Directed Compilation, 1998.

http://icps.u-strasbg.fr/~bastoul/development/candl/
http://icps.u-strasbg.fr/~bastoul/development/candl/
https://github.com/eliben/pycparser

BIBLIOGRAPHY 167

[25] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. A prac-
tical automatic polyhedral parallelizer and locality optimizer. In PLDI ’08, pages
101–113. ACM, 2008. http://pluto-compiler.sourceforge.net.

[26] Uday Kumar Reddy Bondhugula. Effective automatic parallelization and locality
optimization using the polyhedral model. PhD thesis, The Ohio State University,
2008.

[27] Michael Boyer, Kevin Skadron, Shuai Che, and Nuwan Jayasena. Load balancing
in a changing world: Dealing with heterogeneity and performance variability. In
Proceedings of the ACM International Conference on Computing Frontiers, CF
’13, pages 21:1–21:10, New York, NY, USA, 2013. ACM.

[28] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike
Houston, and Pat Hanrahan. Brook for GPUs: stream computing on graphics
hardware. In ACM Transactions on Graphics (TOG), volume 23, pages 777–786.
ACM, 2004.

[29] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer,
Sang-Ha Lee, and Kevin Skadron. Rodinia: A benchmark suite for heterogeneous
computing. In IISWC, pages 44–54. IEEE, 2009.

[30] Long Chen, O. Villa, S. Krishnamoorthy, and G.R. Gao. Dynamic load balancing
on single- and multi-GPU systems. In Parallel Distributed Processing (IPDPS),
2010 IEEE International Symposium on, pages 1–12, April 2010.

[31] Marcelo Cintra and Diego R Llanos. Toward efficient and robust software specu-
lative parallelization on multiprocessors. In ACM SIGPLAN Notices, volume 38,
pages 13–24. ACM, 2003.

[32] Albert Cohen, Sylvain Girbal, and Olivier Temam. A polyhedral approach to
ease the composition of program transformations. In Euro-Par 2004 Parallel
Processing, pages 292–303. Springer, 2004.

[33] Murray Cole. Bringing skeletons out of the closet: a pragmatic manifesto for
skeletal parallel programming. Parallel Computing, 30(3):389–406, 2004.

[34] Damien Couroussé, Victor Lomüller, and Henri-Pierre Charles. Introduction
to Dynamic Code Generation: An Experiment with Matrix Multiplication for
the STHORM Platform. In Massimo Torquati, Koen Bertels, Sven Karlsson,
and François Pacull, editors, Smart Multicore Embedded Systems, pages 103–122.
Springer New York, 2014.

[35] Huimin Cui, Lei Wang, Jingling Xue, Yang Yang, and Xiaobing Feng. Auto-
matic library generation for BLAS3 on GPUs. In Parallel Distributed Processing
Symposium (IPDPS), 2011, IEEE, pages 255–265.

[36] Leonardo Dagum and Ramesh Menon. OpenMP: An industry-standard API for
shared-memory programming. IEEE Comput. Sci. Eng., 5(1):46–55, January
1998.

168 BIBLIOGRAPHY

[37] Hervé Deleau, Christophe Jaillet, and Michaël Krajecki. GPU4SAT: solving the
SAT problem on GPU. In PARA 2008 9th International Workshop on State–of–
the–Art in Scientific and Parallel Computing, Trondheim, Norway, 2008.

[38] Peng Di and Jingling Xue. Model-driven tile size selection for doacross loops
on gpus. In Emmanuel Jeannot, Raymond Namyst, and Jean Roman, editors,
Euro-Par 2011 Parallel Processing, volume 6853 of Lecture Notes in Computer
Science, pages 401–412. Springer Berlin Heidelberg, 2011.

[39] Gregory Diamos, Andrew Kerr, and Mukil Kesavan. Translating GPU binaries
to tiered SIMD architectures with ocelot. 2009.

[40] Gregory Frederick Diamos, Andrew Robert Kerr, Sudhakar Yalamanchili, and
Nathan Clark. Ocelot: a dynamic optimization framework for bulk-synchronous
applications in heterogeneous systems. In Proceedings of the 19th international
conference on Parallel architectures and compilation techniques, pages 353–364.
ACM, 2010.

[41] R. Dolbeau, S. Bihan, and F. Bodin. HMPP: A hybrid multi-core parallel pro-
gramming environment. In Workshop on General Purpose Processing on Graphics
Processing Units (GPGPU 2007), 2007.

[42] DSPstone benchmarks. http://www.ice.rwth-aachen.de/research/

tools-projects/entry/detail/dspstone/.

[43] Alejandro Duran, Eduard Ayguadé, Rosa M Badia, Jesús Labarta, Luis Mar-
tinell, Xavier Martorell, and Judit Planas. OmpSs: a proposal for programming
heterogeneous multi-core architectures. Parallel Processing Letters, 21(02):173–
193, 2011.

[44] Jianbin Fang, Ana Lucia Varbanescu, and Henk Sips. A comprehensive perfor-
mance comparison of CUDA and OpenCL. In Parallel Processing (ICPP), 2011
International Conference on, pages 216–225. IEEE, 2011.

[45] P. Feautrier. Array expansion. In Proceedings of the 2nd International Conference
on Supercomputing, ICS ’88, pages 429–441, New York, NY, USA, 1988. ACM.

[46] Paul Feautrier. Dataflow analysis of array and scalar references. International
Journal of Parallel Programming, 20, 1991.

[47] Paul Feautrier. Some efficient solutions to the affine scheduling problem part ii
multidimensional time, 1992.

[48] Paul Feautrier. Toward automatic partitioning of arrays on distributed memory
computers. In Proceedings of the 7th international conference on Supercomputing,
pages 175–184. ACM, 1993.

http://www.ice.rwth-aachen.de/research/tools-projects/entry/detail/dspstone/
http://www.ice.rwth-aachen.de/research/tools-projects/entry/detail/dspstone/

BIBLIOGRAPHY 169

[49] Grigori Fursin, Albert Cohen, Michael O’Boyle, and Olivier Temam. A practical
method for quickly evaluating program optimizations. In Proceedings of the Inter-
national Conference on High Performance Embedded Architectures & Compilers
(HiPEAC 2005, pages 29–46. Springer Verlag, 2005.

[50] Grigori Fursin, Renato Miceli, Anton Lokhmotov, Michael Gerndt, Marc
Baboulin, D. Malony, Allen, Zbigniew Chamski, Diego Novillo, and Davide Del
Vento. Collective mind: Towards practical and collaborative auto-tuning. Scien-
tific Programming, 22(4):309–329, July 2014.

[51] Michael Garland, Scott Le Grand, John Nickolls, Joshua Anderson, Jim Hard-
wick, Scott Morton, Everett Phillips, Yao Zhang, and Vasily Volkov. Parallel
computing experiences with CUDA. IEEE micro, (4):13–27, 2008.

[52] GNU compiler collection. https://gcc.gnu.org.

[53] P. Gepner and M.F. Kowalik. Multi-core processors: New way to achieve high
system performance. In Parallel Computing in Electrical Engineering, 2006. PAR
ELEC 2006. International Symposium on, pages 9–13, Sept 2006.

[54] Sayan Ghosh, Terrence Liao, Henri Calandra, and Barbara M Chapman. Experi-
ences with OpenMP, PGI, HMPP and OpenACC directives on ISO/TTI kernels.
In High Performance Computing, Networking, Storage and Analysis (SCC), 2012
SC Companion:, pages 691–700. IEEE, 2012.

[55] GOMP — An OpenMP implementation for GCC - GNU Project. http://gcc.

gnu.org/projects/gomp.

[56] Naga K Govindaraju, Brandon Lloyd, Yuri Dotsenko, Burton Smith, and John
Manferdelli. High performance discrete fourier transforms on graphics processors.
In Proceedings of the 2008 ACM/IEEE conference on Supercomputing, page 2.
IEEE Press, 2008.

[57] Dominik Grewe and Michael FP O’Boyle. A static task partitioning approach for
heterogeneous systems using OpenCL. In Compiler Construction, pages 286–305.
Springer, 2011.

[58] Tobias Grosser, Armin Größlinger, and Christian Lengauer. Polly—performing
polyhedral optimizations on a low-level intermediate representation. Parallel
Processing Letters, 22(04), 2012.

[59] Daniel Hefenbrock, Jason Oberg, Nhat Thanh, Ryan Kastner, and Scott B Baden.
Accelerating Viola-Jones face detection to FPGA-level using GPUs. In FCCM,
pages 11–18, 2010.

[60] John L. Hennessy and David A. Patterson. Computer Architecture, Fifth Edition:
A Quantitative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 5th edition, 2011.

https://gcc.gnu.org
http://gcc.gnu.org/projects/gomp
http://gcc.gnu.org/projects/gomp

170 BIBLIOGRAPHY

[61] Sunpyo Hong and Hyesoon Kim. An analytical model for a GPU architecture
with memory-level and thread-level parallelism awareness. In ACM SIGARCH
Computer Architecture News, volume 37, pages 152–163. ACM, 2009.

[62] D. Horn. Chapter 36. Stream reduction operations for GPGPU applications. In
Matt Pharr and Randima Fernando, editors, GPU Gems 2. 2005.

[63] François Irigoin, Pierre Jouvelot, and Rémi Triolet. Semantical interprocedu-
ral parallelization: An overview of the PIPS project. In Proceedings of the 5th
international conference on Supercomputing, pages 244–251. ACM, 1991.

[64] Ian Lane J. Kim, J. Chong. HYDRA: a hybrid CPU/GPU speech recognition
engine for real-time LVCSR. In GPU Technology Conference, 2013.

[65] Alexandra Jimborean. Adapting the polytope model for dynamic and speculative
parallelization. PhD thesis, Strasbourg, 2012.

[66] Alexandra Jimborean, Philippe Clauss, Jean-François Dollinger, Vincent Loech-
ner, and Juan Manuel Martinez Caamaño. Dynamic and speculative polyhedral
parallelization using compiler-generated skeletons. International Journal of Par-
allel Programming, 42(4):529–545, 2014.

[67] Alexandra Jimborean, Philippe Clauss, Benoît Pradelle, Luis Mastrangelo, and
Vincent Loechner. Adapting the polyhedral model as a framework for efficient
speculative parallelization. In PPoPP ’12, 2012.

[68] Alexandra Jimborean, Luis Mastrangelo, Vincent Loechner, and Philippe Clauss.
VMAD: An advanced dynamic program analysis and instrumentation framework.
In Michael O’Boyle, editor, Compiler Construction, volume 7210 of Lecture Notes
in Computer Science, pages 220–239. Springer Berlin Heidelberg, 2012.

[69] Troy A. Johnson, Rudolf Eigenmann, and T. N. Vijaykumar. Speculative thread
decomposition through empirical optimization. In PPoPP ’07. ACM, 2007.

[70] Kamran Karimi, Neil G Dickson, and Firas Hamze. A performance comparison
of CUDA and OpenCL. arXiv preprint arXiv:1005.2581, 2010.

[71] Tero Karras and Timo Aila. Fast parallel construction of high-quality bound-
ing volume hierarchies. In Proceedings of the 5th High-Performance Graphics
Conference, pages 89–99. ACM, 2013.

[72] Minhaj Ahmad Khan, H.-P. Charles, and D. Barthou. Improving performance
of optimized kernels through fast instantiations of templates. Concurr. Comput.
: Pract. Exper., 21(1), January 2009.

[73] Mario Kicherer, Fabian Nowak, Rainer Buchty, and Wolfgang Karl. Seamlessly
portable applications: Managing the diversity of modern heterogeneous systems.
ACM Trans. Archit. Code Optim., 8(4):42:1–42:20, January 2012.

BIBLIOGRAPHY 171

[74] Hanjun Kim, Nick P. Johnson, Jae W. Lee, Scott A. Mahlke, and David I. August.
Automatic speculative DOALL for clusters. In CGO ’12. ACM, 2012.

[75] Jungwon Kim, Sangmin Seo, Jun Lee, Jeongho Nah, Gangwon Jo, and Jaejin
Lee. SnuCL: An OpenCL framework for heterogeneous CPU/GPU clusters. In
Proceedings of the 26th ACM International Conference on Supercomputing, ICS
’12, pages 341–352, New York, NY, USA, 2012. ACM.

[76] A. Kloeckner. islpy. https://pypi.python.org/pypi/islpy, 2011.

[77] Toshiya Komoda, Shinobu Miwa, Hiroshi Nakamura, and Naoya Maruyama. In-
tegrating multi-GPU execution in an OpenACC compiler. In 42nd International
Conference on Parallel Processing - ICPP, Lyon, France, 2013. IEEE.

[78] Christian Lauterbach, Qi Mo, and Dinesh Manocha. gProximity: Hierarchical
GPU-based operations for collision and distance queries. In Computer Graphics
Forum, volume 29, pages 419–428. Wiley Online Library, 2010.

[79] Janghaeng Lee, Mehrzad Samadi, Yongjun Park, and Scott Mahlke. Transparent
CPU-GPU collaboration for data-parallel kernels on heterogeneous systems. In
Proceedings of the 22nd International Conference on Parallel Architectures and
Compilation Techniques, PACT ’13, pages 245–256, Piscataway, NJ, USA, 2013.
IEEE Press.

[80] Sang-Ik Lee, TroyA. Johnson, and Rudolf Eigenmann. Cetus – an extensible
compiler infrastructure for source-to-source transformation. In Lawrence Rauch-
werger, editor, Languages and Compilers for Parallel Computing, volume 2958 of
Lecture Notes in Computer Science, pages 539–553. Springer Berlin Heidelberg,
2004.

[81] Victor W Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun Kim,
Anthony D Nguyen, Nadathur Satish, Mikhail Smelyanskiy, Srinivas Chennupaty,
Per Hammarlund, et al. Debunking the 100x GPU vs. CPU myth: an evaluation
of throughput computing on CPU and GPU. In ACM SIGARCH Computer
Architecture News, volume 38, pages 451–460. ACM, 2010.

[82] Allen Leung, Nicolas Vasilache, Benoît Meister, Muthu Baskaran, David
Wohlford, Cédric Bastoul, and Richard Lethin. A mapping path for multi-
GPGPU accelerated computers from a portable high level programming abstrac-
tion. In Proceedings of the 3rd Workshop on General-Purpose Computation on
Graphics Processing Units, pages 51–61. ACM, 2010.

[83] John Levon and Philippe Elie. Oprofile: A system profiler for linux, 2004.

[84] Chong Li, Frédéric Gava, and Gaétan Hains. Implementation of data-parallel
skeletons: A case study using a coarse-grained hierarchical model. In ISPDC,
pages 26–33, 2012.

https://pypi.python.org/pypi/islpy

172 BIBLIOGRAPHY

[85] Yinan Li, Jack Dongarra, and Stanimire Tomov. A note on auto-tuning GEMM
for GPUs. In Computational Science–ICCS 2009, pages 884–892. Springer, 2009.

[86] Wei Liu, James Tuck, Luis Ceze, Wonsun Ahn, Karin Strauss, Jose Renau, and
Josep Torrellas. POSH: a tls compiler that exploits program structure. In Pro-
ceedings of the eleventh ACM SIGPLAN symposium on Principles and practice
of parallel programming, pages 158–167. ACM, 2006.

[87] Wei Liu, James Tuck, Luis Ceze, Karin Strauss, Jose Renau, and Josep Torrellas.
POSH: A profiler-enhanced TLS compiler that leverages program structure.

[88] Yixun Liu, Eddy Z. Zhang, and Xipeng Shen. A cross-input adaptive framework
for GPU program optimizations. In Proceedings of the 2009 IEEE International
Symposium on Parallel&Distributed Processing, IPDPS ’09, pages 1–10, Wash-
ington, DC, USA, 2009. IEEE Computer Society.

[89] LLVM compiler infrastructure. http://llvm.org.

[90] Vincent Loechner. PolyLib: A library for manipulating parameterized polyhedra.
http://icps.u-strasbg.fr/polylib/, 1999.

[91] Victor Lomüller and Henri-Pierre Charles. Speculative runtime parallelization of
loop nests: Towards greater scope and efficiency. 17th Workshop on Compilers
for Parallel Computing, July 2013.

[92] Chi-Keung Luk, Sunpyo Hong, and Hyesoon Kim. Qilin: Exploiting parallelism
on heterogeneous multiprocessors with adaptive mapping. In Proceedings of the
42nd Annual IEEE/ACM International Symposium on Microarchitecture, MI-
CRO 42, pages 45–55, New York, NY, USA, 2009. ACM.

[93] Jiayuan Meng, Vitali A. Morozov, Kalyan Kumaran, Venkatram Vishwanath,
and Thomas D. Uram. GROPHECY: GPU performance projection from CPU
code skeletons. In Proceedings of 2011 International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, SC ’11, pages 14:1–14:11,
New York, NY, USA, 2011. ACM.

[94] Quirin Meyer, Fabian Schonfeld, Marc Stamminger, and Rolf Wanka. 3-SAT on
CUDA: Towards a massively parallel SAT solver. In High Performance Comput-
ing and Simulation (HPCS), 2010 International Conference on, pages 306–313.
IEEE, 2010.

[95] Paulius Micikevicius. GPU performance analysis and optimization. In GPU
Technology Conference, 2012.

[96] Chuck Moore. Data processing in Exascale-class computing systems. In The
Salishan Conference on High Speed Computing, April 2011.

[97] Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavyweight
dynamic binary instrumentation. In Proceedings of the 2007 ACM SIGPLAN

http://llvm.org
http://icps.u-strasbg.fr/polylib/

BIBLIOGRAPHY 173

Conference on Programming Language Design and Implementation, PLDI ’07,
pages 89–100, New York, NY, USA, 2007. ACM.

[98] François Noël, Luke Hornof, Charles Consel, and Julia L. Lawall. Automatic,
template-based run-time specialization: implementation and experimental study.
In Int. Conf. on Computer Languages. IEEE Computer Society Press, 1998.

[99] Nouveau driver. http://nouveau.freedesktop.org/wiki/.

[100] Cedric Nugteren and Henk Corporaal. The boat hull model: adapting the roofline
model to enable performance prediction for parallel computing. In ACM Sigplan
Notices, volume 47, pages 291–292. ACM, 2012.

[101] Cedric Nugteren and Henk Corporaal. Introducing Bones: a parallelizing source-
to-source compiler based on algorithmic skeletons. In Proceedings of the 5th
Annual Workshop on General Purpose Processing with Graphics Processing Units,
pages 1–10. ACM, 2012.

[102] Nvidia. CUDA: performance of applications. http://www.nvidia.com/object/

gpu-applications.html.

[103] Nvidia. CUDA: Compute Unified Device Architecture. http://www.nvidia.

com/object/cuda_home_new.html, 2007.

[104] Nvidia. Nvidia Fermi GF100 whitepaper. http://www.nvidia.com/object/IO_

86775.html, 2010.

[105] Nvidia. Nvidia Kepler GK110 whitepaper. http://www.nvidia.com/content/

PDF/kepler/Nvidia-Kepler-GK110-Architecture-Whitepaper.pdf, 2010.

[106] Nvidia Corporation. cuBLAS-XT. https://developer.nvidia.com/cublasxt,
2014.

[107] OpenACC corporation. OpenACC. http://www.openacc-standard.org/,
2012.

[108] R. Westermann P. Kipfer. Chapter 46. Improved GPU sorting. In Matt Pharr
and Randima Fernando, editors, GPU Gems 2. 2005.

[109] David A. Padua and Michael J. Wolfe. Advanced compiler optimizations for
supercomputers. Commun. ACM, 29(12):1184–1201, December 1986.

[110] Krishna Palem and Avinash Lingamneni. What to do about the end of Moore’s
law, probably! In Proceedings of the 49th Annual Design Automation Conference,
DAC ’12, pages 924–929, New York, NY, USA, 2012. ACM.

[111] R.A. Patel, Yao Zhang, J. Mak, A. Davidson, and J.D. Owens. Parallel lossless
data compression on the GPU. In Innovative Parallel Computing (InPar), 2012,
pages 1–9, May 2012.

http://nouveau.freedesktop.org/wiki/
http://www.nvidia.com/object/gpu-applications.html
http://www.nvidia.com/object/gpu-applications.html
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/IO_86775.html
http://www.nvidia.com/object/IO_86775.html
http://www.nvidia.com/content/PDF/kepler/Nvidia-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/Nvidia-Kepler-GK110-Architecture-Whitepaper.pdf
https://developer.nvidia.com/cublasxt
http://www.openacc-standard.org/

174 BIBLIOGRAPHY

[112] Martin Peres. Reverse engineering power management on Nvidia GPUs-anatomy
of an autonomic-ready system. In ECRTS, Operating Systems Platforms for
Embedded Real-Time applications 2013, 2013.

[113] J. Planas, R.M. Badia, E. Ayguade, and J. Labarta. Self-adaptive OmpSs tasks
in heterogeneous environments. In IEEE 27th Int. Symposium on Parallel Dis-
tributed Processing (IPDPS), pages 138–149, 2013.

[114] Sébastian Pop, Albert Cohen, Cédric Bastoul, Sylvain Girbal, Georges-André
Silber, and Nicolas Vasilache. GRAPHITE: Loop optimizations based on the
polyhedral model for GCC. 2006.

[115] Louis-Noël Pouchet. FM: the Fourier-Motzkin library. http://www.cse.

ohio-state.edu/~pouchet/software/fm.

[116] Louis-Noël Pouchet, Cédric Bastoul, Albert Cohen, and John Cavazos. Iterative
optimization in the polyhedral model: Part II, multidimensional time. In ACM
SIGPLAN Notices, volume 43, pages 90–100. ACM, 2008.

[117] Louis-Noël Pouchet, Uday Bondhugula, Cédric Bastoul, Albert Cohen, J Ra-
manujam, P Sadayappan, and Nicolas Vasilache. Loop transformations: convex-
ity, pruning and optimization. In ACM SIGPLAN Notices, volume 46, pages
549–562. ACM, 2011.

[118] Louis-Noël Pouchet. PolyBench 3.1. http://www.cse.ohio-state.edu/

~pouchet/software/polybench/, 2011.

[119] Manohar K. Prabhu and Kunle Olukotun. Using thread-level speculation to
simplify manual parallelization. In PPoPP ’03. ACM, 2003.

[120] Benoit Pradelle, Philippe Clauss, and Vincent Loechner. Adaptive runtime se-
lection of parallel schedules in the polytope model. In 19th High Performance
Computing Symposium - HPC 2011, Boston, USA, April 2011. ACM/SIGSIM.

[121] Benoît Pradelle, Alain Ketterlin, and Philippe Clauss. Polyhedral paralleliza-
tion of binary code. ACM Transactions on Architecture and Code Optimization
(TACO), 8(4):39, 2012.

[122] Dan Quinlan. ROSE: Compiler support for object-oriented frameworks. Parallel
Processing Letters, 10(02n03):215–226, 2000.

[123] Easwaran Raman, Ram Rangan, David I August, et al. Spice: speculative par-
allel iteration chunk execution. In Proceedings of the 6th annual IEEE/ACM
international symposium on Code Generation and Optimization, pages 175–184.
ACM, 2008.

[124] Lawrence Rauchwerger and David A Padua. The LRPD test: Speculative run-
time parallelization of loops with privatization and reduction parallelization. Par-
allel and Distributed Systems, IEEE Transactions on, 10(2):160–180, 1999.

http://www.cse.ohio-state.edu/~pouchet/software/fm
http://www.cse.ohio-state.edu/~pouchet/software/fm
http://www.cse.ohio-state.edu/{~}pouchet/software/polybench/
http://www.cse.ohio-state.edu/{~}pouchet/software/polybench/

BIBLIOGRAPHY 175

[125] Rosetta Codes. http://rosettacode.org/wiki/Rosetta_Code.

[126] Greg Ruetsch and Paulius Micikevicius. Optimizing matrix transpose in
CUDA. http://docs.nvidia.com/cuda/samples/6_Advanced/transpose/

doc/MatrixTranspose.pdf, 2010.

[127] Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam S. Stone,
David B. Kirk, and Wen-mei W. Hwu. Optimization principles and application
performance evaluation of a multithreaded GPU using CUDA. In Proceedings
of the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’08, pages 73–82, New York, NY, USA, 2008. ACM.

[128] Shane Ryoo, Christopher I Rodrigues, Sam S Stone, Sara S Baghsorkhi, Sain-
Zee Ueng, John A Stratton, and Wen-mei W Hwu. Program optimization space
pruning for a multithreaded GPU. In Proceedings of the 6th annual IEEE/ACM
international symposium on Code generation and optimization, pages 195–204.
ACM, 2008.

[129] Mehrzad Samadi, Amir Hormati, Janghaeng Lee, and Scott Mahlke. Paragon:
collaborative speculative loop execution on GPU and CPU. In Proceedings of the
5th Annual Workshop on General Purpose Processing with Graphics Processing
Units, pages 64–73. ACM, 2012.

[130] Alexander Schrijver. Theory of linear and integer programming. John Wiley &
Sons, Inc., NY, USA, 1986.

[131] Eric Schweitz, Richard Lethin, Allen Leung, and Benoit Meister. R-stream: A
parametric high level compiler. HPEC, 2006.

[132] K. Shirahata, H. Sato, and S. Matsuoka. Hybrid map task scheduling for
GPU-based heterogeneous clusters. In Cloud Computing Technology and Science
(CloudCom), 2010 IEEE Second International Conference on, pages 733–740,
Nov 2010.

[133] Jaewoong Sim, Aniruddha Dasgupta, Hyesoon Kim, and Richard Vuduc. A
performance analysis framework for identifying potential benefits in GPGPU
applications. In Proceedings of the 17th ACM SIGPLAN symposium on Principles
and Practice of Parallel Programming, PPoPP ’12, pages 11–22, New York, NY,
USA, 2012. ACM.

[134] Frederick Smith, Dan Grossman, Greg Morrisett, Luke Hornof, and Trevor Jim.
Compiling for template-based run-time code generation. J. Funct. Program.,
13(3), May 2003.

[135] Aravind Sukumaran-Rajam, Luis Esteban Campostrini, Juan Manuel Martinez
Caamano, and Philippe Clauss. Speculative runtime parallelization of loop nests:
Towards greater scope and efficiency. HIPS + LSPP, May 2015.

http://rosettacode.org/wiki/Rosetta_Code
http://docs.nvidia.com/cuda/samples/6_Advanced/transpose/doc/MatrixTranspose.pdf
http://docs.nvidia.com/cuda/samples/6_Advanced/transpose/doc/MatrixTranspose.pdf

176 BIBLIOGRAPHY

[136] Weibin Sun and Robert Ricci. Augmenting operating systems with the GPU.
arXiv preprint arXiv:1305.3345, 2013.

[137] Herb Sutter. The Free Lunch Is Over: A Fundamental Turn Toward Concurrency
in Software. Dr. Dobb’s Journal.

[138] Sanket Tavarageri, L Pouchet, J Ramanujam, Atanas Rountev, and P Sadayap-
pan. Dynamic selection of tile sizes. In High Performance Computing (HiPC),
2011 18th International Conference on High Performance Computing, pages 1–
10. IEEE, 2011.

[139] Chris J. Thompson, Sahngyun Hahn, and Mark Oskin. Using modern graph-
ics architectures for general-purpose computing: A framework and analysis. In
Proceedings of the 35th Annual ACM/IEEE International Symposium on Mi-
croarchitecture, MICRO 35, pages 306–317, Los Alamitos, CA, USA, 2002. IEEE
Computer Society Press.

[140] Chen Tian, Min Feng, and Rajiv Gupta. Speculative parallelization using state
separation and multiple value prediction. In Int. Symp. on Memory Management,
ISMM ’10. ACM, 2010.

[141] Kuen Hung Tsoi and Wayne Luk. Axel: A heterogeneous cluster with fpgas and
gpus. In Proceedings of the 18th Annual ACM/SIGDA International Symposium
on Field Programmable Gate Arrays, FPGA ’10, pages 115–124, New York, NY,
USA, 2010. ACM.

[142] University of Sydney. MAGMA. http://magma.maths.usyd.edu.au/, 1993.

[143] Sundaresan Venkatasubramanian, Richard W Vuduc, et al. Tuned and wildly
asynchronous stencil kernels for hybrid CPU/GPU systems. In Proceedings of
the 23rd International Conference on Supercomputing, ICS ’09, pages 244–255,
New York, NY, USA, 2009. ACM.

[144] Sven Verdoolaege. isl: An integer set library for the polyhedral model. In Komei
Fukuda, Joris van der Hoeven, Michael Joswig, and Nobuki Takayama, edi-
tors, ICMS, volume 6327 of Lecture Notes in Computer Science, pages 299–302.
Springer, 2010.

[145] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, José Ignacio Gómez, Chris-
tian Tenllado, and Francky Catthoor. Polyhedral parallel code generation for
CUDA. ACM Trans. Archit. Code Optim., 9(4):54:1–54:23, January 2013.

[146] Sven Verdoolaege and Tobias Grosser. Polyhedral extraction tool. In Interna-
tional Workshop on Polyhedral Compilation Techniques (IMPACT’12), January
2012.

[147] Sven Verdoolaege, Rachid Seghir, Kristof Beyls, Vincent Loechner, and Maurice
Bruynooghe. Counting integer points in parametric polytopes using barvinok’s
rational functions. Algorithmica, 48(1):37–66, 2007.

http://magma.maths.usyd.edu.au/

BIBLIOGRAPHY 177

[148] Vasily Volkov. Better performance at lower occupancy. GPU Technology Con-
ference 2010 (GTC 2010).

[149] Vasily Volkov and James Demmel. LU, QR and cholesky factorizations using vec-
tor capabilities of GPUs. EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2008-49, May, pages 2008–49, 2008.

[150] Vasily Volkov and James W Demmel. Benchmarking GPUs to tune dense linear
algebra. In High Performance Computing, Networking, Storage and Analysis,
2008. SC 2008. International Conference for, pages 1–11. IEEE, 2008.

[151] Sandra Wienke, Dieter an Mey, and MatthiasS. Müller. Accelerators for technical
computing: Is it worth the pain? a TCO perspective, 2013.

[152] Sandra Wienke, Paul Springer, Christian Terboven, and Dieter an Mey. Ope-
nACC: First experiences with real-world applications. In Proceedings of the 18th
International Conference on Parallel Processing, Euro-Par’12, pages 859–870,
Berlin, Heidelberg, 2012. Springer-Verlag.

[153] Niklaus Wirth. A plea for lean software. Computer, 28(2):64–68, February 1995.

Jean-François DOLLINGER

A framework for efficient execution on GPU and
CPU+GPU systems

Résumé

Les verrous technologiques rencontrés par les fabricants de semi-conducteurs au début des années
deux-mille ont abrogé la flambée des performances des unités de calculs séquentielles. La tendance
actuelle est à la multiplication du nombre de cœurs de processeur par socket et à l’utilisation progressive
des cartes GPU pour des calculs hautement parallèles. La complexité des architectures récentes rend
difficile l’estimation statique des performances d’un programme. Nous décrivons une méthode fiable
et précise de prédiction du temps d’exécution de nids de boucles parallèles sur GPU basée sur trois
étapes : la génération de code, le profilage offline et la prédiction online. En outre, nous présentons
deux techniques pour exploiter l’ensemble des ressources disponibles d’un système pour la performance.
La première consiste en l’utilisation conjointe des CPUs et GPUs pour l’exécution d’un code. Afin
de préserver les performances il est nécessaire de considérer la répartition de charge, notamment en
prédisant les temps d’exécution. Le runtime utilise les résultats du profilage et un ordonnanceur calcule
des temps d’exécution et ajuste la charge distribuée aux processeurs. La seconde technique présentée
met le CPU et le GPU en compétition : des instances du code cible sont exécutées simultanément sur
CPU et GPU. Le vainqueur de la compétition notifie sa complétion à l’autre instance, impliquant son
arrêt.

Summary

Technological limitations faced by the semi-conductor manufacturers in the early 2000’s restricted the
increase in performance of the sequential computation units. Nowadays, the trend is to increase the
number of processor cores per socket and to progressively use the GPU cards for highly parallel compu-
tations. Complexity of the recent architectures makes it difficult to statically predict the performance
of a program. We describe a reliable and accurate parallel loop nests execution time prediction method
on GPUs based on three stages: static code generation, offline profiling, and online prediction. In addi-
tion, we present two techniques to fully exploit the computing resources at disposal on a system. The
first technique consists in jointly using CPU and GPU for executing a code. In order to achieve higher
performance, it is mandatory to consider load balance, in particular by predicting execution time. The
runtime uses the profiling results and the scheduler computes the execution times and adjusts the load
distributed to the processors. The second technique, puts CPU and GPU in a competition: instances
of the considered code are simultaneously executed on CPU and GPU. The winner of the competition
notifies its completion to the other instance, implying the termination of the latter.

	Title
	Table of Contents
	Résumé en Français
	Introduction
	Prédiction et sélection adaptative de version de code
	Introduction
	Vue d'ensemble du framework
	Equité
	Prédiction
	Expérimentations

	Calcul hétérogène : CPU vs GPU
	Introduction
	Code CPU
	Code GPU
	Expérimentations

	Calcul hétérogène : CPU + GPU
	Introduction
	Génération de code
	Répartition de charge
	Multiversioning
	Consommation d'énergie
	Experimentations

	Parallélisation spéculative
	Introduction
	Problématique
	Machine virtuelle
	Contributions

	Introduction
	Context
	Problematic
	Outline

	Context and related work
	Genesis of GPU computing
	GPU architecture
	CUDA
	Processor space
	Software model
	Memory space
	OpenCL
	CUDA vs OpenCL

	Directive languages
	Approaches to performance modelling
	Optimization techniques
	Hand-tuning vs. Automatic optimization
	Static methods
	Hybrid methods
	Dynamic methods
	Conclusion

	Heterogeneous computing
	Static partitioning
	Hybrid partitioning
	Dynamic partitioning
	Conclusion

	Polytope Model
	SCoP
	Polyhedral model illustration
	Access functions
	Scattering matrix
	Dependence
	Transformations
	Integer points counting

	CLooG
	PLUTO
	Par4All
	R-Stream
	PPCG
	Skeleton compilers
	Libraries
	Speculative parallelization

	Code versioning and profiling for GPU
	Introduction
	Related Work
	Framework overview
	Profiling
	Equity
	Static performance factors
	Dynamic performance factors
	CUDA grid size evaluation

	Runtime prediction
	Prediction

	Experiments
	Testbed
	Prediction accuracy

	Perspectives and conclusion

	Heterogeneous computing
	CPU vs GPU execution: a dynamic approach
	Introduction
	CPU vs GPU attempt
	Early termination of CPU and GPU codes
	Experimentations
	Perspective and limitations

	CPU vs GPU execution: a hybrid approach
	CPU + GPU joint execution
	Introduction
	Code generation
	CPU+GPU Runtime
	Evaluation
	Multiversioning
	Power-guided scheduling
	Perspectives and conclusion

	Thread Level Speculation
	CPU speculative execution
	Introduction

	Overview of our system
	Binary skeletons
	Guarding code
	Initialization code
	Verification code for speculative parallelization

	Memory backup
	Experimental results
	Memory backup extensions
	GPU extension proposal
	Verification code
	Memory address space
	Finding adequate block size
	CPU + GPU execution

	Conclusions and perspectives

	Conclusion
	Contributions
	Perspectives

	Bibliography

