Sécurités algébrique et physique en cryptographie fondée sur les codes correcteurs d'erreurs

par Frédéric Urvoy De Portzamparc

Thèse de doctorat en Informatique

Sous la direction de Jean-Charles Faugère.

Soutenue le 17-04-2015

à Paris 6 , dans le cadre de École doctorale Informatique, télécommunications et électronique de Paris , en partenariat avec LIP6 (1997-....) (laboratoire) .


  • Résumé

    La cryptographie à base de codes correcteurs, introduite par Robert McEliece en 1978, est un candidat potentiel au remplacement des primitives asymétriques vulnérables à l'émergence d'un ordinateur quantique. Elle possède de plus une sécurité classique éprouvée depuis plus de trente ans, et permet des fonctions de chiffrement très rapides. Son défaut majeur réside dans la taille des clefs publiques. Pour cette raison, plusieurs variantes du schéma de McEliece pour lesquelles les clefs sont plus aisées à stocker ont été proposées ces dernières années. Dans cette thèse, nous nous intéressons aux variantes utilisant soit des codes alternants avec symétrie, soit des codes de Goppa sauvages. Nous étudions leur résistance aux attaques algébriques et exhibons des faiblesses parfois fatales. Dans chaque cas, nous révélons l'existence de structures algébriques cachées qui nous permettent de décrire la clef secrète par un système non-linéaire d'équations en un nombre de variables très inférieur aux modélisations antérieures. Sa résolution par base de Gröbner nous permet de trouver la clef secrète pour de nombreuses instances hors de portée jusqu'à présent et proposés pour un usage à des fins cryptographiques. Dans le cas des codes alternants avec symétrie, nous montrons une vulnérabilité plus fondamentale du processus de réduction de taille de la clef.Pour un déploiement à l'échelle industrielle de la cryptographie à base de codes correcteurs, il est nécessaire d'en évaluer la résistance aux attaques physiques, qui visent le matériel exécutant les primitives. Nous décrivons dans cette optique un algorithme de déchiffrement McEliece plus résistant que l'état de l'art.

  • Titre traduit

    Algebraic and Physical Security in Code-Based Cryptography


  • Résumé

    Code-based cryptography, introduced by Robert McEliece in 1978, is a potential candidate to replace the asymetric primitives which are threatened by quantum computers. More generral, it has been considered secure for more than thirty years, and allow very vast encryption primitives. Its major drawback lies in the size of the public keys. For this reason, several variants of the original McEliece scheme with keys easier to store were proposed in the last years.In this thesis, we are interested in variants using alternant codes with symmetries and wild Goppa codes. We study their resistance to algebraic attacks, and reveal sometimes fatal weaknesses. In each case, we show the existence of hidden algebraic structures allowing to describe the secret key with non-linear systems of multivariate equations containing fewer variables then in the previous modellings. Their resolutions with Gröbner bases allow to find the secret keys for numerous instances out of reach until now and proposed for cryptographic purposes. For the alternant codes with symmetries, we show a more fondamental vulnerability of the key size reduction process. Prior to an industrial deployment, it is necessary to evaluate the resistance to physical attacks, which target device executing a primitive. To this purpose, we describe a decryption algorithm of McEliece more resistant than the state-of-the-art.Code-based cryptography, introduced by Robert McEliece in 1978, is a potential candidate to replace the asymetric primitives which are threatened by quantum computers. More generral, it has been considered secure for more than thirty years, and allow very vast encryption primitives. Its major drawback lies in the size of the public keys. For this reason, several variants of the original McEliece scheme with keys easier to store were proposed in the last years.In this thesis, we are interested in variants using alternant codes with symmetries and wild Goppa codes. We study their resistance to algebraic attacks, and reveal sometimes fatal weaknesses. In each case, we show the existence of hidden algebraic structures allowing to describe the secret key with non-linear systems of multivariate equations containing fewer variables then in the previous modellings. Their resolutions with Gröbner bases allow to find the secret keys for numerous instances out of reach until now and proposed for cryptographic purposes. For the alternant codes with symmetries, we show a more fondamental vulnerability of the key size reduction process. Prior to an industrial deployment, it is necessary to evaluate the resistance to physical attacks, which target device executing a primitive. To this purpose, we describe a decryption algorithm of McEliece more resistant than the state-of-the-art.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Sorbonne Université. Bibliothèque des thèses électroniques.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.