Formes modulaires p-adiques sur les courbes de Shimura unitaires et compatibilité local-global

par Yiwen Ding

Thèse de doctorat en Mathématiques

Sous la direction de Christophe Breuil.

Le président du jury était Jacques Tilouine.

Le jury était composé de Christophe Breuil, Jacques Tilouine, Joël Bellaïche, Gaëtan Chenevier, Vincent Pilloni.

Les rapporteurs étaient Laurent Berger, Payman L. Kassaei.


  • Résumé

    Cette thèse s'inscrit dans le cadre du programme de Langlands local p-adique. Soient L une extension finie de Q_p, \rho_L une représentation p-adique de dimension 2 du groupe de Galois Gal(\overline{Q_p}/L) de L, lorsque \rho_L provient d'une représentation \rho globale et modulaire (i.e. \rho apparaît dans la cohomologie étale des courbes de Shimura), on sait associer à \rho une représentation de Banach admissible de \GL_2(L), notée \widehat{\Pi}(\rho), en utilisant la théorie de la cohomologie étale complétée d'Emerton. Localement, lorsque \rho_L est cristalline (et assez générique), d'après Breuil, on sait associer à \rho_L une représentation localement analytique de \GL_2(L), notée \Pi(\rho_L). Dans cette thèse, on montre divers résultats sur la compatibilité entre les représentations \widehat{\Pi}(\rho) et \Pi(\rho_L), qui s'appelle la compatibilité local-global, dans la cas des courbes de Shimura unitaires. Par la théorie des représentations localement analytiques de \GL_2(L), le problème de compatibilité local-global se ramène à l'étude des variétés de Hecke X construites à partir du H^1-complété des courbes de Shimura unitaires. On montre des résultats sur la compatibilité local-global dans le cas non-critique en utilisant la théorie de la triangulation globale. On étudie ainsi les formes modulaires p-adiques sur les courbes de Shimura unitaires, à partir desquelles on peut construire des sous-espaces rigides de X à la manière de Coleman-Mazur. On montre l'existence des formes compagnons surconvergentes sur les courbes de Shimura unitaires en utilisant les théorèmes de comparaison p-adique, d'où on déduit des résultats sur la compatibilité local-global dans le cas critique.

  • Titre traduit

    P-adic modular forms over unitary Shimura curves and local-global compatibility


  • Résumé

    The subject of this thesis is in the p-adic Langlands programme. Let L be a finite extension of \Q_p, \rho_L a 2-dimensional p-adic representation of the Galois group \Gal(\overline{\Q_p}/L) of L, if \rho_L is the restriction of a global modular Galois representation \rho (i.e. \rho appears in the étale cohomology of Shimura curves), one can associate to \rho an admissible Banach representation \widehat{\Pi}(\rho) of \GL_2(L) by using Emerton's completed cohomology theory. Locally, if \rho_L is crystalline (and sufficiently generic), following Breuil, one can associate to \rho_L a locally analytic representation \Pi(\rho_L) of \GL_2(L). In this thesis, we prove results on the compatibility of \widehat{\Pi}(\rho) and \Pi(\rho_L), called local-global compatibility, in the unitary Shimura curves case. By locally analytic representations theory (for \GL_2(L)), the problem of local-global compatibility can be reduced to the study of eigenvarieties X constructed from the completed H^1 of unitary Shimura curves. We prove results on local-global compatibility in non-critical case by using global triangulation theory. We also study the p-adic modular forms over unitary Shimura curves, from which we construct some closed rigid subspaces of X by Coleman-Mazur's method. We prove the existence of overconvergent companion forms (over unitary Shimura curves) by using p-adic comparison theorems, from which we deduce some results on local-global compatibility in critical case.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Autre version

Cette thèse a donné lieu à une publication en 2017 par Société mathématique de France à Paris

Formes modulaires p-adiques sur les courbes de Shimura unitaires et compatibilité local-global


Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paris-Saclay. DiBISO. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.

Consulter en bibliothèque

Cette thèse a donné lieu à une publication en 2017 par Société mathématique de France à Paris

Informations

  • Sous le titre : Formes modulaires p-adiques sur les courbes de Shimura unitaires et compatibilité local-global
  • Détails : 1 vol. (VI-245 p.)
  • Notes : N° de : "Mémoires de la Société mathématique de France", ISSN 0249-633X, (2017)n°155.
  • ISBN : 978-2-85629-877-0
  • Annexes : Bibliogr. p. [237]-242. Index
La version de soutenance de cette thèse existe aussi sous forme papier.

Où se trouve cette thèse\u00a0?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.