Apprentissage de représentation pour des données générées par des utilisateurs

par Mickael Poussevin

Thèse de doctorat en Informatique

Sous la direction de Patrick Gallinari.

Soutenue le 21-01-2015

à Paris 6 , dans le cadre de École doctorale Informatique, télécommunications et électronique de Paris , en partenariat avec LIP6 (1997-....) (laboratoire) .

Le jury était composé de Vincent Guigue, Bernd Amann, Catherine Gouttas.

Les rapporteurs étaient Emmanuel Viennet, Massih-Reza Amini.


  • Résumé

    Dans cette thèse, nous étudions comment les méthodes d'apprentissage de représentations peuvent être appliquées à des données générées par l'utilisateur. Nos contributions couvrent trois applications différentes, mais partagent un dénominateur commun: l'extraction des représentations d'utilisateurs concernés. Notre première application est la tâche de recommandation de produits, où les systèmes existant créent des profils utilisateurs et objets qui reflètent les préférences des premiers et les caractéristiques des derniers, en utilisant l'historique. De nos jours, un texte accompagne souvent cette note et nous proposons de l'utiliser pour enrichir les profils extraits. Notre espoir est d'en extraire une connaissance plus fine des goûts des utilisateurs. Nous pouvons, en utilisant ces modèles, prédire le texte qu'un utilisateur va écrire sur un objet. Notre deuxième application est l'analyse des sentiments et, en particulier, la classification de polarité. Notre idée est que les systèmes de recommandation peuvent être utilisés pour une telle tâche. Les systèmes de recommandation et classificateurs de polarité traditionnels fonctionnent sur différentes échelles de temps. Nous proposons deux hybridations de ces modèles: la première a de meilleures performances en classification, la seconde exhibe un vocabulaire de surprise. La troisième et dernière application que nous considérons est la mobilité urbaine. Elle a lieu au-delà des frontières d'Internet, dans le monde physique. Nous utilisons les journaux d'authentification des usagers du métro, enregistrant l'heure et la station d'origine des trajets, pour caractériser les utilisateurs par ses usages et habitudes temporelles.

  • Titre traduit

    Representation learning of user-generated data


  • Résumé

    In this thesis, we study how representation learning methods can be applied to user-generated data. Our contributions cover three different applications but share a common denominator: the extraction of relevant user representations. Our first application is the item recommendation task, where recommender systems build user and item profiles out of past ratings reflecting user preferences and item characteristics. Nowadays, textual information is often together with ratings available and we propose to use it to enrich the profiles extracted from the ratings. Our hope is to extract from the textual content shared opinions and preferences. The models we propose provide another opportunity: predicting the text a user would write on an item. Our second application is sentiment analysis and, in particular, polarity classification. Our idea is that recommender systems can be used for such a task. Recommender systems and traditional polarity classifiers operate on different time scales. We propose two hybridizations of these models: the former has better classification performance, the latter highlights a vocabulary of surprise in the texts of the reviews. The third and final application we consider is urban mobility. It takes place beyond the frontiers of the Internet, in the physical world. Using authentication logs of the subway users, logging the time and station at which users take the subway, we show that it is possible to extract robust temporal profiles.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Sorbonne Université. Bibliothèque des thèses électroniques.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.