Thèse soutenue

Conception et optimisation de nanoparticules dendrimériques photoactivables dans le cadre d’un traitement photodynamique
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Estelle Bastien
Direction : Lina Bezdetnaya-BolotineHenri-Pierre Lassalle
Type : Thèse de doctorat
Discipline(s) : Sciences de la vie et de la santé
Date : Soutenance le 07/12/2015
Etablissement(s) : Université de Lorraine
Ecole(s) doctorale(s) : École doctorale BioSE - Biologie, Santé, Environnement
Partenaire(s) de recherche : Laboratoire : Centre de recherche en automatique (Nancy)
Jury : Président / Présidente : Raphaël Schneider
Examinateurs / Examinatrices : Vladimir Sukhorukov
Rapporteurs / Rapporteuses : Frédéric Ducongé, Sylvain Dukic

Résumé

FR  |  
EN

La thérapie photodynamique (PDT) est une modalité de traitement des cancers prometteuse, mettant en jeu une action combinée de l’oxygène moléculaire, de la lumière et d’un photosensibilisateur (PS). Néanmoins, les PSs utilisés souffrent d’une faible solubilité dans les milieux aqueux ainsi que d’un tumorotropisme limité qui sont des barrières à la réussite du traitement. Ainsi, actuellement, une attention particulière est portée au développement de nanoparticules (NPs) capables de pallier les défauts des PSs. Notre travail a consisté à étudier des dendrimères poly(amidoamine) (PAMAM), macromolécules polymériques tridimensionnelles, conjugués via une liaison covalente au PS, la Chlorine e6 (Ce6). Cette construction nous a permis de vectoriser 32 molécules de Ce6 par dendrimère. La production d’oxygène singulet et l’émission de fluorescence ont été modérément affectées par le greffage covalent de la Ce6 aux NPs. In vitro, les dendrimères PAMAM ont permis d’accroitre l’efficacité PDT de la Ce6 en potentialisant son internalisation cellulaire via un mécanisme actif d’endocytose. Néanmoins, l’efficacité PDT des NPs est limitée par la concentration locale élevée en Ce6 en périphérie des dendrimères qui réduit son rendement quantique en oxygène singulet moléculaire, espèce cytotoxique. Une libération de la Ce6 permettrait ainsi de potentialiser l’efficacité PDT des NPs en restaurant notamment les propriétés photophysiques de la Ce6. La suite de ce travail a été de concevoir une NP capable de libérer la Ce6 sous l’action d’estérases retrouvées dans les cellules. Leur caractérisation a permis de démontrer en solution que les propriétés photophysiques de la Ce6 étaient rétablies à la suite de son relargage des NPs. Cette dernière construction clivable est prometteuse pour de futures applications en PDT