Thèse soutenue

Sur l'approximation modulationnelle du problème des ondes de surface : Consistance et existence de solutions pour les systèmes de Benney-Roskes / Davey-Stewartson à dispersion exacte
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Caroline Obrecht
Direction : Jean-Claude Saut
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 29/06/2015
Etablissement(s) : Paris 11
Ecole(s) doctorale(s) : Ecole doctorale Mathématiques de la région Paris-Sud (1992-2015 ; Orsay)
Partenaire(s) de recherche : Laboratoire : Laboratoire de mathématiques d'Orsay (1998-....)
Jury : Président / Présidente : Christian Klein
Examinateurs / Examinatrices : Jean-Claude Saut, Christian Klein, Didier Bresch, David Lannes, Frédéric Lagoutière
Rapporteurs / Rapporteuses : Didier Bresch, David Lannes

Résumé

FR  |  
EN

Cette thèse s'inscrit dans l'étude des modèles asymptotiques aux équations des ondes de surface dans le régime modulationnel. Le problème des ondes de surface consiste à décrire le mouvement - sous l'influence de la gravitation et éventuellement de tension de surface - d'un fluide dans un domaine délimité par la surface libre du fluide et par un fond fixe. Dans l'étude de ce problème, on s'intéresse en particulier aux ondes se propageant à la surface du fluide.Dans le régime modulationnel, on considère l'évolution des ondes de surface sous forme de paquets d'ondes de faible amplitude se propageant dans une direction. Il est bien connu que la motion de l'enveloppe du paquet d'onde sur une échelle de temps d'ordre t = O(1/ϵ²), où ϵ est un petit paramètre désignant l'amplitude, est décrite approximativement par des systèmes d'équations appelés systèmes de Benney-Roskes (BR) / Davey-Stewartson (DS). Ces systèmes sont donnés par une équation de type Schrödinger cubique couplée à une équation d'ondes. L'approximation classique de BR / DS est bien établie et a été largement étudiée au cours des dernières décennies. Récemment, David Lannes a introduit une version à "dispersion exacte" de ces systèmes. Contrairement aux équations de BR / DS standard, les systèmes à dispersion exacte préservent la relation de dispersion des équations des ondes de surface. On devrait obtenir ainsi une description plus riche du vrai comportement dynamique des ondes de surface que dans le cas de l'approximation classique.Le systèmes de BR / DS à dispersion exacte sont étudiés dans cette thèse. La première partie est consacrée à la déduction formelle des systèmes de BR / DS en tant que modèles asymptotiques aux équations des ondes de surface. Nous donnons en outre un résultat sur la consistance de cette approximation.Ensuite, nous étudions le problème de Cauchy pour le système de BR à dispersion exacte. En fait, afin de justifier la consistance de l'approximation de BR avec les équations exactes, on doit prouver que ce système est bien posé (en espace de Sobolev) sur une échelle de temps d'ordre O(1/ϵ). Ceci est un problème ouvert même dans le cas classique, du moins pour le système de dimension 1 + 2. De même, nous ne pouvons pas démontrer l'existence de solutions en temps long pour le système de BR à dispersion exacte, mais nous obtenons un théorème d'existence locale (t = O(1)) à condition que la tension de surface soit assez forte. Si nous nous restreignons au système de dimension 1+1, nous pouvons enlever la contrainte sur la tension de surface. L'idée de la preuve d'existence locale, qui est inspirée par un travail de Schochet-Weinstein, est d'écrire le système de BR comme un système symétrique hyperbolique quasi-linéaire perturbé par un terme dispersif ne contribuant pas à l'énergie du système. Ainsi, nous pouvons appliquer les méthodes standard de résolution des systèmes hyperboliques.En modifiant le terme non-linéaire du système de BR de dimension 1+1 sans changer l'ordre de consistance, nous obtenons un système qui est bien posé sur l'échelle de temps appropriée O(1/ϵ). Cependant, cette démarche ne peut pas être généralisée au cas de dimension 1+2.Dans le dernier chapitre de cette thèse, nous donnons quelques résultats sur les systèmes de Davey-Stewartson à dispersion exacte. Pour les systèmes de DS, il est suffisant de démontrer qu'ils sont bien posés localement afin de justifier leur consistance avec les équations des ondes de surface. La théorie d'existence de solutions est assez complète pour le système de DS classique. Dans le cas de dispersion exacte cependant, les équations paraissent mal posées généralement, si bien que l'existence locale ne peut être démontrée pour l'instant que pour quelques cas particuliers simples.