Thèse soutenue

Cartes aléatoires et serpent brownien

FR  |  
EN
Auteur / Autrice : Céline Abraham
Direction : Jean-François Le Gall
Type : Thèse de doctorat
Discipline(s) : Mathématiques fondamentales
Date : Soutenance le 11/12/2015
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale de mathématiques Hadamard (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : Université Paris-Sud (1970-2019)
Laboratoire : Laboratoire de mathématiques d'Orsay (1998-....)
Jury : Président / Présidente : Bénédicte Haas
Examinateurs / Examinatrices : Jean-François Le Gall, Bénédicte Haas, Grégory Miermont, Jean-François Delmas, Nicolas Curien
Rapporteurs / Rapporteuses : Grégory Miermont, Jean-François Delmas

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

La première partie de cette thèse s’inscrit dans le domaine des cartes aléatoires, qui est un sujet à la frontière des probabilités, de la combinatoire et de la physique statistique. Nos travaux complètent une série de résultats de convergence de différents modèles de cartes aléatoires vers la carte brownienne, qui est un espace métrique compact aléatoire. Plus précisément, on montre que la limite d’échelle d’une carte de loi uniforme sur l’ensemble des cartes biparties enracinées à n arêtes, munie de la distance de graphe renormalisée par (2n)^(−1/4), est, au sens de Gromov–Hausdorff, la carte brownienne. Pour prouver ce résultat, les arguments importants sont d’une part l’utilisation d’une bijection combinatoire entre cartes biparties et arbres multitypes, et d’autre part des théorèmes de convergence pour les arbres de Galton–Watson multitypes étiquetés. Dans un deuxième temps, le but est de présenter une théorie des excursions pour le mouvement brownien indexé par l’arbre brownien. De manière analogue à la théorie d’Itô des excursions pour le mouvement brownien, chaque excursion correspond à une composante connexe du complémentaire des zéros du mouvement brownien indexé par l’arbre, et l’excursion est définie comme un processus indexé par un arbre continu. On explique comment mesurer la longueur de la frontière de ces excursions, de sorte que la famille de ces longueurs coïncide avec les sauts d’un processus de branchement à temps continu de mécanisme de branchement stable d’indice 3/2. De plus, conditionnellement aux longueurs des frontières, les excursions sont indépendantes et leur loi conditionnelle est déterminée à l’aide d’une mesure d’excursion explicite que l’on introduit et décrit. Dans ce travail, le serpent brownien apparaît comme un outil particulièrement important.