Thèse soutenue

Amélioration de la rapidité d'exécution des systèmes EDO de grande taille issus de Modelica
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Thibaut-Hugues Gallois
Direction : Thierry Soriano
Type : Thèse de doctorat
Discipline(s) : Mathématiques appliquées
Date : Soutenance le 03/12/2015
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Interfaces : matériaux, systèmes, usages (Palaiseau, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire Quartz (Saint-Ouen, Seine-Saint-Denis)
établissement opérateur d'inscription : CentraleSupélec (2015-....)
Jury : Président / Présidente : Cédric Galusinski
Examinateurs / Examinatrices : Thierry Soriano, Olivier Pironneau, Philippe Angot, Léo Agélas, Jean Brac, Omar Hammami, Mohamed El Mongi Ben Gaid
Rapporteurs / Rapporteuses : Olivier Pironneau, Philippe Angot

Résumé

FR  |  
EN

L'étude des systèmes aux équations différentielles ordinaires vise à prédire le futur des systèmes considérés. La connaissance de l'évolution dans le temps de toutes les variables d' état du modèle permet de prédire de possibles changements radicaux des variables ou des défaillances, par exemple, un moteur peut exploser, un pont peut s'écrouler, une voiture peut se mettre à consommer plus d'essence. De plus, les systèmes dynamiques peuvent contenir des dérivées spatiales et leur discrétisation peut ajouter un très grand nombre d'équations. La résolution des équations différentielles ordinaires est alors une étape essentielle dans la construction des systèmes physiques en terme de dimensionnement et de faisabilité. Le solveur de tels systèmes EDOs doit être rapide, précis et pertinent.En pratique, il n'est pas possible de trouver une fonction continue qui soit solution exacte du problème EDO. C'est pourquoi, des méthodes numériques sont utilisées afin de donner des solutions discrèes qui approchent la solution continue avec une erreur contrôlable. La gestion précise de ce contrôle est très importante afin d'obtenir une solution pertinente en un temps raisonnable.Cette thèse développe un nouveau solveur qui utilise plusieurs méthodes d'amélioration de la vitesse d'exécution des systèmes EDOs. La première méthode est l'utilisation d'un nouveau schéma numérique. Le but est de minimiser le coût de l'intégration en produisant une erreur qui soit le plus proche possible de la tolérance maximale permise par l'utilisateur du solveur. Une autre méthode pour améliorer la vitesse d'exécution est de paralléliser le solveur EDO en utilisant une architecture multicoeur et multiprocesseur. Enfin, le solveur a été testé avec différentes applications d'OpenModelica.