Thèse soutenue

Interactions entre photons émis par des sources brillantes à base de boîtes quantiques en cavité
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Valérian Giesz
Direction : Pascale Senellart
Type : Thèse de doctorat
Discipline(s) : Nanophysique
Date : Soutenance le 14/12/2015
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Ondes et matière (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire de Photonique et de Nanostructures (Marcoussis, Essonne ; 1984-2016)
établissement opérateur d'inscription : Université Paris-Sud (1970-2019)
Jury : Président / Présidente : Philippe Grangier
Examinateurs / Examinatrices : Pascale Senellart, Philippe Grangier, Valia Voliotis, Glenn S. Solomon, Jean-Michel Raimond, Khaled Karraï
Rapporteurs / Rapporteuses : Valia Voliotis, Glenn S. Solomon

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Dans le domaine de l’information quantique, les photons apparaissent comme de parfaits bits quantiques (qubits) pour le transport de l’information d’un point à un autre. Ce besoin de photons uniques sur demande, où un et un seul photon est émis avec une bonne fiabilité, conduit à une recherche considérable dans le développement de sources de photons efficace. Un paramètre clé est la brillance, défini comme la probabilité qu’un photon émis par l’émetteur soit collecté. Pour certaines applications, il est également important que tous les photons émis soient tous identiques. On dit alors qu’ils sont indiscernables, dans ce cas les photons peuvent interagir et interférer entre eux. Pour obtenir la source idéale de photons uniques et indiscernables avec une brillance égale à un, de nombreuses pistes sont explorées avec différents émetteurs tels que des défauts dans le diamant, des ions ou des atomes piégés, des molécules uniques ou des boîtes quantiques semiconductrices.En couplant une boîte quantique avec une cavité optique, l’émission spontanée est de la boîte quantique est modifiée pour obtenir des sources brillantes de photons uniques. Une technique innovante développée dans l’équipe du Pr. Pascale Senellart au Laboratoire de Photonique et Nanostructures (LPN) du CNRS permet de fabriquer des sources brillantes de manière reproductible avec une excellente fiabilité.Ce travail explore les performances de boîtes quantiques uniques couplées dans des micropiliers. Diverses techniques sont utilisées pour augmenter la pureté des photons uniques et leur indiscernabilité tout en maintenant une brillance élevée. Dans un premier temps, une structure de cavité adiabatique a été utilisée pour obtenir une plus grande accélération de l’émission spontanée des BQs par effet Purcell. Ces sources ont utilisées pour réaliser un réseau où les photons émis par différentes sources interfèrent. Ensuite, une technique pour appliquer une tension électrique sur les micropilliers a été développée. Grâce à cette technique et à une excitation optique résonante, des photons parfaitement indiscernables sont collectés avec une très bonne brillance.Les résultats présentés ouvrent de nombreuses perspectives pour diverses applications telles que la fabrication d’un réseau quantique, pour la cryptographie quantique, pour la métrologie ou pour la microscopie.