Thèse soutenue

Dynamique des Protéines par Relaxation des Spins Nucléaires : relaxométrie haute-résolution, protéines désordonnées et applications à la région C-terminal de la protéine Artemis
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Cyril Charlier
Direction : Fabien FerrageLudovic Carlier
Type : Thèse de doctorat
Discipline(s) : Chimie - Physique
Date : Soutenance le 03/07/2015
Etablissement(s) : Paris 6
Ecole(s) doctorale(s) : École doctorale Chimie physique et chimie analytique de Paris Centre (Paris ; 2000-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire des biomolécules (Paris ; 2009-....)
Jury : Examinateurs / Examinatrices : Arthur G. Palmer, Frans Mulder, Geoffrey Bodenhausen, Sophie Zinn-Justin, Carine Van-Heijenoort, Guy Lippens

Résumé

FR  |  
EN

La fonction des protéines est intimement liée à leur structure et à leur dynamique. La Résonance Magnétique Nucléaire est une technique de choix permettant d'étudier ces deux aspects à une résolution atomique. La relaxation du spin des noyaux d'azote-15 permet de quantifier ces mouvements aux échelles de temps pico- nanosecondes grâce à la determination de la fonction de densité spectrale, décrivant les mouvements du vecteur NH amide. Il est essentiel de mesurer les vitesses de relaxation à des champs magnétiques faibles pour mieux décrire les mouvements nanoseconde. De telles mesures sont possibles grâce à la relaxométrie haute-résolution et ont été réalisées sur l'ubiquitine. Celles-ci ont permis la caractérisation de mouvements nanoseconde dans les parties flexibles de l'ubiquitine. L'interprétation des données de relaxation pour des protéines désordonnées requiert le développement de modèles spécifiques à ces protéines. Nous avons développé une approche, appelée IMPACT, permettant une reconstruction mathématique de la fonction de densité spectrale. Appliquée au facteur de transcription Engrailed 2, cette approche a permis d'accéder à la distribution d'échelles de temps ps-ns à partir de données de relaxation à haut champ. Cette approche, combinée à des mesures de relaxométrie sur la région C-terminale de la protéine Artemis, devrait permettre d'obtenir une représentation fidèle et précise de la dynamique d'une protéine désordonnée. De plus, nous avons étudié la cinétique et la thermodynamique de l'interaction entre Artemis et la Ligase IV. Nos travaux ont permis de développer de nouvelles approches pour l'analyse de larges ensembles de données de relaxation.