Thèse soutenue

Statistique d’extrêmes de variables aléatoires fortement corrélées

FR  |  
EN
Auteur / Autrice : Anthony Perret
Direction : Grégory Schehr
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 22/06/2015
Etablissement(s) : Paris 11
Ecole(s) doctorale(s) : École doctorale Physique en Île-de-France (Paris ; 2014-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire de physique théorique et modèles statistiques (Orsay, Essonne ; 1998-....)
Jury : Examinateurs / Examinatrices : Grégory Schehr, Malte Henkel, Tom Claeys, Henk Hilhorst, Henri Orland, Clément Sire
Rapporteurs / Rapporteuses : Akemann Gernot, Malte Henkel

Résumé

FR  |  
EN

La statistique des valeurs extrêmes est une question majeure dans divers contextes scientifiques. Cependant, bien que la description de la statistique d'un extremum global soit certainement une caractéristique importante, celle-ci ne se concentre que sur une seule variable parmi un grand nombre de variables aléatoires. Une question naturelle qui se pose alors est la suivante: ces valeurs extrêmes sont-elles isolées, loin des autres variables ou bien au contraire existe-t-il un grand nombre d'autres variables proches de ces valeurs extrêmes ? Ces questions ont suscité l'étude de la densité d'état de ces événements quasi-extrêmes. Il existe pour cette quantité peu de résultats pour des variables fortement corrélées, qui est pourtant le cas rencontré dans de nombreux modèles fondamentaux. Deux pistes de modèles physiques de variables fortement corrélées pouvant être étudiés analytiquement se démarquent alors: les positions d’une marche aléatoire et les valeurs propres de matrice aléatoire. Cette thèse est ainsi consacrée à l’étude de statistique d’extrêmes pour ces deux modèles de variables fortement corrélées. Dans une première partie, j’étudie le cas où la collection de variables aléatoires est la position au cours du temps d’un mouvement brownien, qui peut être contraint à être périodique, positif... Ce mouvement brownien est vu comme la limite d’un marcheur aléatoire classique après un grand nombre de pas. Il est alors possible d’interprèter ce problème comme celui d’une particule quantique dans un potentiel ce qui permet d’utiliser des méthodes puissantes issues de la mécanique quantique comme l’utilisation de propagateurs et de l’intégrale de chemin. Ces outils permettent de calculer la densité moyenne à partir du maximum pour les différents mouvements browniens contraints et même la distribution complète de cette quantité pour certains cas. Il est également possible de généraliser cette démarche à l’étude de plusieurs marches aléatoires indépendantes ou avec interaction. Cette démarche permet également d’effectuer une étude temporelle, ainsi que de généraliser à l’étude d’autres fonctionnelle du maximum. Dans la seconde partie, j’étudie le cas où la collection de variables aléatoires est composée des valeurs propres d’une matrice aléatoire. Ce travail se concentre sur l’études des matrices des ensembles gaussiens (GOE, GUE et GSE) ainsi qu’à l’étude des matrices de Wishart. L’étude du voisinage de la valeur propre maximale pour ces deux modèles est faite en utilisant une méthode fondée sur les propriétés des polynômes orthogonaux. Dans le cas des matrices gaussiennes unitaires GUE, j’ai obtenu une formule analytique pour la distribution à partir du maximum ainsi qu’une nouvelle expression de la statistique du gap entre les deux plus grandes valeurs propres en termes d’une fonction transcendante de Painlevé. Ces résultats, et plus particulièrement leurs généralisations aux cas GOE, sont alors appliqués à un modèle de verre de spin sphérique en champs moyen. Dans le cas des matrices de Wishart, l’analyse des polynômes orthogonaux dans le régime de double échelle m’a permis de retrouver les différentes statistiques de la valeur propre minimale et également de prouver une conjecture sur la première correction de taille finie pour des grandes matrices de la distribution de la valeur propre minimale dans la limite dite de «hard edge».