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General Introduction
This thesis aims at the development of constitutive models for lattice-like structures and 

materials having an initially discrete and quasi periodical architecture at the microscopic 

scale, considering two important aspects: the non-linear constitutive response and the analysis 

of scale effects through the consideration of higher order gradients of the kinematic variables

or additional micropolar degrees of freedom. The discrete homogenization technique is 

presently developed in order to substitute to an initially quasi periodical lattice-like structure 

by an effective continuum medium endowed with an effective mechanical behavior. Typical 

examples of applications of the proposed methodology and developed numerical schemes 

include dry textile preforms, biological membranes, trabecular bone, and artificial (man-
made) structures involving a large number of repetitive structural one dimensional elements. 

The mechanics of fibrous materials provides a wealth of interesting problems for the 

modelization, mathematical analysis and numerical simulations in modern applications in 

engineering and biomechanics. Especially, the tremendous amount of research on biological 

tissues and biosubstitutes has provided a new field to which the mechanics of fiber reinforced
materials can be successfully applied.

In the first part of the work, we extend the first order homogenization schemes previously 

developed in LEMTA for the determination of effective mechanical properties of structures

described as quasi periodical networks of beams, by the consideration of nonlinearities and 

internal length scale effects. We especially account for the geometrical nonlinearities arising 

from the large rotations of the beam elements, and build incremental scheme for the numerical 

computation of the overall nonlinear response of the effective continuum. The construction of 

homogenized effective continua leads to the calibration of strain energy density functions 

characterizing a hyperelastic effective continuum, which have been considered from a 

phenomenological viewpoint for fiber reinforced solids. The constructed effective response is 
validated by FE simulations performed over a representative unit cell of the lattice.

The kinematics of the lattice at the lower microscopic level may further lead to the emergence 

of non classical effects at a homogenized level, requiring the consideration of an enhanced 

kinematics or higher order gradients of the kinematic variables. Internal lengths scale effects 

are taken into account by generalized continua at the mesoscopic level; such effects have been 

proven to be noticeable when the specimen dimensions are comparable with the cell size. The
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first order homogenization scheme is then accordingly extended towards the consideration of 

the second order gradient of the displacement, adopting a small strains framework. Thereby, 

the homogenized constitutive law includes the effective first order moduli and additional 

second order moduli. The methodology for the construction of the stress and hyperstress 

tensors versus the strain and strain gradient is first developed in a one dimensional context, 

before being extended to a more general 2D framework; these developments did benefit from 
discussions and joined work with Yosra Rahali in the frame of her PhD thesis. 

The developed numerical schemes have been implemented in a dedicated code, using as an 

input the connectivity of the identified lattice unit cell and the beam mechanical moduli, and 

providing as an output the homogenized response of the effective continuum in the large 
strain regime. 
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Motivations of the Thesis 
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1.1 Introduction 

In recent years, new classes of cellular solid, lattice material and heterogeneous materials, such 

as composite material, solid foams, polycrystals, or bone are becoming increasingly popular in 

modern engineering applications because of their attractive properties, e.g. light weight, high 

specific stiffness, good damping capacity, high shock absorbability, etc. (Lorna and Gibson, 

1997). The progress in civil engineering, aerospace industry, biomechanics and many other 

branches of technology has increased the role of these materials in the last two decades. 

Complex heterogeneous materials may appear in shell-like structure such as laminated or textile 

reinforced composites. Textile are widely used nowadays in construction mechanics and in high 

added value fields such as aeronautics, due to their low weight, high capacity to sustain 

mechanical loads, good resistance to corrosion, and better distribution of efforts, to mention only 

a few main factors. 

The prediction of elastic properties of dry textiles (preforms) in fibrous reinforced composites 

has been an active area of research in the past two decades, because the issues related to such 

parameters as fiber architecture, matrix properties, and fiber properties, affecting the mechanical 

characteristics of the composites, are highly complex. These factors make the modeling aspect of 

textile composites extremely challenging. Especially, it is important to be able to predict the 

orientation of the fibers during ongoing deformation of these structures, as it impacts the overall 

state of anisotropy and their effective mechanical properties; this is important in shape forming 

analysis of the dry perform, and also before the injection of resin. 

The relation between the material microstructure and the resulting properties is the key to 

optimization and design of lightweight, strong, and tough materials.  

Regarding the mechanical modeling, a composite material can be defined as a heterogeneous 

medium with effective mechanical properties at an upper level of description. Given the linear 

and/or nonlinear material properties of the constituents, one important goal of micromechanics of 

materials consists of predicting the response of the heterogeneous material on the basis of the 

geometries and properties of the individual phases, a task known as homogenization. 

Foam-like structures, textiles in the form of 2D and 3D performs, morphing structures, large 

antennas made of many beam like repetitive structural elements, trabecular bone, as shown in 

Fig.1.1, all share common features: they can be described as lattice-like materials with a quasi-
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Fig. 1.1 Natural and artificial fibrous repetitive structures (a) Triangular network of the 

erythrocyte cytoskeleton (b) Human femur with cortical and trabecular bone. (c) 2D and 3D 

woven composite structures. (d) Scaffolds for tissue engineering (braided) Thesis C. Laurent 

(09/2012). (e) Morphing (reconfigurable) structures, Section of a morphing wing. (f) Large 

antennas made of many beam like repetitive structural elements. 

 

1.2 Objective, strategy and outline 

The principal objective of this thesis is to develop suitable homogenization schemes to construct 

the effective mechanical response of initially discrete structures representative of architecture 

materials, which will be substituted by an effective continuum at the intermediate mesoscopic 

level. An important category of structures which we shall focus in this thesis consists of lattices 

made of structural elements like articulated beams and bars, for which one may want to construct 

an effective continuum as a substitute for the initially discrete structure. They include both 

artificial (man-made) structures - such as articulated trusses, dry textiles and perform, fibers 

reinforced materials - and natural ones, like trabecular bone, fibrous reinforced soft tissues, and 

biological membranes. As one shall see, nonlinearities are mostly due to the modification of the 

internal geometry, with structural elements still undergoing small strains at the microscopic level 

(due to a large extension rigidity in comparison to the flexural rigidity), but large displacements 

and / or rotations due to weak flexural rigidity. 

(f) (e) 
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The kinematics of the lattice at the lower microscopic level may further lead to the emergence of 

non classical effects at a homogenized level, requiring considering an enhanced kinematics or 

higher order gradients of the kinematic variables. Such effects have been proven to be noticeable 

when the specimen dimensions are comparable with the cell size (Lakes, 1986). However, these 

effects are not easy to detect from a direct analysis at the macroscopic scale, based on 

experiments. Hence, micromechanical models are usually required to assess the impact of the 

lattice geometry and topology, and possibly of an internal microstructure within the lattice, on 

the computed effective mechanical behavior at an intermediate scale called the mesoscopic level, 

intermediate between the microscale (the scale of the microstructure) and the macroscale (scale 

of the entire structure). We shall address in this work the issue of construction both micropolar 

and second order grade effective constitutive models as substitutes of the initial structure, 

considering the occurrence of large deformations.  

This contribution is based on the discrete asymptotic homogenization method, in contrast with a 

fully continuum homogenization strategy, in the sense that the initial medium is described as 

discrete. The method which has been developed in previous works (A. Mourad, 2003; D. 

Caillerie et al., 2006; Raoult et al., 2008; Dos Reis and Ganghoffer, 2012; I. Goda and 

Ganghoffer, 2013) shall presently be extended by the consideration of geometrical nonlinearities 

and internal length scale effects taken into account by generalized continua at the mesoscopic 

level.  

This thesis aims at the development of constitutive models for lattice-like structures having an 

initially discrete and quasi periodical architecture at the microscopic scale considering two 

important aspects: the non-linear constitutive response due to large changes of the internal 

geometry (Andrea et al., 2014; Pindera et al., 2009; charalambakis, 2010 ) and the analysis of 

scale effects through the consideration of either additional degrees of freedom or higher order 

gradients of the kinematic variables (Kouznetsova et al., 2002, 2004; Nguyen et al., 2013). In 

order to exemplify the developed methodology and subsequent numerical algorithms, the 

specific case of fibrous media like dry textile monolayer’s and biological membranes will be 

analyzed in this thesis; it is indeed well-know that those structures are prone to large changes in 

their geometry, while developing small strains.  

The first objective is then to set up a novel methodology based on the discrete asymptotic 

homogenization method for the calculation of the equivalent effective mechanical response of 
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structures having a discrete topology, considering the occurrence of geometrical nonlinearities. 

We shall accordingly focus on the large displacement / small strains framework. 

The nonlinear analysis is in the broad sense characterized by the non-proportional nature of the 

load-deformation behavior, which means that the structural response against an incremental 

loading is affected by the instantaneous loading level and the deformed geometry of the 

structure. In other words, the stiffness matrix of the structure is a function of element force as 

well as the deflection of the structure. Therefore, the instantaneous stiffness equation can only be 

solved numerically by an incremental and iterative procedure allowing for the geometrical 

change of the structure. Based on the Newton-Raphson scheme, the applied load is first divided 

into many small increments, and the displacement increment within each increment is computed 

using the tangent stiffness matrix. 

This localization problem is next coupled with the homogenization procedure allowing the 

construction of the Cauchy and couple stress tensors, leading to an update the structure geometry 

and constitutive behavior.  

The results in terms of the stress-strain relations obtained by homogenization shall then be 

validated by their numerical counterparts obtained by finite element simulations performed over 

an identified periodic unit cell. The interest of the developed micromechanical schemes is their 

ability to predict the response of the initial structure under different loadings; they are 

consequently useful to identify suitable hyperelastic constitutive models at the mesoscopic level. 

The second objective we shall follow is an extension of the discrete asymptotic homogenization 

method recently developed for the determination of the effective mechanical properties of 

periodical lattices considered as Cauchy continua towards generalized continua accounting for 

internal scale effects; we shall consider successively two alternative routes for enriching the 

classical Cauchy continuum, namely micropolar continua (Dos Reis and Ganghoffer, 2012) and 

second order grade continua. As we will show, both approaches are complementary in the sense 

that the second order grade models capture internal lengths effects in tension, while micropolar 

models essentially capture the flexural response through the flexural rigidities and internal 

bending lengths.  

Regarding the derivation of second order gradient effective continua, the homogenization 

technique will be introduced successively in a one-dimensional and a two-dimensional context. 
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Applications will be done to the computation of the effective mechanical response of biological 

membranes, considering successively the in-plane and out of plane responses. 

The first part of the thesis is accordingly devoted to the presentation of the discrete 

homogenization technique accounting for geometrical nonlinearities, while the second part deals 

with the consideration of second order gradient effects. In fact, there are interconnections 

between both parts, as will be shown especially when computing the overall effective response 

of structures for which both the in-plane and bending properties are of interest. 

The thesis is divided into five chapters, the content of which is next briefly described. Following 

a state of the art overview of the classification of nonlinearities in structural mechanics given in 

Chapter 2, we shall then introduce the general description of the asymptotic discrete 

homogenization technique, which is the cornerstone of this thesis, from a methodological point 

of view. More precisely, an extension of the simple framework of linear discrete homogenization 

elasticity towards the more involved framework of geometric nonlinearities will be done, in 

order to compute the effective constitutive relation between the Green’s Lagrangian strain and 

the second Piola-Kirchhoff stress tensor. An incremental solution scheme is written to solve the 

non linear problem; several algorithms have been developed to follow the evolution of the lattice 

topology during increased loading of the microstructure, and providing as an output the 

equivalent effective stiffness (or rigidity) matrix of the effective continuum for each load 

increment. As an illustration of the proposed algorithms, the nonlinear response of biological 

membranes shall be investigated and a validation of the computed homogenized response will be 

validated thanks to FE simulations performed over a representative unit cell. 

In Chapter 3, more general algorithms are presented for the purpose of computing the nonlinear 

response of arbitrary 2D lattices of beams, and their implementation into a dedicated code is 

achieved. We will determine as an illustration the nonlinear response of textiles (plain weave and 

twill), which will be validated by comparison with the response computed by FE simulations. In 

the same chapter, we shall further construct suitable hyperelastic models based on the calibration 

of a well-chosen form of the strain energy (density) function. 

In the second part of this thesis exposed in chapters 4 and 5, we take into account the internal 

gradients of the mechanical fields within the representative unit cell, by incorporating second 

order gradient effects into the homogenized constitutive law. This is first done for 1D structures 

(chapter 4), and then further expanded to 2D structures (chapter 5). We first focus on one-

dimensional homogenization, although the initially discrete lattice generally occupies a two-
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dimensional domain in space: this means that the identified elementary unit cell is repeated by 

periodic translation in one dimension only. We shall first expose into details the technical steps 

required to construct the effective second order continuum, thereby highlighting the forces and 

hyperforces dual to the first and second order kinematic variables in the sense of the virtual 

power of internal forces. The proposed method is a variant of similar homogenization schemes 

already developed for second order continuum (Kouznetsova et al., 2002), with the main 

difference that the topology of the initial medium is discrete. 

In chapter 5, two approaches are envisaged, based on the consideration (or not) of a second order 

gradient elasticity at the micro level, which then entail different second order grade continuum 

effective models for discrete beam lattices. The comparison of the effective behavior of simple 

lattices will be done in terms of the shear moduli based on three different schemes (Cauchy, 

Micropolar and second order gradient) in a small strains framework. 

Finally, conclusions and possible directions of future research will be addressed in Chapter 6. 
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2.1 State of the art of micromechanical approaches 

In this chapter, an overview of the relatively modern field of the multi-scale modeling of 

composite material is presented. We start with a review of the various micromechanical 

approaches developed to compute the overall effective mechanical properties of initially 

heterogeneous materials or structures, which are substituted by an equivalent homogeneous 

materials. There is often the need in heavy multiscale analysis of lattice materials to find the 

method that can provide the best trade-off between accuracy and computational cost (Bidanda 

and Bartolo, 2008; Ramirez et al., 2011; Schaedler et al., 2011). This method used to obtain 

the properties of macromaterial in terms of the effective properties of its repeated unit cell 

represents a process of homogenization. Several homogenization schemes exist in literature to 

characterize the mechanics of lattice materials. Those are known in the literature as cosserat 

elasticity theory (Cosserat and Cosserat, 1909), cosserat theory with constrained rotations our 

couple-stress theory (Mindlin and Tiersten, 1962; Koiter, 1964), strain gradient theory 

(Toupin, 1962) higher order strain gradient elastic theory(Mindlin, 1964, 1965a,b), 

micromorphic, microstretch and micropolar elasticity theories (Eringen, 1999) and Fully non-

local elasticity (Eringen, 1992). More details on the above theories can be found in (Tiersten 

and Bleustein, 1974; Lakes, 1995 and Exadaktylos and Vardoulakis, 2001). The mutual 

connections of those theories is provided in the article of( Tekoglu and Onck, 2008).on other 

hand a large number of relevant works exploit homogenization techniques in order to 

establish micro-structural effects in a periodic non-homogenous continuum. In that case the 

unit cell of the periodic structure is employed and averaged, to obtain both the equation of 

motion and the new properties of the homogenized material including microstructure effects. 

In this category, representative works are those of (Ben-Amoz,1976; Forest et al., 1999, 2002; 

Forest and Trinh, 2010). 

The interest of homogenization techniques is their use as a tool to conceive and calculate 

novel structural materials exhibiting unconventional mechanical properties or behavior; this 

includes additional degrees of freedom emerging from the homogenization and possibly due 

to the inclusion of a microstructure, or mechanical properties lying outside the range that 

pertain to homogeneous materials, such as negative Poisson’s ratio, associated to the class of 

auxetic structures (Dos Reis and Ganghoffer, 2012; Yang et. Al, 2004). The derivation of 

mesoscopic models of lattices at an intermediate scale leads to a reduction of the 

computational cost associated to simulations of extended lattices incorporating a huge number 
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of degree of freedom; those lattices most often can be considered as quasi periodical for man-

made structures (this would be more questionable for biological network), hence their 

homogenization makes sense. 

An interesting classification of the two categories of micromechanical analysis will be 

discussed, the analysis of periodic materials based on the repeating unit cell (RUC) concept 

and the analysis of statistically homogeneous materials based on the representative volume 

element (RVE) concept. We shall then summarize the difference between RVE and RUC 

concepts as discussed in (Pindera and Hamed et al., 2009). 

One of critical review that we prefer to discuss also in this chapter is chirality; Chirality is 

encountered in many branches of science, including physics, biology, chemistry and optics. An 

object is said to be chiral, or with handedness, if it cannot be superposed to its mirror image (Lord 

Kelvin, 1904). One shall found the difference between a general isotropic chiral (also known as 

non-centrosymmetric, a centric or hemitropic) micropolar versus the non-chiral (micropolar) 

theory as described in  (Liu et al., 2012 ).  

Micropolar model with chirality introduces three additional material constants compared to the 

non-chiral theory, the additional material parameters change their signs according to the 

handedness of the microstructure to represent the effect of chirality (Nowacki, 1986; Lakes and 

Benedict, 1982; Lakes, 2001; Joumaa and Ostoja-Starzewski, 2011).an over view about non-

chiral and chiral (micropolar) will discuss later on. 

 

2.2 Micromechanical schemes 

While the area of micromechanics of heterogeneous materials continues to expand and new 

approaches are continuously being proposed, one shouldn’t forget that micromechanical 

models are still only approximate models to the behavior of Heterogeneous materials. It is 

generally undesirable to use a model based on the actual spatial distribution of the reinforcing 

material within the specific composite which is to be used in a design: thus the modeling 

should begin with the approximation used for the geometry. 

The determination of the effective mechanical moduli of these materials in the large 

deformation regime from mechanical measurements quite difficult; this makes 

micromechanical analyses a relevant alternative to evaluate those properties. For example, the 
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mechanics of woven materials as shown on the figure below can be addressed at three 

different scales (Fig 1.2): the macroscopic scale that is relevant to pieces of fabric, the 

mesoscopic scale related to the pattern, the smallest repeatable unit cell of fabric, and the 

microscopic scale of the yarn itself (itself generally an assembly of fibers).  

 

 

 

 

 

Fig. 2.1 Multiscale modeling of woven fabrics 

Much work in the area of micromechanics of heterogeneous materials has been conducted 

during the past 50 years, starting with the simplest assumptions on the stress and strain 

sharing among the constituent phases and progressing to more detailed geometric models that 

require more demanding analytical and numerical treatment. The various approaches have 

been summarized in reports and monographs in (Hashin, 1972; Achenbach, 1975; Bensoussan 

et al., 1978; Christensen, 1979; Sanchez-Palencia, 1980; Suquet, 1987; Aboudi, 1991; 

Kalamkarov and Kolpakov, 1997; Nemat- Nasser and Hori, 1999; Markov and Preziosi, 2000; 

Buryachenko, 2007) among others. The development of these approaches has occurred along 

different paths, leading to interchangeable use of terminology in describing methods based on 

fundamentally different geometric models of material microstructure. The search for an ideal 

micromechanics model continues (Chaboche et al., 2001).While the structural with more 

complex microstructure lead to the widespread use of either purely numerical or semi-

analytical approaches. These are based on approximate representations of local fields within 

the individual subregions into which the microstructure is discretized for analysis purposes. 

Such geometric discretization leads to large systems of algebraic equations for the unknown 

coefficients in the local field approximations upon solution of the governing field equations 

using variational or direct approaches. Rapid progress in the development of computational 

technology, which led to the advancement of numerical methods, such as finite-element, finite 

difference or finite-volume methods, has also stimulated a renewed interest in analytical 

techniques. In this communication, we will present an overview of key micromechanical 
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concepts needed in the determination of macroscopic and microscopic responses of 

heterogeneous materials. 

 

2.3 Discrete asymptotic homogenization  

The main idea of homogenization methods in a broad sense is to replace a real heterogeneous 

structure with an equivalent homogeneous one endow with the same average macroscopic 

behavior. The homogenization method assumes that all physical quantities vary at both local 

and global scales, and that those quantities are periodic with respect to the local scale, due to 

the periodicity of the existing microstructure. Gibson and Ashby,1999; Masters and Evans, 

1996; Christensen, 2000; Wang and McDowell, 2004) presented the closed-form expressions 

of the effective mechanical properties of cellular materials. These authors generally assume 

that the cell walls behave like Euler–Bernoulli beams, examine the individual cell wall and 

determine the elastic constants of the cell by solving deformation and equilibrium problems. 

They work well for topologies that have a simple arrangement of the cell members, but 

present limitations if the geometry of the unit cell has a complex topology.  

More recently, matrix-based techniques using the Bloch's theorem to homogenize the 

properties of planar lattice materials have been introduced (Elsayed and Pasini.,2010). 

Hutchinson and Fleck, 2006 proposed the first formulation of the microscopic nodal 

deformations of a lattice in terms of the macroscopic strain field. A methodology was 

proposed to characterize cell topologies with a certain level of symmetry, e.g. the Kagome 

lattice and the Triangular -Triangular lattice. (Elsayed and Pasini, 2010) extended this method 

to treat planar topologies that can possess any arbitrary geometry of the cell. Vigliotti and 

Pasini (2013) presented a more general matrix-based procedure for the analysis of arbitrary 

bidimensional and tridimensional cell topologies with open and closed cells. 

Other models have been proposed to model these types of materials as equivalent micropolar 

media: micropolar elasticity (the Cosserat brothers, 1909; Eringen, 1992; Kumar and 

McDowell, 2004) means that an independent rotational degree of freedom is added to the 

translational one (the displacement vector). The micropolar elastic constants of the stiffness 

matrix are obtained through either an explicit structural analysis of the representative unit cell 

or an energy approach. 
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Among numerical approaches, the asymptotic homogenization (abbreviated as AH in the 

sequel) theory has been successfully applied to predict the effective mechanical properties of 

materials having a periodic or quasi periodic microstructure. Its mathematical basis was 

elaborated by various authors, especially (Bensoussan et al., 1978; Sanchez-Palencia, 1980; 

Bakhvalov and Panasenko, 1989). The method relies on an asymptotic expansion of the 

displacement and stress fields on the “natural length parameter”, which is the ratio of a 

characteristic size of the heterogeneities to a measure of the macrostructure, see, e.g. 

(Tolenado and Murakami, 1987; Devries et al., 1989; Guedes and Kikuchi, 1990; Hollister 

and Kikuchi, 1992; Fish et al., 1999). Recent reviews on the asymptotic expansion 

homogenization method applied to composites can be found in (Kanouté et al., 2009; Oliveira 

et al., 2009). AH has been widely used not only for the analysis of composite materials and 

topology optimization of structures (Hassani and Hinton E, 1998; Sigmund, 1994; Bendsoe, 

1989; Kikuchi and bendsoe, 1988) but also for the characterization of porous materials, such 

as tissue scaffolds (Lin, 2004; Fang et al., 2005; Sturm et al., 2010). 

The underlying assumption of AH is that each field quantity depends on two different scales: 

one on the macroscopic level x , and the other on the microscopic level, /y x ε= , with ε  a 

magnification factor that scales the dimensions of the unit cell to the dimensions of the 

material at the macroscale. Such an asymptotic homogenization approach provides the overall 

effective properties as well as local stress and strain values.  

Micromechanical analyses are typically conducted based on either the concept of a 

representative volume element (RVE), which characterizes heterogeneous materials with 

macroscopically or  statistically homogeneous microstructures at an appropriate scale (Hill, 

1963), or a repeating unit cell (RUC) which characterizes periodic heterogeneous materials. 

These two concepts are discussed by (Drago and Pindera, 2007) and illustrated in Fig 1.3, 

based on different geometric representations of heterogeneous microstructures and require 

different boundary conditions in the micromechanical analysis of the smallest material 

subvolume, whose response is indistinguishable from that of the material-at-large. 
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Fig. 2.2. Two geometric representations of a material microstructure: (a) statistically 

homogeneous microstructure characterized by an RVE; (b) periodic microstructure 

characterized by an RUC. 

In particular, micromechanical analysis of an RVE is based on the equivalence of 

homogeneous traction and displacement boundary conditions, which in fact defines the RVE 

concept, while micromechanical analysis of an RUC is based on combined periodic 

displacement and traction boundary conditions. These concepts had been often confused in 

the literature. The RVE and RUC concepts have been re-examined recently in greater detail 

by several investigators; this was spurred by a sequence of papers by Huet. 

 

2.3.1 Statistically homogeneous materials 

The analysis of statistically homogeneous materials is based on the RVE concept. The 

suitable volume for homogenization is called ”representative volume element” (RVE). The 

RVE is the smallest subvolume of the statistically homogeneous microstructure which 

contains the same phase volume fractions and statistical distributions as the material-at-large, 

and which responds in a manner identical to that of the entire assemblage under either 

homogeneous displacement or homogeneous traction boundary conditions. The representative 

volume element must be large enough to include enough inhomogeneities (statistically 

homogeneous distribution of the defects or heterogeneities), but also small enough so that the 

stresses and strains within the RVE can be considered as uniform when viewed from a 

macroscopic level. 
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2.3.2 Periodic materials 

In contrast, analysis of periodic materials is based on the RUC concept. The RUC is the 

smallest element of a periodic microstructure which serves as the basic building block for the 

material through replication regardless of its content. Thus, the response of the entire array 

under macroscopically uniform loading is identical to that of an arbitrary RUC subjected to 

the same loading. This loading is specified by periodic boundary conditions imposed on both 

the surface displacements and tractions. 

The previous classification helps to clarify the often-confusing terminology used arbitrarily to 

describe the different micromechanics models and approaches that have evolved 

independently. One shall say that approaches based on the concept of a representative volume 

element are applicable to statistically homogeneous microstructures; and approaches based 

on the concept of a repeating unit cell are applicable to periodic microstructures.  

 

2.3.3 Centrosymmetric micropolar elasticity  

In the theory of classical continua, the displacement is the sole degree of freedom i
u  , and the 

induced small strain measure is ( )1
2 , ,ij j i i j

u uε = + . The works of Euler and Bernoulli relative 

to beam mechanics suggest the novel idea to consider the displacements and rotations as 

independent quantities, as well as efforts and couple stresses. The idea of couple stress was 

explored in the middle of the 19th century by (MacCullagh, 1839; Lord Kelvin, 1882-1890; 

and viogt 1887), and was pursued later on by cosserat brothers (cosserat E and cosserat F, 

1909), who proposed a theory based on a rigid triad of vectors attached to each point of a 

continuum, endowed with a local rotation independent on the local rotation due to 

deformation. 

The micropolar theory has an intrinsic length scale and can describe various phenomena more 

accurately, e.g. liquid crystals, complex mixtures, granular media and lattice beam structures. 

As for the kinematics, we define the strain tensor 
ijγ  and curvature tensor 

ijκ  that are related 

to the displacement and rotation vectors as follows (
kije  is the Levi-Civita permutation tensor): 

, ,;ij j i kij k ij j iu eγ φ κ φ= − =  (1.1) 
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The constitutive relations for stress 
ijσ  and couple-stress 

ijm   are specified as 

( )

[ ]{ } [ ]{ }

( )

[ ]{ } [ ]{ }

i i i i i
1 2 1 2i i i i

i i 2 i i 2 i
1 2 1 2i i i i

1 1 1 1

λ λ λ

1 1 1 1

λ λ λ

ij ij

ij ij

g g g g

g g g g

γ κ

ε ε
λ

ε ε ε ε
λ

∂ ∂ ∂ ∂
= ⊗ = + ⊗ = ⊗ + ⊗

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
= ⊗ = + ⊗ = ⊗ + ⊗

∂ ∂ ∂ ∂

A γ B κ

C D

R R R R
σ S S S S S

R R R R
m � � � � �

����� �����

����� �������

 (1.2) 

This constitutive law can further be simplified basing on symmetry of the studied lattices. It 

has indeed shown that for centro-symmetrical lattices (Trovalusci and Masiani, 1999 ), the 

pseudo tensor [B] and [C] vanish; here, [A] and [D] are generalized elasticity tensors. The 

form of these tensors varies depending on the material isotropy/anisotropy and homogeneity. 

In the work of (Dos Reis and Ganghoffer, 2012), the micropolar elasticity constants are 

determined for square and honeycomb structures. 

In the work of (Eringen, 1968), the constitutive equations for a linear isotropic Cosserat solid 

writes: 

(2 ) ( ),
kl rr kl kl lm m m

rε κλ δ µ κ ε κε φ= + + + −σ  

, , , ,kl r r kl k l l kαφ δ βφ γφ= + +m  

(1.3) 

In three dimensions, the isotropic cosserat elastic solid requires six elastic constants

, , , ,λ µ α β γ  andκ for its descriptions. A comparison of symbols used by various authors was 

presented by (Cowin, 1970). The following technical constants derived from tensorial 

constants are more beneficial in term of physical insight described by (Eringen, 1968) as: 

Young’s modulus  ( ) ( ) ( )2 3 2 / 2 2E µ κ λ µ κ λ µ κ= + + + + +   

Shear modulus ( )2 / 2G µ κ= +  

Poisson’s ratio ( )/ 2 2ν λ λ µ κ= + +  

Characteristic length for torsion ( ) ( )
1

2/ 2tl β γ µ κ= + +    

Characteristic length for bending ( )
1

2/ 2 2bl γ µ κ= +    
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Coupling number polar ratio ( )
1

2/ 2N κ µ κ= +   , and 

Polar ratio ( ) ( )/ .ψ β γ α β γ= + + +  

When , , ,α β γ κ  vanish, the solid becomes classical elastic. The case 1N =   is known as 

couple stress theory (Mindlin et al., 1962) 

 

2.3.4 Non-centrosymmetric micropolar elasticity  

So far, the constitutive relations relate the stresses to the strains, on the one hand, and the 

couple-stresses to the curvatures, on the other hand. Special microstructures of some materials 

make both the stress and the couple-stress directly dependent on both strains and curvatures, 

representing the phenomenon of chirality; this is most easily demonstrated in a one 

dimensional helix model. 

Two examples of lattice structures that exhibit non-centrosymmetric micropolar behavior are 

shown in Fig.1.4 

 

 

 

 

 

Fig. 2.3. Two-dimensional lattice structure: (a) triangular; (b) square lattice structures, 

involving rigidly connected elastic beams exhibiting both micropolar and chiral effects. Their 

corresponding representative volume elements are shown by dashed lines. 

2.3.4.1 Isotropic micropolar model with chirality 

In continuum mechanics, the non-centrosymmetric micropolar theory is usually used to 

capture the chirality inherent in materials. This theory provides an efficient tool for modeling 

the chiral effect presented in materials and structures, e.g., loading transfer in carbon 

nanotubes and chiral rods (Chandraseker and Mukherjee, 2006; Chandraseker et al, 2009; 
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Ieşan, 2010), mechanics of bone (Lakes et al, 1983), chirality transfer in nanomaterials (Wang 

et al, 2011) and wave propagation in chiral solids (Khurana and Tomar, 2009).However when 

reduced to a two dimensional (2D) isotropic problem, the resulting model becomes non-

chiral. Therefore, influence of the chiral effect cannot be properly characterized by existing 

theories for 2D chiral solids. The work of (Liu at al., 2012) proposes a continuum theory to 

model the chiral effect for 2D isotropic chiral solids, based on reinterpretation of isotropic 

tensors in a 2D case. A single material parameter ( A) related to chirality is introduced to 

characterize the coupling between the bulk deformation and the internal rotation which is a 

fundamental feature of 2D chiral solids. 

The constitutive relation writes, 

,ij ijkl kl ijkl k l= +σ C γ B κ
 

,ij ijkl kl ijkl k lm γ κ= +B D  
(1.4) 

Where
ijklC ,

ijklB and
ijklD  are elastic tensors of rank four. A micropolar solid with non-

vanishing 
ijklB  is usually referred as non-centrosymmetric.  

The constitutive law can be rearranged in a matrix form as 

2 0 0

2 0 0

0 0

0 0

0 0 0 0 0

0 0 0 0 0

x

y

x

y y

z
xy

yx x
z

xz

zxz

z

u

x

u

A A y

A A u

A A x

A A u

ym

m

x

y

σ µ λ λ

σ λ µ λ
φ

σ µ κ µ κ

σ µ κ µ κ
φ

γ

φγ

φ

∂ 
 ∂
 

∂ 
 + −    ∂
    + − ∂     −    − − + −   ∂

=    
− + ∂     +

     ∂
    

∂      
 ∂
 ∂ 

∂  

 (1.5) 

It has four classical micropolar elastic constants and a new parameter A characterizing the 

chiral effect. It should be noted that this is not constitutive matrix for anisotropic material 

behavior, since the A parameter and its sign form a unique pattern in the constitutive matrix.  
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2.3.4.2 Anisotropic micropolar model with chirality 

More detailed of this theory for anisotropic continuum, one shall found in the work of 

(Joumaa et al., 2011). Hooke’s law expressed based on the differentiating of the energy 

expression with respect to strain and curvature, the following expressions was obtained: 

( )1
,ij ijkl kl ijkl k l= +σ C γ B κ

 

( )2
,ij ijkl kl ijkl k l= +m B γ C κ  

(1.6) 

The stiffness ( )1,2 ,ijkl ijklC B tensors can be explicitly determined from the unite cell structure. for 

anisotropic continuum, these tensors are defined as follows (
ijδ ≡  Kronecker’s tensor): 

( ) ( ) ( )1
ijkl jk il jl ik ij klβ α δ δ β α δ δ λδ δ= − + + +C

 

( ) ( ) ( )2
ijkl jk il jl ik ij klψ ε δ δ ψ ε δ δ ηδ δ= − + + +C

 

( ) ( )ijkl jk il jl ik ij klρ σ δ δ ρ σ δ δ ωδ δ= − + + +B  

(1.7) 

The material model has nine independent stiffness constants, instead of six compared with 

non-chiral micropolar theory, as shown in the next table. 

Table 2.1 Physical significance of stiffness constants 

term Interpretation 

,α λ  Lame’s constants 

, , ,α ψ ε η  micropolar constants 

, ,ρ σ ω  Chirality constants 

 

The chiral micropolar theory produce two independent form of length scales defined as 

1

, ,

, ,
L

ψ ε η

α β λ
=

  
and   

2

, ,

, ,
L

ρ σ ω

α β λ
=  

However, the non-chiral micropolar model can only admit one set of length scales ( 1L  ). 
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2.4 Discussion 

The reminder of this thesis will be centered on the derivation and construction of the effective 

homogenized response of materials having a lattice like microstructure, considering two 

different aspects. We are firstly concerned with the derivation of constitutive models 

accounting for the geometrically non-linear behavior of lattices; an analytical homogenization 

scheme initially developed in a small transformations framework will accordingly be 

extended to consider the occurrence of geometrical nonlinearities. This formulation leads to a 

compact matrix expression for the macroscopic stress as a function of the macroscopic 

displacement gradient that can handle a priori both geometrical and material nonlinearities. 

Nevertheless, we shall focus on geometrical nonlinearities, since the structures and networks 

to which the developed homogenization schemes will be applied hardly exhibit any material 

non linearity. 

As shall be described subsequently, this homogenization is mostly performed on the meso-

level of the homogenized representative volume element, leading to constitutive models 

applicable at the macro-level in view of structural computations. Those homogenization 

methods lead to different choices for the equivalent continuum media that will be compared in 

terms of the nonlinear stress-strain response.  

As a second aspect of homogenization schemes developed in this thesis, we shall rely on 

gradient elasticity as a convenient framework for materials and structures showing scale 

effects; this approach traces back to more than a century and a half ago as to the theoretical 

foundations. Scale effects become noticeable when the wavelengths of the loading or the 

deformation field become comparable to the microstructure size or spacing. In this work, the 

presence of localization phenomena in lattice-like structures motivate consideration of the 

second order multi scale computational homogenization scheme using a macroscopic Mindlin 

strain gradient continuum (Kouznetsova et al., 2004; Kaczmarczyk et al.,2008; Nguyen et al., 

2013). One-dimensional microstructured beam and 2D chosen structures will be computed as 

illustrative examples of the proposed methodology for the scale transition accounting for 

strain gradient effects. 
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Abstract 

 The goal of this chapter is to set up a novel methodology for structures having a discrete 

repetitive architecture, which changes during the motion of the structure under an external 

loading. This requires the modeling of those lattices into the nonlinear regime, especially to 

account for their changes of geometry. A new approach, based on general beam equations, is 

proposed to compute the non-linear constitutive behavior of the structure; the interest is focused 

on the large displacements, large rotations and small strain case. Thereby, a perturbed 

equilibrium problem is set up at the unit cell level, solved by Newton-Raphson method; the 

localization problem which has to be solved in an incremental manner is coupled with the 

homogenization procedure, allowing the construction of the Cauchy and couple stress tensors for 

a micropolar effective continuum, incorporating an update of the structure geometry and of the 

constitutive response. The computed response of those lattices is based on the DH (discrete 

homogenization) homogenization algorithm into a dedicated code. A classification of lattices 

with respect to the choice of the equivalent continuum model is then proposed: the Cauchy 

continuum and a micropolar continuum are adopted as two possible effective media, for a given 

beam model. The relative ratio of the characteristic length of the micropolar continuum to the 

unit cell size determines the relevant choice of the equivalent medium. 

As an application of the proposed methodology, the following two simple planar repetitive 

structures are first analyzed, here described in terms of the topology of the unit cell: the square 

cell structure and the ‘honeycomb’ hexagonal structure, subjected to the following three 

elementary loading cases: uniaxial loading, bi-axial loading and simple shear. These simple 

lattices are submitted to different types of elementary loading: uniaxial tensile, biaxial and 

simple shearing. A satisfactory agreement is obtained between the stress-strain results obtained 

by homogenization and numerical stress-strain results obtained by finite element simulations 

performed over repeating unit cell. 
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3.1 Introduction 
 
The formulation of constitutive models for repetitive lattice materials based on micromechanical 

modeling assumes that the essential macroscopic features of the mechanical behavior on the 

macro scale can be inferred from the deformation response of the repeating unit cell (RUC) 

which has been identified for each lattice or structure. We have mentioned a range of 

applications of those repetitive lattices (chapter 1) both in engineering and biomechanics. One of 

the essential aims of bioengineering today is to answer the basic question of how individual cell 

networks, viewed as continuum architectural biomaterials, interact with each other or behave 

under different loadings. The somewhat complex topology of these natural discrete structures 

(e.g biomembranes) poses a serious problem when setting up a mechanical model, in view of the 

determination of their effective mechanical behavior. The derivation of the equivalent 

mechanical properties of cellular biological structures is further interesting in order to understand 

the somewhat peculiar observed behavior, due to anisotropy, or such as negative Poisson ratio) 

(auxetic behaviors). Moreover, the established continuum mechanical model for discrete 

structures can provide details on the distribution of stress and strains induced in the unit cell and 

can be integrated in finite element simulations at the scale of the whole cell. However, the 

knowledge of the continuum behavior of biomembranes is challenging, as they may be highly 

anisotropic (the state of anisotropy will change during motion), due to unequal length and 

properties of the threads within the molecular network; furthermore, biological membranes are 

prone to large distensions and one should ideally consider material nonlinear effects. Hence, 

independently of any specific application, micromechanical approaches are needed in order to 

bridge the scales and to provide a physically based constitutive law at continuum scale, whereby 

the equivalent continuum properties emerge from micro-structural parameters related to both the 

geometry and mechanics of the network. 

This chapter is organized as follows: Section 3.1 present the set up of general beam models 

accounting for large displacement and large rotations. In the next section 3.2, the discrete 

homogenization method is exposed. The nonlinear equilibrium problem of a lattice is written in 

section 3.3, which is solved by a Newton-Raphson iterative procedure. The algorithm used for 

the full incremental procedure with an update of the lattice geometry is described in section 3.4. 

As an application, the equivalent mechanical properties of 2D simple lattices are derived, 

adopting first a linear framework, and extending next to the geometrical nonlinear situation for 

different types of macroscopic loadings in section 3.5. In section 3.7, we present a general 

description of biomembranes as biological networks and how it is classified to their connectivity. 
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The study of geometrical nonlinear behavior was extended for theses biological networks.  

Finally, the computed stress-strain homogenized response will be validated thanks to FE 

simulations performed over a well-chosen representative unit cell for each specific selected 

lattice. 

 

 

3.2 Beam equations in the geometrically nonlinear framework 
 
Complex heterogeneous materials may appear in shell-like structure, a typical example being 

biomembranes, which can be viewed as networks of connected filaments, each being modeled as 

an undulated beam undergoing both large displacements and rotations. We denote
o

B the 

reference configuration of the beam under consideration. The kinematics of the curved beam is 

firstly established, in order to derive expressions of the resultant and moments for a given beam 

element. Torsion and warping are not taken into account, which restrict the present formulation 

to a certain class of problems. The constitutive relation is built as the relation between the Green-

Lagrangian strain in tensor and second Piola-Kirchhoff stress tensor and strain potential 

formulation.  

 

     After lengthy calculations and considering only the first order expansion of the Taylor series 

of the trigonometric functions (Klaus Jurgen Bathe and Said Bolourchi, 1979 ), the forces and 

moments resultants can be written as follow: 
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(3.1) 

Those expressions are written in a general case and exhibit a nonlinear elastic behavior. In order 

to apply the asymptotic homogenization method, some simplifications are made. We consider 

that all beams are initially rectilinear, so that no initial deformations or initial curvatures are 

present, implying that the corresponding kinematic variables 01 02 03 03, , ,ε ε ε κ are nil. From the 

continuous beam equations (3.142), we deduce the discrete relations by replacing the primed 

variable by their finite differences, in order to transform the initial continuous problem into a 
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more convenient system of discrete expressions for the asymptotic homogenization method. 

Thus, equations (2.42) can be rewritten in intrinsic format as  
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 (3.2) 

In those expressions, A  is the beam cross section, l  the beam length, z
I the quadratic moment 

of the considered beam, eb  and ⊥eb  are respectively the unite vector director of the beam and 

the transverse unit vector. s
E  and G  are the Young and the shear moduli respectively of the 

considered beam. c
ψ  is the rotation of the central node of the beam.  

 

 

3.3 Discrete Homogenization technique 
 

The discrete homogenization method is considered as a mathematical technique to derive the 

equivalent continuous medium behavior of repetitive discrete structure made of elementary cells. 

This technique is inspired from the homogenization of periodic media developed thirty years ago 

by (Sanchez, 1980; Bakhvalov and Panasenko, 1989) and it was more recently applied by 

different authors including (Warren and Byskhov,  2002; Mourad and Caillerie,  2003; D. 

Caillerie et al., 2006; Raoult et al., 2008; Dos Reis and Ganghoffer, 2012). It has been also 

combined with the energy method by (Pradel and Sab, 1998) and applied to discrete 

homogenization. The DAH (short cut for discrete asymptotic homogenization) technique consists 

by essence in assuming asymptotic series expansions of both the node displacements, tension 

and external forces as successive powers of a small parameter labeled ε , defined as the ratio of a 

characteristic length of the unit cell to a characteristic length of the lattice structure. Those 

expansions are then inserted into the equilibrium equation, conveniently expressed in weak form. 

The balance equation of the nodes, the force–displacement relations and the moment-rotation 

relations of the beams are developed by inserting those series expansions and by using Taylor’s 

series expansion of finite differences. The discrete sums are finally converted in the limit of a 

continuous density of beams into Riemann integrals, thereby highlighting continuous stress and 
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strain measures. The calculations have been completed for a quite general truss and the results 

give a general and closed form expression of elastic properties in the linear framework. .  

In addition, several models analyze simple topologies to obtain closed form expressions of the 

linear behavior of the lattice stiffness and strength, by solving the equilibrium problem of the 

unit cell (Gibson and Ashby, 1982; Wang and McDowell, 2004; Gibson et al., 1982; Zhu et al., 

1997; Hutchinson and Fleck, 2006). Despite the lack of a specific literature on non linear models 

for lattices, several works, mainly focused on the modeling of composites and of heterogeneous 

media, are available. These studies can offer insight into the general framework and theoretical 

basis for the development of a non linear constitutive model for lattices. Extensive reviews of 

these works can be found in (Pindera et al., 2009; Charalambakis, 2010).  

The geometrical nonlinear behavior of cellular structures and networks was extensively studied 

by (Warren et al., 1989; Warren and Kraynik, 1991) considering the example of foams, using 

simplified pin jointed model for which the bending contribution of the skeleton struts was 

neglected. (Wang and Cuitino, 2000) proposed another approach where axial, bending and 

twisting deformations at local level were considered. One study based on homogenization 

technique was given in (Hohe and Beecker, 2003). 

(Janus Michalska and Pecherski, 2003; Janus Michalska, 2005) presented linear effective models 

to analyze structures on the basis of a beam model, in which stretching and simultaneous 

bending occurs. More recently, Janus Michalska (2011) extended this linear model to construct 

the stress-strain relation and strain energy function for the hyperelastic cellular material with 

arbitrary symmetry. Let also mention the alternative approach proposed by (Andrea et al., 2014) 

using a computational homogenization to derive a nonlinear constitutive model for lattice 

materials.  

 

3.3.1 Simplified beam model 
 
In view of deriving a simplified beam model from the previous general one, and for the purpose 

of an easier treatment and numerical implementation, we neglect the nonlinear part of the strain 

(and the coupling term between displacement and rotation) in (3.3). The normal and transverse 

efforts, and the moment at the beam extremities can accordingly be successively expressed 

versus kinematical nodal variable as 
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The variables O(b)M ε and E(b)M ε therein are the moment at the origin and the end positions of a 

generic beam respectively. Details related to the asymptotic expansion of the kinematical 

variables can be found in (Thesis F. Dos Reis, 2010). 

 

3.3.2 Position of the problem  
 
The lattice under consideration is described as a quasi repetitive lattice of beams and is 

completely defined by the positions of the nodes and their connectivity. We denote by R
N and 

R
B respectively, the set of nodes and beams within the reference unit cell, which are finite 

dimensional. The lattice is also supposed to remain quasi periodic in its deformed state. The cells 

are numbered by the triplet of integers ( )1 2 3, ,iυ υ υ υ= ; the nodes of the whole fabric can then be 

parameterized by the quadruplet ( )1 2 3 3, , , Rn n Nυ υ υ= ∈ ×ɶ ℤ . In the same way, the beams of the 

fabric are described by the quadruplet ( )1 2 3 3, , , Rb b Bυ υ υ= ∈ ×ɶ ℤ . Within the reference cell, one 

can select the origin node of a beam ( )O bɶ
 
so that it belongs to the reference cell. This origin 

node can be represented by the quadruplet ( )1 2 3, , ,n υ υ υ . Wherein we have parameterized any 

point within the representative unit cell by curvilinear coordinates iελ ευ=  .Nevertheless, the 

end node ( )E bɶ  does not necessarily belong to the reference cell, but is necessarily included in an 

adjacent cell numbered by ( )1 1 2 2 3 3, ,υ δ υ δ υ δ+ + + . The triplet ( )1 2 3 3, ,δ δ δ ∈ℤ  and the end 

node either belongs to the reference cell or to a cell next to it: this means that the shift parameter, 

the integer iδ  belongs to the set{ }1,0,1− .We consider a static framework, which means we are 

entitled to neglect the inertia forces. Since each beam within the lattice is equilibrated, one has 

TE(b)= –TO(b) (Fig. 3.1). 
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Fig. 3.1 Kinematic parameters of the beam 
 

The equilibrium of forces over the lattice writes in virtual power form after insertion of the 

asymptotic development of the variables as 
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with vε (.) a virtual velocity field choosing nil on the edges of the considered domain, and Tεb the 

sum of N
ε the longitudinal force and 

t
T ε the transversal force: 

b b b b b

tT N T
⊥= +e e  (3.5) 

For any virtual velocity field εv , supposed to be regular enough, a Taylor series’s development at 

the first order leads to 
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Moment equilibrium proceeding similarly as for equilibrium of forces as 
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where w(C(b)) is the rotation rate of the incorporated central beam node. The rotation rate is 

further expanded as 
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3.3.3 Asymptotic parameters and description of the lattice geometry 
 

For large enough lattice, the ratio of the beam length to a macroscopic lattice dimension 

constitutes the small scale parameter, l
L

ε = , decrease of this parameter as shown in figure 3.2 

shows that the structure with discrete architecture tends to appear as a continuum material. 

 

 

 

 

 

 

 
 

Fig. 3.2 Set of configurations parameterized by geometrical parameter (ε ) 
 

The discrete asymptotic technique requires the development of all variables as Taylor series; the 

beam length blε , the beam width btε , thickness beε , the displacement nuε  and the rotation at the 

lattices nodes nεφ  (they constitute the kinematic variables) vs. the small parameter ε . Bernoulli 

beam model is considered in this study, valid for slender enough beams. From the results of (A. 

Mourad, 2003), one can express the beam length and beam unit director as the following 

expansion versus ε .  
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The displacement difference b∆U ε between the extremity and origin node of each beam is 

expressed by a Taylor series development, according to 
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With ibδ  the shift factor (equal to 1± ) for nodes belonging to a neighbouring cell, being nil for 

nodes located inside the considered cell.   

0ε →  
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The asymptotic expansion of the nodal microrotation nεφ is here limited to the first order in ε; it 

is defined successively at the origin and extremity of each beam as  
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The asymptotic expansion of the efforts and moments writes 
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Similarly, the asymptotic expansion of the moments writes, 
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We next express the equilibrium of forces according to the successive powers of ε as 
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Previous equilibrium equation gives in the limit of a vanishing small parameter the continuum 

equilibrium, relying on the following mathematical result: for any regular enough function g, the 

quantity ( )
3

3

i

i
g

υ

ε ευ
∈

∑
ℤ

 can be interpreted as the Riemann integral ∫Ω λλ dg )(  in 3-D when 0→ε .  

 
Accordingly, the previous discrete equation becomes the homogenized self-equilibrium equation 
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(3.14) 

 
with the stress vector iS , which splits into a first and a second order contribution, viz. 

1 2
i i iε= +S S S  , with both vectors given by 
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Expressing the equilibrium of moment according to the successive powers of ε gives (for more 

details, the reader is referred to [Dos Reiss et al., 2012]) 

( ) ( )
( )

( ) ( )
( )

( ) ( )

3

( )

2

3 3
0 0 i

2

4 3 0
1 1 i

.
12

0

.
12

b

R b R b

bi
R

R bR b

L oE O ib

s

b Β L E oO ib ib

s i

w
E

w
E

ε

ε
υ

λ
ε η φ φ δ

λ

λφ
ε η φ φ δ δ

λ λ

∈∈

   ∂
  −

  ∂  
= 

  ∂∂ 
 + − + +   ∂ ∂    

∑ ∑
ℤ

 

 
Similarly, the previous equation can be rewritten in the limit ε → 0 in the discrete sum in the 

following form 



42 
 

( )w
. 0i

i
d

λ
λ

λ

∂
=∫

∂Ω
�  (3.16) 

The couple stress vectors that incorporate moments i�  are also identified on two successive 

orders, viz. 2
1 2

i i iε ε= +� � � , each as the following sums over the beams of the reference unit cell  
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 The general form of the constitutive equations can presently be identified from the 

expressions of the homogenized stress and couple stress tensors together with iS and i�

expressions: 
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with g the Jacobian of the transformation from Cartesian to curvilinear coordinates and R the 

position vector of any material point. 

 
For periodical uniform structures endowed with a central symmetry, the stiffness coefficients are 

invariant under a coordinate inversion, hence the pseudo-tensor Bijkl vanishes. The previous 

constitutive equations then imply that the vectors i
1�  and i

2S should vanish; this leads to an 

important simplification of the stress and couple stress vectors 
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In those expressions, 1
b

N , 1
b

tT and 2
n

M  are respectively, the first order normal and transverse 

effort and the second order moment, obtained when expanding the expressions (3.3) versus the 

small parameter ε . Those expressions still involve the unknown displacements and rotations 

which are determined for all nodes using the equilibrium equations (3.4) and (3.7). 

 
 

3.4 Nonlinear equilibrium problem 
 

We will extend the linear framework so far adopted and consider the impact of a variation of the 

lattice geometry on the equivalent moduli, and hence on the effective membrane behavior. We 

accordingly write down the non-linear equilibrium problem associated to the large perturbations 

of the network; the nonlinearity is due to the beam directors and beam lengths changing with the 

applied loading. 

 
In order to set the stage, let consider the equilibriums equations (3.4) and (3.7). For every beam, 

one can write 
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N T M b B∈B e allowing to calculate the stress and the couple stress vectors oiS and 

oiµ  resp. In other terms, this resolution has to be done for an imposed deformation gradient at 

the continuum level iG , for ,b ∈ B
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e by considering , ,b b bN T M given by their expression in (3.3). 

Since we are actually solving the nonlinear equilibrium equations over the deformed 

configuration, we have here introduced the non-linear map iG , which takes every material 

particle at the position X to its new position x in the current configuration B . 

By differentiating the equilibrium equations (3.2) and (3.5), the problem is solved with the well-

known Newton-Raphson method, and can be written as follows. We introduce a projection 

operator 
1

,
2

b b b b  = − ⊗ = − ⊗    
A I e e C I e e  with more detail in Appendix B.2.1., and the 

perturbation of the forces and moment’s equation (3.4 and 3.7) writes 
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Similarly, the perturbation of the moment equilibrium (2.48) delivers 
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In the two previous perturbed equations, the variation of the geometry is accounted for by the 

perturbed quantities, firstly the beam director  
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Introducing the orthogonal transformation 
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Secondly, the beam length variation is computed as  
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Those variations induce in turn the following perturbations of the normal effort that have to be 

summed 
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and of the transverse effort 
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By inserting equations (3.22-3.29) into the equilibrium relation (3.20), one obtains the following 

relation 
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(3.30) 

 
 
Similarly, the perturbation of the moment equilibrium equation writes:  
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We observe that the perturbation of the normal force encapsulated into equations (3.27) and 

(3.28) leads to identify three types of stiffness matrices: the linear stiffness, the initial 

displacement stiffness, and the contribution of the initial stress as discussed in Appendix A.6.1. 

in equation (A.31), respectively the matrices: 
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Thus, the constitutive law can be rearranged in matrix form as, 
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Equations (3.30) and (3.31) provide the perturbed problem to be solved by an iterative Newton-

Raphson technique. Let notify that this problem has a solution up to within a rigid body 

translation (and rotation); thus one has to fix at least one node of the structure to prevent the 

tangent stiffness matrix from becoming singular.  

The solution of the localization problem at the unit cell scale involves the set of unknown 

variables ( 1) ( ) ( )b k b k b kδ+ = +B B B of the system formed by equations (3.30) and (3.31); its solution 
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provides the non-linear constitutive law of the unit cell. It can be considered as the (nonlinear) 

localization problem at the reference cell level. It has to be combined with the homogenization 

step of the network, based on the expression of the Cauchy stress and couple stress versus the 

actualized network topology at each loading increment. The main steps of the algorithm are 

given below in the next section. 

A few comments related to the geometrical nonlinearities are in order: in the 1D situation in 

Appendix A.6.2., Table A.2 has shown that the contribution of the initial orientation of the 

beams has more impact on the overall response than the second order part of the strain. This 

means when extending this analysis for 2D lattices that we are also entitled to neglect the second 

order part of the strain when writing the expressions of the resultant and moments for the beams 

within any lattice. Based on the updated Lagrangian formulation in solving for the equilibriums, 

one is also entitled to neglect the initial displacement stiffness uK . 

 
3.4.1 Illustrations of the algorithm based on the homogenization method 
 
We extend the linear discrete asymptotic homogenization framework, relying on the idea of an 

update of lattice geometry, from which a linearized elastic computation will be done over one 

load increment.  

A dedicated code has been constructed from the proposed algorithm to be exposed in the sequel, 

to solve for the nodal kinematical unknowns (displacements and microrotations) of each beam 

within the repetitive unit cell. The code uses an input file including the initial reference unit cell 

topology and mechanical properties, and delivering as an output the homogenized mechanical 

properties (classical and micropolar moduli) and stress-strain response over the load  incremental 

change, and  for a given elementary loading type. 

In this work, we rely on the homogenization method based on the small perturbations 

framework, and use an alternative approach to the solution of the full incremental problem 

written previously: at each incremental computation, the expression of the constitutive law that 

relates stress to strain and involving the computed compliance matrix is used in order to 

determine the correct macroscopic displacement gradient that defines the controlled imposed 

strain loading over the unit cell. Thus, it provides the correct macroscopic boundary condition 

that are applied for each type of loading; this is a kind of inverse approach in comparison to what 

is done in Table 2.2, in which the external force is known and the unknown displacement is 

evaluated by solving a nonlinear equation. Note that in the present approach, we shall only 

consider the linear part of the strain (and neglect the second order quadratic contribution). 
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Based on this computation of the macroscopic kinematic boundary condition, one then updates 

the lattice geometry for each increment of the loading and one next determines the new 

homogenized rigidity matrix adapted to the new shape of the structure. We thus extract the 

equivalent homogenized mechanical properties at each load increment, up to the elastic limit as a 

material parameter that is specified for each structure topology. Such an evidence of the 

existence of an elastic limit will be discussed later on.  

More details for this inverse methodology are discussed in Appendix B.2.4. 

The algorithm that performs new elastic computation over one load increment and with an 

update of the lattice geometry is described next. 

 

3.5 Algorithm for the discrete homogenization in a 2D framework 
 
1. Initialization of the tables of initial data. For each beam, define beam length and director, and 

position vector, function R such that 1 2 3( , , )λ λ λ=x R  
2. Transformation of the expressions 
 

( ) ( )
  

Y ,Y ,Y e ,e ,e1 2 3
i i

x y z
λ λ

   ∂ ∂
      ∂ ∂   

U U
֏
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( ) ( )Y ,Y ,Y e ,e ,e1 2 3
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x y z

φ φ

λ λ

   ∂ ∂
      ∂ ∂   

֏
. 

3. For each beam Rb∈B , define the initial topology in terms of: 

(a) The origin and end node of a beam respectively, ( ),   ( )O O b E E b
R R

= = . 

(b) Express the displacement difference between extremity and origin node at first order: 

1 1 1
b E O i

i
δ

λ

∂
∆ = − +

∂

U
U u u , tensile rigidity: 

b bA E
sk

l b
L

= , flexural rigidity:

( )

12

3

b bE I
s zk

f
bL

=  

 

 

(c) Express the first order efforts: 

( )

( ) ( )

b. ,
1

b.  .
1 3 0 02

b
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l

b
Lb O E
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t f

φ φ
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(d) Express the first order moments: 

( ) ( )

( ) ( )

b6 . U . (4 ) (2 ) ,
1 3 1 0 012
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1 3 1 0 012
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Y e

Y U e

 

4. Calculate the unknowns displacement and rotation u
1
n and 

0
nφ  from (3.4) and (3.7). 

5. Identify the homogenized microrotation. 
6. Express the second order forces and moments as: 

(a) 
2 2 2
b E O∆ = −U u u  (b) ( )b.

2 2
b

N k
l
 = ∆ 
 
e U , ( )b.  .

2 2 3 1 12

bLb O E i
T k
t f i

φ
φ φ δ

λ

   ∂⊥ = ∆ − + +    ∂   

e U Y ,. 
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(c) ( )
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    Solve for variables u
2
n and 

1
nφ from (10) and (15). 

7. Construct the stress and couple stress vectors,  

i
1 1
b b b b iF F
x y

b B
R

δ ⊥= +∑  
 ∈

S e e  and  1 ( ) ( )i�
2 2 32
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b B
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δ
  = −∑   

  ∈
Y  

     respectively. 
 

8. Construct the stress tensor 1 i
ig λ

∂
= ⊗

∂

R
σ S  and couple stress tensor 1 i

ig λ

∂
= ⊗

∂

R
m � , such that

0

0

s

µ χ

     =   
     

σ K

m K

ε . 

 

9. Compute the effective mechanical properties * * * *, , , , ,
55 66

E E G K K
x y xy xy

µ µν  under this load  

     increment. 
 
10. Compute the incremental stress value versus the incremental strain with respect to the load   
       case. 
 
11. Solve the inverse problem gives the equivalent appropriate macroscopic displacement  
      consistent with chosen load case. 
 
11. Update lattice geometry to perform a new elastic computation under the new load increment  
      (With a selected step size) 
 
 
 

3.6 Homogenization examples and results  
 

We shall consider as an application biological membranes, which can be idealized as quasi 

periodical networks of filaments in initially planar configurations. As we shall see into more 

details in section 3.7 of this chapter, these biomembranes can be classified based on the network 

connectivity. Anticipating forthcoming more detailed analyses of these biomembranes, we 

presently analyze the following networks: a) The square lattice b) The hexagonal lattice, in order 

to express the stress-strain behaviour for the following three types of loading:  

A) Uniaxial load test. 
B) Biaxial load test. 
C) Simple shear test. 
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The deformation gradients for these three loadings are successively:  
 
 

0 0 1
, ,

0 unprescribed 0 0 1
A B C

λ λ

λ

Γ     
= = =     
     

F F F  (3.32) 

 
The following geometrical parameters and material properties for the chosen lattices are 

specified in Table 2.3 the elasticity domain of the overall lattice depends on the lattice material 

and geometrical parameters which determines the type of microstructure. The chosen parameters 

allow observing the nonlinear path in the small strain range (which is different to the 

infinitesimal domain).    

 
Table 3.1 Specification of lattice geometry and micromechanical properties 

 
Type Geometric parameter of repeated unit cell [mm] Material parameter [Mpa] 

Square 
1 2 20, 2L L L t= = = =   2000sE =   

Hexagonal 
1 2 3 20, 2L L L L t= = = = =  2000sE =  

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.3 Planar structures. Unit cells of the square lattice (left) and hexagonal lattice (right). 
 
Plots of Cauchy’s stress versus relative stretch are presented for the previous loadings as the 

result of a numerical analysis performed in combined symbolic and numeric language, using a 

dedicated Maple code. These plots are compared with the results of a linear analysis (the 

geometry is not updated) shown by dashed lines on those figures. 
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Fig. 3.4 Uniaxial tensile Cauchy stress xσ versus the applied stretch λ , for  

two chosen planar lattices (square in a, hexagonal in b).   
 
 

In the tensile loading test shown in Figure 3.4, we observe that the difference between the linear 

and geometrical nonlinear behaviours depends on the type of microstructure and its orientation 

with respect to the load direction. The square lattice is a relatively stiff structure, and the 

difference between geometrical nonlinear and linear behaviour is not significant; this can be 

explained by the fact that the beams will not rotate during extension, thus the square lattice 

responds in a quasi linear manner. This is also due to the fact that the beams do not present an 

initial inclination, a parameter which has been shown to strongly influence the response in 1D 

(as shown in previous Table 3.1). 

Contrary to this, the hexagonal lattice responds as a compliant structure, since the bending of the 

microstructural beams dominate, even under a pure uniaxial tension. Thus, a neat difference in 

the response between the two lattices is observed. In this second situation, the inclined beams of 

(a) 

(b) 
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the hexagonal unit cell are responsible for the observed geometrical nonlinear effects (see Table 

A.2 for a similar analysis in 1D).  

Figure 3.5 (a) show that hexagonal lattice is initially isotropic; it is evolving towards an 

anisotropic behaviour versus stretch. Figure 3.5 (b) shows the ratio between the mechanical 

moduli in both directions.  

 

 

 
Fig. 3.5 homogenized mechanical parameters for hexagonal lattice (a) tensile moduli

11hE ,
22hE  (b) 

homogenized tensile ratio 
11 22h hE / E .  
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For the biaxial load test case B), the results are presented in Figure 3.6 for the two types of 

microstructures (lattices) under an equibiaxial loading, both leading to a nearly linear response. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.6 Biaxial tensile Cauchy stress 1σ versus the applied stretch λ  

for the chosen planar lattices ( a, b).   
 

This behaviour can be explained in this specific loading case by the fact that the beam 

orientation does not play an important role (but it would for a general non equibiaxial loading 

situation).  
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For the simple shear loading test referred to as case C), plots of the shear stress versus the shear 

angle show an important difference between the linear and geometrical nonlinear analysis, as 

pictured in fig. 3.7. This nonlinearity can be explained by the same reasons as before. 

 

 

 

 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 3.7 Nonlinear response for the shear stress versus shear angle compared with linear 
predictions (dashed line) 

 

Moreover, let consider the simple shear test for the Hexagonal lattice, in which nodal 

displacements and microrotations are considered as two independent degrees of freedom. The 

computed shear response for the micropolar continuum is compared (fig. 3.8) with the ones 

obtained for the classical Cauchy continuum (no microrotation) in both the geometrically linear 

and nonlinear settings. 

(a) 

(b) 
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Fig. 3.8 Nonlinear path for shearing stress versus shear angle is compared with linear 
predictions (dashed line) 

 
We note a softer response for the micropolar effective continuum in comparison to the two other 

effective media, due to the enhanced kinematics: part of the energy is distributed into both the 

displacement gradient and microrotation as far as the kinematics is concerned.  

 

3.6.1 Effect of the slenderness ratio in elastic limit 
 

For the hexagonal lattice, the effective homogenized tensile modulus under a uniaxial load test is 

plotted versus stretch, for different values of the slenderness parameter (η - ratio of beam 

thickness to beam length). We observe that the effective computed tensile modulus increases and 

reaches a maximum, followed by a decrease when the slenderness ratio is small enough, 

indicating a softening behaviour thereafter, related to the loss of ellipticity of the boundary value 

problem for the homogenized behaviour. An increase of (η ) enhances the structure stability as 

shown in figure 3.9; the systematic detection of such instable behaviours can be implemented in 

future work, based on the eigenvalues of the acoustic tensor. 

 

 

 

 
 
 
 

 
  

Fig. 3.9 Effective Young modulus in one direction versus stretch at different values of 
slenderness parameter 
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We next consider the following example of an arterial tissue modeled as a 2D planar sheet with a 

chosen configuration angle 60β = °  between the two families of fibers (G. A. Holzapfel, 2000). 

The lattice consists of inclined repeated inclined unit cells, described by two beams and two 

periodicity vectors 1 2Y ,Y , as shown in figure 3.10 (a, b, c) respectively. The geometrical and 

material parameters for the beams within the unit cell are chosen as previously from Table 2.3. 

  

 

 

 

 

 

 

 

Fig. 3.10 Unit cells of the inclined square lattice 

In the same manner, we perform the homogenization of this network to express the stress-strain 

behaviour for the previous three types of loading. 

 

� Uniaxial tension  

Plot of Cauchy stress versus the relative stretch are presented for the uniaxial loading test. One 

may observe a great difference between the linear (dashed line) and nonlinear response. This can 

be explained by the fact that the type of microstructure and its orientation give complaint 

structure for which bending of microstructural beams dominates as a deformation mode, as 

shown in figure 3.11. 

 

 

 

 

 

 

 

 

Fig. 3.11 Uniaxial tensile Cauchy stress xσ versus the applied stretch λ ,  

for the inclined square( 60β = ° ).   
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� Biaxial tension 

The stress-stain responses are represented in two directions (Figure 3.12) under an equibiaxial 

loading, both leading to a nearly linear response. This behaviour can be explained in this specific 

loading case by the fact that the beam orientation does not play an important role (but it would 

for a general non equibiaxial loading situation). Thus, let consider non equibiaxial loading test  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.12 Equibiaxial tensile Cauchy stress of (a) xx- direction  and (b) yy-direction  

versus the applied stretch λ   
. 

Moreover, let consider non equibiaxial loading test elaborated with strain ratio 2

1

3k
ε

ε
= =  where 

1ε  is the primary strain corresponding to x-axis, and 2ε  is the secondary strain corresponding to 

the y-axis. According to this condition one shall expect that the beam orientation will change 

versus stretch.Fig.3.13 shows: there is a softening in one direction (and conversely a hardening 

in transvers direction). 
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Fig. 3.13 Cauchy stress versus strain for biaxial strain ratio, k = 3. (a) xx- direction  and (b) yy-direction.  

 
 

� Simple shear 

 
In the same manner, the response of the inclined square lattice subjected to simple shear is 

shown in Fig. 3.14: we note that there is no significant difference between the linear and 

geometrical nonlinear analysis. This quasi linearity is due to the fact that the fibbers locally 

experience a state of stress which is nearly uniaxial since the principal directions of stress are 

rotated by 45 degrees w.r.t the direction of shear.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.14 Nonlinear response for the shear stress versus shear angle compared with linear 
predictions (dashed line) 

 

We next compute the nonlinear response of biological membranes selected as an application of 

previous general nonlinear homogenization scheme. These membranes are here viewed as 

regular periodical networks of filaments, and they may be highly anisotropic due to unequal 

length and properties of the threads within the molecular network as will discussed below.  

(a) (b) 
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3.7 Two-dimensional biological networks  
 
The membrane of biological cells is made of the assembly of filaments which are linked together 

as part of a network or are associated with the cell membrane to build a two dimensional thin 

sheet. Two-dimensional biological networks may be wrapped around a cell as its wall or are 

attached to its plasma or nuclear membrane. Membranes containing neither a nucleus nor other 

cytoskeletal components such as microtubules, for example the human red blood cell or the 

cortical lattice of an auditory outer hair cell Fig.3.15 (a, b) respectively, possess only a 

membrane associated cytoskeleton. 

 

 

 

 

 

 
 
 
 

 
Fig. 3.15 (a) Membrane-associated cytoskeleton of the human erythrocyte (Byers and Branton, 

1995). (b) Section from the cortical lattice of an auditory outer hair cell. 
 

The boundary structure of bacteria can be classified in two ways. First, for the Gram-negative 

bacterium, there is a very thin peptidoglycan sandwiched between two membranes, while for the 

Gram-positive bacteria, one bilayer is present. The peptidoglycan blanket is much thicker, as 

shown in Fig.3.16 (a,b) respectively. 

 

 

 

 

 

 

Figure 3.16 Boundary structure of bacteria (D. Boal, Mechanics of the cell, 2002) 
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3.7.1 Classifications of networks with three, four and sixfold connectivity  
 

One shall presently classify the networks of biomembranes according to their connectivity: three 

fold, four fold and six fold connectivity. These networks are found in many cell structures, 

including the bacterial cell wall, the nuclear lamina and the membrane-associated cytoskeleton of 

mammalian erythrocytes. In biological membranes, the most encountered types of networks are 

the hexagonal, the square and the triangular networks respectively corresponding to a 

connectivity of 3, 4, 6 respectively. For example, the peptidoglycan network of the bacterial cell 

wall has T-shaped junctions with threefold coordination. The peptidoglycan network is built 

from two non-equivalent chains, as shown in the face view of a section Fig.3.17 (a) from (Koch 

and Woeste, 1992): sugar rings run in the direction supporting the maximum stress, while the 

softer peptide strings forming transverse links (and bearing less stress). It is believed that this 

molecular anisotropic organization is dictated by design principles of the cell, such that the 

stiffer chains act as reinforcement in the direction that shall sustain the maximal stress. Note that 

the knowledge of the mechanical properties of peptidoglycan is also of importance for 

understanding bacterial growth and form. 

 

 

 

 

 

 

Fig. 3.17 Peptidoglycan network a) dimensions of network chains (peptides and sugar rings) 

Koch and Woeste (1992), (b) face view of the section of the peptidoglycan network and 

definition of the geometrical model. 

 

The nuclear lamina is a further example contains junctions that have fourfold coordination (Aebi 

et al., 1986; McKeon et al., 1986). The nucleus is bounded by two membranes, and the lamina 

lies in the interior of the nucleus, adjacent to the inner nuclear membranes as shown in Figure 

3.18. 

 

 

 

 

a b 
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Fig. 3.18  Nuclear lamina showing its square lattice of intermediate filaments  

with (b) four-fold symmetry. 

 

As a third example, the erythrocyte cytoskeleton is a network with at least partial C6 symmetry, 

which has both a low density and a high flexibility. Furthermore, the corresponding lattice has 

six-fold connectivity, with however 3% and 8% of the junctions presenting five or seven-folds 

respectively (Liu et al., 1987; Mohandas and Evan, 1994; Trovalusci and Masiani, 1999; Feyel 

and Chaboche, 2000). The description of the in-plane network, parameterized with the 

inclination angle θ, is pictured in Fig. 3.19. 

 

 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 

Fig.3.19 Triangular network of the erythrocyte cytoskeleton (a) with its idealization 
configuration parameterized by the angle θ (b). 

 

(a) 

(b)  
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In the next section, we will first study the effect of lattice randomness on effective properties of 

the triangular network, in order to validate the assumption of quasi periodicity we shall make to 

compute the effective nonlinear response of those lattices.  

 

3.7.2 Impact of microstructural irregularity  
 

Homogenization techniques for discrete media have been extensively used in the last decade, but 

they have a significant limitation in that they do not account for natural variations in the lattice 

topology, which are observed for most biological materials. Most models of 2D cellular 

structures are based on idealized unit cells intended to describe the micro-structural features of 

an average cell supposed to be representative of the real underlying structure. Those approaches 

do however not account for the complex and rather diverse mechanisms leading to membrane 

rearrangements usually referred to as remodeling; those mechanisms involving a complex 

machinery of proteins can be broadly classified as fusion or fission, including exocytosis and 

endocytosis, budding and fusion of transport carriers, relaxation of the elastic energy, as listed in 

the recent review paper (Kozlov et al., 2010). 

 

The network topology may also vary as abnormal RBC skeletons have been reported, Hansen et 

al. (1997). Those variations lead to irregular cells and to non-periodic arrangement of the cell 

walls. Therefore, a quantitative study to investigate how the micro-structural variability can 

affect the macroscopic effective mechanical properties has been performed as a preliminary step. 

Statistical variations in the underlying models have been accounted for (Silva et al., 1995; Silva 

and Gibson, 1997; Zhu et al., 2001; Alkhader and Vural, 2008). 

Several methods described in Kraynik et al. (1991) account for variability in the arrangement of 

cell walls of hexagonal honeycombs by modifying the initial two-dimensional unit cell analysis, 

see Warren and Kraynik (1987). Those authors develop structure-property relationships for 

arrays of hexagonal cells endowed with varying sizes and shapes, but they conserve an angle of 

120◦ between the three struts common to each node. The results of those authors lead to the 

conclusion that the specific spatial arrangement and size distribution of the unit cells hardly 

affect their elastic response. 

In order to generate a microstructural irregularity far from periodicity, a spatial perturbation has 

been applied to the vertices of a regular triangular truss network in random directions (Der Burg 

et al., 1997; Chen et al., 1999; Chen and Fleck, 2002; Alkhader and Vural, 2008), expressed by 

the following equations: 
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( )' ' cosi ix x rλ θ= +  ( )' ' sini i rγ γ λ θ= +  

Where θ  is a uniformly distributed random variable, r  a random variable and '
ix and '

iγ are the 

perturbed coordinates, with the non primed component being the original coordinates. 'λ is the 

perturbation parameter which specifies the degree of irregularity; note that it has been chosen in 

a manner that cell convexity is preserved. Fig. 3.20 shows different cellular structures generated 

for increasing values of 'λ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.20 Cellular structures generated for FE analyses including stochastic triangular topologies. 

Sample microstructures subjected to various amounts of perturbation are shown. Note that nodal 

connectivity is 6 for these topologies. (a) Regular triangular topology. (b) The perturbation factor 

is 0.25, (c) 0.5, (d) 0.65. 

 



65 
 

We note that the last configuration obtained when 0.65λ =  looks very distorted.  

Each topology is discretized by 9×9 cells and each beam element is 1 �m long within the initially 

regular topology. Accurate finite element analyses are performed (using the FE software Abaqus 

implicit) in order to get the effective tensile moduli, which are then compared with their 

counterpart for the regular topology (fig. 3.20a). Elastic linear and quasi-static framework has 

been considered; each cell element is modeled by three linear Bernoulli elements (Abaqus 

element type B23), considering a cubic formulation. 

Simulation results show that the perturbed topology in the structure introduces a small amount of 

variances in the elastic constants for an isotropic triangular unit cell (the coefficient of variance 

lies in the interval [0.2%–4%]. The relative variation is represented versus the perturbation 

parameter 'λ on Fig. 3.21 showing that the non-periodic arrangement of cells does only weakly 

affect the elastic properties of the overall network; hence it is legitimate to adopt in the sequel a 

quasi periodicity assumption. This finding is in agreement with many works in the literature, 

especially those dealing with cellular structural materials such as foam (Silva et al. (1995), Silva 

and Gibson (1997) and Zhu et al. (2001)). These results mean that random fluctuations do 

average in such a way that their net effect is nearly negligible. We may nevertheless be careful 

with these results, since introducing a controlled anisotropy amongst possible factors to control 

randomness would certainly modify substantially the effective properties.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.21. Relative error in percent of the Young modulus versus the perturbation factor 'λ . 
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3.7.3  Homogenized moduli of biological membranes  
 

In the next section, we employ the proposed methodology based on discrete homogenization to 

analyze the mechanical response of the peptidoglycan, the erythrocyte and nuclear lamina 

networks subjected to uniaxial loading and simple shear. The filaments of the network are 

supposed to undergo small stretches, but they can easily bend, so that they are essentially prone 

to geometrical nonlinearities (material nonlinearities can be neglected). For a uniaxial loading, 

we shall plot the change of the area compression modulus and Poisson’s ratio of these networks 

versus stretch, which are of high interest. 

 

3.7.3.1 The peptidoglycan cell wall 

The peptide and the glycan shown on Fig. 2.28 (left view) are modelled as beams with a regular 

circular cross section with radii respectively equal to 0.5 and 1 nm, Boal (2002); the angle θ is 

used as a descriptor of the topology of the glycan network. The whole lattice in a planar 

configuration is generated from the repetition of the unit cell shown in Fig. 3.22 (right) thanks to 

two periodicity vectors defined in the Cartesian basis. 

 

 

 

 

 

 

 
 
 
 
 

Fig. 3.22 Hexagonal unit cell for the peptidoglycan network 
 

For this application, we choose (θ= 30) and select the dimensions of the molecular chains of the 

unit cell as indicated in Fig. 2.23: the average Young moduli of glycan at low temperature (T = 

273 K), is given by Ygly = 4.799 × 107 J/m3 and Ypep = 1.53 × 107 J/m3 for peptides: the 

Young moduli are elaborated from the persistence length according to the relation Z
P

B

EI
ξ =

K T
 

(Boal, 2002), wherein E , ZI , T , BK  are the tensile modulus, the quadratic moment (dependent 
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on the beam cross section), the absolute temperature and Boltzmann constant respectively. 

Considering the properties of individual chain, the peptide is endowed with the classical 

properties of entropic springs, given that its end-to-end length in the network pep eel  = r  = 1.3nm  

is less than its contour length cL  = 4.2 nm . The persistence length of the peptide string can be 

obtained from the simplified relation 2
ee P,peptide cr =2ξ L , (the bracket denotes the average value) 

giving P,peptide = 0.ξ 2 nm . The glycan chains are comparatively much stiffer, with P,glycanξ  10 nm≃  

(Stokke and Brant, 1990) and gly eel  = r  = 2 nm  . 

 
� Uniaxial tension 

 
Plots of Cauchy stress versus the relative stretch are presented for the uniaxial loading test as the 

result of a numerical analysis performed in combined symbolic and numeric language, using a 

dedicated Maple code. Figure 3.23 shows the difference between the linear and nonlinear 

responses. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.23 Uniaxial tensile Cauchy stress versus stretch for the hexagonal lattice 
 

In order to compute the evolution of both Poisson’s ratio and area change under stretch, and as 

previously discussed in the first part of this chapter, the relation between the surface element (a 

vector) of in the reference configuration, dSN , and its Eulerian counterpart, vector dsn after 

deformation writes (Nanson formula) 

T .ds J dS
−=n F N  (3.33) 

This entails the deformed area da  in relation to the undeformed area dA  using equation (3.34), 
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T

T
.

det( ) .
J dSdsda

dA dS dS

−

−= = =
F Nn

F F N
N N

 (3.34) 

Thus, one can specify this ratio in a uniaxial loading test as 

1 2det( ) 1
da da dA

J
dA dA

λ λ
−

= = → = −F
 

Values of the Jacobian above unity (resp. below unity) indicate that the area tends to increase 

(resp. decrease). Based on Poisson’s ratio defined as 12 2 1/E Eν = − , we can rewrite the area ratio 

as, 

( )( ) ( ) 2
12 1 1 12 1 11

da

dA
ν λ λ ν λ λ= + −  (3.35) 

with Poisson’s ratio depending on the applied stretch λ1 .We can see from previous formula that 

there is a competition between the first positive contribution on the right hand side and the 

second term, which is negative. For large stretches, the negative term, which is at least quadratic 

in the stretch, is expected to dominate over the first term. 

 

 
The change of area ratio and Poisson’s ratio versus stretch are shown in figure 3.24. 
 

 
Fig. 3.24 change of area ratio (red curve) and Poisson’s ratio (blue curve) versus stretch for 

the hexagonal lattice 
 
 

Poisson’s ratio increases from its initial value at low strains (0.56) up to a maximum slightly 

above unit at 40% elongation; this means that the membrane will undergo an increased lateral 

contraction with ongoing stretch. The area remains nearly constant for low and moderate values 
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of the stretch (it slightly increases towards a maximum), and it then decreases nearly linearly for 

higher values of the stretch (above 17% deformation), due to the dominant negative contribution 

in (3.35).   

Moreover, the planar modulus of compressibility, denoted AK , is elaborated as the hydrostatic 

part of the stress divided by the determinant of deformation gradient representing the change of 

area (as shown just above) as,  

 
( )
( )A

tr
K

tr
=

σ

F
 (3.36) 

 

Figure 3.25 shows that the modulus of area compressibility increases monotonously versus 

stretch, indicating a greater resistance of the membrane to area change at higher stretches.  

 
Fig. 3.25. Change of modulus of compressibility versus stretch for hexagonal lattice 

 
 
 

� Simple shear test 
 
Plot of the shear stress versus the shear angle shows not significant difference between the linear 

and geometrical nonlinear analysis, as pictured in fig. 3.26. This can be explained by the fact that 

the hexagonal lattice has a relatively high effective shear modulus. 
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Fig. 3.26 Nonlinear shear stress versus shear strain response and comparison  

with linear predictions for the hexagonal lattice 
 
 
 

3.7.3.2 The erythrocyte network 

In the same manner, the erythrocyte network with connectivity 6 is modeled based on triangular 
repeated unit cells, each of them described by three beams and two periodicity vectors 1 2Y ,Y at a 

chosen configuration 60θ = 


, as shown in figure 3.27. 

 
 

 
 
 
 
 
 
 
 
 
 
 
  

Fig. 3.27 Triangular unit cell for the erythrocyte network 
 

 
One shall first define the geometrical and mechanical parameters of the beams within the 

repeated unit cell as described below. Considering a low temperature (close to T = 273 K) and an 

initially non-stressed membrane, the spring constant for any chain in the network is considered 

as constant, with an average value given in (Boey et al., 1998),  
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2 0.23eff aβ κ =  (3.37) 

with β  the inverse temperature
B

1

K T
, a=6.4 nm  the bead diameter (Boey et al., 1998) and 

eff b

YS
κ =

l
 the tensile modulus of a beam. Using Eq. (3.37), the Young modulus Y for any chain 

in the network is then calculated from the following expression 
 

b

2

0.23 l
Y=
βa S

 

with S  the section of the considered chain. In the sequel, we consider a rectangular beam section 

with a chain width -3t = 9.96 .10  nm  (hence assigning the quadratic moment) and an average end 

to-end beam length bl  = 200 nm  (Feyel and Chaboche, 2000). 

From previous data, the chosen geometrical and mechanical parameters of the repeated unit cell 

feed an input file into a dedicated Maple code. For a uniaxial loading, we plot Cauchy stress 

versus the relative stretch in figure 3.23. The nonlinearity is less pronounced in comparison to 

networks having three-fold connectivity (fig. 3.28). 

 
 Fig. 3.28 Uniaxial tensile Cauchy stress versus stretch for the triangular lattice 

 
Moreover, we plot the changes of area, Poisson’s ratio and the planar modulus of compressibility

AK , as shown in Figures (3.29, 3.30) respectively.   
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Fig. 3.29 change of area ratio and Poisson’s ratio versus stretch for the triangular lattice 

 

 
Fig. 3.30 change of modulus of compressibility versus stretch for the triangular lattice 

 
Evolutions of Poisson’s ratio and area show similar evolutions compared to the previous 3 fold 
connectivity lattice.  
 
 

� Simple shear test 

 
The triangular lattice has a high effective shear modulus. Thus, the evolution of shear stress 

shows similar evolutions compared to the previous 3-fold connectivity lattice.  
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Fig. 3.31 Nonlinear shear stress versus shear strain response and comparison  

with linear predictions for triangular lattice 
 

3.7.3.3 The nuclear lamina network 

For the nuclear lamina network with connectivity 4 is modeled based on square repeated unit 
cells, each of them described by two beams and two periodicity vectors 1 2Y ,Y , as shown in 

figure 3.32. 
 

 
 

Fig. 3.32. Square unit cell for the erythrocyte network 
 

 
We assume that the beams within the repeated unit have the same geometrical and mechanical 

parameters as described above for the triangular cell.  

For a uniaxial loading, we plot Cauchy stress versus the relative stretch in figure 3.33 the 

nonlinearity is less pronounced in comparison to the triangular unit cell (fig. 3.28). This can be 

explained by the fact that the square lattice is a relatively stiff structure. 
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Fig. 3.33 Cauchy stress versus stretch for the square lattice. 

 
 
Moreover, we plot the changes of area, Poisson’s ratio and the planar modulus of compressibility

AK , as shown in Fig.3.34 (a,b) and Fig.3.35 respectively.  Due to the fact that that the square 

lattice is a relatively stiff structure.Poisson’s ratio has very small value compared to the 

triangular lattice; this means that the membrane will undergo slightly lateral contraction with 

ongoing stretch. The area will increase linearly versus stretch as shown in Fig. 2.34 (a, b). 

 

 

 

 
 
 
 
 
 
 
 
 

  
 
 
 

Fig. 3.34 change of area ratio and Poisson’s ratio versus stretch for the square lattice (a, b).   
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Fig. 3.35 Change of modulus of compressibility versus stretch for the square lattice 

 
 

� Simple shear test 
 
The plot of the shear stress versus the shear angle shows an important difference in comparison 

to networks having six-fold connectivity, as pictured in fig. 3.36. This important difference 

between the linear and nonlinear can be explained due to the fact that the square structure has a 

small effective shear modulus.  

 
 
 

 
Fig. 3.36 Nonlinear shear stress versus shear strain response and comparison  

with linear predictions for the square lattice 
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In the next section, based on the previous nonlinear discrete homogenization analysis, we will 

validate the stress-strain responses obtained for the considered biomembranes, by comparing the 

homogenized responses with full FE computations over a representative unit cell. 

 

3.8 Comparison of homogenized responses with FE computations 
 
The previous results shown in Fig. 3.4 (a,b) obtained with the DH technique are now compared 

with numerical results obtained from the FE method (ABAQUS), under the specified types of 

loadings (we restrict the validation of the computed response to uniaxial tests), with appropriate 

boundary conditions. The beams within the full lattices are discretized by Timoshenko beam 

elements, adopting 36 elements per unit cell.  

The uniaxial response for both the square and hexagonal lattices is shown in Fig. 3.37 for the two 

chosen planar lattices (a) and (b); a good agreement is obtained of both methods, with a 

maximum discrepancy close to 10.4%. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.37 Comparison of results from the DH technique and FEM code (ABAQUS). 
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One possible reason for the observed small difference may be attributed to the assumption that 

the second order part of the strain can be neglected. 

 
 

3.9  Conclusions and discussion  
 

The interest of the developed homogenization technique lies in its flexibility and capability to 

handle any planar lattice; however, in this work, we restricted ourselves to centrosymmetric 

lattices so that the coupling coefficients between stress and curvature vanish. Further interest of 

the homogenization method lies in it is ability to deliver the expressions of the forces and 

hyperforces at the beam extremities of the lattice, based on the kinematical nodal variables 

(displacement and microrotation). From those expressions, one is able to construct the full 

compliance (or rigidity) matrix, reflecting the complex and evolving anisotropy of the so-built 

equivalent continuum, and the evolution of the anisotropy with the change of geometry induced 

by the loading. In the elastic case, and for small perturbations, the effective properties are 

derived as closed-form expressions of the geometry (characterized by the beam length and the 

quadratic moment of inertia) and mechanical properties (Young modulus). We have extended the 

linear discrete asymptotic homogenization framework to the nonlinear setting, based on an 

update of the lattice geometry and an elastic computation done over each load increment. These 

theoretical developments have been implemented into a dedicated code using the lattice 

geometry and microstructural properties as an input, and delivering as an output the effective 

response.  

The detailed analysis of the considered types of structure from the proposed methodology shows 

that the main reason of nonlinearity lies in the beam reorientation, whereas other geometrical 

effects are negligibly small. The stress-strain behavior under the three types of loading has been 

computed.  

A comparison of the response under uniaxial loading computed based on DH and on FE 

simulations has been done in order to validate the homogenized response (by the DH technique), 

showing a good agreement between the results from discrete homogenization and those 

computed numerically. 

 

 

 

 

 



78 
 

3.10  References  
 
Caillerie, D., Mourad, A., Raoult, A., 2006. Discrete homogenization in graphene sheet  
       modeling. J. Elast. 84, 33–68. 
Dos Reis, F., Ganghoffer, J.F., 2012. Construction of micropolar continua from the asymptotic 

homogenization of beam lattices . Computers and Structures 112–113 (2012) 354–363. 
Gibson, L.J., Ashby, M.F., 1982. The mechanics of 3-dimensional cellular materials. Proc. R. 

Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 382 (1782), 43. 

Gibson,L.J.,Ashby,M.F.,Schajer,G.S.,Robertson,C.I.,1982. The mechanics of two-dimensional 

cellular materials. Proc. R. Soc. Lond. Ser. A:Math. Phys.Eng. Sci. 382(1782),25–42. 

Hutchinson,R.G.,Fleck,N.A.,2006. The structural performance of the periodic truss. J. Mech. 

Phys. Solids 54(4), 756–782. 

Klaus-Jürgen Bathe, Saïd Bolourchi. Large Displacement Analysis of three-dimensional Beam 
Structures. International Journal for Numerical Methods in Engineering. VOL. 14, 961-986 
(1979). 

Mourad, A., 2003. Description topologique de l’architecture fibreuse et modélisation mécanique 
du myocarde. Ph.D. thesis, I.N.P.L. Grenoble. 

Raoult, A., Caillerie, D., Mourad, A., 2008. Elastic lattices: equilibrium, invariant laws and 
       homogenization. Ann. Univ. Ferrara 54, 297–318. 
Sanchez-Palencia E. Non-homogeneous media and vibration theory. Lect Notes Phys 1980;127. 
Zhu, H.X., Knott, J.F., Mills, N.J., 1997. Analysis of the elastic properties of open-cell foams 

with tetrakaidecahedral cells. J. Mech. Phys. Solids 45 (3), 319. 

Wang,A.J.,McDowell,D.L.,2004. In plane stiffness and yield strength of periodic metal 

honeycombs. J.Eng.Mater.Technol.Trans.ASME126(2),137–156. 

Bakhvalov N, Panasenko G. Averaging processes in period media. Mathematic problem in 
mechanics of composite materials. Dortrecht: Kluwer Academic Publishers; 1989. 

Warren WE, Byskov E. Three-fold symmetry restrictions on two-dimensional micropolar 
material. Eur J Mech A/Solid 2002;21:779–92. 

 Pradel F, Sab K. Homogenization of discrete media, 1998. J Phys IV France 1998;08:P317–24. 
Pindera, M-J, Khatam, H., Drago, A.S., Bansal, Y.,2009. Micromechanics of spatially uniform 

heterogeneous media: A critical reviewand emerging approaches. Compos. Struct. 40, 349–
378. 

Charalambakis, N., 2010. Homogenization techniques and micromechanics Asurvey and 
perspectives. Appl.Mech.Rev.63(3),1–10. 

Warren, W. E., Kraynik, A. M., The nonlinear elastic behaviour of open-cell foams, Transactions 
of ASME, 58, 375–381, June 1991. 

Warren, W. E., Kraynik, A. M., Stone, C. M., A constitutive model for two-dimensional 
nonlinear elastic foams, Journal of the Mechanics and Physics of Solids and Structures, 37, 
717–733, 1989. 

Wang, Y., Cuitino, A. M., Three-dimensional nonlinear open cell foams with large deformations, 
journals of the Mechanics and Physics of Solids, 48, 961–988, 2000. 

 Hohe, J., Becker, W., Effective mechanical behavior of hyperelastic honeycombs and two 
dimensional model foams at finite strain, International Journal of Mechanical Sciences, 45, 
891–913, 2003. 



79 
 

 Janus-Michalska, M., Pęcherski, R. P., Macroscopic properties of open-cell foams based on 
micromechanical modeling, Technische Mechanik, Band 23, Heft 2-4, 221–231, 2003. 

Janus-Michalska, J., Effective models describing elastic behavior of cellular materials, Archives 
of Metallurgy and Materials, 50, 595–608, 2005. 

Janus-Michalska, J., Hyperelastic behavior of cellular structures based on micromechanical 
modeling at small strain, Arch. Mech., 63, 1, pp. 3–23, Warszawa 2011. 

 
 
 

 

 

 



80 
 

CHAPTER Four 

Initial linear response of Architectured Materials 

from Discrete Asymptotic Homogenization.  

Application to Textile Monolayers 

Contents 

4.1. Introduction ................................................................................... 81 

4.2. Review of modeling approaches to predict the mechanical       

       behavior of woven fabrics ............................................................ 83 

4.3. Unit cell geometrical  model ........................................................ 86 

4.4. Expression of forces and moments ............................................... 87 

4.5. Algorithm for the discrete homogenization in a 3D framework    

         ...................................................................................................... 95 

4.6. Effective mechanical properties of woven fabrics ....................... 98 

         4.6.1.  Unit cell of plain weave and twill fabric........................................ 98 

4.7. Nonlinear modelling framework implementation by the discrete   

          homogenization approach ........................................................ 102 

       4.7.1.  Steps of the incremental–iterative discrete homogenization. ..... 103 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



81 
 

Abstract  

The goal of this chapter is to develop computational discrete homogenization schemes to 

derive nonlinear continuum constitutive models for initially discrete structures prone to 

geometrical nonlinearities. In order to exemplify the method, we consider as specific 

structures textile monolayer fabrics patterns, viz plain weave and twill. A representative unit 

cell (RUC) of the fabric is constructed and modeled as a network of trusses connected by 

nodes at cross points of the interwoven yarns within the fabric. These trusses have extensional 

and bending rigidities to represent yarn stretching and flexion. The contact interactions 

between yarns at the cross-over points are captured by beam segments connecting the nodes. 

The proposed methodology has been used for the analysis of plain weave and twill fabrics 

subjected to large applied strains. The stress-strain responses are evaluated after applying 

appropriate boundary condition to the RUC, considering the three elementary loading cases, 

namely uniaxial tension, bi-axial tension and simple shear. The computed response of those 

fabrics is based on a micropolar discrete homogenization algorithm, which has been 

implemented into a dedicated code. A calibration of a selected form of the strain energy 

density is done by identifying the set of material constants based on comparisons 

with the stress-strain response computed by discrete homogenization. The 

mechanical responses obtained by discrete homogenization with finite element simulation 

performed over periodic unit cells are in good agreement.  

 
 

4.1 Introduction 
 

Over the past decade, considerable attention from the composite manufacturing sector has 

been devoted to textile composites and especially woven fabrics. These materials have 

become increasingly popular for use in structural applications in recent years due to their 

advantages such as low fabrication costs, light weight, ease of handling and high adaptability, 

over tape laminates and several other engineering materials. These factors provide strong 

motivation for the textile industry to develop simulation technology for understanding the 

deformation, kinematics and mechanical behavior of textile composite. 

 
Woven fabrics are produced by weaving continuous fiber also called reinforcement by 

multiple weaving patterns viz. plain, twill, satin, basket etc. The mechanical behavior of 

woven fabrics is of interest in numerous applications, including apparel, fabric reinforced 
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composites, and body armor for ballistic protection. The development of these technologies 

requires a thorough understanding of the mechanical behavior of woven fabrics. Different 

levels of analysis and modeling can be adopted in the case of fabric. Figure 4.1 shows three 

different levels, namely the microscopic (i.e. single fiber), mesoscopic (i.e. fiber yarn and 

yarn architecture) and macroscopic scales (the structural scale of the entire fabric). 

 
 
 
 
 
 
 
 
 
 
 

 

Figure. 4.1  Different scales in textile analysis.(a) Trailing arm at the macroscopic level. 

(b) Plain weave pattern composite at the mesoscopic level. (b) Single fiber at the microscopic 

level 

The mechanical behavior of fabrics is clearly a multi-scale problem: at the macroscopic scale, 

the fabric consists of an assembly of yarns in the armor (meso-scale), themselves composed of 

fibers (micro-scale), leading overall to a complex mechanical behavior. Micro-scale 

approaches take the distribution and the contact between thousands of fibers into account. 

Some studies have been performed at this scale (Durville, 2002), but the analyses of the 

mechanical behavior of the woven unit cell at this scale is very difficult accounting for the 

number of fibers (some thousands) in a unit cell. In macro-scale approaches, fabrics are 

modeled as membranes (or shells if bending is taken into account). These approaches are used 

in forming simulations. Macroscale analyses focus on the characterization of fabric behavior 

without explicitly modeling the geometric structure of the textile. Usually the fabric is 

modeled as a homogeneous continuum which obeys a certain constitutive relation. These 

continuous models do not include crimp and interlacement effects which are important 

features of the fabric reinforcement behavior. The analyses at mesoscale consider the 

geometry of the woven unit cell but consider the yarns as continuous domains. Single yarn 

interactions are also taken into account in analyses on the mesoscale. These analyses ensure a 

good compromise between realism and complexity.  

(a) 

(b) (c) 
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To this end, woven fabrics can be considered as structured, hierarchical materials, having the 

three structural levels previously described (Lomov et al., 2007). The mechanical behavior of 

woven fabrics is complex due to the intricate interactions of the yarns that constitute the fabric 

‘‘mesostructure’’. Despite many attempts to develop effective models for fabric behavior, 

there is currently no widely accepted modeling approach that can accurately describe all the 

important aspects of the fabric mechanical behavior. This is due in part to the variability of 

requirements for fabric models in different applications (Parsons et al., 2010). A number of 

these models are next reviewed. 

The macromechanical properties of the woven fabric are evaluated with the help of periodic 

unit cell structure by using micromechanical approach   

This chapter is organized as follows: we first introduce the recent modeling techniques (both 

analytical and numerical) pertaining to the mechanical behavior of woven fabric textile in 

section 4.2. In section 4.4, we extend the homogenization technique proposed in chapter two 

and an expression of forces and hyperforces in the framework of 3D Timoshenko beams is 

exposed. Then we construct the effective continuum behavior of the textile monolayers. The 

macromechanical properties of the woven fabric are evaluated with the help of periodic unite 

cell structure. Applications to two different woven textile architectures will be given in 

Section 3.6, leading to an equivalent behavior at the mesoscopic scale. The discrete 

homogenization approach adopted first a linear framework, and extended next to the 

geometrical nonlinear situation for different types of macroscopic loadings. In the next section 

we then propose the calibration of a strain energy density of a hyperelastic model for the two 

chosen textile fabrics (plain weave and twill). Finally, the computed stress-strain 

homogenized response will be validated thanks to FE simulations performed over a well-

chosen representative unit cell structure for each specific selected type of fabric.  

 
 

4.2  Review of modeling approaches to predict the mechanical 

behavior of woven fabrics 
  
Many modeling approaches have been used to analyze the mechanical behavior of fabrics, 

which can be classified into analytical and numerical models. The literature review (Tan et al., 

1997; Crookston et al., 2005) shows that finite element analysis and analytical methods are 

powerful tools for studying the mechanical properties of woven fabrics. However, the 

complexity of the micro-structure is proportional to the number of parameters controlling the 

mechanical properties. So, various assumptions should be proposed for simplifying the 
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analysis. Most of the models for woven fabrics are based on the definition of a unit cell 

geometry and include the major architectural parameters in predicting the mechanical 

properties. The unit cell to be modeled is described as being the smallest unit of textile that, 

when tiled, will generate the full scale textile. The fibers within a yarn are not modeled 

individually; instead, yarns are represented as solid volume elements representing the 

approximate bounds of the fibers they are made of. There are several reasons for this: first of 

all it is much easier to represent the yarn as a solid volume, and secondly this kind of 

representation is much more useful in view of the computational analysis of textile properties.  

A lot of mesostructurally based analytical models have been developed for the study of woven 

fabrics behavior. Such analytical models use mathematical relations to predict the mechanical 

response of the fabric and its component yarns in specific modes of deformation. In addition, 

these models can be used to quantify the homogenized material properties for use in 

continuum models. (Hearle et al., 1969) described a number of classical analytical fabric 

models. (Kawabata et al., 1973; 1973a; 1973b) presented general models for uniaxial, biaxial 

and shear deformation properties of plain weave fabrics based on a simplified model 

representing the structure of the fabric unit cells. The basic geometry used in these models is 

based on one dimensional stiffness elements (bars) representing yarns, and the connecting 

stiffness elements at intersection of yarns to model the compression between yarns. Other 

researchers have developed improved analytical models, including (Realff et al., 1997) who 

modify Kawabata's uniaxial model to include more complex behaviors such as yarn flattening 

and consolidation. (Kato et al., 1999) proposed an analytical model for predicting the 

constitutive behavior of a coated fabric composite that is based on the pin-joined lattice-type 

geometry. Recently, (Ben Boubaker et al., 2007a,b,c) developed a meso-level discrete model 

for a woven structure. The woven structure was considered as being organized in two sets of 

intertwined yarns, the warp yarns and the weft yarns. Each subsystem is considered as a sum 

of n single yarns. One single yarn is discretized and consists of a set of point masses mutually 

connected by extensional springs. Each node (point mass) is provided with rotational 

stiffness. Moreover, (Ben Boubaker et al., 2007d) proposed a discrete model of woven textile 

in which the basic pattern is represented by stretching springs, connected at nodes where a 

rotational stiffness is represented by flexional springs. More recently, (Assidi et al., 2011) 

developed mesostructurally-based continuum model, relating the fabric behavior at the 

macroscopic continuum scale to the response and geometry of the fabric’s mesostructure 

(geometrical configuration of the weave and the yarn properties). For a more detailed 

description of several other analytical models, see ( Realff, 1992). 
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Analytical models of the fabric mesostructure can be incorporated into anisotropic continuum 

formulations to yield models that track the fabric mesostructure as the continuum deforms. A 

number of authors have presented models for woven fabrics with continuum properties 

calculated from a deforming unit cell. (Boisse et al., 1997, 2001) constructed a three-

dimensional unit cell like that of Kawabata for quasi-static and dynamic simulations of 

composite forming, but did not incorporate the resistance to yarn rotation or the inertia of 

uncrimping. (Rattensperger et al., 2003) take a similar approach for modeling fabric-

reinforced hydraulic hoses, with fabric lattice geometry similar to that used by Kato, and use a 

conventional finite element formulation with rebar reinforcements. (Tanov and Brueggert, 

2003) presented a mesostructurally-based continuum model that includes shear and locking 

resistance through diagonal spar elements within the assumed unit cell network. (Boisse et al., 

2005, 2006) later used a planar unit cell for dynamic simulations by incorporating shear 

resistance at the cross-over point, but they did not include cross-locking. (Hamila et al., 2009) 

extended this approach to a shell finite element which includes the resistance to bending of 

the yarns. Some models are specific to the ballistic impact of woven fabrics. (Ivanov and 

Tabiei, 2004) constructed a Kawabata type unit cell for the simulation of ballistic impact but 

did not consider transverse compression, cross-locking, or the inertia of uncrimping. 

(Shahkarami and Vaziri, 2007) also used the Kawabata geometry in the simulation of ballistic 

impact. 

Other mesostructurally analytical models have also been proposed for the study of woven 

fabrics behaviors. These models fall into two categories, namely orthogonal and non 

orthogonal constitutive models. (Peng and Cao, 2002) developed a systematic framework for 

predicting the effective nonlinear orthotropic elastic moduli of textile composites using the 

combination of the homogenization method and finite element analysis, considering 

orthogonal textiles. This approach mainly depends on the geometric description of the unit 

cell and the homogenized material properties imposed; a unit cell is built for the yarn section 

to estimate the effective elastic constants of fiber yarn. Then, another unit cell at meso-level is 

constructed to represent the periodic structure of the woven fabric. (Peng and Cao, 2005) 

developed a continuum mechanics-based non-orthogonal constitutive model to characterize 

the anisotropic material behavior of woven composite fabrics undergoing large deformations. 

The aim of their work was to overcome the difficulties involved in the purely numerical 

approach and to capture the anisotropic material behavior of woven composite fabrics during 

forming. Moreover, (Xue et al., 2005) developed an integrated meso-macro model for the 

prediction of the mechanical properties of woven fabrics in the range of large deformations. 
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Those authors previously suggested a non-orthogonal constitutive model for the prediction of 

mechanical properties at the macro scale (Xue et al., 2003), relying on experimental 

measurements to identify the constants of their model. (Khan et al., 2010) proposed a 

hypoelastic behavior for the numerical and experimental analyses of woven composite 

reinforcement forming. (Baseau, 2003) developed continuum formulations for "filamentary 

networks" appropriate for non-reinforced fabrics. (King et al., 2005) also proposed a new 

approach for continuum modeling of fabrics by selecting a geometric model for the fabric 

weave coupled with constitutive models for the yarns behavior. These authors used an energy 

minimization method to relate the fabrics structural configuration to the macroscopic 

deformation. 

 
 

4.3 Unit cell geometrical  model  
 
The unit cell can be described as the smallest possible building block for the textile fabric, 

such that the fabric can be created by assembling the unit cell in the two periodic directions; 

the initial geometry is modeled using TexGen. TexGen is free and open source license 

software, operates on Windows and Linux, developed from research on technical textiles at 

the University of Manchester (www.texeng.co.uk). It is powerful appearing in speedy and 

accurate design and manufacture of 3D solid fabric of multilayer as well as single layer .Two 

typical textile patterns are considered in the present work, plain weave and twill fabrics 

(figure 4.2). Modeling this architecture is relatively difficult with conventional CAD, so we 

instead use TexGen in order to save time in the generation of the geometrical model and to 

export the geometric files to ABAQUS where the finite element analysis is done. 

 
 (a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Weft 

Warp 



87 
 

 
 
 
 
 

 
 
 

  (b) 
 
 
 
 

 

 

Fig. 4.2  Periodic reinforcement and Representative Unit Cell (RUC). (a) Macrostructure of 

twill fabric and its periodic macro-unit cell, (b) Macrostructure of plain weave fabric and its 

periodic macro-unit cell.  

 

 

4.4 Expression of forces and moments  

 
We extend in this chapter the homogenization technique introduced in chapter two to the 

consideration of the bending and torsion of the yarns modeled as thick beam elements, thus 

leading to the expression of internal forces and moments. The asymptotic expansion of the 

nodal displacement εu is written up to the second order as 
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The displacement difference εbU∆ between the extremity and origin node of each beam is 

expressed by a Taylor series development, according to 

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )

u
0bU u ( ( )) u ( ( )) u u

1 1

bU
1

2 u u
2 2

bU
2

                                                                    

E O
R b R b ibE b O b

i

E O
R b R b

ελ
ε ε ε ε εε λ λ δ

λ

ε εε λ λ

 ∂ 
∆ = − = − + 

∂ 
 

∆

 
 + −
 
 

∆

=

���������������������

���������������

b 2 b    U                                             U
1 2

ε ε∆ + ∆

 (4.2) 



88 
 

 

with ibδ  the shift factor (equal to 1± ) for nodes belonging to a neighbouring cell, and nil for 

nodes located inside the considered cell.   

The asymptotic expansion of nodal microrotation nεφ is here limited to the first order in ε; it is 

defined successively at the origin and extremity of each beam as  
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wherein we have parameterized any point within the surface element representative of the 

fabric by curvilinear coordinates λi; this allows treating fabrics with curved material lines 

following the fibers in their reference state.  

The normal and transverse efforts as well as the moments exerted on the beam extremities in 

the framework of 3D Timoshenko beams are obtained after lengthy calculations as    

( )b 2 b  .  U   U
1 2

b b
E A

b sF e
x xb

l

ε
ε ε ε

ε
 = ∆ + ∆ 
 

 (4.4) 

 

( )

( )
( )

b 2 b.  U   U
1 2

12

3 ( ) ( ) ( ) 0.
0 0 1 12

e
yb b

E I
b s z EF O E Oby R bl R b R b R b ibb el z i

ε ε
ε

ε
ε φ

ε φ φ ε φ φ δ
λ

 ∆ + ∆ 
 

  =   ∂    − + + + +     ∂      

 
(4.5) 

 

( )

( )
( )

b 2 b.  U   U
1 212

3 ( ) ( ) ( ) 0.
0 0 1 12

e
zb b

E I
s yb EF O E Obz R bl R b R b R b ibb el y i

ε ε
ε

ε
ε φ

ε φ φ ε φ φ δ
λ

 ∆ + ∆ 
 

  =   ∂    + + + + +     ∂      

 (4.6) 

 

( ) ( ) ( )0.
1 1

b b O EG J
O b R b R bibsM e
x xb il

ε φε
ε φ δ φ

ε λ

   ∂
   = − +
   ∂   

 

( ) ( ) ( ) 0.
1 1

b b E OG J
E b R b R b ibsM e
x xb i

l

ε φε
ε φ φ δ

ε λ

  ∂
  = − +

  ∂  

 

(4.7) 

 

( )
( )

( )

6
( ) b 2 b.  U   U

1 22

( )(4 ) (2 )
1 1( ) ( )             . (4 ) (2 )

0 0
0(2 )

b b
E I

s yO b
M e

y z
b

l

EO
R bR bb b

E I O E
s y z zR b R b

e
y z zb

l ib
z i

ε
ε

ε ε
ε

ε ε εφ φ
ε εφ φ ε

ε φ
ε δ

λ

 = ∆ + ∆ 
 

   
   + Φ + − Φ   

+ + Φ + − Φ +   ∂
   + − Φ   

∂   

 

(4.8) 



89 
 

( )
( )

( )

6
( ) b 2 b.  U   U

1 22

( )(2 ) (4 )
1 1( ) ( )             . (2 ) (4 )

0 0
0(4 )

b b
E I

s yE b
M e

y z
b

l

EO
R bR bb b

E I O E
s y z zR b R b

e
y z zb

l ib
z i

ε
ε

ε ε
ε

ε ε εφ φ
ε εφ φ ε

ε φ
ε δ

λ

 = ∆ + ∆ 
 

   
   − Φ + + Φ   

+ − Φ + + Φ +   ∂
   + + Φ   

∂   

 

 

( )
( )

( )

6( ) b 2 b.  U   U
1 22

( )(4 )) (2 ))
1 1( ) ( )            . (4 )) (2 ))

0 0
0(2 ))

b b
E I

O b s zM e
z y

b
l

EO
R bR bb b O EE I y yR b R bs z e

z y yb
l ib

y i

ε
ε

ε ε
ε

ε εε φ φ
ε εφ φ ε

ε φ
ε δ

λ

 = − ∆ + ∆ 
 

   
   + Φ + −Φ   

+ + Φ + −Φ +   ∂   + −Φ   
∂   

 

( )
( )

( )

6( ) b 2 b.  U   U
1 22

( )(2 ) (4 )
1 1( ) ( )            . (2 ) (4 )

0 0
0(4 )

b b
E I

E b s zM e
z y

b
l

EO
R bR bb b O EE I y yR b R bs z e

z y yb
l ib

y i

ε
ε

ε ε
ε

ε εε φ φ
ε εφ φ ε

ε φ
ε δ

λ

 = − ∆ + ∆ 
 

   
   − Φ + + Φ   

+ − Φ + + Φ +   ∂   + + Φ   
∂   

 

(4.9) 

 

where b

sE  and b

sG  the tensile and shear modulus of bulk material. In the forthcoming 

development, a circular section of the beams is considered, hence the following geometrical 

parameters are computed: the cross-sectional area Aεb
 = π(εr)

2, the quadratic moment of the 

beam 
4( )

4

rb b
I I

y z

εε ε
π= = , and the torsional constant 

( )4

2

rb
J

εε
π= . Note that the present beam 

model and subsequent derivations of the effective mechanical response is not specific to 

textile materials, but can be applied to any lattice materials showing coupling effects between 

tension, bending and torsion (3D bone fall in this category). 

We introduce the unit vectors [ ]' ' ' T
xe Cxx Cyx Czx= , [ ]' ' ' T

ye Cxy Cyy Czy= , and 

[ ]' ' ' T
ze Cxz Cyz Czz= , where ' cos

x
Cxx θ= , ' cos yCyx θ= , and ' cos

z
Czx θ= are the 

direction cosines of x', describing the transformation between the local and global coordinate 

system in 3D (Fig. 4.3). Similarly, the components of ye  and ze  are the direction cosines of y' 

and z', respectively. 
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Fig. 4.3  Direction cosines associated with the x axis. 

 
  

Previous expressions of the resultant forces and moments correspond to a Timoshenko beam 

model expressed in discrete form. The model takes into account the contribution of both shear 

and flexural rigidity to the deformation of a beam, which proves necessary to represent 

complex yarns made of the assembly of many filaments. On the tow scale, the obtained 

properties of fiber tows through the first level of evaluation and the properties of multi-layer 

matrices are combined with the geometrical parameters (the geometrical size of the tow’s 

cross-section).  

 
 Since each beam within the fabric is equilibrated, the following equality holds true  

E(b) O(b) bF F F= − = . The equilibrium of forces over the entire fabric (lattice) writes in virtual 

power form after insertion of the asymptotic development of the variables as 
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with vε (.) a virtual velocity field choosing nil on the edges of the considered domain, and Fεb 

the sum of the extensional force b

xF
ε and transversal forces, b

yF
ε and b

zF
ε  (Eqs. (4.4-4.6)). For 

any virtual velocity field εv , supposed to be regular enough, a Taylor series development at 

the first order leads to 
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 The fabric under consideration is described as a quasi repetitive lattice of beams and is 

completely defined by the positions of the nodes and their connectivity. We denote by RN and 

RB respectively, the set of nodes and beams within the reference unit cell, which are finite 

dimensional. The fabric is quasi periodic in its deformed state. The cells are numbered by the 
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triplet of integers ( )1 2 3, ,iυ υ υ υ= . The nodes of the whole fabric can then be parameterized 

by the quadruplet ( )1 2 3 3, , , Rn n Nυ υ υ= ∈ ×ɶ ℤ . In the same way, the beams of the fabric are 

described by the quadruplet ( )1 2 3 3, , , Rb b Bυ υ υ= ∈ ×ɶ ℤ . Within the reference cell, one can 

select the origin node of a beam ( )O bɶ
 
so that it belongs to the reference cell. This origin node 

can be represented by the quadruplet ( )1 2 3, , ,n υ υ υ . Nevertheless, the end node ( )E bɶ  does not 

necessarily belong to the reference cell, but is necessarily included in an adjacent cell 

numbered by ( )1 1 2 2 3 3, ,υ δ υ δ υ δ+ + + . The triplet ( )1 2 3 3, ,δ δ δ ∈ℤ , and the end node either 

belongs to the reference cell or to a cell next to it: this means that the shift parameter, the 

integer iδ  belongs to the set { }1,0,1− . 

 
 At the present stage, we rewrite the equilibrium Eq. (3.64) after substituting expressions 

of the forces from (3.58) to (3.60) therein and ordering according to the successive powers of 

ε as 
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(4.12) 

 
 Previous equilibrium equation gives in the limit of a vanishing small parameter the 

continuum equilibrium, relying on the following mathematical result: for any regular enough 

function g, the quantity ( )
3

3

i

i
g

υ

ε ευ
∈

∑
ℤ

 can be interpreted as the Riemann integral ∫Ω λλ dg )(  

in 3-D when 0→ε . Accordingly, the previous discrete equation becomes the homogenized 

self-equilibrium equation 

( )
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v
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(4.13) 
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with the stress vector Si , which splits into a first and a second order contribution, viz. 
iii
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(4.14) 

  
The moment equilibrium is written in two different ways: one can first consider the 

equilibrium of moments for the fabric unit cell nodes, which is necessary to solve for the 

unknowns; it writes in asymptotic form as 
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 (4.15) 

Another approach involving the local equilibrium of each individual beam is considered for 

the purpose of homogenization; equilibrium is written at the center of each beam in 

asymptotic form as 
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 (4.16) 

where w(C(b)) is the rotation rate of the incorporated central beam node. The rotation rate is 

further expanded as 
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(4.17) 

 Similarly as for the equilibrium of efforts, the moment equilibrium (4.16) is 

homogenized. After some developments and simplifications and passing to the limit ε → 0 in 

the discrete sum, the moment equilibrium equation after homogenization takes the following 

form 

( )w
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i
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µ λ
λ

∂
=∫

∂Ω
 (4.18) 
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with the couple stress vectors that incorporate moments iµ , also identified on two orders, viz. 
iii
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(4.20) 

The constitutive equations for a micropolar linear (in general anisotropic) elastic solid are 

given by: 

 

( ),    , , , , ,
ijkl ijkl

s

ij kl ijkl kl ij klij kl kl
K B m B K i j k l x y zµσ χ χ= + = + =ε ε  (4.21) 

 
Where

ijkl

sK , Bijkl and 
ijkl

K µ are the micropolar fourth rank stiffness tensors. As a matter of 

comparison, for a linear and isotropic micropolar continuum, the previous general constitutive 

model simplifies to  
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αδ δ βδ δ γδ δ

= + + +

= + +
 (4.22) 

 

Where ijδ  is the Kronecker symbol, and γβακµλ  and  , , , , *  are six micropolar elastic 

constants, satisfying the relation 2/* κµµ += . λ and � are the classical Lamé constants with 

dimensions of force/length2, γβακ  and  , ,  are new micropolar constants which vanish for 

classical materials.  

 
 The general form of the constitutive equations can presently be identified from the 

expressions of the homogenized stress and couple stress tensors together with iS and i�

expressions: 
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 (4.23) 

with g the Jacobian of the transformation from Cartesian to curvilinear coordinates and R the 

position vector of any material point. 

 
 For periodical uniform structures endowed with a central symmetry, the stiffness 

coefficients are invariant under a coordinate inversion, hence the pseudo-tensor Bijkl vanishes. 

The previous constitutive equations then implies that the vectors i
1�  and i

2S should vanish; 

this leads to an important simplification of the stress and couple stress vectors 
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(4.24) 

and  
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(4.25) 

with 1
b

xF , 1
b

yF , 1
b

zF , 2
n

xM , 2
n

yM , and 2
n

zM   respectively, the first order normal and transverse 

efforts and the second order moment about x’, y’, and z’. Those expressions still involve the 

unknown displacements n
u1 , n

u2 and rotations n

0φ , n

1φ , which are determined for all nodes by 

solving the equilibrium Eqs. (3.64) and (3.69). After solving for the previous unknowns, one 

uses the expressions of the efforts and moments previously exposed to build the stress and 

couple stress vectors, iS and i� , respectively; these vectors will then allow constructing the 

stress and couple stress tensors.  

 
A dedicated code has been constructed from the proposed algorithms for the calculation of the 

effective classical and micropolar elastic constants of general repetitive fabric unit cells 

endowed with an arbitrary topology. The code uses an input file including the fabric topology 

and mechanical properties within a selected unit cell, and delivering as an output the 

homogenized mechanical properties (classical and micropolar moduli).  

 
The algorithm that performs each new elastic computation over one load increment and with 

an update of the lattice geometry is described next. 

 
 

4.5 Algorithm for the discrete homogenization in 3D framework 
 

1. Initialization of the tables of initial data. Definition of the function R such  

That                                   
1 2 3( , , )x R λ λ λ=  

2. Transformation of the expressions 
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(d) Express the first order moments: 
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4. Calculate the unknowns displacement and rotation 1u n and 0
nφ  from (4.10) and (4.14). 

5. Identify the homogenized microrotation  
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,  ,  

2 2 2

u uu uu uy yx xz z
x y zy z z x x y

φ φ φ
∂ ∂   ∂ ∂∂ ∂ 

   = − = − = − 
    ∂ ∂ ∂ ∂ ∂ ∂    

. 

6. Express the second order forces and moments as: 

(a) U u u
2 2 2
b E O∆ = −  (b) ( )b. U

2 x 2
F k

x l
 = ∆ 
 
e , ( )b.  U .

2 2 1 1(1 ) 2

k b
Lty O E i

F
y y z i

y

φ
φ φ δ

λ

   ∂
 = ∆ − + +    +Φ ∂   

e e
, 

( )b. U .
2 2 1 1(1 ) 2

bk L O E itzF
z z y i

z

φ
φ φ δ

λ

   ∂
 = ∆ + + +    + Φ ∂   

e e . 
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(c) . , .
2 1 1 2 1 1
O O i E E E O i

M k M k
x r x x r xi i

φ φ
φ δ φ φ φ δ

λ λ

       ∂ ∂
=  − +  = − +          ∂ ∂       

e e , 

( )

( )

b6 . U . (4 ) (2 ) (2 ) ,
2 2 1 112(1 )

b6 . U . (2 ) (4 ) (4 ) ,
2 2 1 112(1 )

b
LO b O E i

M k L
y tz z y z z z i

z

b
LE b O E i

M k L
y tz z y z z z i

z

φ
φ φ δ

λ

φ
φ φ δ

λ

   ∂
=  ∆ + +Φ + −Φ + −Φ     +Φ ∂   

   ∂
=  ∆ + −Φ + +Φ + +Φ     +Φ ∂   

e e

e e

( )

( )

b6 . U . (4 ) (2 ) (2 ) ,
2 2 1 112(1 )

b6 . U . (2 ) (4 ) (4 ) .
2 2 1 112(1 )

bLO b O E iM k L
z ty y z y y y i

y

b
LE b O E iM k L

z ty y z y y y i
y

φ
φ φ δ

λ

φ
φ φ δ

λ

   ∂
= − ∆ + +Φ + −Φ + −Φ     +Φ ∂   

   ∂
= − ∆ + −Φ + +Φ + +Φ     +Φ ∂   

e e

e e

 

 
Solve for variables 2u n and 1

nφ from (4.10) and (4.14). 

7. Construct the stress and couple stress vectors, 

 iS
1 1 1
b b b iF e F e F e
x x y y z z

b B
R

δ = + +∑  
 ∈

 and  

1 1( ) ( ) ( ) ( ) ( )i�
2 2 2 2 22 2
E b E b O b E b O b iM e M M e M M e
x x y y y z z z

b B
R

δ
    = + − + −∑    

   ∈

 respectively. 

8. Construct the stress tensor 
1 Ri

σ S
ig λ

∂
= ⊗

∂
 and couple stress tensor 

1 Rim �
ig λ

∂
= ⊗

∂
, 

 such that 0

m 0

s
K

K

σ

µ χ

     =   
     

ε .  

9. Compute the effective mechanical properties * * * *, , , , ,
55 66

E E G K K
x y xy xy

µ µν  in the small strain 

regime. 
 
10. Compute the incremental stress value versus the incremental strain with respect to the load 
case. 
 
11. Solve the inverse problem gives the equivalent appropriate macroscopic displacement  
consistent with chosen load case. 
 
12. Update pattern geometry to perform a new elastic computation under the new load 
increment (with a selected step size). 
 
 

This algorithm has been implemented into a dedicated code written in symbolic language to 

compute the overall response of different woven structures subjected to different loadings at 

the mesoscopic scale. 

It includes two successive parts: one first determines the effective mechanical properties of 

the considered periodic lattice in the initial small strain regime descriptive of the initial 

response of the structure (this step is described in the subsequent section 4.6). Afterwards, this 
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information is used to initialize the incremental scheme for the construction of the structural 

response in the nonlinear regime, as described in section 4.7. 

We shall consider as a specific application the modelling of dry textiles (without the resin into 

which the perform is impregnated), which consist of two (at least) families of fibbers, for 

monolayers. Nevertheless, the proposed methodology is quite general and can be potentially 

applied to any structure including two families of fibers, such as arteries or biological 

membranes. 

 

 

4.6 Effective mechanical properties of woven fabrics 
  
A woven fabric consists of two sets of interwoven yarns, called warp and weft. From a 

geometrical point of view and without considering a specific pattern, each of these yarn 

elements can be considered to be either inclined (as it passes from top to bottom of the fabric) 

or straight (as it passes over or under another yarn), as depicted earlier in Figure 3.8. In this 

section, we apply the discrete homogenization technique exposed in the previous section to 

two important types of woven fabrics, plain weave and twill (Fig. 3.8) to calculate their 

equivalent effective properties. For this purpose, simplified models based on a 3D geometrical 

description of the unit cell at the mesoscopic scale are proposed, in which the fabrics are 

assumed to be represented as networks of beams linked by articulations. The main assumption 

made throughout the construction of these models is that the yarn section remains constant 

along the curvilinear trajectory. This trajectory, namely the mean line of the yarn, is modeled 

as straight segments of beams from which the 3D yarns of the fabric are constructed. 

The first step is to build a geometrical model that is consistent and able to take into account 

the diversity of fabric geometries. For this intention, the textile is represented as a network of 

beams connected by nodes at their crossover points. These beams do not lie in the plane of the 

fabric but are interwoven to capture crimp interchange; they have axial and bending rigidities 

to allow for yarn stretch and flexion. Yarn-yarn interactions at the yarns crossing points 

clearly influence the effective properties of the material at the meso-level. Interactions 

between warp and weft yarns at the crossover points are here captured by beam segments 

connecting the nodes (see figure 3.10 (a), (b)). The crossover beams also have two modes of 

deformation, namely extension and flexion. 

 The proposed geometric description therefore is adequate for capturing the relevant 

behaviors and is more computationally efficient for effective mechanical behaviors than more 
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sophisticated geometrical descriptions. Its chief limitation is that the yarns are modeled as 

straight beams with sharp corners at the crossover points, whereas they warp around the 

crossing yarns with a smooth radius of curvature in reality. This geometry consequently 

permits configurations that are incompatible because of interpenetrations between the yarns, 

and cannot capture complex behaviors that are controlled by yarn wrapping. 

 

4.6.1 Unit cell of plain weave and twill fabric 
 
The first order homogenization schemes was recently developed by (Goda et al., 2013) for the 

determination of the effective mechanical properties of these two chosen architectures, 

stiffness matrix components are expressed as a function of material and micro structural 

geometric parameter. 

For the two chosen applications of (a) plain weave (b) Twill, the proposed geometric 

description for the unit cell of fabric and the corresponding periodicity vectors are represented 

on the same figure 4.4.     

(a) 

  
(b) 

      Weft 

                 Warp 

                 Contact 
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Fig. 4.4  Proposed geometric description for the unit cell of the fabric. (a) A 3D lattice model 

of 2D plain weave. (b) Geometrical model of an elementary cell of twill.  

 
The following geometrical parameters and material properties for plain weave and twill are 

given in Table 4.1. 

 
Table 4.1  Plain weave and twill fabric configuration parameter. 
 

weave Set of input geometric data required for modeling 

Plain Weft Lf1 = 0.618 mm -- θf =40° df  = 0.27 mm 
Warp Lp1 = 0.56 mm -- θp =40° dp = 0.25 mm 

Twill Weft Lf1 = 0.618 mm Lf2 = 0.487 mm θf =40° df  = 0.27 mm 
Warp Lp1 = 0.56 mm Lp2 = 0.41 mm θp =40° dp = 0.25 mm 

 

The mechanical properties of weft and warp made of PET (Polyethylene terephthalate) are 

given in Table 4.2; we intentionally choose very different moduli to represent an unbalanced 

fabric, leading to an expected anisotropic behavior.  

 

Table 4.2  Elastic properties of weft and warp yarns. 
 

Set of input material data  

Weft Esf =1889 MPa Gsf =756 MPa νf =0.25 
Warp Esp= 13853 Mpa Gsp= 5541 Mpa νp =0.25 
 
The mechanical properties of the yarns are the same for both unit cells. The tensile, flexural, 

and torsion rigidities of the beam segments are quantified as follows: 

 

 

 

 

      Weft 

                 Warp 

                 Contact 
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Table 4.3  Mechanical properties of weft warp and contact beams. 
 

                   Beams at   

Beam rigidity 
Weft warp contact 

Tensile 1,2
1,2

sf f
lf

f

E A
k

L
=  

1,2
1,2

sp p
lp

p

E A
k

L
=  

1,2
1,2

.sc c
lc

c

E A
k

L
=  

Flexural 
( )

1 3
1

12 sf f
tf

f

E I
k

L

=  

( )
1 3

1

12 sp p
tp

p

E I
k

L

=  
( )

1,2

1,2

3

12
.sc c

tc

c

E I
k

L

=  

Torsional 1
1

sf f
rf

f

G J
k

L
=  1

1

sp p
rp

p

G J
k

L
=  1,2

1,2

.sc c
rc

c

G J
k

L
=  

 
 
Furthermore, the geometric and material parameters for the contact beam are 
 

1,2 1 1,c f pL Lf Sin Lp Sinθ θ= , 
2

f p
c

r r
r

+
= , 

2
sf pf

sc

G G
G

+
= , and 

2
sf pf

sc

E E
E

+
=  

 
where Lc1,2, rc, Gsc, and Esc, respectively, represent the lengths, radius, shear and Young's 

modulus of the contact beams (beams connecting the warp and weft yarns at their crossing 

points). As an assumption, we consider the beam in contact has radius and mechanical 

modulus as the average value from weft and warp values.  

After homogenization, the equivalent stiffness matrix is obtained as a function of the 

geometrical and mechanical parameters of the two weave fabric. One can accordingly write 

the equivalent form of the constitutive law under the form  

 
 

 
The deformation and microcurvature components write versus the displacement gradient and 

the microrotations as  

x
x

u

x
ε

∂
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∂
, 

y
y

u

y
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∂
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∂
, y

xy z
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∂
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∂
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∂
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∂
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∂
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∂
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∂
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∂
 

 
 
The following stiffness’s matrices s

K  and K
µ   describing respectively the in-plane and 

bending behaviour are obtained for the plain weave fabric: 
 
 

0

m 0

sK

K

σ

µ

     =   
     

ε

κ
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121.7 49.70 0 0

49.7 302.2 0 0
 MPa

0 0 25.7 9.9

0 0 58.1 78.4

s
K

 
 
   =   −
 

− 

 

 
1.22 0 0 0 0 0

0 6.24 0 0 0 0

0 0 2.00 0 0 0
 N

0 0 0 5.04 0 0

0 0 0 0 1.69 0

0 0 0 0 0 6.92

K
µ

 
 
 
 

  =   
 
 
 
 

 

 
In the same manner, the equivalent stiffness matrix corresponding to the twill fabric, 
 

194.7 93.6 0 0

93.6 360.6 0 0
 MPa

0 0 34.5 15.6

0 0 89.4 115.6

s
K

 
 
   =   −
 

−   
 

3.25 0 0 0 0 0

0 10.72 0 0 0 0

0 0 3.64 0 0 0
 N

0 0 0 8.37 0 0

0 0 0 0 4.0 0

0 0 0 0 0 10.45

K
µ

 
 
 
 

  =   
 
 
 
 

 

The mechanical moduli extracted from those matrices are given in a synthetic form in the 

following table. 

 
Table 4.4 Effective homogenized moduli of plain weave and twill fabrics. 
 
Effective homogenized moduli Plain weave fabric Twill fabric 

*( )xE MPa  113.5 170.4 

*( )yE MPa  281.9 315.6 

*
xyυ  0.16 0.26 

*
xyυ  0.4 0.48 

*( )G MPa  7.90 9.44 

1( )cl mm  0.23 0.33 

1( )cl mm  0.41 0.45 
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Here, 
*
,x y

E ,
*

,xy yx
υ ,

*G  and 
1,2cl  are Young’s moduli, Poisson’s ratios, shear moduli and 

characteristics length’s of the fabrics, respectively. 

 
In the next section, based on the previous linear discrete homogenization analysis, we will 

describe how we extend this approach to account for the geometrical nonlinear behavior.  

 
 

4.7  Nonlinear modelling framework implementation by the 

discrete homogenization approach  

  
The discrete homogenization approach as explained in section 2.4 has been implemented for 

the two types of fabric. The analyses of the periodic reinforcement as representative unit cell 

(RUC) have been implemented within a dedicated code considering the impact of a variation 

of the structure geometry simultaneously in a nested manner. First, the deformation gradient 

tensor at each macroscopic incremental load (or at each macroscopic iteration) is assigned 

based on the macroscopic constitutive law. Second, we based on previous linear framework 

involving the computed compliance matrix to be transferred to the correct macroscopic 

displacement gradient that defines the controlled imposed strain loading over the 

representative unit cell. 

The incremental–iterative approach for the macro–micro computational homogenization 

method is schematically illustrated in Figure 4.5.  

 
In the next sections, the proposed methodology based on the discrete homogenization 

framework implementation is performed for the two chosen pattern of fabric under the three 

types of loading as explained in section 3.6. The verification of the correctness of the present 

methodology will be discussed from the comparison with numerical computation on the 

representative unit cell generated by TexGen and exported to ABAQUS. 

 

4.7.1  Steps of incremental–iterative discrete homogenization modelling 
approach 

 
STEP 1: At the beginning of first incremental iteration, define the constitutive law involving 

the computed compliance matrix from the linear discrete homogenization framework. 
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Step 2: Solve the RVE boundary value problem for the unknown components of the 

unprescribed strain; this is an inverse problem, the solution of which giving for each load type 

the incrementally controlled imposed strain to be applied over the representative unit cell. 

 
STEP 3: compute and store the incremental second Piola-Kirchhoff stress tensor. 
 
STEP 4: then push forward the incremental second Piola-Kirchhoff stress tensor to get the 

incremental Cauchy stress tensor. 

 

STEP 5: A new geometric and mechanical description is initialized for the RUC analysis job. 

(i.e update pattern geometry). 

 
STEP 6: next iteration start with solve the equilibrium of forces and hyper forces over the 

updated geometry of the representative unite cell. Then repeat steps from 1-5 with 

accumulation of the incremental Cauchy stress values versus the strain.  

 

The work flow steps of the coupling between the linear and geometrical nonlinear discrete 

homogenization approaches is described next as shown in figures 4.5. 
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Fig. 4.5 Schematic view of the proposed methodology  
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We next compute the nonlinear response of textile monolayers which exhibit strong 

geometrical nonlinearities, as discussed in the literature overview in the second part of this 

chapter. The constitutive yarns can be considered as flexible beam elements with low stretch. 

The interlacing and crossing of yarns give rise to complex internal deformation mechanisms, 

responsible for the nonlinear response. 

 
 

5.1 Homogenization examples and results  
 

The following representative unit cells are analyzed: a) plain weave fabric b) twill fabric, in 

order to express the stress-strain behaviour under the three types of loading, as explained 

previously for the simple 2D applications treated in section 3.6. 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1 Representative plain weave and twill unit cells top views ( 90β = �  ). 
 

 
The deformation gradient tensor expresses as   
 

1

1
xx xy

yx yy

ε γ

γ ε

+ 
=  + 

F  

 
It is applied to the RUC fabric describing the total deformation through the displacement 

gradient that is imposed by the periodic boundary conditions, whereε and 
xyγ  are the normal 

strain and shear strain respectively. The subscripts “x” and “y” denote the direction of the 

axes of the global coordinate system. Recall that only part of the total deformation gradient is 

actually controlled in a specific loading, so that one solves the RUC boundary value problem 

for the unknown components of the unprescribed strain. 

Weft 

Warp 

β 

Twill 

unit cell 

β 

Plain weave 

unit cell 
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5.1.1 Unit cell of plain weave fabric 
 
5.1.1.1 Uniaxial tension  

 
In the case of a uniaxial tensile test on a textile RUC, yarns under tensile strain tend to 

straighten, whereas the crimps of yarns in transverse direction tend to increase: this 

phenomenon is called crimp interchange. The crimp 
r

C  characterize the degree of out-of-

plane waviness of a yarn, by measuring the length of the yarn in fabric state
yarnl within the 

periodic RUC, and the periodic length RUCl of the representative unit cell that define the 

fabric, one shall defined from the previous two lengths the crimp ratio at each load increment 

as,  

1, 2 1, 2

11, 22

1, 2

yarn RUC

RUC

l l
(%)

lrC
−

=  

 

Where the subscripts “11” and “22” denote the direction of the axes of the global coordinate 

system(x, y) as (weft and warp) respectively. 

 

The prescribed deformation applied on the RVEs for the uniaxial tension in weft and warp 

directions are 

1 0 1 0

0 1 0

+ = +   
= =   = +   

F
xx xy xx

f

yx yy unprescribed

ε γ ε

γ ε
 

And 
 

1 0

1 0 1
xx xy

p

yx yy yy

unprescribedε γ

γ ε ε

+   
= =   + +   

F  

 
In the tensile loading test in weft direction shown in Figure 5.2, we observe that there is an 

important difference between the linear and geometrical nonlinear behaviour with increasing 

stretch (from 1.15 to 1.3): one obtains as one can expect from simple mechanical 

considerations a stiffer response in comparison to the linear response (from 10% to 24%), due 

to the yarns being more aligned in the direction of the applied tension. 
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� Uniaxial tension in weft  
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 

Fig. 5.2 Cauchy stress versus stretch for plain weave fabric. (a) Cauchy stress in xx-direction 

versus stretch in the same direction 

 
We next plot the evolution of the homogenized geometrical and mechanical effective 

properties versus the stretch applied in the in xx-direction. The mechanical parameters 

characterizing the derived effective micropolar behaviour are: two tensile moduli
11hE ,

22hE . 

The crimp ratio in both direction 
1

% rC ,
2

% rC .and Poisson’s ratio 
12hν ,

21hν as shown in the next 

figure 5.3 (a, b and c) respectively.  

The equivalent tensile modulus along x-direction increases continuously in the selected range 

of stretch. The tensile modulus along yy-direction has its maximum value initially and 

decreases versus stretch thereafter: this is expected due to the structure becoming stiffer in xx-

direction due to the straightening of the yarns, and softer in transverse direction, due to 

increasing crimp. The contraction 
21hν and the crimp ratio 

11
% rC decrease monotonously 

versus stretch. The Poisson’s ratio 
12hν  shows a complex evaluation as shown in figure 5.3(c), 

increasing through a maximum (the transverse contraction is maximal for 1.15λ = ) and 

decreasing thereafter. Finally, one shall expect the increase of crimp ratio in warp direction 



110 
 

22
% rC  versus stretch as shown in figure 5.3 (b) that comes from the contraction in this 

direction. 

 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.3: homogenized mechanical and geometrical parameters (a) tensile moduli

11hE ,
22hE  (b) 

crimp ratio
11

% rC ,
22

% rC . (c) Poisson’s ratio
12hν ,

21hν  versus stretch in xx- direction. 

 

(a) (b) 

(c) 
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� Uniaxial tension in warp 
 
In the same manner, we plot the evaluation of Cauchy stress and the change of the 

homogenized geometrical and mechanical parameters versus stretch applied in yy-direction. 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 5.4 Cauchy stress versus stretch for plain weave fabric. (a) Cauchy stress in yy-direction 

versus stretch in the same direction 

 
Uniaxial tension in warp direction shows an important difference between the linear and the 

geometrical nonlinear analysis (figure 5.4). In this case, the difference between the linear and 

geometrical nonlinear response increases when increasing stretch (from 1 to 1.35), with a 

maximum difference for 35% deformation equal to 102%; this is in line with the continuous 

increase of both the tensile modulus 
22hE along y-direction and the contraction 

21hν , as shown 

in figure 4.10 (a, c). Contrary to this, the tensile modulus 
11hE along x-direction and the 

contraction 
12hν decrease. In this case, the crimp ratio decreasing in the axes of loading and 

increase in the transverse direction as shown in figure5.5 (b).  
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Fig. 5.5 homogenized mechanical and geometrical parameters (a) tensile moduli

11hE ,
22hE  (b) 

crimp ratio
11

% rC ,
22

% rC . (c) Poisson’s ratio
12hν ,

21hν  versus stretch in yy- direction. 

 
 

Moreover, we next consider plain weave RUC (non-orthogonal) under uniaxial test for 

various β-angles (90 - 45), namely the angle between the periodicity vectors in weft and warp 

direction.  

(a) 
(b) 

(c) 
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Fig. 5.6 Representative plain weave unit cells top views ( 90β = �  ). 
 

Figure 5.7 shows that decreasing the angle β between the two sets of yarns from 90 up to 45 

degrees brings some more pronounced non linear effects. Moreover, it is observed that 

decreasing of β up to half of its value increases the tensile stress by about 55%; this is logical 

since there is an additional geometrical hardening effect due to the reorientation of the two 

yarns under load 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.7 Tensile Cauchy stress versus strain for the non-orthogonal plain weave 
{ }90 ,70 ,60 ,45β ∈ ° ° ° °   

 

β 
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Fig. 5.8 β  angle versus stretch in weft direction.  

 

Fig. 5.9 β  angle versus Cauchy stresses 

 

In figure 4.8, we choose different initial configurations of plain weave with a varying mutual 

orientation between warp and weft; the variation of this orientation versus uniaxial stress 

(itself computed from the applied controlled stretch) is pictured in fig. 5.9, showing overall a 

decrease of the angle between the two sets of yarns. 

It is observed that for the fabric which initially orthogonal yarns ( 90β = � ), the β  value does 

not change versus stress due to the uniaxial load being applied in the warp direction. But with 

lower values of ( 90β �
≪ ), the increase of stress leads to a decrease of β  up to reaching a 

kinematic locking between yarns: for instance, fig. 5.9 shows that this locking occurs for 

about 10 degrees when the stress reaches 250 MPa. Since we do not include contact 
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conditions between the warp and weft as physical factors responsible for the locking, we 

overestimate the locking angle in our simulations.  

 

It is also observed that although we initially choose different moduli of the warp and weft thus 

leading to an initially anisotropic behaviour, the structure becomes isotropic for a certain 

shear  β angle (at 59.2β ≈ ), as shown in Fig. 5.10 and 5.11, which compares the effective 

initial properties of plain weave structures having different relative orientations of the warp 

and weft yarns. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.10  Effective tensile modulus in weft and warp direction, ( 11E , 22E ) 
 

 
Fig. 5.11  Effective Poisson’s ratio ( xy

υ , yx
υ ) 
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5.1.1.2 Biaxial tension 

The biaxial tensile strain simulation can be achieved by applying a strain in the longitudinal 

direction of warp and weft yarns for various biaxial strain ratios, elaborated as 

2

1

k
ε

ε
=  

where 1ε  is the primary textile strain corresponding to weft direction, and 2ε  is the secondary 

strain corresponding to the warp direction. The deformation gradient tensor for biaxial tension 

then reads 

1 0

0 1
xx xy

yx yy

ε γ

γ ε

+ = 
=  = + 

F  

 
The responses under biaxial strain tension are next computed: figure 5.12 (a,b) shows the 

evolution of Cauchy stress in directions xx and yy for different values of the biaxial strain 

ratio, namely { }1, 2,3k ∈  respectively. It can be observed that a nearly linear behaviour is 

obtained in all cases. By comparison, the uniaxial case (k=0) is constructed such that no 

contraction occurs in the transverse direction.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.12 The Cauchy stress of (a) xx- direction  and (b) yy-direction versus strain 

for the unbalanced plain weave different biaxial strain ratio, k =1, 2 and 3. 

(a) (b) 
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We notice that the response is stiffer when the biaxiality ratio is increased, as expected. 
 
As shown previously in figure 5.12 (a,b), a relatively complex behavior emerges for the 

biaxial loading test. A balanced weave was studied with the biaxial strain ratio { }1, 2k ∈  to 

have a better understanding of the fabric response under a biaxial load test. The entire 

geometry of the unit cell is constructed based on the geometrical and mechanical micro 

parameters as summarized in the table 5.1 below. 

Table 5.1 Balanced Plain weave mechanical and geometric parameters 

weave Set of input geometric data required for modeling 

Plain(balanced) Weft / 
warp 

E= 1889 MPa L = 0.618 mm θ =40° d = 0.27 mm 

     
 

 For a equibiaxial loading (k=1), the stress increases linearly with relatively small change of 

the tensile moduli versus stretch (figure5.13 (a,b)). For k=2, one expects by comparison with 

previous equibiaxial situation a decrease of the crimp ratio in both directions, thus a stiffening 

of the response in both directions. But this is not exactly what happens, as shown in figure 

5.14 (c,e): there is a softening in weft direction (and conversely a hardening in warp direction) 

corresponding to a decrease (resp. an increase) of the homogenized moduli versus stretch, as 

shown in figure 5.14 (d,f). 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 

Fig. 5.13 Cauchy stress for the balanced plain weave in xx- direction, yy-direction and tensile 

moduli versus strain for different biaxial strain ratio, k =1. 

 
 

(a) (b) 
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Fig. 5.14 Cauchy stress for the balanced plain weave in xx- direction, yy-direction and tensile 

moduli versus strain for different biaxial strain ratio, k = 2. 
 
 

Due to the fact that the strain in warp is twice the strain in weft, there will be faster alignment 

of the warp with applied strain, so that this crimp change mechanism explains the computed 

response.  
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5.1.1.3 Simple shear test 

 
In this section, the shear stress is plotted versus shear angle with the following deformation 

gradient as shown in the figure 5.15; it can be observed that the shear stress response shows 

an important difference between the linear and geometrical nonlinear analysis. 

 

1 1

0 1 0 1
xx xy xy

yy

ε γ γ

ε

+   
= =   +   

F

 
 

 
Fig. 5.15 Nonlinear shear stress versus shear strain response and comparison  

with linear predictions 

 
 

5.1.1.4 Flexural behavior based on micropolar model for the balanced plain weave 

RUC 
 

We next compute the flexural behavior based on micropolar model for the balanced plain 

weave representative unit cell selected as an application of previous general nonlinear 

homogenization scheme subjected to pure bending. The general features for a beam in pure 

bending will discussed below.  

Let consider a beam with original length 
o

L (undeformed) figure5.16 (left); we assume the 

location of the position within the cross-section where 
o

Lρθ =  , in which ρ  is the radius of 
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curvature and θ  the angle, is known as the Neutral Axis: it is the place where the final 

deformed length is the same as the original undeformed length, so that no stretching takes 

place due to bending figure 5.16 (right). When the path is straight, ρ is infinite, and when the 

path has a sharp curve in it, ρ is small. 

 

 

 

 

 

 

 

Fig. 5.16 beam in bending 

 

One may further introduce the variable y as the distance from the neutral axis to any other 

radius in the cross-section as shown in figure 5.16 above. As a result, the radius of curvature 

at any y  is ( )yρ −  and the final length at any y is given by 

( )L yρ θ= −  

Recall that
o

L ρθ= . Now one can express the bending strain as, 

( )o

o

yL L

L

ρ θ ρθ
ε

ρθ

− −−
= =  

y
ε

ρ
= −  (5.1) 

Thus, equation (5.1) shows that the strain is zero at 0y = , the neutral axis, and varies linearly 

with the distance from it. For thick beams, y  can take large values, but for thin beams, y 

remains small. This is fundamentally why thick beams have higher bending stiffness in 

comparison thin ones. If the angle of rotation  θ  is very small; there the curvature
1

κ
ρ

= .  

 The bending strain can be expressed as a function of curvature as, 

 

yε κ=  
(5.2) 

We presently employ the following procedure to analyze the deformation of the balanced 

plain weave subjected to pure bending. Relying on the previous geometrical and material data 

(Table 5.1), which are used to define the geometrical and material parameters for the balanced 
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plain weave RUC. One shall observe that the crimp angle is a function in the representative 

unit cell thickness. According to this, we study the bending response with lower values of 

crimp angle, namely { }f pθ =θ 5 , 2° °∈ , as shown in figure 5.17. We assume the applied 

bending strain reaches values up to 20%. Thus, based on equation (5.2), one shall get the 

corresponding curvature value as / hκ ε=  ; the height of the RUC fsin(θ )h L= . The 

effective bending modulus is expected to depend on the ratio of the effective medium 

thickness, parameter h, to the unit cell length, evaluated as 2L cos θ , so that 

f fh / L tan / 2 / 2= θ ≅ θ , which has a small value. This rough analysis explains the weak 

nonlinear bending effect, and the fact that the overall bending modulus will increase when the 

effective stiffness increases. 

 

 

Fig. 5.17 A 3D lattice model of balanced plain weave. 

 

One shall notice that smaller crimp angles give larger range of the applied curvatures. This is 

related to the fact that thick sheets of plain weave need larger bending moment to bring 

significant differences between the linear and geometrical nonlinear bending behaviors. 

Figure 5.18 shows that the difference between the linear and geometrical nonlinear behavior 

increases with curvature κ  (from 3 to 6); a softer response is obtained in comparison to the 

linear response (from 2 % to 4%). 

      Weft 

                 Warp 

                 Contact 
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Fig. 5.18 Linear versus geometrical nonlinear evolutions of couple stress versus 
microcurvature (a) fθ 5°=   (b) fθ 2°= . 

 
One shall rely on the bending stiffness previously written in section 4.6.1, the couple stress of 

the out of plane bending 
xym  expresses versus curvature 

xyκ  as follows, 

33xy xym k κ=  

 

Thus, the softening response corresponds to a decrease of the homogenized moduli ( 33k ) 

versus curvature. Moreover, the characteristic length of the micropolar behaviour for the in-

plane bending is calculated from the rigidities: 
( )

55

33 342c s s

K
l

K K

µ

=
+

, which decreases 

versus curvature, as shown in figure 5.19 (a,b) respectively. 
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Fig. 5.19 (a) Micropolar hom
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Fig. 5.20 evolu

 
5.1.2 Unit cell of twill fab
 
In the same manner, we plot th

RUC of the twill fabric. 

 
5.1.2.1 Uniaxial tension  

 

 

 

 

 

 

 

 
 
 
 
 

Figure 5.21 Cauchy stress in
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In the tensile loading test in weft direction for the twill fabric (Figure 5.21), we observe that 

there is an important difference between the linear and geometrical nonlinear behaviour with 

increasing stretch (from 1.05 to 1.2): one obtains as one can expect from simple mechanical 

considerations a stiffer response in comparison to the linear response (from 10% to 28%), due 

to the yarns becoming more aligned with increasing stretch in the direction of the applied 

tension. 

 
5.1.2.2 Biaxial tension 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Fig. 5.22 Cauchy stress versus strain for tests in (a) xx- direction and (b) yy-direction.  

Biaxial strain ratio k =2. 
 
The responses under biaxial strain tension are next computed: figure 5.22 (a,b) shows the 

evolution of Cauchy stress in directions xx and yy for the value of the biaxial strain ratio, 
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2k =  respectively. It can be observed that a nearly linear behaviour is obtained in weft 

direction. 

 

5.1.2.3 Simple shear test 
 
Now, the shear stress is plotted versus shear angle with the following deformation gradient as 

shown in the figure 5.23; it can be observed that the shear stress response shows an important 

difference between the linear and geometrical nonlinear analysis. 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 5.23 Nonlinear path for shearing stress versus shear strain is compared with  
linear predictions 
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5.1.3 Comparison of mechanical responses for tows constructed from plain 

weave and twill unit cell 
 
Now we compare the results obtained previously for the plain weave and twill fabric during 

the three types of loading tests. 

 

5.1.3.1 Uniaxial tension  

 

 
Figure 5.24 comparisons between Cauchy stress evolutions for plain weave and twill. 

 
Figure 5.24 shows a comparison between the Cauchy stress response versus stretch for both 

plain weave and twill. The initial homogenized tensile rigidity in the weft direction are 

respectively 113.5 MPa and 170.4MPa for plain weave and twill, which leads to higher stress 

for the twill response compared to plain weave response. The stiffest response obtained for 

twill can be explained by the fact that yarns within the representative unit cell are more 

aligned in the direction in traction; we expect this tendency to be valid for any loading. 

 
5.1.3.2 Biaxial tension 
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Fig. 5.25 Comparison between Cauchy stress of both type of fabric in (a) xx- direction  and (b) yy-

direction versus strain with biaxial strain ratio, k =2. 

 
Figure 5.25 shows the comparison of the biaxial response for both types of fabric for (k=2): 

here also, twill shows a stiffer response, as for uniaxial loading conditions. Those differences 

extend the comparison of the initial homogenized moduli summarized in (Table 4.4) to the 

large strains regime. 

 
5.1.3.3 Simple shear test 

 
Fig. 5.26 Comparison between the shear stress response for plain weave and twill. 

 
The shear response shows nearly the same trend for both types of fabrics up to 0.15 shear 

strain, with a small difference occurring for large strains, as shown in figure 4.31; this can be 
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explained by the fact that the initial yarn crimp does not play an important role in simple shear 

(contrary to uniaxial loading conditions). 

In the next section, based on the previous nonlinear discrete homogenization analysis, we will 

validate the stress-strain responses obtained for the considered textile performs, by comparing 

the homogenized responses with full FE computations for a representative unit cell initially 

generated by TexGen and next exported to ABAQUS. 

 

5.2 Finite element method  
 

The practical stress analysis of solids and structures is unlikely to be studied based on 

classical methods, and currently numerical analysis, as a matter of fact in the form of the 

finite element method, is the only way by which the behavior of a structure subjected to 

complex loading can be successfully simulated. The study of the numerical analysis of 

nonlinear continua using a computer is called nonlinear computational mechanics. One shall 

summarize the finite element method as follows. It is a procedure whereby the continuum 

behavior described at infinity of points is approximated in terms of a finite number of points, 

called nodes, located at specific points in the continuum. These nodes are used to define 

regions, called finite elements, over which both the geometry and the primary variables 

(which is the dependent displacement and its derivative) in the governing equations is 

approximated. thus in the stress analysis of a solid the finite element could be for example a 

tetrahedral element defined by four nodes and the primary variables the three displacements 

components in the Cartesian direction. The governing equations describing the nonlinear 

behavior of the solid are usually formulated in a so-called weak integral form using, for 

example, the principle of virtual work or the principal of minimum potential energy. The 

finite element approximations are then introduced into these integral equations, and a standard 

textbook manipulation yields a finite set of nonlinear algebraic equations in the primary 

variable. These equations are then usually solved using the Newton-Raphson iterative 

technique (Javer Bonet and Richard D. Wood, 1997)    

 

In the current section, 3D finite element models of woven fabrics at meso-level are developed 

to evaluate the accuracy of the effective properties predicted from discrete homogenization. 

The FE model is capable of simulating elementary cells under simultaneous axial loading 

along the yarn directions. The stress evolution versus strain is calculated using the strain 

energy-based method, based on the relationship established between the strain energy of the 
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microstructure and that of the homogenized equivalent model under specific boundary 

conditions. The homogenized material properties macroscopically account for the 

heterogeneity in the tows.  

 
The finite element procedure at the meso-level involves the modeling of a single unit cell 

instead of modeling the whole fabric structure. In defining such a unit cell, it should be noted 

that it is not isolated from the adjacent cells in the fabric. Subsequently, the boundary effects 

from the adjacent cells should be taken into account: this is done by imposing a specific type 

of geometric constraints known as ‘‘periodic boundary conditions’’ on the unit cells.  

The displacement field is split into an affine part and a fluctuation *
iu with zero average,  

*
i ij j iu x u= +ɶε   

with 
ij
ɶε  the mesoscopic average strain imposed over the unit cell boundary. 

The boundary surfaces of the unit cell must always appear in parallel pairs; the displacements 

on a pair of parallel opposite boundary surfaces can be written as 

* *,  k k k k

i ij j i i ij j iu x u u x u+ + − −= + = +ɶ ɶε ε
   (5.3) 

where indices "k
+" and "k

−" identify the kth pair of two opposite parallel boundary surfaces of 

a repeated unit cell. Note that *
iu  is the same at the two parallel boundaries (periodicity), thus 

the difference between the above two equations gives 

( )k k k k k

i i ij j j ij ju u x x x+ − + −− = − = ∆ɶ ɶε ε
 (5.4) 

Since the quantities k

jx∆  are constants for each pair of the parallel boundary surfaces, for a 

specified macro strain 
ij
ɶε , the right-hand side in (5.4) becomes constant. The constraint 

equations are applied as nodal displacement constraint equations, instead of giving Eq. (5.3) 

directly as boundary conditions. 

 
 

5.3 Comparison of homogenized moduli with finite element 

results 
 
The previous results for stress-strain response are obtained with the DH technique are now 

compared with numerical results obtained from the FE method (ABAQUS), under the 

specified types of loadings (we restrict the validation of the computed response to uniaxial 

and Biaxial tests), with appropriate boundary conditions. The warp and weft yarns are meshed 

with the eight-node solid linear hexahedral element (ABAQUS element type C3D8); a total of 
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14,804 elements are used to model the balanced plain weave. In order to account for the 

possible relative displacements between the yarns, the contact with friction is introduced with 

a master/slave approach. Contact is considered to be an intrinsic character of woven fabrics 

which cannot be neglected during the meso-level analysis. Contact conditions are prescribed 

between the possible interlacing surfaces of the yarns under loading and are the same for all 

loading cases. The tangential behavior at the contact surfaces in the frame of Coulomb friction 

is defined using the penalty method with a friction coefficient selected here as 0.05, relying on 

date from (Peng and Cao, 2002). 

The deformation gradient tensor 

 

1

1
xx xy

yx yy

ε γ

γ ε

+ 
=  + 

F  

 
is applied as the RUC total deformation through the displacement of the four corner nodes and 

additional periodic boundary conditions (BCs) are imposed, whereε and γ are the normal 

and shear strains respectively. 

The results obtained with the DH technique are now validated with numerical results obtained 

from the FE method (ABAQUS), under the two types of loadings (uniaxial and biaxial loads), 

with appropriate boundary conditions. The uniaxial response for the balanced plain weave is 

shown in Fig. 5.27; a good agreement is obtained using both methods, with a maximum 

discrepancy close to 1.41% in the uniaxial test, and a relatively larger discrepancy close 15 % 

in biaxial testing conditions (Fig. 5.28). We have tested two types of element, namely the 

four-node solid linear tetrahedral element C3D 4, and the eight-node solid linear hexahedral 

element C3D8; it appears from the literature that element C3D4 behaves poorly, so we 

presently used the second element type. 
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Fig. 5.27 Comparison of the uniaxial tensile response in xx- direction for the balanced plain 

weave between the DH method and FEM simulations (ABAQUS). 

 

 
Fig. 5.28 Comparison of the equibiaxial tensile response for the balanced plain weave 

between the DH method and FEM simulations (ABAQUS). 

 
The discrepancy for the biaxial test is maximum for about 13% stretch, and may be due to the 

adopted number of elements (we consider beams as solid elements). The displacement and 

stress distributions over the RUC for both uniaxial and biaxial testing conditions for the 

balanced plain weave are pictured on Fig. 5.29 and Fig. 5.30. 
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Fig. 5.30 displacement (left)
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5.4 Identification of a strain energy density of a hyperelastic 

model of textile structures  
 
In the next section, we perform the calibration of a strain energy density inherent to 

an hyperelastic model for the plain weave tows. We rely on the expressions of the 

strain energy density given in Appendix C.7 Written in expressions (C.51) to (C.53), 

and we identify a set of material constants based on uniaxial (in weft and warp 

directions) and simple shear virtual tests. The set of material parameters shall 

minimize the difference between the responses obtained on one hand by the DH 

method, and on the other hand when directly computing the stress-strain response 

under the same loading conditions form the strain energy density. 

 
 
Based on the numerical responses computed in terms of the second Piola-Kirchhoff 

stress iiS  versus stretch iλ , a polynomial of degree three is used for interpolating 

the response curve ii iS λ− . We rely on the polynomial hyperelastic model written in 

expressions (C.51) and (C.52), with a strain energy density given by 

 ( ) ( ) ( )
pm n

22 2 1
1 2 r1 1 2 r2 1 2

0 0 0

1 1 1
W a 1 b 1 c cos k k

2 2 1
α+ β+ γ+

α β γ
α= β= γ=

= λ − + λ − + θ + λ λ + λ λ
α + β + γ +

∑ ∑ ∑
∼

 

with r1 r2a ,b ,c , k , kα β γ  the set of material parameters to be identified. Note that the two 

coefficients r1 r2k , k  are required to introduce a dependency of the two stress components 

11 22S ,S  versus both stretches.The plain weave fabric is initially orthogonal and will 

remain orthogonal (so that ( )cos θ 0= ), so that the coefficients cγ  can be given nil 

values. 

One may further simplify the previous expressions as 
 

( ) ( )1 2
11 1 1 2 2 1 2

0

2 ,+

=

= + +∑
m

r r
S a k kα

α
α

λ λ λ λ ( ) ( )2
22 2 1 1 2 2 1

0

2
=

= + + +∑
m

r r
S b k kβ

β
α

λ λ λ λ
 

 
(5.5) 

12
0

cos
=

= ∑
p

S c γ
γ

γ

θ  

The material parameters are identified based on virtual tension, biaxial and simple shear tests 

performed over the unit cell of balanced  plain weave; their identification proceeds from the 

minimization of the following functional with respect to the set of parameters r1 r2a ,b ,c , k , kα β γ   
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 ( ) { }
r1 r 2

1/22 2 2e DH DH DH
r1 r 2 11 11 22 22 12 12

a ,b , c ,k ,k
Min S a , b ,c , k , k :

α β γ
α β γ = − + − + −S S S S S S    

 
built as the quadratic measure of the error between the DH stress components and their analytical 

counterpart obtained from the hyperelastic potential. Note that it is necessary to incorporate 

therein the stresses obtained from the three considered deformation modes simultaneously, so 

that the identified strain energy density has the capability to properly describe the response of the 

networks under different loadings. The stress responses are adjusted with a third order 

polynomial, using the least square procedure in the Matlab toolbox. 

Relying on these first two expressions of the two components of the second Piola-

Kirchhoff stress and on the computed responses obtained by DH, the material 

constants of the model are identified from a least square method (9 sampling points 

are used), within uniaxial tension and biaxial tension with strain ratio, namely k=2 

load tests as shown below. 

 

 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 
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Fig. 5. 31 Second Piola-Kirchhoff stress components within (a) uniaxial tension (b) biaxial 
tension for biaxial strain ratio (k=2), response from nonlinear discrete homogenization and 

from the hyperelastic model 
 

Figure 5.31 (a) shows a good agreement between the prediction of the hyperelastic 

model as to the evolution of 11S  versus the stretch applied in weft and the 

evolutions computed by DH. 

Similarly, the stress component 11S and 22S  within biaxial load test: fig. 5.31 (b) 

shows that the identified model is able to capture accurately the numerical response 

computed by discrete homogenization. Note that the stress amplitude in warp 

direction is higher compared to the stress magnitude in weft direction, as expected 

from the choice of biaxial strain ratio k=2. 

 

In the same manner, we identify the set of remaining coefficients { }cγ  based on 

numerical results corresponding to simple shear tests. The expression of the 

components 12S  obtained by the proposed hyperelastic model has been previously 

given in equation (C.53), with the angle θ  between both sets of fibers changing 

during ongoing shear. A polynomial of degree three in the cosines of the angle is 

used for interpolating the numerical response obtained by homogenization.   

 

(b) 



137 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Fig. 5.32 Second Piola-Kirchhoff stress 12S  response based on the nonlinear discrete 

homogenization analysis and equivalent response from hyperelastic model 

The identified material constants of the strain energy function are summarized in 

the table 5.2 below. 

 
Table 5.2: Optimal material parameters of the potential function within multi-mode of deformation. 
 

1a

[ ]MPa

 

2a

[ ]MPa

 

3a

[ ]MPa

 

1b

[ ]MPa

 

2b

[ ]MPa

 

3b

[ ]MPa

 

1r
k

[ ]MPa

 

2r
k

[ ]MPa

 

1c

[ ]MPa

 

2c

[ ]MPa
 

3c

[ ]MPa

 
-7.73 -211.3 153.6 -106.5 -164.1 151.2 94.25 -14.39 4.83 10.514 3.521 

 

The strain energy density depends in general on at most only three independent invariants, 

which are the components of the right Cauchy-Green tensor along the fibers. If we want to 

express the strain energy density versus the 6 invariants, we easily can show that only three of 

those six invariants will be really independent. Previous classification highlights that the true 

invariants are in fact the three projections of the Cauchy Green tensor on the fiber directions, 

and that using the set of 8 invariants 1I  through 8I  is somewhat artificial (especially the 

decoupling between pure matrix influence via invariants 1 2,I I  and influence of the fibers via 

the other invariants). 
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It is further obvious that many structures prone to such geometrical nonlinearities can be 

modeled by a hyperelastic response; the interest to develop computational schemes based on 

discrete homogenization lies in the ability to determine efficiently and accurately the 

coefficients of such hyperelastic models, without recourse to a FE expensive analysis. 

Note that we have used one possible formulation of the strain energy density versus the 

stretches, but we could also alternatively express it though the independent principal 

invariants considering two structural tensors representative of the two principal geometrical 

orientations present in such textile monolayer’s. 

 

 

5.5 Conclusions 
 
We have performed meso-level analysis of the mechanical behavior of textile monolayers to 

construct effective anisotropic micropolar continuum models. The discrete asymptotic 

homogenization method delivers a micropolar effective medium at the mesoscopic level, from 

the description of the textile as a lattice of beams. Each yarn within the textile is modeled as a 

Timoshenko beam at the microscopic scale. As the main novel aspect, the nonlinear behavior 

of such networks under large strains was investigated. The plain weave and twill tows have 

been selected as case studies and have been analyzed in detailed. The derivation of such 

effective mechanical properties of textile from micromechanical analyses is quite interesting, 

moreover the change of these properties during incremental deformation have been identified, 

since those properties haven’t been measured up to now, due to the discrete nature of textiles. 

On the other hand, the nonlinear stress strain response was analyzed incrementally under three 

type of loading cases: uniaxial, biaxial and simple shear, taking into consideration the 

structure geometry changes. The homogenization scheme is quite general and versatile 

enough to be applicable for any networks having a periodical architecture. The obtained 

effective continuum models at the mesoscopic level may be further used at the next scale level 

to perform simulations of shape forming operations involving dry textiles. as the nonlinear 

hyperelastic constitutive laws for fabric consists of two families of fiber has shown, one shall 

use the stress strain values in calibration of strain energy hyperelastic model and identify of 

the material constants.A relatively good agreement has been obtained between the stress strain 

results determined from discrete homogenization and those computed numerically by the 

sequential FE homogenization from the fiber scale to the tow scale. 
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 The representation of yarns could be improved by implementing a more elaborate model of 

the yarn behavior. This micromechanical approach is particularly interesting and novel, due to 

the difficulty to measure such effective properties for textiles considering their discreteness. 

The proposed homogenization technique proves efficient from a numerical point of view, and 

it has a great versatility as to the topology of the textile armor, which makes it a suitable tool 

to explore and compare various textile architectures for both single and multilayers 

configurations in future developments. Other factors that have been discarded in the present 

contribution can be incorporated in extensions of the model, like yarn transverse 

compressibility, a more accurate representation of the shape of the yarn, and a better 

description of contact between yarns up to friction 
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Abstract
The consideration of higher order gradients of the kinematic variables is required 

when localization of the deformation takes place within distances comparable or 

less than the typical microstructure size or spacing. This issue is of relevance in 

homogenization theories when the load applied to a representative unit cell can no 

more be considered as homogeneous. We presently address the issue of 

constructing an effective continuum medium from an initially discrete medium 

(lattice material) exhibiting such strong variations of the deformation field, due to 

non affine motions of the internal degrees of freedom under an externally applied

strain field. We presently focus on lattice structures having a regular architecture, 

so that a representative unit cell can be identified at a mesoscopic level. The 

individual elements of the unit cell are described as beams endowed with a tensile 

and flexural rigidity. 

We presently extend the first order homogenization schemes recently developed 

for the determination of the effective mechanical properties of periodical lattices 

considered as Cauchy or micropolar continua (Dos Reis and Ganghoffer, 2012) 

towards second order gradient continua. The expressions of the stresses and

hyperstresses of the second order effective continuum are obtained by an 

identification of the principle of virtual power of internal forces for both the 

postulated equivalent second order continuum and the obtained homogenized 

continuum. The internal lengths of the second order gradient continua are 

evaluated versus the obtained effective second order mechanical moduli. The

proposed methodology for the scale transition accounting for strain gradient effects 

is firstly developed in a 1D situation; the first and second order effective tensile 

and bending rigidities of a one-dimensional microstructured beam are evaluated; 

these moduli are then used at the structural level to determine the overall tensile

response of an effective beam obeying a second order grade continuum behavior.

An extension of the homogenization technique to the two-dimensional case is then 

presented. The obtained constitutive law relates the stress and hyperstress tensors 

to their conjugates kinematic variables, respectively the first and second order 

displacement gradients, which are evaluated from the topology and microstructural 

properties of the initial lattice. First applications to different lattices illustrate the 

proposed methodology, including the square, hexagonal, triangular lattices 
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representative of biological membranes, and the zig-zag lattice, representative of an 

undulated filament or yarn. The internal lengths reflecting scale effects have been 

formally computed for the two types of enrichment of the classical Cauchy 

continuum, either by considering higher order gradients of the kinematic variables 

or micropolar degrees of freedom. 

It is observed that there is a similarity in the methodologies used to express the 

transverse forces and hyper forces in the second order grade model, and the 

corresponding transverse forces and moments in the micropolar continuum model.

This similarity noticed in such comparison between the expressions (see equation 

(33)) written in the second order grade model, and the corresponding expression 

(see Appendix B (20)) in micropolar continuum model. In both methodologies, the 

stiffness matrix relating the nodal forces and moments to their conjugated 

kinematic nodal variables are assembled by evaluating and assembling the work of 

internal forces versus the vector of kinematic d.o.f.The work of internal forces is 

required in order to obtain the second order derivative of the vertical displacement 

and to extract the coefficient of the kinematic conditions in each model lead to the 

determination of the stuffiness matrix ((B (26))). Finally, it is easy to integrate the 

virtual work of inter-efforts to get the expression of the forces and hyperforces in 

the second order gradient elastic model (equations (34) through (37)), or to express 

the transverse forces and moments in the micropolar model. This is discussed in 

detailed manner later on in this chapter in section three based on a one-dimensional 

homogenization example. 

When we especially consider the beam undergoing flexion, a third order 

displacement function with four constants is considered at the onset. In the 

micropolar (or Cosserat) theory, the four kinematic conditions are expressed versus 

the vertical displacement and microrotation as two independents degree of

freedoms. Instead of that, the four kinematic conditions are expressed versus the 

vertical displacement and its derivatives at the origin and extremity nodes in the 

second order gradient model.

This chapter is organized as follows: we first present the description of the 

kinematics (section  2), whereby the discrete virtual displacement field of the 

lattice nodes is related to the controlled gradients imposed on the unit cell, up to the 

second order. The forces and hyperforces of the discrete lattice are then identified, 

based on the expression of the virtual power of internal forces (section 3). The 
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homogenization process leading to the identification of the effective second order 

continuum is presented in section 4. The example of a one-dimensional 

microstructured beam subjected to flexion and extension is treated to illustrate the 

proposed homogenization scheme (section 5). We conclude this contribution 

(section 6) by a synthetic overview of the main thrust of the paper and a few 

perspectives of development. 

A few words regarding notations are in order: vectors and higher order tensors are 

denoted as boldface symbols (expect in the 1D case where they reduce to scalars).

We submitted the present work of this chapter as an article in the proceedings of 

the 5th International Conference on Computational Methods, Vol.1, 2014, 

(ICCM2014), which was held in Cambridge, at 28th-30th July 2014. This work has 

been published as a special issue assigned an ISSN 2374-3948 (online), with 

Scientech Publisher llc, USA as the official publisher.
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1. Introduction

The recent period has witnessed the development of new classes of cellular solids and

lattice materials used in a wide range of applications in engineering, including light-

weight structures and energy absorption systems, especially due to the fact that

lattice-like materials have an architecture that usually enhances the static and dy-

namic properties in comparison to bulk materials. Periodic lattice structures consist

of the assembly of structural elements (typically beam elements) jointed at hinges

and organized according to a specific discrete topology. The effective properties of

such lattices are depending upon the internal topology of the beam elements within

the representative unit cell, the relative density and the material properties of the

structural microelements. Lattices endowed with an original mechanical behavior

due to the presence of an inherent microstructure still raise the continuous interest

of researchers [Gibson, 2005]. The relationship between the material microstructure

and the resulting properties is the key to optimization and design of lightweight,

strong, and tough materials and structures [McVeigh et al., 2006].

An important category consists of lattices having a (discrete) kinematics and

topology leading to an effective behavior requiring generalized continuum models

at the macroscopic scale of description. Such effects are noticeable when the speci-

men dimensions are comparable with the cell size [Lakes, 1986]. However, they are

not easy to evidence from a direct analysis at the macroscopic scale. The first mo-

tivation of micromechanically inspired analyses is then an increased understanding

of the behavior of those lattices in certain loading situations (concentrated forces,

tolerance to damage, perforations), [Warren and Byskov, 2008], certain geometries

[Liu and Su, 2009; Yoo and Jasiuk, 2006], or when submitted to heat exchanges

[Kumar and McDowell, 2009; Gu, 2001]. For example, contributions of [Fatemi et

al., 2002] and [Rosenberg and Cimran, 2003] show that the variation of the stress

concentration at the interface between bone and prosthesis can be explained by

the micropolar structure of the medium. A second motivation of homogenization

techniques is their use as a tool to conceive and calculate novel structural materials

exhibiting unconventional mechanical properties or behaviors, like generalized con-

tinua, as exposed in recent contributions, [Forest, 1998, 2002], [Hirschberger et al.,

2009], [DosReis and Ganghoffer, 2012], and references therein. A third motivation

of deriving mesoscopic models of lattices at an intermediate scale is the reduction

of the induced computational cost, since direct numerical simulations for full lat-

tices would be computationally too expensive for large scales structures, if useful at

all. Therefore, methods have been developed over the last two decades to replace

the initial lattice by an effective continuum endowed with representative mechani-

cal effective properties. One such method that has been prolific is the double-scale

asymptotic expansion, its principle goes back to the work of [Sanchez-Palencia,

1983]. This approach has been applied to reticulated structures in [Cioranescu and

Saint-Jean Paulin, 1999] and to other periodical structures in [Boutin, 1996]. Several

variations were then developed for the homogenization of beam lattices: [Pradel and
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Sab, 1998] and [Sab and Pradel, 2009] suggested to treat homogenization of beam

lattice in a way similar as the homogenization of media made of discrete particles;

the resolution of the unknowns is done by those authors by minimizing an energy

functional. [Moreau and Caillerie, 1998] and [Tollenaere and Caillerie, 1998] devel-

oped a method which uses only one variable in the asymptotic expansions; the work

of those authors is however limited to lattices endowed mainly with an extensional

behavior. Later on, [Boutin and Hans, 2003; Boutin et al., 2010] proposed a dy-

namical formulation of the balance of forces to solve vibration problems, essentially

applied to square unit cells.

The use of gradient elasticity as a convenient framework for materials and struc-

tures showing scale effects traces back to more than a century and a half ago. Such

scale effects become noticeable when the wavelength of the loading or deformation

field become comparable to the microstructure size or spacing, in such situations,

and due to the lack of internal lengths scales, the classical elasticity theory fail-

s to describe such behaviors, thus requiring enhanced elastic theories incorporat-

ing intrinsic parameters and length scales to correlate the microstructure with the

macrostructure. Such extensions fall into different classes of models, known in the

literature as micropolar theory developed by the Cosserat brothers, couple-stress

theory (Cosserat model with constrained rotations [Koiter, 1964], strain gradient

theory [Toupin, 1962], micromorphic, microstretch and micropolar elasticity theo-

ries [Eringen, 1999], and fully non-local elasticity [Eringen, 1992].

In this work devoted to the construction of second order elastic models for

discrete beam lattices, we expose a new homogenization scheme developed to sub-

stitute an initially discrete medium in the form of a periodic lattice by a second

order effective continuum in the elastic range. We focus in this contribution on

one-dimensional homogenization, although the initially discrete lattice generally

occupies a two-dimensional domain in space: this means that the identified elemen-

tary unit cell is repeated by periodic translation in one dimension only. We shall

first expose into details the technical steps required to construct the effective second

order continuum, thereby highlighting the forces and hyperforces dual to the first

and second order kinematic variables in the sense of the virtual power of internal

forces. The proposed method is a variant of similar homogenization schemes already

developed for second order continuum [Kouznetsova et al., 2002], with the main d-

ifference that the topology of the initial medium is discrete.

The outline of this contribution is as follows: section 2 is devoted to the description

of the kinematics, whereby the discrete virtual displacement field of the lattice nodes

is related to the controlled gradients (imposed on the unit cell), up to the second

order. The forces and hyperforces of the discrete lattice are then identified, based

on the expression of the virtual power of internal forces (section 3). The homoge-

nization process leading to the identification of the effective second order continuum

is presented in section 4. The example of a one-dimensional microstructured beam

subjected to flexion and extension is treated to illustrate the proposed homogeniza-
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tion scheme (section 5). We conclude this contribution (section 6) by a synthetic

overview of the main thrust of the paper and a few perspectives of development.

A few words regarding notations are in order: vectors and higher order ten-

sors are dentoed as boldface symbols (expect in the 1D case where they reduce to

scalars).

2. Displacement functions and derivatives for a beam

In order to set the stage, we write a general displacement function within a periodic

continuous lattice, variable V ε(x, y), writes [Boutin, 1996]

V ε(x, y) = V0(x, y) + εV1(x, y) + ε2V2(x, y) + ... (1)

with x the macroscopic variable of the overall lattice (describing variations of

the field for different unit cells) and y =
x

ε
the microscopic periodical variable of

period l = εL, describing fine variations within the considered unit cell [Cioranescu

and Paulin, 1999; Sanchez-Palencia, 1983]. The small non-dimensional parameter

ε represents the ratio of the identified unit cell size l to a macroscopic length L

representative of the whole lattice. We accordingly rely on the double asymptotic

expansion versus the spatial variables x and y at macroscopic and microscopic

scales respectively. Any kinematic variable like the virtual velocity field is then

made dependent upon both scales through these two variables.

Since the first order leading term of previous asymptotic expansion is supposed

to be representative of the whole unit cell kinematics, the dependency on the micro-

scopic variable is dropped therein, thus the differential of the previous displacement

field then writes

dV ε (x, y) =
∂V0(x)

∂x
dx+ε

(

∂V1(x, y)

∂x
dx+

∂V1(x, y)

∂y
dy

)

+ε2
(

∂V2(x, y)

∂x
dx+

∂V2(x, y)

∂y
dy

)

+...

(2)

with the relation linking the macroscopic to the microscropic variables dy =
1

ε
dx.

Equation 2 then becomes

∂V ε (x, y)

∂x
=

∂V0(x)

∂x
+

∂V1(x, y)

∂y
+ ε

(

∂V2(x, y)

∂y
+

∂V1(x, y)

∂x

)

+ ... (3)

The variable x is the slow variable, considered to be constant within any rep-

resentative unit cell, whereas y =
x

ε
is the fast variable describing the variations

occurring within the unit reference cell. This means that one can rewrite equations

(??) and (3) under the form:

V n,ε(x, y) = V0(x) + εV n
1 (x, y) + ε2V n

2 (x, y) + ... (4)
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∂V n,ε (x, y)

∂x
=

∂V0(x)

∂x
+

∂V n
1 (x, y)

∂y
+ ε

(

∂V n
2 (x, y)

∂y
+

∂V n
1 (x, y)

∂x

)

+ ... (5)

The integer subscript n associated to the node numbering indicates that the

function varies within the unit cell (its absence would indicate that the function is

constant within the unit cell).

n1 n2 n3 ... n1 n2 n3 ... n1 n2 n3 ...

cellule 1 cellule 2 cellule 3   ...

Fig. 1. Structured one-dimensional beam

We next set a relation between the displacement function of a generic node ni

and the displacement function of the similar node ni, but which belongs to the

neighbouring cell, as pictured on figure 1. We consider a node ni occupying the

position (x, y) = (a, y); equations (5) and (4) then deliver:

V n,ε(a, y) = V0(a) + εV n
1 (a, y) + ε2V n

2 (a, y) + ... (6)

∂V n,ε

∂x
(a, y) =

∂V0

∂x
(a) +

∂V n
1

∂y
(a, y) + ε

(

∂V n
2

∂y
(a, y) +

∂V n
1

∂x
(a, y)

)

+ ... (7)

The similar node ni that belongs to a neighbouring cell occupies the position

(x1, y) = (a+ εL, y); one can then write a Taylor series expansion of the equations

(6) and (7), as follows:

V n,ε(a+ εL, y) ≈ V0(a) + ε

(

V n
1 (a, y) + L

∂V0

∂x
(a)

)

+ ε2
(

V n
2 (a, y) + L

∂V n
1

∂x
(a, y) +

L2

2

∂2V0

∂2x
(a)

)

(8)

∂V n,ε (a+ εL, y)

∂x
≈

∂V0

∂x
(a) +

∂V n
1

∂y
(a, y)

+ ε

(

∂V n
2

∂y
(a, y) +

∂V n
1 (a, y)

∂x
+ L

(

∂2V0

∂2x
(a) +

∂2V n
1

∂x∂y
(a, y)

))

(9)

One may then formulate the assumption that the second order cross-derivative
∂2V n

1

∂x∂y
(a, y) vanishes. One justification of this assumption is to get rid of an addi-

tional (useless) degree of freedom in view of the forthcoming resolution procedure.

Based on this assumption, equations (8) and (9) become
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V n,ε(a+ εL, y) ≈ V0(a) + ε

(

V n
1 (a, y) + L

∂V0

∂x
(a)

)

+ ε2
(

V n
2 (a, y) + L

∂V n
1

∂x
(a, y) +

L2

2

∂2V0

∂2x
(a)

)

(10)

∂V n,ε (a+ εL, y)

∂x
≈

∂V0

∂x
(a) +

∂V n
1

∂y
(a, y) (11)

+ ε

(

∂V n
2

∂y
(a, y) +

∂V n
1 (a, y)

∂x
+ L

∂2V0

∂2x
(a)

)

As a summary of previous steps, the equations to be used in the sequel are (6),

(7), (10) and (11). The forces and hyperforces conjugated to the kinematic first and

second order variables are next identified based on the writing of the virtual internal

work.

3. Determination of the forces and hyperforces from the virtual

work principle

We consider a single beam of length lb = εLb in equilibrium under the action of

two types of forces (the reader is referred to figure 2): classical forces TO, TE and

hyperforces mO,mE (equivalent in some sense to couples in the case of bending)

applied to the beam extremities.

Fig. 2. Static variables attached to a beam

We express the displacement field of the representative deformation of the beam,

described as a third order polynomial

v(s) = a s3 + b s2 + c s+ d (12)

The first and second order derivatives follow successively as
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dv(s)

ds
= 3as2 + 2bs+ c (13)

d2v(s)

d2s
= 6as+ 2b (14)

One considers the origin and extremity nodes, denoted successively O et E,

with actual coordinates on the double spatial scale (x, o) and (x, e) respectively.

The expression of the displacements (6) and (7) of the extremity nodes of the beam

are then

V O,ε(x, o) = V0(x) + εV O
1 (x, o) + ε2V O

2 (x, o) + ... (15)

∂V O,ε

∂x
(x, o) =

∂V0

∂x
(x) +

∂V O
1

∂y
(x, o) + ε

(

∂V O
2

∂y
(x, o) +

∂V O
1

∂x
(x, o)

)

+ ... (16)

V E,ε(x, e) = V0(x) + εV E
1 (x, e) + ε2V E

2 (x, e) + ... (17)

∂V E,ε

∂x
(x, e) =

∂V0

∂x
(x) +

∂V E
1

∂y
(x, e) + ε

(

∂V E
2

∂y
(x, e) +

∂V E
1

∂x
(x, e)

)

... (18)

One may further simplify the notations by rewriting previous equations as

V0(ao) = V0(ae) = V0 (19)

V O
1 (x, o) = VO1; V O

2 (x, o) = VO2 (20)

V E
1 (x, e) = VE1; V E

2 (x, e) = VE2 (21)

∂V0

∂x
(x) = dV0 (22)

∂2V0

∂2x
(x) = d2V0 (23)

∂V O
1

∂y
(x, o) = dVO1 (24)
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∂V O
2

∂y
(x, o) +

∂V O
1

∂x
(x, o) = dVO2 (25)

∂V E
1

∂y
(x, e) = dVE1 (26)

∂V E
2

∂x
(x, e) = dVE2 (27)

One can then express the displacement function of the beam, previous third

order polynomial expression (12), using the terms of the displacement function

at the extremity nodes, based on equations (15) through (18), by solving for the

unknowns a, b, c and d the following equations:

v(0) = V O,ε(x, o) (28)

v(εLb) = V E,ε(x, e) (29)

dv

ds
(0) =

∂V O,ε

∂x
(x, o) (30)

dv

ds
(εLb) =

∂V E,ε

∂x
(x, e) (31)

After solving these equations, using the simplified terms of the equations (19)

through (27), one then obtains for the second order derivative
d2v(s)

d2s
the following

expression:

d2v(s)

d2s
=

−2

Lb
3ε2

(−3sLbdVE1 − 3sεLbdVO2 − 6sεVO2 + 6sεVE2 − 3sLbdVO1

− 3sεLbdVE2 − 6sVO1 − 6sLbdV0 + 6sVE1 + 2ε2Lb
2dVO2

+ 3ε2LbVO2 − 3ε2LbVE2 + 2εLb
2dVO1 + ε2Lb

2dVE2 + 3εLbVO1

+ 3εLb
2dV0 + εLb

2dVE1 − 3εLbVE1 (32)

Extracting the coefficients of the vector

[dV0, VO1, VO2, dVO1, dVO2, VE1, VE2, dVE1dVE2]

then leads to the determination of the stiffness matrix; multiplication by

EsIz =
Esε

3t3b
12

and integrating further lead to the following expressions of the

forces and hyperforces:
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TO = kfb

(

Lb

2
(2dV0 + dVO1 + dVE1 + ε (dVO2 + dVE2))

+VO1 − VE1 + ε (VO2 − VE2))
)

(33)

TE = −kfb

(

Lb

2
(2dV0 + dVO1 + dVE1 + ε (dVO2 + dVE2))

+VO1 − VE1 + ε (VO2 − VE2))
)

(34)

mO = kfb

(

L2
b

6
(3dV0 + 2dVO1 + dVE1 + ε (2dVO2 + dVE2 ))

+
Lb

2
(VO1 − VE1 + ε (VO2 − VE2 ))

)

(35)

mE = kfb

(

L2
b

6
(3dV0 + dVO1 + 2dVE1 + ε (dVO2 + 2dVE2 ))

+
Lb

2
(VO1 − VE1 + ε (VO2 − VE2 ))

)

(36)

with the bending stiffness therein kfb =
Esε

2t3b
L3
b

.

The method used to obtain these results relies on the finite element method

leading to the stifness matrices for a beam element, as described in the two Appen-

dices.

4. Homogenization of the discrete lattice based on the virtual

work of internal forces

The expressions of the efforts obtained in previous section have been obtained from

the principle of virtual work, or equivalently the principle of virtual power, since

we restrict to a static situation. We are still faced with the issue of the choice

of the virtual velocity field: we presently select a first order velocity field at the

first order in the small parameter ε. Drawing a parallel with the expressions of the

displacement vectors, equations (5) and (4) deliver

V̇ n,ε(x, y) = V̇0(x) = V̇0 (37)

∂V̇ n,ε (x, y)

∂x
=

∂V̇0(x)

∂x
+

∂V̇ n
1 (x, y)

∂y
= dV̇0 + dV̇n1 (38)
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A Taylor series expansion to the second order of previous equation (37) allows

us to write at a point with the same index n, but located in a contiguous cell (at

a distance εL of the slow variable x) the following expansion of the virtual velocity

field up to the second order gradient (based on previous notations)

V̇ n(x+ εL, y) ≈ V̇0 + εL dV̇0 +
ε2

2
L2 d2V̇0 (39)

In a similar manner, a first order Taylor series development of equation (38)

allows writing

∂V̇ n,ε (x+ εL, y)

∂x
≈ dV̇0 + dV̇n1 + Ld2V̇n1 + εL d2V̇0 (40)

Using the same hypothesis as done before for the virtual displacements (2), one

shall assume that d2V̇n1 = 0; this assumption will provde a simplification in the

forthcoming developments. Equation (40) then becomes

∂V̇ n,ε (x+ εL, y)

∂x
≈ dV̇0 + dV̇n1 + εL d2V̇0 (41)

The virtual power for the whole lattice writes as the sum of the product of forces

by their conjugated kinematic quantities at each node,

P =
∑

TiV̇i +mi
∂V̇i

∂x
(42)

One can further decompose the sum as a double sum on the cells and on the

nodes within each cell

P =
∑

c∈Z

(

∑

n∈B

TiV̇i +mi
∂V̇i

∂x

)

=
∑

c∈Z

Pe (43)

with i = (c, n), Z the set of all cells of the lattice, B the set of all nodes of an

elementary cell, and Pe the virtual power expressed on an elementary cell. One can

further decompose the virtual power over the elementary unit cell as

Pe =
∑

n∈B

TiV̇i +mi
∂V̇i

∂x
(44)

Since the sum of efforts vanishes for each node of the lattice due to equilibrium,

it only remains the two edge nodes since the contribution of the internal nodes to

the virtual power vanishes, so that one obtains

Pe = ToV̇o +mo
∂V̇o

∂x
+ TeV̇e +me

∂V̇e

∂x
(45)
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Due to the considered self-equilibrium of the beam, one further obtains the

efforts To = −Te and hyperforces mo = −me, thus one can simplify the expression

of Pe

Pe = Te

(

V̇e − V̇o

)

+me

(

∂V̇e

∂x
−

∂V̇o

∂x

)

(46)

One further expands the differences therein as follows

(

V̇e − V̇o

)

= V̇0 + εL dV̇0 +
ε2

2
L2 d2V̇0 − V̇0

= εL dV̇0 +
ε2

2
L2 d2V̇0 (47)

(

∂V̇e

∂x
−

∂V̇o

∂x

)

= dV̇0 + dV̇n1 + εL d2V̇0 − dV̇0 + dV̇n1

= εL d2V̇0 (48)

Thus, we obtain the virtual power of internal forces in discrete form as

P =
∑

c∈Z

Te

(

εL dV̇0 +
ε2

2
L2 d2V̇0

)

+me

(

εL d2V̇0

)

(49)

If one considers the fact that a unit cell is a small material element, so that

dx = εL at constant macroscopic length L, letting the length of a small element

tend to zero ε → 0, it follows then the homogenized expression of the virtual power

of internal forces

lim
ε→0

P =

∫

Ω

(

Te

(

dV̇0 +
ε

2
Ld2V̇0

)

+me d
2V̇0

)

dx (50)

=

∫

Ω

(

TedV̇0 +
(

Te
ε

2
L+me

)

d2V̇0

)

dx (51)

with Ω representing the domain of the whole structure. Previous Riemann inte-

gral represents the virtual power of internal forces in the constructed effetive second

order gradient 1D continuum. One can notice therein the appearance of two prod-

ucts of forces with conjugated kinematic variables, the force Te multiplied by the

derivative of the velocity dV̇0, and the hyperforce
(

Te
ε

2
L+me

)

equivalent to a

couple multiplied by the second order derivative of the velocity, quantity d2V̇0.

We recall in general that in the discrete homogenization scheme, the static vari-

ables highlighted as dual to the kinematic variables (the first and second order

spatial strain gradients) are not directly the Cauchy first and second order stress

tensors, but (first and second order) stress vectors. The first order Cauchy stress is



March 3, 2015 15:1 WSPC/INSTRUCTION FILE paperIJAM0705

Instructions for Typing Manuscripts (Paper’s Title) 157

then simply reconstructed in this 1D example from the obtained transverse force

dual to the kinematic variable dV̇0, second order tensor

σ = Tee
b ⊗ eb⊥ + eb⊥ ⊗ eb

with eb the unit vector along the beam, and eb⊥ the unit orthogonal vector.

Similarly, the hyperstress third order tensor S is reconstructed from the static vari-

able
(

Teε
L
2 +me

)

dual to the kinematic scalar quantity d2V̇0 in the virtual power

of internal forces, thus giving

S =

(

Teε
L

2
+me

)

eb⊥⊗ eb ⊗ eb

in which the tensor basis has to be symmetrized with respect to the second and

third indices, since S is an eulerian stress enjoying symmetry as does the first order

Cauhy stress.

It remains at this stage to solve the localization problem, that is to determine

the four kinematic unknowns Vn1, Vn2, dVn1 and dVn2 for each node. The balance of

forces defined in equations (33) through (36) have to be satisfied for each node and

for each of the successive powers of ε. There are two series of forces Te and me and

two different powers in ε, thus there are in total four series of (different) equations

per node to be solved for the same number of kinematic variables. Plugging then

back the expression of those kinematic variables into the static variables (forces and

moments), delivers the final expression of the forces and moments fully expressed

versus the macroscopic controlles gradients of the displacement.

The next section is devoted to the application of previous second order homoge-

nization scheme to a one dimensional microstructured beam subjected to combined

tension and flexion, for which the effective first and second order moduli will be e-

valuated. Due to the linear framework, one can consider separately the two loading

cases of uniaxial tension and flexion.

5. Case of a one-dimensional microstructured beam: first and

second order tensile and flexural rigidities

We consider a beam made of a periodic microstructure defining the representative

unit cell, including two beams presenting different geometrical and mechanical char-

acteristics, as pictured in figure (3)). Beam p1 has an elastic modulus E1, a width

t1, and length l1; similarly, beam p2 has an elastic modulus E2, a width t2, and a

length l2.

Based on expressions (33) to (36), we identify the forces and hyperforces for the

present example; setting kfb =
Eiε

2t3i
L3
i

, we first write the resultants and moments

for the first beam p1:



March 3, 2015 15:1 WSPC/INSTRUCTION FILE paperIJAM0705

158 Authors’ Names

a b

cellule 1 cellule 2 cellule 3   ...

a b a b

Fig. 3. Example of a microstructured beam made of two beams with different microstructural
properties

T p1
O = kf1

(

L1

2
(2dV0 + dVa1 + dVb1 + ε (dVa2 + dVb2))

+Va1 − Vb1 + ε (Va2 − Vb2))
)

(52)

T p1
E = −kf1

(

L1

2
(2dV0 + dVa1 + dVb1 + ε (dVa2 + dVb2))

+Va1 − Vb1 + ε (Va2 − Vb2)
)

(53)

mp1
O = kf1

(

L2
1

6
(3dV0 + 2dVa1 + dVb1 + ε (2dVa2 + dVb2 ))

+
L1

2
(Va1 − Vb1 + ε (Va2 − Vb2 ))

)

(54)

mp1
E = kf1

(

L2
1

6
(3dV0 + dVa1 + 2dVb1 + ε (dVa2 + 2dVb2 ))

+
L1

2
(Va1 − Vb1 + ε (Va2 − Vb2 ))

)

(55)

In order to get similar exprsssions for the second beam p2, one has to exploit

the series of equations (6), (7), (10) and (11) in order to determine the expressions

corresponding to the displacement of the node a located at the right extremity of

the beam p2, but at a distance εL from node a, the left origin of the first beam p1:

V n1∈p1 ≈ V0 + εVa1 + ε2Va2 (56)

dV n1∈p1 ≈ dV0 + dVa1 + εdVa2 (57)

V n1∈p2 ≈ V0 + ε (Va1 + L (dV0 + dVa1)) + ε2
(

Va2 +
L2

2
d2V0

)

(58)

dV n1∈p2 ≈ dV0 + dVa1 + ε
(

dVa2 + Ld2V0

)

(59)
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Thus, the forces and hyperforces are derived for the second beam p2 as

T p2
O = kf2

(

L2

2

(

2dV0 + dVa1 + dVb1 + ε
((

dVa2 + Ld2V0

)

+ dVb2

))

+Vb1 − (Va1 + L (dV0 + dVa1)) + ε

(

Vb2 −

(

Va2 +
L2

2
d2V0

)))

(60)

T p2
E = −kf2

(

L2

2

(

2dV0 + dVa1 + dVb1 + ε
((

dVa2 + Ld2V0

)

+ dVb2

))

+Vb1 − (Va1 + L (dV0 + dVa1)) + ε

(

Vb2 −

(

Va2 +
L2

2
d2V0

)))

(61)

mp2
O = kf2

(

L2
2

6

(

3dV0 + 2dVb1 + dVa1 + ε
(

2dVb2 +
(

dVa2 + Ld2V0

)))

+
L2

2

(

Vb1 − (Va1 + L (dV0 + dVa1)) + ε

(

Vb2 −

(

Va2 +
L2

2
d2V0

))))

(62)

mp2
E = kf2

(

L2
2

6

(

3dV0 + dVb1 + 2dVa1 + ε
(

dVb2 + 2
(

dVa2 + Ld2V0

)))

+
L2

2

(

Vb1 − (Va1 + L (dV0 + dVa1)) + ε

(

Vb2 −

(

Va2 +
L2

2
d2V0

))))

(63)

It holds in addition the additive decomposition of the overall length of the unit

cell of the two beam lengths

L = L1 + L2 (64)

One then writes the equilibrium of forces and hyperforces for the nodes a and b

in order to determine the six kinematic unknowns, dVa1, dVa2, dVb1, dVb2, Va1, Va2:

Eq1 = T p1
O + T p2

E = 0 (65)

Eq2 = mp1
O +mp2

E = 0 (66)

Eq3 = mp1
E +mp2

O = 0 (67)

These equations express on two orders in the small parameter ε; one obtains

dVa2 =
(kf1L1L

3
1 − kf2L

3
2)d

2V0

kf1L2
1 + kf2L2

2

(68)

dVb2 =
(kf1L

3
1 + 2kf2L

2
2L1 + kf2L

3
2)d

2V0

2(kf1L2
1 + kf2L2

2)
(69)
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Va2 =
L2
1d

2V0

2
+ Vb2 (70)

dVa1 = dVb1 = 0 (71)

Va1 = −L1dV0 + Vb1 (72)

From the solution of the localization problem giving the kinematic displacements

versus the continuous gradients of the displacement, we are then able to fully express

the static variables TE and mE in terms of the first and second order gradients of

the vertical displacement:

mp2
E = ε

kf2kf1L
2
2L

2
1(L1 + L2)

12 (kf1L2
1 + kf2L2

2)
d2V0 (73)

T p2
E = 0 (74)

Previous relation between the hyperforce and the second order kinematic vari-

able then leads to the identification of the second order effective modulus of the

beam, representing a flexural rigidity B, expressing as

B =
kf2kf1L

2
2L

2
1(L1 + L2)

12 (kf1L2
1 + kf2L2

2)

This modulus coincides with the one that would be obtained from a micropolar

effective continuum. Lastly, we determine the internal bending length from the rela-

tion between the bending moment and the curvature of the micropolar constitutive

model,

MXZ =
(

2µ l2c
) ∂ϕ

∂x
.

The shear modulus therein, the scalar quantity µ, is obtained from the relation

between the effective shear stress σ12 and the shear strain, variable ∂V
∂x , as

σ12 =

(

1

2
kf2l2

)(

∂V

∂x

)

The effective shear modulus is computed from discrete homogenization as

µ =
1

4
kf2l2

This gives the internal length for bending as

lbending =

√

√

√

√

√

L2 (L1 + L2)

3

(

1 +
kf2

kf1

(

L2

L1

)2
)
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depending upon the ratio of the bending stifnesses of the two internal beams,

and the relative length of the second beam. It is straightforward to see that lc has

a maximum value of 1√
3
, obtained when the ratio of bending stiffness is very small

and when the first beam is of negligible length in comparison to the second one.

Considering now a beam under pure extension, the virtual power of internal

work writes in a similar format, replacing the kinematic virtual velocities V̇0, d
2V̇0

by U̇0, d
2U̇0 respectively. We accordingly obtain

U̇n,ε(x, y) = U̇0(x) = U̇0 (75)

and

U̇n(x+ εL, y) ≈ U̇0 + εL dU̇0 +
ε2

2
L2 d2U̇0 (76)

Thus, the virtual power for the whole lattice writes as the sum of the product

of forces by their conjugated kinematic quantities at each node. After transforming

the double summation into a Riemann integral as previously done for pure flexion,

and considering the fact that the unit cell is a small element of vanishing size ε → 0,

we arrive at the continuum version of the virtual power of internal forces in case of

pure extension, viz

lim
ε→0

P =

∫

Ω

(

Ne

.

dUo +Ne
ε

2
L

.

d2Uo

)

dx (77)

One can then identify from the previous equation and in a general situation the

first and second order forces as the static variables dual respectively to the first and

second gradients of the virtual normal velocity.

We next extend previous example to the computation of the effective bending

modulus to an undulated beam modeled as a zig-zag beam (the initial slope of the

yarn is an adjustable configuration parameter), an approximation of a sine function,

and relying on a micropolar effective continuum model for the evalulation of the

effective mechanical properties.

The flexural rigidity is recorded versus the inclination of the beams, showing

a continuous decrease when the crimp increases (the straight beam then has the

highest flexural rigidity).

This problem is representative of the tensile response of a single undulated beam,

and the update of the geometry is descriptive of geometrical nonlinearities. Some

additional work is nevertheless required to perform a similar homogenization, but

relying on a second order gradient scheme instead.

The effective second order grade continuum is next built for the situation of pure

extension.
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Fig. 4. Initial configuration of an undulated beam, corrugated structure [Siad and Potier Ferry,
1992]
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Fig. 5. Effective second order flexural rigidity vs. different beam initial slope

5.1. Tensile rigidity for a microstructured beam

We consider the beam subjected to pure uniaxial tension, thus the kinematic un-

known is the sole longitudinal displacement expressing at two orders of the small

parameter ε. One obtains the following expressions of the normal forces similar to
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the previous formula (34) to (37), based on the results described in the Appendix

(case of beam in tension) The following expressions of the normal forces is obtained,

setting klb =
Esε

2t
L :

NO = klb (UO1 − UE1 + ε (UO2 − UE2)) (78)

and

NE = −klb (UO1 − UE1 + ε (UO2 − UE2)) (79)

For the first beam p1, this gives:

Np1
O = kl1 (Ua1 − Ub1 + ε (Ua2 − Ub2)) (80)

Np1
E = −kl1 (Ua1 − Ub1 + ε (Ua2 − Ub2)) (81)

In order to get analogous formula for the second beam p2, one has to exploit a

similar series of equations derived in previous section for bending: one expresses the

longitudinal displacement of the node a located at the right extremity of the beam

p2, but at a distance εL from node a, the left origin of beam p1.

Un1∈p1 ≈ Uo + εUa1 + ε2Ua2 (82)

Un1∈p2 ≈ Uo + ε (Ua1 + L (dUo)) + ε2
(

Ua2 +
L2

2
d2Uo

)

(83)

Thus, it holds for beam p2:

Np2
O = kl2

(

Ub1 − (Ua1 + L (dUo)) + ε

(

Ub2 −

(

Ua2 +
L2

2
d2Uo

)))

(84)

Np2
E = −kl2

(

Ub1 − (Ua1 + L (dUo)) + ε

(

Ub2 −

(

Ua2 +
L2

2
d2Uo

)))

(85)

One sets in addition equation (65), and then writes the equilibrium of nor-

mal forces for the nodes a and b in order to determine the four unknowns

Ua1 , Ua2 , Ub1, Ub2 :

Eq1 = Np1
E +Np2

O = 0 (86)

Eq2 = Np1
O +Np2

E = 0 (87)
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These equations express on two orders in ε ; one obtains

Ua1 = −
kl2 (L1 + L2)

kl1 + kl2
dUo + Ub1 (88)

Ua2 =
kl2(L1 + L2)

2

2 (kl1 + kl2)
d2Uo + Ub2 (89)

so that

Np2
E =

kl1 kl2 (L1 + L2) dUo

(kl1 + kl2 )
+ ε

kl1 kl2(L1 + L2)
2
d2Uo

2 (kl1 + kl2 )
(90)

It is then straightforward to identify from the previous expression of the normal

force the first and second order effective tensile moduli of the beam, representing

the effective tensile rigidities: the first order effective tensile modulus is identified

from the first order term of Np2
E as

kl1 kl2 (L1 + L2)

(kl1 + kl2 )

The second order effective tensile modulus writes as the second order contribu-

tion of Np2
E , term

ε
kl1kl2(L1 + L2)

3

4 (kl1 + kl2)

It shall be noted that the first order tensile rigidity coincides with the one that

would be obtained from a Cauchy effective continuum.

As a summary, we obtain the following effective first and second order tensile

and flexural rigidities, as summarized in the following Table:

Table1: Identified effective first and second order results.

Equivalent flexural rigidity from second

gradient continuum

Equivalent flexural rigidity from dis-

crete micropolar homogenization
kf1 kf2L

2

1
L2

2
(L1+L2)

12(kf1 L2

1
+kf2 L2

2)
kf1 kf2L

2

1
L2

2
(L1+L2)

12(kf1 L2

1
+kf2 L2

2)
Equivalent tensile rigidity for second or-

der gradient continuum

Equivalent first order tensile rigidity

from discrete homogenization
kl1 kl2(L1+L2)

(kl1 +kl2 ) , kl1 kl2(L1+L2)
3

4(kl1 +kl2 )
kl1 kl2(L1+L2)

(kl1 +kl2 )
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The internal length for pure extension is obtained as the square root of the ratio

of the second order to first order effective moduli, as ltension = (L1+L2)
2 , so one can

see that second order effects in extension are always important (for any choice of

microstructural parameters).

In the next section, the obtained homogenized mechanical properties are used

to perform the scale transition from the mesoscopic to the macroscopic structural

level.

6. Structural computations based on the discrete homogenization

scheme

We here rely on the determination of the effective mechanical properties of 1D beam

to make the transition from the mesoscopic to the macroscopic level, and perform

structural calculations of the response of a second order grade beam submitted

to a tensile loading. The formulation of continuum models for second order grade

continua together with the suitable required higher order boundary conditions can

be found e.g. in [Forest, 2002].

A bar of length l is clamped at the left extremity at position x = 0, and we

assume no double volume forces, no couples and no triple forces to simplify the

analysis. The external volume loading then resumes to a simple constant body force

f . Based on the derivation of the boundary conditions in previous section, a double

normal force M is applied to the right edge located at position x = l. The virtual

powers of external and contact forces then successively simplify in the present 1D

context to

P (e) =

∫

[0,l]

f.δudx

and

P (c) =

∫

∂D

{t.δu+MDnδu} dx = [t.δu+MDnδu]
l
0

The field equations accordingly become:

τ := σ − divS, x ∈ [0, l]

σ (x) = E ∂u(x)
∂x , S (x) = A∂2u(x)

∂2x

divτ (x) + f = 0 → div
{

E ∂u(x)
∂x − div

(

A∂2u(x)
∂2x

)}

+f = 0

Those equations are associated to the boundary conditions

BC :







u(x = 0) = 0

t =
(

τ − ∂S
∂x

)

(x = l)

M = S (x = l)
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with t,M given quantities. It follows from simple dimensional analysis that the

ratio of the first to second order moduli has the dimension of a length, so that

lc = E/A defines an internal length for the second order gradient continuum.

The response of the bar under tension is obtained by evaluating the relation between

the applied tension and the strain, defined as the relative displacement, that is the

scalar ε := ∆l/l, with ∆l the increase of length, which has to be determined from

the end displacement, ∆l := u (x = l). The applied tension to be considered as a

static boundary condition is

t =

(

τ −
∂S

∂x

)

(x = l) =

(

σ − 2
∂S

∂x

)

(x = l) =

(

E
∂u

∂x
− 2A

∂2u (x)

∂2x

)

(x = l)

while the second order boundary condition writes in the present 1D context as

M = A
∂2u

∂2x
(x = l)

These two boundary conditions deliver the following conditions for the first and

second partial derivatives

∂u

∂x
(x = l) =

(t+ 2M)

E
∂2u

∂2x
(x = l) = M/A

The continuous displacement for the second order effective bar then writes

u(x) =
A (Af + EM)

E3eEl/A
eEx/A−

fx2

2E
+
(Efl −Af + EM + Et)

E2
x−

A (Af + EM)

E3
e−El/A

The strain over the bar denoted ǫ is then evaluated from previous expression as

a linear function of the applied traction t as ǫ := ∆l
l = u(l)

l .

The bar compliance Chom is then defined as the ratio of the overall strain to the

applied tension, the scalar quantity

Chom =
fl + 2t

2Et
.

The obtained second order gradient solution is next compared with the first

order gradient solution: the first order gradient problem writes

σ (x) = E ∂u(x)
∂x ,

divσ (x) + f = 0 → E ∂2u(x)
∂2x +f = 0

associated to the boundary conditions
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BC :

{

u(x = 0) = 0

t = E ∂u(x)
∂x (x = l)

The solution is

u(x) = −
1

2

fx2

E
+

(fl + t)x

E
We easily see that the first order displacement field is recovered from the second

order gradient displacement for nil values of the second order parameters, that is

for A = 0 = M .

7. Conclusion

We have developed a discrete homogenization scheme up to the second order gradi-

ent of the imposed displacement field in order to formulate constitutive models for

media exhibiting strong deformation gradients at the unit cell level, due to the im-

pact of an inherent microstructure. The derived effective continuum is characterized

by first and second order mechanical moduli relating the stress to the first order

strain and the hyperstress to the second order strain. The method is systematic in

the sense that it can handle any lattice, with an homogenization restricted to one

direction in space in the present contribution. From a numerical viewpoint, a dedi-

cated homogznization code has been developed combining symbolic and numerical

evaluations, using as an input file the topology and mechanical parameters of the

beams within the identified unit cell of the lattice. The proposed methdology has

been applied to the evaluation of the second order tensile and flexural rigidity of a

microstructured beam; the flexural rigidiy calculated by the second order gradient

scheme is identical to that computed by a micropolar effective continuum model.

However, in from a technical point of view, the effective second order modulus (51) is

obtained in a simpler manner by the second order gradient homogenization scheme.

The computation of effective mechanical properties of materials endowed with a

microstructure exhibiting effectively second order gradient effects is the basis for

performing structural computations in a efficient manner, whereby the identified

effective constitutive law is implemented at each Gauss point of a finite element

computation. An extension of the present methodology to the 2D homogenization

of periodical discrete structures towards second order gradient continua constitutes

a promising perspective of development of the present work.

8. References

Dos Reis, F., and Ganghoffer, J.F. [2012] “Construction of micropolar continua from

the asymptotic homogenization of beam lattices,” Computers and Structures

112-113, 354–363.



March 3, 2015 15:1 WSPC/INSTRUCTION FILE paperIJAM0705

168 Authors’ Names

Gibson, L. J [2005] “Biomechanics of cellular solids,” Journal of Biomechanics 38,

377–399.

McVeigh, C., Vernerey, F., Liu, W. K., and Brinson, L. C. [2006] “Multiresolu-

tion analysis for material design,” Computer Methods Applied Mechanics and

Engineering 195, 5053–5076.

Lakes, R. S. [1986] “Experimental microelasticity of two porous solids,” Interna-

tional Journal of solids and structures 22, 55–63.

Warren, W. E., and Byskov, E. [2008] “A general solution to some plane problems

of micropolar elasticity,” European Journal of Mechanics A/Solids 27, 18–27.

Liu, S., and Su, W. [2009] “Effective couple-stress continuum model of cellular

solids and size effects analysis,” International Journal of Solids and Structures

46 (14-15), 2787–2799.

Yoo, A., and Jasiuk, I. [2006] “Couple-stress moduli of a trabecular bone idealized

as a 3D periodic cellular network,” Journal of Biomechanics 39, 2241–2252.

Kumar, R. S., and McDowell, D. L. [2009] “Multifunctional Design of Two-

Dimensional Cellular Materials with Tailored Mesostructure,” International

Journal of Solids and Structures 46 (14-15), 2871–2885.

Fatemi, J., Van Keulen, F., and Onck, P. R. [2002] “Generalized Continuum The-

ories: Application to Stress Analysis in Bone,” Meccanica 37, 385–396.

Potier-Ferry, M., and Siad, L. [1992] “Homognisation gomtrique dune poutre ond-

ule,” C.R. Academy of Sciences, Paris 314 (II), 3425–430.

Rosenberg, J., Cimrman, R. [2003] “Microcontinuum approach in biomechanical

modeling,” Mathematics and Computers in Simulation 61, 249–260.

Forest, S. [2002] “Homogenization methods and the mechanics of generalized con-

tinua - part 2,” Theoretical and Applied Mechanics 28-29, 113–143.

Forest, S. [1998] “Mechanics of generalized continua : construction by homogeniza-

tion,” J. Phys. IV France 8, 39–48.

Sanchez-Palencia, E. [1983] “Centrifuge testing,” in Homogenization method for the

study of composite medi, ed. F. Verhulst (Asymptotic Analysis II, Vol. 985 of

Lecture Notes in Mathematics, Springer Berlin / Heidelberg), pp. 192–214.

Cioranescu, D., and Paulin, S. J. [1999] Homogenization of reticulated structures

(Springer).

Boutin, C. [1996] “ Microstructural effects in elastic composites,” International

journal of solids and structures 33 (7), 1023–1051.

Pradel, F., and Sab, K. [1998] “ Cosserat modelling of elastic periodic lattice struc-

tures,” Comptes Rendus de lAcadmie des Sciences, Paris 326 (IIb), 699–704.

Sab, K., and Pradel, F. [2009] “Homogenisation of periodic Cosserat media,” Inter-

national Journal of Computer Applications in Technology 34, 60–71.

Moreau, G., and Caillerie, D. [2009] “Continuum modeling of lattice structures in

large displacement applications to buckling analysis,” Computers and Structures

68, 181–189.

Kouznetsova, V., Geers, M.G. D., and Brekelmans, W.A. M. [2002] “Multi-scale con-



March 3, 2015 15:1 WSPC/INSTRUCTION FILE paperIJAM0705

Instructions for Typing Manuscripts (Paper’s Title) 169

stitutive modelling of heterogeneous materials with a gradient–enhanced compu-

tational homogenization scheme,” International Journal for Numerical Methods

in Engineering 54, 11235–1260.

Tollenaere, H., and Caillerie, D. [1998] “Continuous modeling of lattice structures

by homogenization,” Advances in Engineering Software 29, 699–705.

Boutin, C., and Hans, S. [2003] “Homogenisation of periodic discrete medium: Ap-

plication to dynamics of framed structures,” Computers and Geotechnics 30,

(4) 303–320.

Boutin, C., Hans, S., and Chenais, C. [2010] “Generalized beams and continua.

dynamics of reticulated structures,” Mechanics of Generalized Continua, ed.G.

A. Maugin, A. V. Metrikine (Mechanics of Generalized Continua: One Hundred

Years After the Cosserats), pp. 131–141.

Eringen, A. C. [1992] “Balance laws of micromorphic continua revisited,” Int. J.

Engng Sci. 30, 805–810.

Eringen, A. C. [1999] Microcontinuum field theories (Springer), New York.

Toupin, R. [1962] “Elastic materials with couple stresses,” Archives Rational Me-

chanics Analysis 11, 385–413.

Koiter, W. [1964] “Couple stresses in the theory of elasticity,” i,ii, Proc. Kon. Ned.

Akad. Wetenscha B 67, 17–44.

Hirschberger, C. B., Ricker, S., Steinmann, P., and Sukumar, N. [2009] “Computa-

tional multiscale modelling of heterogeneous material layers,” Engineering Frac-

ture Mechanics 76, 793–812.



170 

 

CHAPTER Seven 

Two-Dimensional Discrete Homogenization Towards  

Second Order grade Continua 

Content 

7.1.  Introduction ................................................................................ 171 

7.2.  Expression of forces and hyperforces ....................................... 172 

7.3.  Asymptotic expansion of the kinematic displacement variables
 ............................................................................................................ 173 

7.4.  Homogenization ......................................................................... 176 

      7.4.1.  Writing of the equilibrium equations in virtual power form ........ 176 

      7.4.2.  Equivalence with a second order continuum gradient medium.... 181 

7.5.  Identification of internal lengths ............................................... 184 

7.6.  Examples .................................................................................... 186 

      7.6.1.  Biomembranes with four connectivity networks .......................... 186 

                7.6.1.1.  Computation of internal lengths for the square topology of  
                              biomembranes .................................................................................. 188 

       7.6.2.  Biomembranes with threefold connectivity networks ................. 191 

                 7.6.2.1.  Computation of internal lengths for the hexagonal topology of  
                               biomembranes ................................................................................. 193 

       7.6.3.  Biomembranes with sixfold connectivity networks .................... 194 

                 7.6.3.1.  Computation of internal lengths for the triangular topology of 
                               biomembranes   ............................................................................... 196 

7.7.  Application to the Zig-Zag lattice ............................................. 197 

7.8.  Flexural behavior of biomembranes based on micropolar       
        models for a nuclear lamina ...................................................... 198 

7.9.  Conclusion ................................................................................. 202 

7.10.  References ................................................................................ 204 

 

 



171 

 

We extend in this chapter the homogenization technique introduced in 1D to a full 2D 

context; these developments did benefit from discussions and joined work with Yosra Rahali 

in the frame of her PhD thesis.  

 

7.1 Introduction 

It is relevant to reduce the size of structural problems for repetitive lattice materials by 

recourse to homogenization, with the underlying idea of replacing the initially discrete lattice 

by an equivalent continuum at an intermediate mesoscopic scale. The lattices made of 

heterogeneous materials are generally considered as multiscale, in the sense that the 

characteristic dimensions of their constituents are very different from the dimension of the 

structure. On the other hand, the occurrence of instability phenomena associated to the 

consideration of strong fluctuations of the deformation within an identified representative 

volume element is one key objective of the multiscale analysis of these structures. These 

phenomena may occur at both microscopic and macroscopic levels and they mutually interact. 

The classical framework of continuum mechanics does not allow in general describing the 

microstructural phenomena. In many problems characterized by stress or strain concentrations 

or singular mechanical fields, such as localization of deformation and rupture, standard 

continuum models do not properly capture those phenomena (T. Duy Khanh, 2011; F. 

Samuel, 1996; 2006). 

Generalized continua (Cosserat and second order grade continua, micromorphic continua...) 

are prone to capture microstructural effects on the macroscopic behavior, by refining the 

kinematic description(C. Eugène et al., 1909). In this context, numerous models have been 

proposed since the early sixties, especially by (Toupin in 1962; 1964; Mindlin et al., 1962). 

This work is a contribution in this spirit, based on the discrete asymptotic homogenization (of 

discrete media) towards second order grade continua. We thereby extend the first order 

homogenization scheme for discrete media, by including second order terms in the asymptotic 

expansion. The methodology for the construction of the stress and hyperstress tensors 

hyperstress representative of the statics of second order grade continua versus their 

conjugated kinematic variables, the strain and the strain gradient respectively, is developed. 

The obtained constitutive law shall be evaluated from the topology and microstructural 

properties of the initial lattices; applications to different lattices will illustrate the proposed 
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methodology, including the square, hexagonal, triangular lattices representative of biological 

membranes, and the zig-zag lattice. The internal lengths reflecting scale effects have been 

formally computed for the two types of enrichment of the classical Cauchy continuum, either 

through the consideration of higher order gradients of the kinematic variables or by additional 

micropolar degrees of freedom. We first start by computing the expression of the forces and 

hyperforces for a beam within the lattice. 

 

7.2 Expression of forces and hyperforces 

We consider a 2D beam of length b b
l L  working in traction-compression due to the action 

of the forces NO et NE applid to its extremity node, and in flexion under the action of the 

transverse forces TO, TE, as pictured on Figure 7.1. 

 

 

 

 

 

 

 

 

 

Fig. 7.1 kinematic and static description of a single beam element in equilibrium 

Based on the equations of beam theory written by (Thesis F. Dos Reis, 2010), one shall next 

determine the expression of the forces incorporating the second order displacement gradient; 

we summarize below the expression of the forces for the Cauchy continuum in vector 

(intrinsic) format:  

 u u N e
l

b b

O O Ek  (7.1) 

 N N
E O  (7.2) 
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 v v  T e
f

b b

O O E
k  (7.3) 

 T T
E O  (7.4) 

The following notations have been introduced there above:  

,D D
O E

   the displacement vectors at the origin and extremity nodes of the beam element 

b
l
  the beam length. 

 
l

b

b

ES
k

l
  the tensile rigidity and 3

12


f

b z

b

EI
k

l
 the flexural rigidity.   

One presently considers beams with a square section .b b
S t ep

  , with b
t
 the width and b

ep


the thickness of the beam. Let 
z

I  be the quadratic moment of the beam:
 3

12


b

z

t
I



. One 

imposes t ep  and a constant thickness  1 b b
ep Cte S t t

       ; this entails 

simplifications of the expression of the forces without reducing the generality of the method, 

thus: 

1l

b b
b

b b b

ES E t Et
k

l L L





    

and  
 
 3

3
3

3 3

1212

12f

b b
b

bb b

E tEI Et
k

Ll L





  

 

In this work, we shall essentially consider planar problems, thus the use of boldface symbols 

refers to vectors written in 2D. 

7.3  Asymptotic expansion of the kinematic displacement 

variables 
D and d

D   

One considers displacement fields parameterized by a curvilinear coordinate (denoted  in the 

sequel), according to: 

(u, v)D  

Let first express the asymptotic expansion of the displacement at second order, using 

Cartesian coordinates:  
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     2
1 2, ( ) , , ...o

     D x y D x D x y D x y  (7.5) 

The first order term therein, vector ( )
o

D x , is considered as independent of the microscopic 

variable y, defined as 



x

y , with x the global variable for the lattice (macroscopic scale) and 

y the periodicity variable (microscopic scale), the unit cell being of period i
l L  

The same expansion writes in curvilinear coordinates 

2
1 2( ) ( ) ( ) ( ) ...   D D D D

i o i i i

        (7.6) 

We express the difference of displacement between the origin and extremity nodes of the 

beam via the Taylor series expansion: 

1 2
1 1 1 2

1 2

( ) ( )
( ) ...

 
   

 
D D

D Dn n b bO i O i
i

L L
   

 
 (7.7) 

2 22 2
1 1 2 21 11 2

2 2 1 22 2
1 1 2 2

2
1 2

1 2
1 2

( ) ( ) ( ) ( )
( )

2 2

( )

   
    

   




 

D D D D
D D

D

n n
n n b b b bi o i i o i

i

b bo i

L L
L L

L L

       
   

  
 

 (7.8) 

Thus  

    2
1 1 2 2.( )u u    e D D D D
O E O E

O E

b     (7.9) 

    2
1 1 2 2.( )v v     e D D D D
O E O E

O E

b   

 

(7.10) 

 

with the shift factor  0,1, 1i    written as a Kronecker symbol, the index  1,2i

indicating whether the considered axis is e1 or e2. 

One notices that the displacement is expressed versus both the first and second order gradients 

of the displacement.   

Inserting equation (7.9-7.10) into equations (7.1) to (7.4), one obtains the expressions of the 

normal and transverses forces, successively N b  and T b  at the extremity nodes of the beam 

element: 
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     l

b b b O E 2 O E
O 1 1 2 2k .    Ν e e D D D D  (7.11) 

E O Ν Ν
 

(7.12) 

         f

b b O E 2 O E b O Eb
O 1 1 2 2 0 1 1

L
k . . 2d d d

2
            

 
T e D D D D e D D D  (7.13) 

E O T T  (7.14) 

In order to simplify notations, one sets: 

O b
O 1 1u .D e  (7.15) 

E ib bo
E1 1 i

i

( )
u L .

  
    

D
D e  (7.16) 

O b
O2 2u . D e  (7.17) 

i

i

2E
E ib 2 ib bo1

E2 2 i 2
i

( )( )
u L L .

   
        

DD
D e  (6.18) 

O b
O1 1v .  D e  (7.19) 

E ib bo
E1 1 i

i

( )
v L .


  

    

D
D e  (7.20) 

O b
O2 2v .  D e  (7.21) 

i

i

2E
E ib 2 ib bo1

E2 2 i 2
i

( )( )
v L L .




   
        

DD
D e  (7.22) 

Thus finally, the forces write: 

    
l

b b 2
O O1 E1 O2 E2k u u u u     Ν e

 
(7.23) 

E O Ν Ν
 

(7.24) 

    
f

b 2
O O1 E1 O2 E2k v v v v     T

 
(7.25) 

E O T T  (7.26) 

We next determine the derivatives of the displacement, expressions ib o
i

i

( )
L

 



D

,

E
ib 1

i
i

( )
L

 



D and 

i

i

2
2 ib o

2

( )
L

 



D  . 
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After resolution and simplifications, the derivatives express as: 

1 2
1 2

( )
cosθ  sinθ  cosθ  sinθ         

             

D D D D Dib o o o o o
i x x y y

i

L L L
x y x y

  


 (7.27) 

1 21 1 1 1 1
1 2

( )
cosθ  sinθ  cosθ  sinθ  
       

             

D D D D DE E E E E
ib

i x x y y

i

L L L
x y x y

  


 

(7.28) 

2 2 22 1
2 21

2 22
2

2 2 2 22 2
2 22

2 2

cos θ  sin θ  2sinθ cosθ
2( )

cos θ  sin θ 2sinθ cosθ
2

    
                         

D D D

D

D D D
i

i

o o o
x x x x

ib o

o o o
y y y y

L

x y x y
L

L

x y x y






   

(7.29) 

 

 

 

The next step is the homogenization processes, leading to the expression of the constitutive 

law. 

  

7.4 Homogenization 

 
7.4.1 Writing of the equilibrium equations in virtual power form 

 

The virtual velocity field has the same form as the displacement field evaluated in section 6.3; 

we shall select a simple field reducing to the term in order 0 in the small parameter (). The 

virtual velocity field then writes:
  

. .
( ) ( ) ...

o

  D P D P  (7.30) 

P is the coordinate vector of the considered point within the global lattice; this field can be 

decomposed into a transversal and a longitudinal velocity; the transversal velocity writes: 

 
. .

.

( ).

( ) ...

b

o

V

V

  

 

P D P e

P

 (7.31) 

 

The longitudinal virtual velocity writes: 
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 
. .

( ). b
U

 P D P e  (7.32) 

.
( ) ...

o
U P   

The virtual power of the forces within the lattice writes as a product of internal forces by their 

dual kinematic quantity at each node:  

. .
  i i ii

P T V N U  (7.33) 

One can decompose the sum as a double summation on the cells and on the nodes within a 

cell: 

. .

i i i e

c n B c
i

P T V N U P
Î Î Î

æ ö÷ç= + =÷ç ÷ç ÷è øå å å
¢ ¢

 (7.34) 

with ( ), ,i c n= ¢  the set of cells of the lattice, � the set of nodes of an elementary cell and 

e
P the virtual power of internal forces in an elementary cell. One can accordingly express the 

virtual power as: 

. .



 e i i i

n B
i

P T V N U  (7.35) 

Since the sum of efforts vanish at each node of the lattice, it only remains for each of the 

considered nodes the edge nodes, since the virtual power of the internal nodes (to the 

elementary unit cell) vanish: 

. . . .     
 

 Oe O O O e e e

b
e

P T V N U T V N U  (7.36) 

The cell is under equilibrium at each node, and the efforts are periodical with a period equal 

to the cell width; this means that each edge node n has a duplicate (see figure 7.2): one edge 

node belongs to the elementary cell (it is called e
n in figure 7.2), and the other node belongs 

to the adjacent cell, called a
n on the same figure 7.2. The position of the nodes relative to the 

beam they belong to is not identical: the nodes of type e
n  are origin nodes of the beam, 

whereas the nodes of type a
n  are extremity nodes for this beam. 

 

 L1 

 L2 Nœud na 
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Fig. 7.2 elementary cell in a 2D space. 

One can thus write : 

e an o n eT T     (7.37) 

   e an o n eN N

 

(7.38) 

One can accordingly simplify the expression of e
P  in eq.(7.36) 

. . . .               
e e e O e O

b
e

P T V V N U U  (7.39) 

Let then develop the expressions 
. . . .       

   e O e O
V V and U U  : a Taylor series expansion of 

equations (7.31) and (7.32) allows writing 

 

   
2

2 2
2

. .

. .
. . .

...

( ) ( )
( ) ..

i

i

O o

ib ib ibo o
e o i o i

i

V V

V V
V V L V L L

 

 


 

       
 

 

 
     

 

 

Thus 

2
2 2

2

. .
. . ( ) ( )

( )
i

i

ib ibo o
e O i

i

V V
V V L L

     
 

 
  

 
 (7.40) 

Similarly, one obtains  

2
2 2

2

. .
. . ( ) ( )

( )
i

i

ib ibo o
e O i

i

U U
U U L L

     
 

 
  

 
 (7.41) 

From equations (6.27) and (6.28), one can develop the expressions 

.
( )ib o

i

i

V
L







2 2
2 2

2 2

. . .
( ) ( ) ( )

, , et
i i

i i

ib ib ibo o o
i

i

U V U
L L L

      
  

  
  

, and replace their expressions in equations 

(7.40) and (7.41): 

Nœud ne 
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1 2
1 2

. . . . .
( )

cθ  sθ  cθ  sθ  
             
       
   

ib o o o o o
i x x y y

i

V V V V V
L L L

x y x y

  


 (7.42) 

1 2
1 2

. . . . .
( )

cθ  sθ  cθ  sθ  
             
       
   

ib o o o o o
i x x y y

i

U U U U U
L L L

x y x y

  


 

(7.43) 

2 2 22 1
2 21

2 2
2

2
2

2 2 22 2
2 22

2 2

. . .

.

. . .

c θ  s θ  2sθ cθ
2

( )

c θ  s θ  2sθ cθ
2

       
     

                     

i

i

o o o
x x x x

ib o

o o o
y y y y

V V VL

x y x y
V

L

V V VL

x y x y








  

(7.44) 
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c θ  s θ  2sθ cθ
2

( )

c θ  s θ  2sθ cθ
2

       
     
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o o o
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y y y y

U U UL

x y x y
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L

U U UL

x y x y










 (7.45) 

Thus, the virtual power of an elementary cell becomes written in (7.39), becomes: 

1 2
1 2

2 2 2 2 2 22 1 2 2
2 2 2 2 21 2

2 2 2 2

. . . .

. . . . . .
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(7.46) 

 

 

Let recall the discrete expression of the virtual power of the internal forces over the lattice: 

e

c

P P
Î

= å
¢

 (7.47) 
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A continuum expression on the domain  of the double summation is obtained based on 

Riemann integral, when 0  : 

0
lim e e

c

P P P d
e

e l
®

Î W

= =å ò
¢

 

considering that the elementary cell is a small surface element, thus 1
dv g d d dv

g
    , 

with  the curvilinear coordinate and g the determinant of the Jacobian transformation matrix: 

1 2

1 2

[1] [1]

det
[2] [2]

R R

g
R R

 

 

  
   
  
   

 

The vector  R defines the coordinate change between the Cartesian basis and the curvilinear 

basis, expressed as   1 1 1 2 2 2 1 1 1 2 2 2 i,j
[1] [1], [2] [2]L Y L Y L Y L Y     R , with 

 i,j

θ

θ

c

s

 
  
 

1Y
x

x

and

 i,j

θ

θ

c

s

 
  
 

2Y
y

y

the two periodicity vectors (figure 6.3). 

 

 

 

 

 

 

 

Fig. 7.3 Change of basis. 

One obtains after developments: 

 1 2

1

cθ sθ - sθ cθ


x y x y

d dv
L L

  
(7.48) 

This results in the continuum form of the virtual power of internal forces: 

1
  1Ye  

2 2
  Ye  

1 ie  

2 je  

x 

y 
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(7.49) 

 

 

 

 

7.4.2  Equivalence with a second order continuum gradient medium 

This expression is next used to identify the statics of a second order gradient continuum; the 

virtual power of internal forces for a second order grade continuum writes in the framework 

of linear elasticity choosing a virtual velocity nil on the edges of the domain as  

  
.



     σ Si
P D dV  (7.50) 

Introducing therein the first order Cauchy stress  (a second order tensor) and the third order 

hyperstress tensor S, with the gradient operator 


 

ei

ix
. 

Previous equation then writes in index format as: 
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. .
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i q pq

q p q

. .
D D
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    
 F H  (7.51) 

with 

q
q ij i j q iq i     F σ e σ e e e σ e  (7.52) 

and 

           H S e e S e e e e e S epq

p q klm k l m p q kqp k  (7.53) 

From equations (7.52) and (7.53), one is able to reconstruct the tensors σ andS as  

    σ σ e e F eq

iq i q q
 (7.54) 

      S S e e e H e epq

kqp k q p q p
 (7.55) 

 

Recalling the previous homogenized expression (7.49) 
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Introducing the notations et T e N eb b

e E e E
T N , a more compact formulation is obtained 

as: 

2

0

. .
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o oq pq

b q p q

P dv
x x x


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with 
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 
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 
 
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e e
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y
L L
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and the pair         , 1,1 , 2,2 , 1,2p q  . There are not four, but only three combinations, 

since one sums up combinations of the mixed derivatives (1,2) and (2,1): 
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Simple lattice topologies are next consider as an application of the previous general 

methodology.  

 

7.5 Identification of internal lengths 

In this subsection, we develop a general method to identify the internal lengths of the 

second order effective grade continuum; our approach is based on the writing of the 

equilibrium equations. An alternative method could also be envisaged, based on the writing 

of the strain energy density of the effective continuum, and its decomposition into the 

different deformation modes, as followed in the thesis of Y. Rahali. 

We recall the previous expression of the virtual power of internal and external forces for the 

obtained effective second order continuum: 
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with therein 

  j ij i j i ij i. .  σ e σ e e e σ e   

We further evaluate the term 

 j ij, j i kj, j k
j

. . . D
x


   


Dσ e e D  
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Here, D  is a virtual velocity, allowing localizing the principle of virtual power into the strong 

form of the equilibrium equations. Similarly, we transform the term 

  
2 p 2 ij

i j
i j p i j

: . = .
x x x x x

     
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S F H
e e D D   

by integration by part, with the subscript 0 referring to the first order term of the asymptotic 

expansion. Furthermore, it holds that 

 p ij
p i j. ,   :  F σ e H S e e   

This allows rewriting the virtual power principle as 

 

2 2
ijk ijk

kp k k k k kp k
p i j p i j

S S
D f D 0,   k 1..3,  D f 0,   k 1..3

x x x x x x

     
                           

   

The static equilibrium equations written here in 3D will next be analyzed in 2D for planar 

lattices, in order to identify the internal lengths associated to the different deformation 

modes. The two equilibrium equations expand as  

  

 
2 2 2 2

k1 k2 11k 12k 21k 22k
k

1 2 1 1 1 2 2 1 2 2

S S S S
f 0,   k 1,2

x x x x x x x x x x

      
                   

 

 

Inserting therein the expressions obtained for Cauchy stress and hyperstress versus the 

corresponding kinematic variables lead to a factorization of a second order partial derivative 

acting on a degree of freedom (displacement component in the plane of the lattice), of the 

form 

  
2

2 2 i
jk jk

j k

U
1 l ,i 1,2,  j,k=1..3

x x


  

 
  

with jkl  the internal length associated to directions j and k for the deformation mode iU . 
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Observe that since Cauchy stress is only expressed versus first order gradient of 

displacement, and the hyperstress only depends upon the second order displacement 

gradient, one can see that the second order derivative (resp. fourth order derivative) of the 

displacement in previous equation arises respectively from σ  and S . It is nevertheless 

expected that non centrosymmetric media will give rise to mutual interactions.  

Note that the internal lengths appear as ratio of second order to first order effective moduli; 

their direct identification from the effective tensors of first and second order rigidities is 

however challenging (especially their definition) for a general anisotropic medium, so that 

the present methodology is useful for this purpose due its degree of generality.  

The internal length for bending are similarly obtained by considering now the lattice as 

embedded into 3D Euclidean space, so that one has to write the equilibrium equation 

involving the third vertical coordinate, for instance 

 

2
ij1

13 1
3 i j

S
f 0

x x x

 
         

 

which gives a sum of terms, for instance (after insertion of the constitutive law) the specific 

bending contribution  
2

2 2 1
33 33

3 3

U
1 l

x x


 

 
, with the internal bending length 33l  therein. 

 

7.6 Examples 

We will consider applications of the developed general framework to the specific case of 

biological membranes, and analyze successively the in-plane behaviors. Biological 

membranes have been presented in chapter 3 from a biological viewpoint, and classified 

according to node connectivity.  

7.6.1 Biomembranes with four connectivity networks 

 
Let consider the following example of a nuclear lamina with connectivity 4 is modeled based 

on two orthogonal beam elements (figure 7.4). The nodes with black circles belong to the 

reference unit cell, whereas nodes with empty circles belong to the adjacent unit cell. 
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Fig. 7.4 square lattice 

Each beam is of length  bL L,L .

 

The lengths of the periodicity vectors 1

1

0

 
  
 

Y  and

2

0

1

 
  
 

Y  are respectively 1L L and 2L L . The connectivity of this lattice is given in 

Table 5.1.

  

Table 7.1 Mechanical properties connectivity of the square lattice 

beam 1 2 

O(b) 1 1 
E(b) 1 1 
1 1 0 
2 0 1 

 

We first compute the effective second order gradient response of this lattice in order to 

compare it with the classical Cauchy continuum. The Cauchy stress tensor writes at first order 

in   as for the classical first order continuum: 

 

1

1

 
  

  
   

σ
fl

f l

UU kk
yx

V V
k k

x y  

 

One here recovers the Cauchy stress for the first order grade continuum, Cauchy. 
 

b1 

b2 
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The hyperstress tensor S  writes at second order in  and in terms of the second order 
derivatives of the displacement as: 

 

 

 

 

 

 

 

1

1

2
2

2

112 122

2
212 2222

2

2
2

2

111 121

2
211 2212

2

,1

4 0
1..2,1..2,1

0,1

4

,1

40
1..2,1..2, 2

0 ,1

4

  
  

                
  
  

                

S

S

l

f

f

l

U x y
k L

x S S

S SV x y
k L

x

U x y
k L

y S S

S SV x y
k L

y





 
with the extension and flexural rigidities therein given by 

1

3

l f 3
b b

Et Et
k ,k

L L
  .

 

7.6.1.1 Computation of internal lengths for the square topology of biomembranes 

 
We next compute the internal lengths for the square lattice, relying on the effective second 

order behavior computed with the second gradient approach; these lengths are identified from 

the writing of the equilibrium equations.  

Isolating first the contributions in extension, that is the derivatives 11 111

1 1 1

S
,  

x x x

 
  

 , and 

inserting the expressions of those two components of the hyperstress tensor versus 
 2

2

U x, y

x




, one identifies a contribution 

 
      2 2

2 2 2
l l xx l2 2xx

U x,y U x,y
k L k l k

4 x x

           
 

with 2
xx  the square of the xx component of the gradient, thus one identifies the internal 

extensional length as  2 2
xx xxl L l L

4 2

 
    

This length clearly vanishes with the small parameter  , in fact as its square root. In practical 

situations for whioch the lattice is bounded (thus the number of repetitive unit cells is finite), 
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parameter   takes a finite value, since it is the ratio of unit cell size to the overall lattice size 

(which is finite in applications); for instance, adopting the finite value 1/100  , we get 

xx

1
l L

20
 . We shall compute the internal lengths for other deformation modes, and we shall 

see that it depends more generally not only on geometrical parameters (such as beam lengths), 

but also on the microstructural moduli, which can counterbalance the impact of the 

geometrical parameters.  

We proceed in a similar manner to evaluate the internal extensional length in direction y, the 

flexural and torsional internal lengths that are associated to the other partial second order 

derivatives.  

Let first express the balance of linear momentum for a first order Cauchy continuum in 2D, 

2 2
11 12

1 l f 1

2 2
21 22

2 f l 2

U U
f 0,   (k 1) k k f 0

x y x x y y

V V
f 0,   (k 2) k k f 0

x y x x y y

    
                
    

                

 

We see the involvement of the four second order derivatives of the displacement, 

2 2 2 2U U V V
, , ,

x x y y x x y y

   
       

, with derivatives 
2 2U V

,
x x y y

 
   

 that will be factored out in the 

expression of the hyperstress tensor S  in order to isolate and identify the corresponding 

internal length in extension, as well as the mixed partial derivatives  
2 2U V

,
y y x x

 
   

 describing 

in – plane shear (with the shear rigidity as a multiplicative factor), and the isolation of which 

shall deliver two a priori distinct internal shear lengths in the plane. 

Accordingly, isolating the derivatives 
2 2U V

,
y y x x

 
   

 in the two equilibrium equations gives: 

2 2 2 2
11 12 111 121 211 221

1

2 2 2 2
21 22 112 122 212 222

2

S S S S
f 0

x y x x x y y x y y

S S S S
f 0

x y x x x y y x y y

      
                  
      

                  
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Since the second order derivative 
2U

y y


 

 intervenes only in 12  for the first equation and not 

at second order, this gives the term 12

y





 in the first equation, so there will be no internal 

length for this term. The same term 
2U

y y


 

 intervenes now uniquely at the second order in the 

second equation, that is in term    22
2 2122

f 2xy

U x,yS 1
k L

x y 4 y


  

  
, which tend to identify an 

internal length for the shear along x-y as  

  

int,xy

1
l L

2
   

One can further proceed in the same manner for the derivative 
2V

x x


 

 and identify now an 

internal length for shear along y-x : previous second order derivative intervenes respectively 

in the terms 
2

211 21S
,

y x x

 


  
 within the first and second equations, thus giving  

   2
2 2

f 2yx

V x, y1
k L

4 x

 
   

 
, from which one can identify the internal length in shear 

int,yx

1
l L

2
  , which turns out to be the same as int,xyl . 

Due to the obtained non symmetrical stress and hyperstress tensors, one could nevertheless 

obtain two different shear internal lengths when considering arbitrary lattices.  

 

We notice that there is no bending behavior due to the fact we have considered a planar lattice 

embedded into the 2D Euclidean space 2R , so that an embedding into the 3D Euclidean space 

will be necessary to capture the bending response. This highlights that the micropolar 

continuum brings bending as additional information in comparison to the second order 

gradient continuum, so that micropolar and second order grade continuum are 

complementary.  
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7.6.2 Biomembranes with threefold connectivity networks 
 

In the same manner, we consider the peptidoglycan network with connectivity 3, modeled as 

hexagonal repeated unit cells, each of them described by three beams and two periodicity 

vectors 1 2Y ,Y at a selected configuration angle 30  , as shown in figure 7.5. 

 

 

 

 

 

Fig. 7.5 Hexagonal lattice 

Each beam is of length  bL L,L,L .

 

The lengths of the periodicity vectors 1

1

2

3

2

 
 
 
 
  

Y  and

2

1

2

3

2

  
 
 
  

Y  are respectively 1L 3L and 2L 3L . The connectivity of this lattice is given 

in Table 7.2. 

 Table 7.2 Mechanical properties connectivity of the hexagonal lattice 

 

beam 1 2 3 

O(b) 2 1 1 
E(b) 1 2 2 

1 0 1 0 

2 0 0 1 
 

One obtains the Cauchy stress 

11 12

21 22

 
  
 

σ
 
 
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with the components 

   

   

   

   

11

12

21

22

31 ( , ) ( , )
3

6

31 ( , ) ( , )
3

6

31 ( , ) ( , )
3

6

31 ( , ) ( , )
3

6

l
f l l f

f l

f

l f f l

f l

f

l f f l

f l

l
f l l f

f l

k U x y V x y
k k k k

k k x y

k U x y V x y
k k k k

k k y x

k U x y V x y
k k k k

k k y x

k U x y V x y
k k k k

k k x y









  
       

  
        

  
       

  
       





 

The hyperstress tensor S  writes at second order in  and in terms of the second order 

derivatives of the displacement as: 

  111 121

211 221

1..2,1..2,1
 

  
 

S
S S

S S
, with

 

 
2 2 2 2

2
111 2 2 2

1 ( , ) ( , ) ( , ) ( , )
10 3 8 3 3 3 6

32 f f l f f

V x y U x y U x y U x y
S L k k k k k

x x y x y


    
           

 

2 2 2 2
2

121 2 2 2

1 ( , ) ( , ) ( , ) ( , )
2 3 3 9 6 3

32 f

V x y U x y U x y U x y
S k L

x x y y x


    
           

 

2 2
2

211 2 2

2
2

221 2

1 ( , ) ( , )
2 3

8

1 ( , )
3

8

f l

l

V x y U x y
S L k k

x x

U x y
S L k

x





  
      

 
   

 

  112 122

212 222

1..2,1..2,2
 

  
 

S
S S

S S
, with 

2 2 2 2
2

112 2 2 2

2
2

122 2

2 2 2 2
2

212 2 2 2

2
2

222

1 ( , ) ( , ) ( , ) ( , )
2 3 3 9 6 3

32

1 ( , )
3

8

1 ( , ) ( , ) ( , ) ( , )
2 3 3 9 6 3

32

3 ( , )

8

f

l

f

l

V x y U x y U x y U x y
S k L

x x y y x

U x y
S L k

x

V x y U x y U x y U x y
S k L

x x y y x

U x y
S L k









    
           

 
   

    
           




2
x

 
  

 



193 

 

7.6.2.1 Computation of internal lengths for the hexagonal topology of biomembranes 
 

We next compute the internal lengths for the hexagonal lattice, relying on the effective second 

order behavior computed with the second gradient approach. 

Isolating first the contributions in extension, that is the derivatives 11 111

1 1 1

S
,  

x x x

 
  

 , and 

inserting the expressions of those two components of the hyperstress tensor versus  2

2

U x, y

x




, 

one identifies the internal extensional length as  

 

  
 

  
 

  
 

l f l f l f l f2 2
xx xx

l f l l f l

f l f l

f l

8k k k k 8k k k k3 3
l L l L

16 k 3k k 4 k 3k k

8 k / k 1 k / k3
L

4 3k / k 1

   
     

 

 
 



 

This length depends now on both the geometry through the factor L , but also on the ratio  

of the beam flexural to tension rigidity, factor f lk / k , which is usually very small, unless the 

beams within the representative unit cell have themselves a microstructure.  If we integrate in 

previous expression of the internal length the relation between the extension and bending 

stiffness’s versus the slenderness ratio, that is  

3 2
 , /l s f s f lk k k k k k        

we arrive at  

 
  

 
  

 
2 2

f l f l
xx 2

f l

8 18 k / k 1 k / k3 3
l L L

4 3k / k 1 4 3 1

  
   

  
  

The parameter   take values of the order of 0.5 in general for biomembranes, which 

determines the value of the second factor in previous expression. 

We proceed in a similar manner as described previously to evaluate the internal length for the 

shear along x-y and y-x respectively: the internal length for shearing along x-y is  

2 2
int,xy f

9 3
l L k

32
   
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One can further proceed in the same manner for the derivative 
2V

x x


 

 and further identify an 

internal length for shear along y-x  
int,yx

2 210 3
l L

32
  , which is not the same as int,xyl . 

 

7.6.3 Biomembranes with sixfold connectivity networks 
 

Here, we consider the erythrocyte network with connectivity 6, which is modeled based on 

triangular repeated unit cells, each of them described by three beams and two periodicity 

vectors 1 2Y ,Y at a chosen configuration 30  , as shown in figure 7.6. 

 

 

 

 

 

 

Fig. 7.6 Triangular lattice 

Each beam is of length  bL L,L,L .

 

The lengths of the periodicity vectors 1

1

0

 
  
 

Y  

and 2

1

2

3

2

  
 
 
  

Y  are respectively 1L L and 2L L . The connectivity of this lattice is 

given in Table 7.3. 

Table 7.3 Mechanical properties connectivity of the triangular lattice 

beam 1 2 3 

O(b) 1 1 1 
E(b) 1 1 1 

1 1 1 0 

2 0 1 1 
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One obtains the Cauchy stress 

11 12

21 22

 
  
 

σ
 
 

 with the components 
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x y
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y x
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y x
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x y









  
      

  
        

  
      

  
        

 

The hyperstress tensor S  writes at second order in  as: 

  111 121

211 221
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7.6.3.1 Computation of internal lengths for the triangular topology of biomembranes 

We next compute the internal lengths for the hexagonal lattice, relying on the effective second 

order behavior computed with the second gradient approach. Isolating first the contributions 

in extension, that is the derivatives 11 111

1 1 1

S
,  

x x x

 
  

 , and inserting the expressions of those two 

components of the hyperstress tensor versus
 2

2

U x, y

x




, one identifies the internal extensional 

length as  

 
 
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This length clearly vanishes with the small parameter  , in fact as its square root. 

We proceed in a similar manner as described previously to evaluate the internal length for the 

shear along x-y and y-x respectively, the internal length for the shear along x-y as  
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One can further proceed in the same manner for the derivative 
2V

x x


 

 and identify now an 

internal length for shear along y-x,  
int,yx

2 2
f l

3
l L 17k 11k

64
   , which is not the same as int,xyl

.
 

 

7.7 Application to the Zig-Zag lattice  
 

We consider the description of a flexible yarn as an undulated beam with periodical crimp 

along direction x, and we compute the first and second order effective moduli, from the 

homogenized response involving Cauchy stress and hyperstress expressed versus the 

kinematic variables.  

Let consider an undulated beam with a geometry discretized by a Zig-Zag lattice represented 

by two inclined beams, as shown in figure 7.7. 

 

 

 
 

 
Fig. 7.7 Geometry of the Zig-Zag lattice. 

The length of each beam is  bL L,L . The periodicity vectors are 1
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with lengths 1L 2 L and 2L 1 . 

 The connectivity of this lattice is given in Table 7.4. 

Table 7.4 Mechanical properties connectivity of the Zig-Zag lattice 

beam 1 2 

O(b) 1 2 
E(b) 2 1 
1 0 1 
2 0 0 

 

n1 

n2 

n1 

45° 45° 

L L 

Y1 

Y2 

b1 b2 
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From the previous general framework, one first obtains the Cauchy stress 

1

1

1

1

( , )
2

0

0( , )
2

   
    
 

  
     

  

σ

f l

f l

f l

f l

U x y
k k L

x

k k

V x y
k k L

x

k k  

The hyperstress tensor S  is obtained as: 

 

 

 

 

2

2

2

2

23

2

23

2

2 ,

48 0
1..2,1..2,1

02 ,

48

0 0
1..2,1..2, 2

0 0

  
  

     
  
     

 
  
 

S

S

l f

l f

l f

l f

k k U x yL

k k x

k k V x yL

k k x



  

The flexural rigidity is extracted from the expression of  1,1,1S  as  
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The internal extensional length is defined as 
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The nonlinear response of lattices under out of plane bending is next analysed. 

 

7.8 Flexural behavior of biomembranes based on micropolar   

    models for a nuclear lamina 
 

In the last decade, the growing availability of advanced microscopy and imaging techniques 

has led to a blooming of interest in the study of biological membranes, revealing often 

spectacular examples of the intricate interplay of the various features characterizing their 

behavior (see, e.g., Baumgart et al. 2003). The main literature on the modeling of the 

mechanical behavior of biological membranes can be traced back to the pioneering works of 
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(Canham, 1970 and Helfrich, 1973), who derived elastic models describing the bending 

behavior of lipid bilayers, the building blocks of all types of biological membranes. 

In this section, we consider the homogenization technique towards a micropolar continuum 

for a nuclear lamina subjected to in/out of plane bending test. Namely, the in plane bending 

test over square lattice based on two orthogonal beam elements, as shown in figure below.  

 

 

 

 

 

Fig. 7.8 In plane bending test of the tetragonal lattice  

(biomembrane with connectivity four). 

and the out of plane bending test over a lamina with small undulation angle 5
L

  modeled 

as square topology repeated unit cells (RUC), with the four beams configuration shown in 

figure 7.9 (a,b) respectively. 

 

 

 

 

 

 

 

 

 

  

Fig. 7.9 Out of plane bending test: (a) lamina based on repeated (b) 4 beams square lattice . 
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We shall extract the micropolar moduli from the rigidity and compliance matrices to identify 

the homogenized micropolar moduli corresponding to the couple stress component. The 

constitutive equation of linear micropolar continuum write the couple stress (moment per unit 

surface) ,
xz xy

m m versus the microcurvatures z
xzk

x





 , 
y

xyk
x





 as follows 

, 55,33 ,xz xy xz xym k k
  

With 55k


, 33k
 therein the in-plane and out of plane homogenized micropolar modulus 

respectively, which depend (in a complicated way) of the microstructural lattice parameters.  

We employ the following procedure to analyze the deformation of the lamina subjected to (in 

and out plane) pure bending respectively. As previously discussed (chapter Three), the 

constitutive law can be identified from the expression of the second order forces and 

moments, based on the kinematical nodal displacement at the second order of ( ) and the 

nodal microrotation at first order in   . One solves the equilibrium equation at this stage 

under a pure bending load involving the gradient of the microrotation imposed over the 

reference unit cell to evaluate the kinematical nodal displacement for each beam versus its 

flexural rigidity. 

 In plane bending for the 2-beams square RUC 

 

 The repeated unit cell (RUC) is chosen with beam length 2nmb
L  , a beam width 0.5nmt   

and elastic moduli 47.99MPa
s

E  (as previously discussed in chapter two: section 3.7.3.1).  

 The response of the square lattice subjected to in plane pure bending is shown in Fig. 7.10: 

we note that the macroscopic couple stress does not display a nonlinear evolution during the 

corresponding incremental increase of the bending strain. This shows that each beam 

undergoes in fact a very small rotation, with all rotations cumulated giving rise to nearly no 

geometrical nonlinear effect at the structural level. 
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Fig.  7.10 In plane bending test: couple stress versus bending strain. 

 

 Out-of-plane bending for the 4-beams square RUC 
 

Next, let consider the square repeated unit cell (RUC) within the lamina having small 

undulation, described by the angle 5
L

   . Each beam has length 2nmb
L  , width 

0.5nmt   and elastic moduli 74.799 10 Pa
s
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L

L L  . The connectivity 

of this lattice is given in Table 7.5. 

Table 7.5 Mechanical properties connectivity of the square lattice 

beam 1 2 3 4 

O(b) 1 2 1 3 
E(b) 2 1 3 1 
1 0 1 0 0 
2 0 0 0 1 
3 0 0 0 0 

 

The response of the square lattice subjected to out of plane bending ( xy
m ) is shown in Fig. 

7.11: we note that at 20% of bending strain, there is a relatively large difference between the 
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linear and geometrical nonlinear analysis of about 10%, with bending requiring less moments 

in comparison to a linear response. This contrasts with the in-plane behavior which remains 

linear, thus stiffer.  

 

Fig. 7.11 Out of plane bending test: couple stress versus bending strain. 

 

 

7.9 Conclusion 
 
 We have developed a theoretical framework for the evaluation of second order gradient 

effects arising from the non affine motions of the internal nodes of the representative unit cell 

within lattice materials. The internal lengths have been formally computed based on the 

writing of the equilibrium equations. One-dimensional applications have been made as a first 

step, followed by computations of the bending properties of biological membranes, relying on 

the micropolar effective continuum. The case of bending is illustrative of the links between 

the homogenization scheme towards micropolar and second order grade continuous media. 

Especially, it has been shown that the developed homogenization scheme does not capture the 

bending behavior since it is restricted to 2D lattices; accordingly, the micropolar model is 

complementary in the sense that it is able to capture the bending response and provide the 

internal bending lengths. Furthermore, there is a strong similarity in the methodology for the 

derivation of the effective properties of micropolar and second order grade continua, 

especially the construction of the expression of the moments (at beam level and for the 
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micropolar continuum) and of the hyperforces (at the beam level for the second order grade 

continuum). 

The developed predictive numerical model can be used as a design tool to explore lattices 

giving rise to more pronounced size effects; especially, one shall imagine microstructured 

beams within the representative unit cell giving rise to more pronounced size effects at the 

mesoscopic level.  

Future planed work includes the development of numerical schemes for the computation of 

the effective second order properties for discrete media having a 3D geometry, such as textile 

or trabecular bone. One shall then expect that both extension and bending lengths shall be 

computed for such 3D geometries; the internal lengths for bending shall then coincide with 

those evaluated from the micropolar continuum.   

The effective second order models evaluated at the mesoscopic level shall further be used at 

the macroscopic scale to perform structural computations for media showing such scale 

effects.  
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General Conclusions and Recommendations for future 
work
The development of suitable micromechanical schemes for the computation of the effective 

mechanical response of architecture materials such as fibrous networks is quite important, in 

order to have at hand predictive models to analyze the overall computed response in terms of 

the underlying microscopic mechanisms. When a RUC can be identified for a quasi periodic 

network, it is possible to develop specific homogenization schemes relying on the assumption 

of inherent periodicity. Although a lot of attention has been devoted to replacing large 

periodic networks of lattice materials by effective continuum models, less attention has been 

paid to the consideration of both geometrical nonlinearities and microstructure effects leading 

to generalized continua at the continuum level.

This is the main goal of this thesis, in which we shall develop a modeling and numerical 

platform to determine in a general and systematic way the overall continuum response of 

periodical networks representative of the initial structure. 

The interest of the developed discrete homogenization technique (DH in short) lies in its 

flexibility and capability to handle any planar lattice; however in this work, we restricted 

ourselves to centro-symmetric lattices for simplicity. A further interest of the homogenization 

method lies in it is ability to deliver the expressions of the forces and hyperforces at the beam 

extremities of the lattice for generalized continua, based on the kinematical nodal variables 

(displacement and microrotation). From those expressions, one is able to construct the full 

compliance (or rigidity) matrix, reflecting the complex and evolving anisotropy of the so-built 

equivalent continuum. In the elastic case, and for small perturbations, the effective properties 

are derived as closed-form expressions of the geometry (characterized by the beam length and 

the quadratic moment of inertia) and mechanical properties (Young modulus). We extended 

the linear discrete asymptotic homogenization framework to the nonlinear setting, based on an 

update of the lattice geometry and an elastic computation done over each load increment. 

These theoretical developments have been implemented into a dedicated code using the lattice 

geometry and microstructural properties as an input, and delivering as an output the effective 

response. 

We observe that for depending on the type of structure topology, a linear analysis is not 

acceptable, since the difference between linear and nonlinear is significant. The detailed 

analysis of the considered types of structure from the proposed methodology shows that the 
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main reason of nonlinearity lies in the reorientation of the structural beam elements under the 

local stresses, whereas other geometric effects such as extension are negligibly small in 

comparison. A source of difficulty lies in the fact that due to the existing nonlinearity, it is not 

possible as for the homogenization in the linear setting to superpose the response obtained for 

individual loadings. 

A comparison of the response under uniaxial loading computed based on DH and on FE 

simulations has been done systematically in order to validate the homogenized response 

obtained by the DH technique, showing overall a good agreement between the results from 

discrete homogenization and those computed numerically. Especially, we have shown that the 

flexural response is well predicted by the DH technique, with a gain in rigidity due to 

micropolar effects that the DH is able to capture.

We have performed as an application of those models meso-level analysis of the mechanical 

behavior of textile monolayers and biological membranes to construct their effective 

anisotropic micropolar representative continuum models at the mesosopic level. The discrete 

asymptotic homogenization method delivers for such thin layers a micropolar effective 

medium at the mesoscopic level, from the description of the network as a lattice of thick (or 

thin) beams. As the main novel aspect, the nonlinear behavior of such networks under large 

strains was investigated. 

The micropolar concept is natural for textile since it captures the change of crimp and the 

local discrete rotations at the crossing zones between yarns. It further allows computing the 

flexural rigidity of such thin layers, the determination of which would otherwise be difficult to 

access. Plain weave and twill tows have been selected as case studies and have been analyzed 

in detailed. The derivation of such effective mechanical properties of textile from 

micromechanical analyses is quite interesting; moreover, the change of these properties 

during incremental deformation has been identified. On the other hand, the nonlinear stress 

strain response was analyzed incrementally under three classical types of loading cases: 

uniaxial, biaxial and simple shear, taking into consideration the structure geometry changes.

The homogenization scheme is quite general and versatile enough to be applicable for any 

networks having a periodical architecture. The obtained effective continuum models at the 

mesoscopic level may be further used at the next scale level to perform structural simulations; 

for textiles, it paves the way towards the simulation of shape forming operations involving dry 

textiles. In view of this objective, we have identified strain energy functions for effective 
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hyperelastic continua, as the nonlinear hyperelastic constitutive laws for fabric consisting of 

two independent families of fiber.

The representation of yarns could be improved by implementing a more elaborate model of 

the yarn behavior. This micromechanical approach is particularly interesting and novel, due to 

the difficulty to measure such effective properties for textiles considering their discreteness. 

The proposed homogenization technique proves efficient from a numerical point of view, and 

it has a great versatility as to the topology of the textile armor, which makes it a suitable tool 

to explore and compare various textile architectures for both single and multilayer 3D 

configurations in future developments. Other factors that have been discarded in the present 

contribution can be incorporated in extensions of the model, like yarn transverse 

compressibility, a more accurate representation of the shape of the yarn, and a better 

description of contact between yarns up to friction.

In the second part of this work, we have developed a discrete homogenization scheme up to 

the second order gradient of the imposed displacement field in order to formulate constitutive 

models for media exhibiting strong deformation gradients at the unit cell level, due to the non 

affine motion of internal nodes with the RUC. The derived effective continuum is 

characterized by first and second order mechanical moduli relating the stress to the first order

strain and the hyperstress to the second order strain, in a decoupled manner. The proposed 

methodology has been first applied to the evaluation of the second order tensile and flexural 

rigidity of a microstructured beam; the flexural rigidity calculated by the second order 

gradient scheme is identical to that computed by a micropolar effective continuum model.

From a technical point of view, it has been shown that the effective second order modulus is

obtained in a simpler manner by the second order gradient homogenization scheme.

The method is systematic in the sense that it can handle any lattice; these analyses are 

preliminary in the sense that we have mostly considered 2D or 2.5D geometries with 

essentially an in-plane behavior (without bending). From a numerical viewpoint, a dedicated 

homogenization code has been developed combining symbolic and numerical evaluations, 

using as an input file the topology and mechanical parameters of the beams within the 

identified unit cell of the lattice. 

The internal lengths for both the micropolar and second order gradient continua have been 

formally computed based on the writing of the equilibrium equations. One-dimensional 

applications have been made as a first step, followed by computations of the bending 

properties of biological membranes, relying on the micropolar effective continuum. The case 
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of bending is illustrative of the links between the homogenization scheme towards micropolar 

and second order grade continuous media. Especially, it has been shown that the developed 

homogenization scheme towards second order gradient continua does not capture the bending 

behavior, when restricted to 2D geometries; accordingly, the micropolar model is 

complementary in the sense that it is able to capture the bending response. Furthermore, there 

is a strong similarity in the methodology for the derivation of the effective properties of 

micropolar and second order grade continua, especially the construction of the expression of 

the moments (at beam level and for the micropolar continuum) and of the hyperforces (at the 

beam level for the second order grade continuum).

The developed predictive numerical model can be used as a design tool to explore lattices 

giving rise to more pronounced size effects. The effective second order models evaluated at 

the mesoscopic level can further be used at the macroscopic scale to perform structural 

computations for media showing such scale effects. Before that, we need to validate by FE 

simulations the computed homogenized second order moduli; this is an issue as one has to 

apply proper boundary conditions involving non uniform strains and uniform curvatures to 

capture second order gradient or internal bending effects.

The computation of effective mechanical properties of materials endowed with microstructure 

exhibiting effectively second order gradient effects is the basis for performing structural 

computations in an efficient manner, whereby the identified effective constitutive law is 

implemented at each Gauss point of a finite element computation. More detailed 

investigations of both the theoretical basis of the 2D homogenization of periodical discrete 

structures towards second order gradient continua are needed, before going to more complex 

2D and 3D geometries exhibiting more pronounced scale effects. The analysis of 3D textiles 

is a natural perspective of development of the present work. 

The mechanical response of random fibrous networks such as biomembranes is another 

perspective, for which a proper definition of a RUC together with the analysis of internal 

length scale effects are important issues. 
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In this appendix, we present a short review of number of features associated with the nonlinear 

elasticity theory. First, we recall some ideas for linear and nonlinear material modeling; we then 

focus on the different sources of nonlinearities in the analysis of solid continua, and nonlinear 

trusses will be considered to determine the main aspects of the nonlinear analysis as a final goal 

of this appendix. 

 
 

A.1. Introduction 
 
Nonlinear and linear continuum mechanics deal with the same topics including kinematics, 

statics, equilibrium, and the constitutive behavior. But in the linear analysis, an assumption is 

made that the deformation is sufficiently small to ignore the effect of changes in the geometrical 

configuration of the solid, whereas in the nonlinear case, the magnitude of the deformation is 

unrestricted so that this situation requires an extension of the small strain analysis. 

 

     The principal problem in Elasticity Theory is to find the relation between the stress and the 

strain in a body under certain forces. Hooke’s Law is applied when the strains are small.  

However rubber-like materials at large deformations are considered as nonlinear elastic, so that 

new expressions are required to characterize the behavior of the material. During uniaxial 

loading the difference between the linear and nonlinear behavior is represented in the shape of 

the curve of stress-strain behavior as shown in Figure A.1.1, in which stresses cannot be 

described as a linear function of strains. In both cases however, the curves during loading and 

unloading follow the same path; the stress is a unique function of the strain or deformation. 

 

 

 

 

 

 

 

 

 

 

 

Fig. A.1.1 types of stress strain responses  



211 
 

In a nonlinear analysis, the shape of the response is characterized by non-proportional nature 

between load and deformation. Thus, the structural response presented versus incremental 

loading with taking into consideration the new shape of the structure. In other words, the 

stiffness matrix of the structure is a function of element force as well as the deflection of the 

structure. Therefore, the instantaneous stiffness equation can only be solved numerically by an 

incremental and iterative procedure allowing for the geometrical change of the structure. Based 

on the Newton-Raphson scheme, the applied load is first divided into many small increments, 

and the displacement increment within each increment is computed by using the tangent stiffness 

matrix. 

 

A.1.1. Linear material modeling  

In this type of material modeling the constitutive equation that relates the relation between stress 

and deformation is represented by linear relation between the stress tensor 
ij

 and the strain 

tensor kl
  is given by Hooke’s law (linear proportional relationship named after Robert Hooke, 

1676). 

 
ij ijkl kl
σ C ε  (A.1) 

 
Where 

ij
 components of the Cauchy stress tensor are, kl

  are components of the strain tensor 

and 
ijkl

C  is called the elastic constants tensor of fourth order. 

 
 
Consequently, in the linear Finite Element Analysis (FEA) the set of equations, describing the 

material behavior is linear. In this analysis the equivalent stiffness matrix ( K ) is independent on 

the value of the load level and the displacements are proportional to the loads. 

 
K d = F  (A.2) 

 

where d is the nodal displacement vector and F  the external nodal force vector. 

 

A.1.2. Nonlinear material modeling  

For many materials, the relationship between the deformation and the applied load is no longer 

in a linear proportional; linear elastic models don’t accurately describe the observed material 

behavior. However at large deformations, new expressions to characterize the behavior of 

materials like rubber are required. 
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In the next section we discuss the constitutive equations which interrelates the stress and the 

strain components within a nonlinear regime. With present a nonlinear constitutive theory to 

describe a wide variety of physical phenomena in which the strains may be large, i.e. finite. 

For the case of hyperelastic material the resulting theory is called finite hyperelasticity and the 

constitutive equations for these materials postulates the existence of a Helmholtz free energy 

function (strain energy or stored energy function)  , in which    F is a function of the 

transformation gradient F or of a suitable strain tensor. 

Consequently, the nonlinear Finite Element Analysis is needed when the loading on the material 

cause’s significant changes in stiffness. The stiffness changes arises amongst all possible factors 

from strains beyond the elastic limit (plasticity), large deflections, modifications of the structure 

geometry, elastic properties depending upon strain, contact between two bodies. To trace the 

nonlinear load-deflection curve, a suitable numerical solution technique shall be adopted. As a 

consequence, the stiffness matrix is a function of element force as well as the deformation. Thus, 

for these phenomena, the set of equilibrium equations becomes nonlinear and instead of the set 

of linear equations (5.2) we obtain a set of nonlinear algebraic equations. 

 

 R d F  (A.3) 

 

The instantaneous stiffness equation can only be solved numerically by an incremental and 

iterative procedure allowing for the geometrical change of the structure. Based on the Newton-

Raphson scheme (or modified Newton-Raphson), the applied load is first divided into many 

small increments, and the displacement increment within each increment is computed by using 

the tangent stiffness matrix from the set of linear simultaneous equations. 

 
1i i i

T

   K d F  (A.4) 
 

And an update solution is obtained as shown in figure 5.2, with recognize that in nonlinear only 

one load case can be handled at a time and the results of several load cases cannot be combined. 

 

1i i i  d d d  (A.5) 
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Fig. A.1.2 Incremental method [Steen Krenk] 

 

 

A.2. Nonlinear computational mechanics  
 
Nonlinearities exist in an equation of motion, for whatever reason, the stress strain behavior 

given by the constitutive relation is nonlinear, from exist of products of variables, or their 

derivatives. The important is to understand the system in terms of the material model, loading 

and expected response to be able to determine where a linear approximation is adequate and 

where the use of a nonlinear theory is needed. The two main sources of nonlinearity exist in the 

analysis of solid continua, namely, material and geometric nonlinearity. Contact can also be 

classified as a geometric nonlinearity because the area of contact is a function of the 

deformation, but some author’s puts contact in another class called nonlinear boundary 

conditions.  

 

 

A.3. Types of nonlinearities 
 

A.3.1. Material nonlinearities 

Material nonlinearities occur when the stress-strain or force-displacement law is not linear, or 

when material properties change with the applied loads. 

It is important to note that no material has a perfectly linear elastic modulus or is perfectly 

isotropic; these are just approximations that are satisfactory for most situations. 
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If the material behavior is nonlinear, the displacement is infinitesimal, strain is infinitesimal and 

the stress-strain relationship is nonlinear. Possible material models are: 

nonlinear elastic, elastoplastic, viscoelastic and viscoplastic. 

The assumption of material linearity is adopted in this thesis  for simplicity and we concentrate 

on geometric effects only. 

 

A.3.2. Geometrical nonlinearities 

Geometric nonlinearities in solid bodies and structures involve nonlinearities in kinematic 

quantities, which entail nonlinear strain-displacement relations. Such nonlinearities can occur 

due to the occurrence of large displacements, large strains, large rotations, and combination of 

these. Changes in geometry, whenever large or small, have a significant effect on the load-

deformation behavior. 

If the effect of large displacements and large rotations on the overall geometric configuration of 

the structure exists, this effect can be dividing in two cases as exposed next. 

 

 Large displacements / large rotations but small strains 

• Displacements and rotations are large. 
• Strains are small. 
• Stress – strain relations are linear or nonlinear. 
 

  Large displacements, large rotations, large strains 

• Displacements are large.  
• Rotations are large. 
• Strains are large. 
• The stress-strain relation is probably nonlinear. 
 
A.3.3. Boundary nonlinearities 

The most frequent boundary nonlinearities are encountered in contact problems, displacement 

dependent boundary conditions. Let consider simple examples to facilitate the understanding of 

these different types of nonlinearities.    
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A.4. Simple example of nonlinear structure behavior 

Let consider a cantilever torsion spring model as shown in Figure (A.4.1) that provides a gentle 

introduction to some aspects of nonlinear analysis. 

 

 

 

 

 

Fig. A.4.1 Rigid bar attached to linear elastic torsion spring  

 
Taking the balance of moments about the hinge gives the equilibrium equation as, 

 
cos( )M F L   (A.6) 

where M is the moment at the pinned end of the bar. We can further relate the moment M to 
the rotation of the spring by the constitutive equation for a torsion spring as, 

( )M K   (A.7) 

where K is the torsional spring constant. Therefore, by substitute of eqn.(A.6) into eqn.(A.7) we 
can write, 

( )

cos( )

K
F

L




  (A.8) 

Therefore, the force-rotation relationship is nonlinear in , typical of a non-linearity due to 

geometry. If the angle 0  , then cos( ) 1  , and the linear equilibrium equation is recovered as, 

( )
K

F
L

  (A.9) 

If we assume that the torsion spring is nonlinear elastic the constitutive equation for the spring 

writes, 

 1( )oM k k    (A.10) 

 
In this case, substituting eqn. (2.6) into eqn. (2.10), the force-rotation relation becomes, 

 

1( )( )

cos( )
ok k

F
L

 



  (A.11) 
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Therefore, the force-rotation relationship contains both material and geometrical nonlinearities. 

Assuming small rotations leads to 

 

1( )
( )o

k k
F

L

 
  (A.12) 

 
which traduces the fact that the force-rotation relationship traduces only material nonlinearity. 
 
 
 

A.5. One dimensional nonlinear strain measures 

In the theory of infinitesimal deformations, the simplest possible quantity that we can use to 

measure the strain in one dimensional bar is the so-called engineering strain   defined as, 

1o

o

l l
or

l
  
    (A.13a,b) 

This strain definition is used for small displacement problems only, in which there is no 

significant difference between the second Piola-Kirchhoff stress and Cauchy stress. 

 
 
 
 
 
 

Fig. A.5.1 one–dimensional strain 

 

An alternative large strain measure can be obtained by multiple choices for the way of reporting 

strain in the theory of large deformation. The various strain measures for a tensile rods having 

original length ( L  ) and deformed length ( l  ) are shown in fig. (A.5.1). This large strain 

measure can be obtained by adding up all the small strain increments that take place when the 

rod is continuously stretched from its original length L to its final length l; this integration 

process leads to the definition of the natural or logarithmic strain L
  as, 

ln ln
l

L L

L

l l
or

l L

      
   (A.14a,b) 

     Although the above strain definition can in fact be extrapolated to the deformation of a three 

dimensional continuum body, this generalization process is complex and computationally costly. 

Strain measures that are much more readily generalized to continuum cases are the so-called 

Green strain G
 and Almansi strain E

 defined as, 

l  

o
l
 

u
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 
2 2

2
2

1
1

2 2G G

l L
or

L
  

    (A.15a,b) 

 

2 2

2 2

1 1
1

2 2E E

l L
or

l
 


     

 
 (A.16a,b) 

 

 

A.6. Nonlinear truss example 

Simple one-dimensional problems (single incompressible truss member) will be analyzed based 

on an incremental iterative method in order to introduce a number of features associated to finite 

deformation theory. Based on the principle of virtual displacements, one shall express the 

external force versus displacement, with the total stiffness divided by three different types of 

tangent stiffness. The external force is plotted versus displacement in two types of loading. Type 

one is loading is when the bar is initially inclined and the external force acts in y-direction. The 

second loading type of when the bar initially horizontal (y=0) and the external force act in the 

same axis of the bar.  

 

 

 

 

 

  

 

 

Fig. A.6.1 single incompressible truss member  

 

The chosen material and geometrical parameters of the bar are as shown in the Table A.1. 

 

Table A.1 Material and Geometric parameters 
 

b
A (mm2) b

E (MPa) y (mm) x (mm) 

Truss bar type one 

2 2000 2 20 
Truss bar type two 

2 2000 0 20 

x 

y 
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A.6.1. Type one the bar initially inclined (a) 

 
     We consider the truss member shown in Figure A.6.1 with initial and deformed lengths, and 

cross-sectional areas and volumes: L, A, V and l, a, v in initial and deformed configurations 

respectively. We assume large displacements and small strains, hence V = v or AL = al. The 

constitutive equations are chosen based on Green’s definition of strain; hence the Cauchy stress 

writes, 

 

2 2

22


 

N l L
E

A L
  (A.23) 

      

The original bar length L and the bar length l corresponding to the current deformed state write: 

2 2 2 2( )L x y l x y u      (A.24a,b) 

 

The axial force in the bar expresses in terms of the Green strain as, 

2
1

2G

y u u
N EA EA

L L L


     
   

 (A.25) 

- Equilibrium  

The principle of virtual displacements (PVD) is a convenient way to obtain the equilibrium 

equation, when the bar is in equilibrium; the virtual works of internal and external forces are 

equal for every kinematic admissible set of virtual displacements. In this case, the truss member 

has one degree of freedom, only one virtual displacement u is possible and the principle of 

virtual displacement receives the form 

 

G

V

V dV F u      (A.26) 
 

 
where G

 is virtual strain corresponding to virtual displacement u . The virtual strain can be 

expressed from equation (2.25) as 
 

2

2

1

2
G

G

d d y u u y u
u u u

du du L L L L

   
                 

 (A.27) 

 
Therefore, substituting eqn.(2.23, 2.25) and (2.27) into eqn. (2.26) delivers 
 

 2

N y u
u AL F u

A L
        

 (A.28) 
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Thus, equilibrium of the node B in the deformed state (Fig. 2.5) requires that the external force F 
is equal to the internal force g(u) generated by deformation of the bar: 
 

2

( ) ; ( )

1

2

y u
g u N g u F

L

y u u y u
EA F

L L L L

    
               

 (A.29) 

The tangent stiffness is a measure of the change in force for a given change in displacement and 

is defined by, 

dg d y u
K N

du du L

         
 (A.30) 

 
2 2

2

o u

EA y EA yu u N
K

L L L L L

K K K

      
   

  

 (A.31) 

In which o
K is the linear stiffness, u

K is the initial displacement stiffness, and K  is the initial 

stress stiffness. 
 
 
A.6.2. Type two loading of the bar initially horizontal (b) 

We next consider the same previous problem however in a second situation when the truss bar is 

initially horizontal as shown in figure (A.5.1), thus one rewrites equation (A.23) as  

2 2

22


 

N l L
E

A L
  (A.32) 

 

One sets in addition the relation between the original bar length L and the deformed one l as: 

 l L u  (A.33) 
The axial force in the bar expresses in terms of the Green strain as, 

2
1

2

     
   

G

u u
N EA EA

L L
  (A.34) 

One then writes the virtual strain as, 
 

2

2

1

2

                 

G
G

d d u u L u
u u u

du du L L L

     (A.35) 

Therefore, equation (A.26) becomes, 

 2

       
N L u

u AL F u
A L

   (A.36) 
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Thus, equilibrium of node B in the deformed state requires that the external force F is equal to 

the internal force g(u) generated by the deformation of the bar. 

2

( ) ; ( )

1

2

    
               

L u
g u N g u F

L

u u L u
EA F

L L L

 (A.37) 

 The tangent stiffness is defined as, 

 
dg d L u

K N
du du L

         
 (A.38) 

 
2

2

o u

EA L u EA Lu u N
K

L L L L L

K K K

       
   

  

 (A.39) 

Finally, we use an incremental procedure to solve the equilibrium equations (A.29) and /or 

(A.37) for the unknown displacement u corresponding to a given value of the external load F. 

But in this one-degree-of-freedom case, it is easier to specify a value for u and find the 

corresponding external load F. As a summary, we obtain the following tangent stiffness, as the 

sum of three types of stiffnesses mentioned above in each case, shown in Table A.2. 

 

Table A.2 Identification of the total tangent stiffness 

Case one: initially inclined beam Case two: initially horizontal beam 

o
K  u

K  K  o
K  u

K  K  

2
EA y

L L

 
 
 

 

2

2

EA yu u

L L

 
 
 

 
N

L
 

EA L u

L L

 
 
 

 
2

2

EA Lu u

L L

 
 
 

 
N

L
 

Internal force Internal force 

2
1

2

y u u
N EA

L L L

     
   

 

2
1

2

u u
N EA

L L

     
   

 

External force External force 

2
1

2

y u u y u
F EA

L L L L

                 

2
1

2

u u L u
F EA

L L L

                 
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We denote by type one and two the cases of initially inclined and horizontal beams respectively, 

which means that type one will account for the linear and the initial displacement stiffnesses. 

The external force is recorded versus each displacement increment, showing a nonlinear relation 

of type one and a linear relation of type two, as represented in figure A.6.2 (a, b) respectively. 

Obviously, the equilibriums equations (A.29-A.37) are nonlinear with respect to the 

displacement u, which means that one expects the relation between external load F and 

displacement u to be represented by a nonlinear curve. But one shall notice from figures 2.6a,b 

that this occurs only with type one loading. Understanding the reasons of the difference of 

behaviors (linear versus nonlinear responses) in the present 1D case will be of great help to 

understand the response of 2D lattices within a geometrical nonlinear analysis. 

 

 

 

 

 

 

 

 

Fig. A.6.2 External force (F) versus the applied incremental displacement (u), for the 

previous two types of structures 
One shall notice that there is a slight difference in the definitions of internal force in equations 

(A.25 - A.34), which is obvious with the linear part of strain (
u

L
) times this factor 

y

L
in case of 

type one loading (Fig. A.6.2a). Rewriting these equations in terms of the stress- strain relation 

leads to, 

For the first type of structure (Fig. A.6.2a):  
1 1

;
2 2

N y y
E E

A L L
                     

 

For the second type of structure (Fig. A.6.2b): 
1 1

1 ; 1
2 2

N
E E

A
                     

 

One shall notice that in both types (a, b), the tensile modulus E is not a function of strain, so that 

there is no material nonlinearity. In order to plot the stress-strain response, one shall solve for 

equilibrium using a small incremental value of the strain at each step, and neglect the second 

     a)      b) 
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order part of the strain, thereby using the linearized form of the constitutive law. However, the 

factor y/L is still present, leading to a nonlinear force-displacement relation. 

In the general case (more than one-degree of freedom), an incremental procedure is needed to 

solve the equilibrium equations as mentioned above. The solution can be formulated in two 

ways. In the total Lagrangian formulation, one uses the full tangent stiffness matrix, including 

the displacement stiffness matrix during all steps of the computation. The Second-Piola 

Kirchhoff stress should be associated with Green’s strain and not Cauchy stress;  

The principle of virtual displacement gives  

 

0 0 ij

o

t t t t t t

ij G

V

S dV R     (A.40) 

 

where 0
t t

ij
S

  are the components of the 2nd Piola Kirchhoff stress tensor. 

 
In the alternative Updated Lagrangian formulation, the geometry is updated, and the current 

value of displacement (u) is absorbed in the updated value of (a), and in that case the initial 

displacement stiffness 
u

K vanishes. 

In the Updated Lagrangian formulation, a known deformed configuration (i) is taken as initial 

state for the subsequent configuration (i+1) and this process is continually updated as the 

calculation proceeds.  

 The principle of virtual displacement gives  

( 1) ( 1)

ij

i

i i t t

ij A

V

dV R     (A.41) 

where ( 1)i

ij  is Cauchy stress tensor and ( 1)

ij

i

A
  is Almansi strain tensor, the notaion (i+1) means 

that the stress and strain are evaluated in configuration (i+1), but the integration is done over the 

known volume at the known deformed configuration (i).  
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Appendix B: Non-linear Equilibrium Problems with Large 

Perturbations of the Networks: Technical Aspects  
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B.1. perturbation with respect to beam length and directors 

We next write into a detailed manner the perturbed expression used in the non-linear 

equilibrium problem associated to the large perturbations of the network. 

In order to set the stage, we write the beam in vector form as a function of its length ( b
l ) and 

directory ( be ) as follow, 

b b
lB e  (B. 1) 

One may then formulate the variation of the beam from the perturbation with respect to the 

beam length and director as,   

b b b b
l l   B e e  (B.2) 

We next formulate an expression for the perturbed beam geometry 

         

1b b b

b
l

l
          

e B e  (B.3) 

and length 

        
. .b b b

l   B e B e  (B.4) 

We substitute equation (B.4) into equation (B.3), thus one obtains 

 1
.b b b b

b
l

            
e B B.e B e e

 

   . .b b b b b b
l       e B B e e B e e  

                     
   . .b b b b b b

l       e B e e B B e e  (B.5) 

One then divides equation (B.5) by  b
l , thus 

 1
.b b b b b

b b
l l

            
B

e e e B B.e e  

   .b b b b b b

b
l

       
B

e e e e Ι e e  

   . .b b b b b

b
l

          
BΙ e e e Ι e e
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   1 1

2
b b b b

           
Ι e e Ι e e

 

We can then introduce a projection operator as  

 1
,

2
b b     

C Ι e e
  

 b b     P e e  (B.6) 

Finally, the perturbation of the beam director in the beam direction writes, 

                     
 1

. .b

b
e C P B

l
   (B.7) 

Substituting equation (B.7) in equation (B.4), one then obtain  

 1
. . .b b

b
l

l
      

 
B e B C.P B  

 1
. .b b b b

b
l l

l
      

 
B.e e C.P B  

 . .b b
l  e Ι C.P B

 

 

Finally, the perturbation of beam length writes, 

                     
 . .b

b
l

l
 

B Ι + C.P B  (B.8) 

One can remark that it is easier to get the expression of the perturbation in the perpendicular 

direction of the beam by introducing the orthogonal transformation (
Z

Ω ) such that 

.b b

Z

 e Ω e  

where     

 3

cos sin 0
2 2

, , sin cos 0
2 2

0 0 1

b b

Z e e Y

 

 

            
         

    
 
 
 

Ω  

.b b

Z
  e Ω e  
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Finally, the perturbation of the beam director in perpendicular direction of the beam writes 

                  
 1

. .b

Zb
l

  e Ω C.P B  (B.9) 

  

 B.2. Kinematics of deformable Bodies 

Classical continuum mechanics studies the deformation and motion of bodies ignoring the 

discrete nature of matter. The deformation gradient F is the fundamental measure of 

deformation in continuum mechanics, which is involved in all equations relating quantities 

before deformation to the corresponding quantities after (or during) deformation. The 

deformation gradient tensor enables the relative spatial position of two neighbouring particles 

after deformation to be described in terms of their relative material position before 

deformation; consequently, it is central to the description of deformation and hence strain. 

In such a nonlinear localization problem, involving (large displacements, large rotations), the 

most important point is to use the strain definition without “self straining”, a condition that 

precludes generation of strais for arbitrary rigid body motion. 

The Green Lagrangian strain ( E ) tensor is defined with respect to the initial configuration. 

When the deformation is given by the deformation gradient F , the strain tensor can be 

obtained based on this formula: 

 1

2
T E F F Ι  (B.10) 

with I the unit tensor. 

The second Piola-Kirchhoff stress ( S ) tensor is the stress conjugated to the Green lagrangian 

strain tensor. A push-forward of the second Piola-Kirchhoff stress to the actual configuration 

Cauchy gives the following expression of the Cauchy stress,  

1 T
J
σ FSF  (B.11) 

One may then formulate the deformation gradient and the Green Lagrangian strain versus the 

displacement gradients as, 

Grad Grad  F x Ι u  (B.12) 

where I  is the identity tensor and Grad u  is the displacement gradient. 
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The Lagrangian strain writes based on the displacement gradient as, 

 1 1

2 2

1

2

T T

j ji i
ij

j i i j

u uu u
E

x x x x

     

   
        

E u u u u

 (B.13) 

The stretch (or the stretch ratio)   is defined as the ratio of the length of a deformed line 

element dx  to length of the corresponding undeformed line element dX    

d

d
 

x

X
 (B.14) 

For a line element in the 1-direction, the unit extension is  

(1) (1)

(1)

1
d d

d



 

x X

X
 

Denoting the unit extension of by (1)dX  by  1E , one can write the strain in this direction, 

based on equation (A.2.4) as 

 

and similarly for the other diagonal elements of the Lagrangian strain 22E , 33E . When the 

deformation is small, 2
(1)E is small in comparison to  1E , it results in  11 1E E . 

 

B.3. Micro to mesolevel transition 

The first order homogenization schemes has been recently developed in [Dos Reis and 

Ganghoffer, 2012] for the determination of the effective mechanical properties of periodical 

lattices at the mesoscopic scale; thereby, the stiffness matrix components are expressed as a 

function of the material and micro structural geometric parameters. 

We analyze overall the following networks: a) the square lattice b) the inclined square lattice 

c) the hexagonal lattice d) the triangular lattice, in order to evaluate the stress-strain behaviour 

for three different types of loading tests. The unit cell for each lattice and the corresponding 

periodicity vectors are represented on the same figure below.  

 
2

11 (1)1

1

2
E  E E
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Fig. B.3.1 The analyzed 2D planar Unit cell: (a) square lattice (b) inclined square lattice (c) hexagonal 
lattice (d) Triangular lattice 

 

The constitutive relations for a plane problem may be written under the form  
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 (B.15) 

The following initial stiffness matrix K is obtained for the square lattice, the effective 

extensional and bending stiffness’s are successively given by ,s
l

E t
k

L
 and 

3

3

12
,s

f

E I
k

L
  


  

2Y

  

1Y

  

1n

  

1n

  

1n

  

2b

  

1b

  

a) b) 

c) 
d) 
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 
2

2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
12

0 0 0 0 0
12

l

l

f

f

f

f

k

k

k

k
K

k L

k L

 
 
 
 
 
 
 
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The initial stiffness matrix K of the inclined square lattice expresses as, 

11 12

21 22

33 34

43 44

55

66

0 0 0 0
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with the rigidities therein 
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The initial stiffness matrix K of the hexagonal lattice expresses with the rigidities therein 
evaluated as, 
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Similarly, the initial stiffness matrix K of the triangular lattice expresses with the rigidities 
therein evaluated as, 

 

  11 22

3
3
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The mechanical moduli extracted from the effective stiffness matrices are given in a synthetic 
form in the following table, 
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Table B.3.1: Summary of the homogenized moduli of the chosen 2D lattices 
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B.4. Transition of homogenous deformation to macroscopic 

boundary condition 

Within a specified type of load test, we next determine the adequate macroscopic 

displacement boundary conditions that have to be imposed over the representative unit cell 

(RUC). 

 Uniaxial tension  

In the uniaxial tensile loading test, we control and impose the stretch ( ) in the xx-direction. 

One is then entitled to first assume that there is no contraction in yy-direction, as shown in 

figure B. 4.1 (a). We will see next that this assumption is incorrect, and we will determine the 

adequate kinematic bouindary condition to be imposed in the yy-direction. 

 

 

 

 

Fig. B. 4.1 Tensile loading in xx-direction 

 

Based on previous assumption, the deformation gradient is described as  
0

0 1

 
  
 

F  . One 

next expresses Green’s strain based on equation (B.10) as  

2 1
0

2
0 1

 
   
  

E  (B.16) 

One may then reformulate Green’s strain versus the displacement gradient, based on equation 

(A.2.4); interrelating this form with equation (B.16) leads to the imposed displacement 

gradient versus stretch as, 

1xx

u

x
 

  
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, 0yy

v

y
 
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x
  

Y
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As shown next in figure 4.1 (b), the material locally reacts to the imposed stretch in xx-

direction with a stretch in the transverse direction which remains unprescribed, thus the 

deformation gradient should include an a priori unprescribed strain in yy-direction, in 

contradiction to what has been initially assumed.  

Thus, the deformation gradient for this loading type is defined as follow  

1 0

0 1

  
    

F
xx xyA

yx yy

 
 

 (B.17) 

The a priori unprescribed strain, the component ( yy
 ) therein, first requires to initialize the 

solution of the full incremental problem from the homogenization method based on the small 

perturbations framework. The correct macroscopic boundary condition shall be extracted, 

based on the constitutive law that relates stress to strain and involving the computed 

compliance matrix (A.3). The constitutive law for the stress component in the direction of the 

imposed xx-stretch loading writes specifically, 

   11 11 xx 12 yy

11 12

K K

u v
K K

x y

      
           

 

One then obtains the macroscopic displacement gradient by the following expressions versus 

stretch,  

 1 ;xx    12. . 1yy xy xx          

involving Poisson’s ratio xy
 in the transverse direction. It is thus clearly Poisson’s ratio which 

controls the boundary condition in terms of the stretch to be applied in the transverse yy-
direction. 

One then updates the lattice geometry for each increment of the loading and determines the 

new homogenized rigidity matrix adapted to the new shape of the structure, in terms of the  

stiffness coefficients relative to the new geometry of the lattice unit cell. We thus extract the 

effective Poisson’s ratio ( xy
 ) at each load increment. This general procedure is applied for 

each specific loading condition to determine the correct a priori unspecified kinematic control 

loadings that have to be applied to the unit cell boundaries.  
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 Biaxial tension 

In the biaxial tensile loading test, we impose the stretch in both directions; this can be 

achieved by applying a strain in xx and yy-directions for various biaxial strain ratios, defined 

as 
xx

yy

k



 , here selected to be an integer  0,1,2,3k . 

 

 

 

 

Fig. B.4.2  Biaxial tensile loading in both directions. 

 

The specific case 1k   means one applies a equibiaxial loading with deformation gradient 

0

0




 
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 

F  . One next expresses in this case the Green’s strain from equation (B.10) as  
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E  (B.18) 

One then obtains the imposed macroscopic displacements as, 

 1xx yy      

In the same manner, we then update the lattice geometry for each increment of the loading 

and determine the new homogenized rigidity matrix adapted to the new shape of the structure.  

 Simple shear  

In the simple shear test, we impose ( ), the shear angle as shown in figure B.4.3; considering 

g of  small incremental shear angle lead to  
xy
 . The deformation gradient is computed as 

follows  

yy
  

xx
  

x
  

Y
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1 1

0 1 0 1
xx xy xy

yy

F
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
   

       
 (B.19) 

One next expresses Green’s strain from equation (B.10) as  

2

0
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2 2

 
 

  
  
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E  (B.20) 

One may further write the imposed macroscopic displacements versus the shear strain angle 

as, 

2xy yx  
   

It can be observed from equation (B.20) that a compressive strain needs to be imposed in the 

transverse direction at each increment of the numerical solution procedure, evaluated versus 

the shear   as 

 21 1yy      

 

 

 

 

Fig. B.4.3 Simple shear loading test. 
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C.1. Introduction 

  
In this chapter based on the proposed 2D discrete homogenization discussed in chapter two, we 

briefly describe the method in a framework of 3D model to derive the macroscopic elastic 

properties of woven structures – and more generally solids reinforced by two families of fibers - 

by taking into account axial, transverse shearing, flexural and torsional deformations of the yarns 

building the woven fabrics. Furthermore, we evaluate the effective mechanical properties of 

structures having a discrete architecture, relying on the discrete asymptotic homogenization 

method developed for the large deformation regime. 

In the first section of this chapter, we present a short review of nonlinear hyperelastic 

constitutive laws for isotropic and transversely isotropic solids; a special attention is paid to dry 

textiles which consist of two families of fibers (before impregnation by the resin).  

We aim in this chapter at computing the overall response of a surface made of two families of 

fibers embedded into an elastic matrix, based on the four basic structures that characterize the 

symmetry properties of a network of fibers. As a final objective of this first part, we then 

formulate the strain energy function of such anisotropic surfaces by using the set of invariants 

incorporating the structural tensors of the fibers; appropriate expressions are given for the 

different families of surfaces relying on the classification introduced previously. 

In second part of this chapter, we shall compute the nonlinear response of fibrous reinforced 

solid materials, and identify from these numerically computed responses suitable forms of strain 

energy densities. 

 

 

C.2. Basic issues concerning strain and stress measures in finite 

theory 
 

In continuum mechanics, the finite strain theory also called large strain theory, or large 

deformation theory deals with deformations in which both rotations and strains can be large. 

Finite strain measures and stress-deformation relations play a basic role in the analysis and 

computation of finite deformation problems of materials and structures. The next section will 

describe some of the aspects related to the large deformation theory.  
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C.2.1. Kinematics of large deformation 
 
Classical continuum mechanics studies the deformation and motion of bodies ignoring the 

discrete nature of matter. The deformation gradient F  is the fundamental measure of 

deformation in continuum mechanics; it is the second order tensor which maps line elements in 

the reference configuration dX  into line elements (consisting of the same material particles) in 

the current configuration dx . Figure C.2.1 considers a line element dX  emanating from position 

X  in the reference configuration which becomes dx  in the current configuration at a position x . 

Most of the following results are taken from, or based on, Ogden (1997). 

d .dx F X  (C.1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. C.2.1 Material and spatial configurations and motion of a continuum body. 
 
Moreover, a different view of the deformation can be obtained when F  is written in terms of its 

polar decomposition, given by 

 
F RU = VR  (C.2) 

 

where R is a proper orthogonal tensor, i.e. TR R = Ι  with determinant equal to unity, 

corresponding to a finite rotation, and U  and V  are second-order positive definite symmetric 

tensors, known as the right and left stretch tensors If, R Ι , F = U = V   the deformation is 

known as pure strain. If U = V = Ι , F = R

 
the deformation corresponding to a rigid body 

rotation. Using the polar decomposition of F , previous decomposition (C.2) then delivers the 

relation between small material vectors 

d d )x R(U X  (C.3) 
which means that the unreformed line element dX  is first stretched by U and is then rotated by 

R into the deformed element dx . 
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In the nonlinear localization problem, the strain is measured locally by changes in the length of 

line elements. The strain shall be formulated in one of these two forms: 

 
 Green-Lagrange strain (

GE ) is formulated with respect to the initial configuration.  

 Eulerian (Almansi) strain (
eE ) is formulated with respect to the deformed 

configuration. 

Let consider a differential material line segment in the reference configuration is 
2 T

dS d d X X  
 
The same material line in the current configuration is 

2 T T
ds d d d d  Tx x x F F x  

 
Thus, the difference of the square of the length of an infinitesimal segment in the current 

(deformed) configuration and the reference (unreformed) configuration is given by: 

       2 2 T
ds dS d d  TX F F - Ι X  

The tensor TF F - Ι  is a measure of strain; it entails the so-called Green Lagrange strain (
GE

defined by  

 1

2G  TΕ F F - Ι  (C.4) 

 
Using the polar decomposition equation (C.2) for the deformation gradient F , we may also form 

the following tensors as possible deformation measures,  

                 T 2C F .F = U ,  T 2B F.F = V  (C.5) 
 
We refer to C and B  as the right and left Cauchy-Green deformation tensors respectively. 

Thus GE  may be written as  

   21 1

2 2G  Ε C- Ι U - Ι  

 
The corresponding Euler strain tensor eE , based on V , is defined by 

 

  1 11
.

2e G

    T TΕ Ι F F F E F  (C.6) 

Finally, in this section, it is useful to note that the displacement u  of a particle is defined as   
 

u = x- X  (C.7) 
 
So that  

x = X+u  (C.8) 
and  



239 
 

Grad Grad  F x Ι u  (C.9) 
 
where I  is the identity tensor and Grad u  is the displacement gradient. 

Using this form (C.9) for the deformation gradient F , gives a variant expression for the Green 

Lagrangian strain based on the displacement gradient as, 

 1 1

2 2
T T

G      E u u u u  (C.10) 

 
when the deformations are small, it is reasonable to neglect the term involving product of the 

displacement gradient, thus one recovers the small strain tensor 

 1

2
T

G    E u u  (C.11) 

 
C.2.2. Statics for large deformation  

 
When the deformations are large, there are a number of different possible ways of defining the 

action of surface forces; some of these stress measures often do not have as clear a physical 

meaning as the Cauchy stress, but are useful nonetheless. The force per unit area in the current, 

deformed, configuration has been described in terms of the Cauchy stress tensor  . The Cauchy 

stress is also called the true stress, to distinguish it from other stress tensors, some of which will 

be discussed below.  

Figure C.2.2 shows that a vector element of surface in the reference configuration, dSN , where 

dS  is the area of the element and N is the unit normal. After deformation, the material particles 

making up this area element now occupy the element defined by dsn , where ds is the area 

element and n  the unit exterior normal in the current configuration. Suppose that a force df  acts 

on the surface element (in the current configuration). Then by definition of the Cauchy stress 

d dsf σn  (C.12) 
the (Cauchy) traction vector is defined as 

d

ds


f
t , .t σ n  (C.13) 

  
     

 
 
 
 
 
 

Fig. C.2.2 Traction vectors T, t   in undeformed and deformed configurations respectively 
 

refernce 
configuration 

N   

dS   

T   

current 
configuration 

n   

ds
t   
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Similarly, one can introduce the first Piola-Kirchhoff stress tensor P (called PK1 stress) 

defined by 

 

d dSf P N  (C.14) 

The PK1 stress relates the force acting in the current configuration to the surface element in the 

reference configuration. Since it relates to both configurations, it is in fact a two-point tensor, 

which does not truly deserve the status of a second order tensor. 

The (first Piola Kirchhoff ) traction vector is defined as 

d

dS


f
T , T P N  (C.15) 

The Cauchy traction is the actual physical force per area on the element in the current 

configuration, the PK1 traction is a fictitious quantity, defined as the force acting on an element 

in the current configuration divided by the area of the corresponding element in the reference 

configuration. 

Thus, one shall notice that, since d ds dS f t T , it means that t and T have the same direction 

but different magnitude.  

The second Piola Kirchhoff stress tensor, or the PK2 stress, S , is defined by  

1 T
J

 S F σF  (C.16) 
 
The PK2 is a material tensor field, in the same way as the Cauchy stress is a spatial tensor field. 

The relations between the different types of stresses mentioned above are next written. 

 Cauchy stress σ  and PK1 are related through  
 

T 1 T   P σF σ PFJ J  
 

(C.17) 

 The PK1 and PK2 stresses are related through  
 

1  P FS S F P  (C.18) 
Finally, one shall notice that the Cauchy stress is symmetric, but the deformation gradient is not. 

Hence, the PK1stress tensor is not symmetric, and this restricts its use as an alternative stress 

measure to the Cauchy stress measure. Moreover, one can easily obtain the following relations 

      T T T1 T T 1 1 T T      F σF σF F F σ F  (C.19) 

  
Since the Cauchy stress is symmetric, so the PK2 is also symmetric, TS S . 
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C.3. Nonlinear elasticity models 

 
For many materials, linear elastic models do not accurately describe the observed material 

behavior. Elastic materials for which the work done on the material is independent of the load 

path are said to be hyperelastic (they are also called Green elastic materials). Nonlinear elastic 

behavior of materials can be formulated in several ways. The simplest formulation is called the 

total formulation, whereby the stress and strains are defined in terms of the secant modulus of 

elasticity 
s

E  , see Figure C.3.1, 

s
E   (C.20) 
  

In a hypo-elastic formulation for which finite stress cannot directly be related to finite strain, the 

relationship between stress and strain increments is defined by the tangential modulus of 

elasticity
t

E , such that 

 t
d E d    (C.21) 

 
 
 
 
 

 
 
  
 

 

 

 

 
Fig. C.3.1  Nonlinear elastic response 

 

The nonlinear elastic material law can also be formulated in terms of hyperelastic formulation: a 

hyperelastic material has a nonlinear behavior, which means that its answer to the load is not 

directly proportional to the deformation; the most common example of this kind of material is 

rubber, but also biological tissues and several woven fabrics like Lycra can be modeled using an 

hyperelastic constitutive law. 

Hyperelasticity accounts for the capability of a material to experience large elastic strain due to 

small or large forces, without losing its original properties when unloaded back to the initial 

configuration. In this section, we discuss the phenomenological equations which interrelate the 

ε
  

dε

ε
  

σ
  

dσ

σ
  

sE   

tE   
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stress and the strain tensors within the nonlinear regime. We present a nonlinear constitutive 

theory to describe a wide variety of physical phenomena in which the strains may be large, that 

is finite (in opposition to the small strain regimes). For hyperelastic materials, the resulting 

theory is called finite hyperelasticity and the constitutive equations for these materials postulates 

the existence of a Helmholtz free energy function W  (the strain energy or stored energy function 

in the absence of thermal effects, elaborated as a density per unit volume), in which W=W(F)  is 

a function of F or some alternative strain tensor. Its derivative with respect to the strain tensor E   

determines the corresponding stress, as 

 

2
ij

ij ij

W W

E C

 
 
 

S  (C.22) 

where: 

ij
S

 
is the components of the second Piola-Kirchhoff stress tensor 

W
 
is the strain-energy function per unit undeformed volume 

ij
E denote the components of the Lagrangian strain tensor 

ij
C

 
are the component of the right Cauchy-Green deformation tensor 

 

The principal features of a nonlinear elastic material are: 

1. The presence of large deformations, such that the analysis is nonlinear, 

2. It does not have permanent deformations, 

3. There is no proportionality between stress and strain, 

4. As a corollary, the elastic stiffness tensorC
ij , is not a matrix of constant coefficients. Instead, 

finite stress-strain relations with elasticity constants depending upon the strain are derived from a 

strain energy function W ; the strain energy may be expressed in terms of the principle invariants 

of C  for an isotropic material, viz 

1 2 3W f (I ,I ,I )  (C.23) 

1I , 2I and 3I   are the three invariants of the green deformation tensor given in terms of the 

principle extension ratios 1 , 2 and 3  by:  

 
2 2 2

1 1 2 3I tr      C  

    2 2 2 2 2 2 2 2
2 1 2 2 3 3 1

1
I

2
tr tr          C C

 
2 2 2

3 1 2 3I det    C  
 

(C.24) 
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C.4. Isotropic hyperelastic material Models 

 
We next review some hyperelastic constitutive models developed for isotropic and anisotropic 

solid bodies undergoing large strains. 

 
C.4.1. Saint-Venant Kirchhof Model 

 
The simplest hyperelastic material model is the Saint Venant–Kirchhoff model, which is an 

extension of the linear elastic material model to the nonlinear regime. This model is a 

straightforward generalization of Hooke’s law to finite strains when the effects of the large 

deformation are primarily due to rotations such as in the bending of a marine riser or a fishing 

rod, for example. The St. Venant-Kirchhoff material is fully nonlinear in the displacements. This 

model is suitable for large displacement calculations, when the material undergoes only small 

strains (but large displacements and rotations) through the use of Green-Lagrange strain  E

measure. This model has a strain energy function of the form: 

 

     2 2

2
   E E EG G GTr Tr
   (C.25) 

 

in which, 0 and 0  are the two Lamé constants. 

From the given strain energy function  EG , one derives the second Piola-Kirchhof stress  S , 

which linearly depend on the Green-Lagrange strain  E
G

, as 

   G GTr 2   S E I E  (C.26) 

 

For rubber and biological materials, more sophisticated models are necessary to describe the 

materials that exhibit modest strain, or are elastic in the regime of very large strains. From 

experiments, it is known that rubbery materials can develop moderate strains up to 30-70%. 

 
C.4.2. Neo-Hookean Solid Model  

The neo-Hooekean hyperelastic material model was proposed by Ronald Rivlin in 1984; it is 

similar to Hooke’s law, and can be used for predicting the nonlinear stress-strain behavior of 

materials undergoing large deformations. The form of the strain energy potential is as follows: 
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1 1( 3)W c I   (C.27) 

where 1c
 
is a material constant (a shear modulus), and  1 :I Tr C is the first invariant of the 

left Cauchy-Green deformation tensor. The Neo-Hookean model can be replaced by more 

general model, such as the Mooney-Rivlin solid where the strain energy is a linear combination 

of the first two invariants. 

 

C.4.3. Mooney-Rivlin Model 

Rivlin and Sunders developed in 1951 a hyperelastic model for large deformations of elastomers, 

typically rubber for an automobile tire. The form of the strain energy potential for a Mooney-

Rivlin material is given as: 

 

10 1 01 2( 3) ( 3)W c I c I     (C.28) 
 
where, 10 01,c c

 
are material constants. The Mooney Rivlin material was originally developed for 

rubber, but is today often applied to model (incompressible) biological tissues. For modeling 

rubbery and biological materials at even higher strains, the more sophisticated Ogden material 

model described subsequently has been developed. 

 
C.4.4. Signorini Model 

It is an extension of Mooney-Rivlin model including a quadratic contribution in the first 

invariant 

2
10 1 01 2 20 1( 3) ( 3) ( 3)W c I c I c I       (C.29) 

 
C.4.5. Yeoh Model 

The original model proposed by Yeoh has a cubic form with a sole dependence on the first 

invariant 1I and is applicable to purely incompressible materials. The strain energy density for 

this model is written as 

 
2 3

10 1 20 1 30 1( 3) ( 3) ( 3)W c I c I c I       (C.30) 

 
C.4.6. Ogden Model 

This model was developed by Ray W. Ogden in 1972; like other hyperelastic materials models, 

the Ogden assumes that the material behavior is described by a strain energy density function, 

from which the stress-strain relationship can be derived. 
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The Ogden form of strain energy is based on the principal stretches of left-Cauchy strain tensor, 

which has the form: 

 

 1 2 3
1

3p p p

N
p

p p

W
  

  


     (C.31) 

 

where ,
p

N 
 
and 

p are material constants. 

 
C.4.7. Arruda–Boyce Model 

This model was developed by Arruda–Boyce in 1993; it is used to describe the mechanical 

behavior of rubber and other polymeric substances. This model is based on the statistical 

mechanics of a polymeric material with a cubic representative volume element containing eight 

chains along the diagonal directions. The material is assumed to be incompressible, so that the 

strain energy density function for the incompressible Arruda–Boyce model is given by 

chain

sinh
ln

B
W N k n n

  


  
   

  
 (C.32) 

where n  is the number of chain segments. 
B

k is the Boltzmann constant,   is the temperature in 

Kelvin, and N is the number of chains in the network of a cross-linked polymer. 

 
 

C.5. Transversely isotropic material models 
 

Fiber-reinforced composites material and also many biological tissues such as ligaments or blood 

vessels are modeled by the hyperelastic idealization; the reader is referred to chapter I for an 

overview of such materials and structures. Fiber-reinforced materials are composed of a network 

of fibers with different choices of fiber distribution: when the reinforcement is randomly 

arranged, they can be modeled as isotropic materials; when they are composed of one family of 

fibers only (with a single preferred direction), they can usually be considered as transversely 

isotropic; finally, when two or more families of fibers are present, the tissue is modeled as a fully 

anisotropic solid material. 

 
We consider herewith a 3-D fiber-reinforced composite made of isotropic matrix and a single 

family of reinforcing fibers. The fibers are continuously distributed and have a common unique 

direction in the reference configuration of the material. We denote by A  the unit vector parallel 

to the fiber direction in the reference configuration, and .a F A  the corresponding unit vector in 

the current configuration, transported by the deformation gradient F . 

http://en.wikipedia.org/wiki/Rubber
http://en.wikipedia.org/wiki/Polymer
http://en.wikipedia.org/wiki/Statistical_mechanics
http://en.wikipedia.org/wiki/Statistical_mechanics
http://en.wikipedia.org/wiki/Representative_volume_element
http://en.wikipedia.org/wiki/Strain_energy_density_function
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Fig. C.5.1 Top view of piece of fabric made of single family of reinforcing fibers (a) orientation 

initial (b) orientation after deformation 

For such hyperelastic anisotropic materials, the isotropic part of the elastic strain energy function 

descriptive of the matrix response can be written in terms of the right Cauchy-Green tensor 

 M M
W W C . The presence of a family of reinforcing fibers in the isotropic matrix gives the 

material transversely isotropic properties, characterized by the invariance of W under rotations 

that preserve the fibers direction in the reference configuration. In the sequel, a classification of 

the possible forms of the strain energy density is proposed. 

Let G be the group of orthogonal transformations which leave the axis parallel to A  invariant, 
i.e 
 

  3 /o   G R R A A  (C.33) 

Its elements are the rotations with axis parallel to A  and the reflections in the planes parallel or 

orthogonal to A . If we assume the matrix material to be hyperelastic, then it is customary to 

assume that, in the presence of fibers, the following transverse isotropy condition holds 

 

    , .T
W W  C RCR R G  (C.34) 

Transverse isotropy can also be characterized alternatively in terms of the so-called structural 

tensor built from the fiber direction, 

 M A A  (C.35) 
In fact, the group of orthogonal transformations that leaves the structural tensor invariant is 

clearly G itself, viz 

  3 : T
o  G R RMR M  (C.36) 

We next assume that the elastic energyW  can be written as a function of C  and the structural 

tensor M  

 ,W W


 C A A  (C.37) 

In order to describe the constitutive law of the fiber reinforced composites at finite strains, the 

Helmholtz free energy function W  is proposed which depends not only on the deformation 

F   

A   

A   

a  

a  
(a) (b) 
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gradient F but also on the fiber directions. Hence, W can be written for one family of fiber as a 

function of the right green strain tensor C  and the structural tensor M , such that: 

 ,W W C M  (C.38) 

where  M A A , with A  a unit vector which denotes the fiber direction. 
 
For two families of fibers as shown in Figure 3.5, the free energy is written analogically as: 

 W W 1 2C,M ,M  (C.39) 

 
where 1 1 1 M A A  and 2 2 2 M A A are the structural tensors of the two fiber directions 

1 2,A A . 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. C.5.2 Top view of a piece of fabric made of two different families of reinforcing fibers (a) 

initial orientation (b) orientation after deformation 

Next, we introduce the free energy function in terms of the invariants of the tensor C   and the 

fiber directions, viz  

 1 2 3 4 1 5 1 6 2 7 2 8 1 2( ), ( ), ( ), ( , ), ( , ), ( , ), ( , ), ( , , )W W I I I I I I I I C C C C A C A C A C A C A A  

The first three invariants account for the isotropic matrix material contribution, while the 

remaining invariant represents the contribution of the fiber material: 

   

 

2 2
1 2 3

2
4 1 1 1 5 1 1 1 6 2 2 2

2
7 2 2 2 8 1 2 1 2 1 2

1
( ) , ( ) , ( ) det( ),

2

( , ) . , ( , ) . , ( , ) . ,

( , ) . , ( , , ) . .

I tr I tr tr I

I I I

I I C

     

  

 

C C C C C C C

C A A CA C A A C A C A A CA

C A A C A A A A A A CA

 (C.40) 

 

In the next section, we describe surfaces made of two families of fibers and introduce the four 

basic structures that characterize the symmetry properties of a network of fibers. 

For slightly compressible materials, the free energy can be additively decoupled into volumetric, 

isochoric and anisotropic parts: 

 

     1 2,vol iso aniW W J W I I W I    (C.41) 

F   

1A   

2A   

1a  

2a  

(a) (b) 
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where 4,5   for the one family of fiber and 4,5,6,7,8  for the two families of fibers; 
vol

W , 

iso
W and 

ani
W  are the volumetric, isotropic and anisotropic deviatoric part, respectively, J is the 

ratio of the deformed elastic volume, det( )J  F , 1 2,I I  and I are the corresponding invariants. 

 
The constitutive equation for the second Piola Kirchhoff stress then writes, 
 

2
ij vol iso ani

ij

W
S S S S

C


   


 (C.42) 

 

C.6. Surfaces made of two families of fibers 

 
In what follows, we consider a surface formed by two families of fibers, as in the previous 

section. The fibers are continuously distributed and those of each family have the same direction 

in the reference configuration.  

We denote by 1A and 2A are the unit vectors associated to the fiber directions in the reference 

configuration while 1Α and 2Α are their dual, such that . j j

i iΑ Α and by 1 2,a a the 

corresponding unit vectors in the current configuration. A classification of the form of the strain 

energy function for such reinforced materials by two families of fibers is next done, based on 

symmetry arguments. Details related to this approach can be found in (Giuliana Indelicato, 

2008) 

 
C.6.1. The four basic patterns: square, rectangular, rhombic and   
parallelogram 

 
We now introduce the four basic structures that characterize the symmetry properties of a 

network of two families of fibers. 

 
 
 
 
 
 

 
 
 
 
 
 

Fig. C.6.1 The four basic structure of a weave pattern. a: square, b: rectangular, c: rhombic and 
d: parallelogram 
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C.6.1.1. The square structure 
 
In case of two families of fibers which are mutually orthogonal in the reference configuration 

and have the same material properties, we refer to this structure as the square structure (Figure 

C.6.1 a). The full symmetry group
sqH describing the anisotropy of this material is generated by 

the orthogonal transformations of 2 , whose matrix representation in the orthonormal basis 

 1 2,A A  is 

 

  1
2

0 1 1 0
, ;

1 0 0 1

    
    
   

R R  

 
The set of permutations associated to the full symmetry group of the square structure is 2sqH s , 

and the corresponding homomorphism is 

 

      1
2

12 , 1 2 ,R R  

 
with (1)(2) the identity permutation and (12) the transposition of 1 in 2. Also, the 

homomorphism H → 2 × 2  associated to the group generators is 

 

           1
2

1 0, 2 1 , 1 1, 2 0 .       R R  

 
C.6.1.2. The rectangular structure 
 
In case the two families of fibers are mutually orthogonal but have different material properties 

so that A1 and A2 are not interchangeable, we refer to the resulting structure as the rectangular 

structure (Figure C.6.1 b). The full symmetry group describing the anisotropy of this material is 

generated by the two transformations 

 

1 2

1 0 1 0
, ;

0 1 0 1

   
       

R R  

 
with 1R and 2R the reflections about the two axes. In this case, the fibers are not interchangeable, 

so that H′rt = {(1)(2)} reduces to the identity permutation. The homomorphism H → 2  × 2  

associated to the group generators is 

 

         1 21 1, 2 0 , 1 0, 2 1 .      R R  
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C.6.1.3. The rhombic structure 

 
In case of two families of fibers having the same material properties, but which are not 

orthogonal, we refer to the resulting structure as to the rhombic structure (Figure C.6.1 c). 

The symmetry group describing the anisotropy of this material is generated by the 

transformations 

 

3 4

cos sin cos sin
,

sin cos sin cos

   
   

   
        

R R  

 
with  the angle between the fibers, and the matrix representation is taken in the orthonormal 

basis  1 2,A A , with j orthogonal to 1A . Notice that 3R  and 4R  are the reflections about the lines 

bisecting the angle between 1A  and 2A , and the axis orthogonal to it. 

In this case, the fibers are interchangeable, it follows that the set of permutations associated to 

the full symmetry group of the rhombic structure is      '
21 2 , 1,2rbH S  , and the 

corresponding homomorphism is 

    3 412 , 1 2 ,R R  

 
The homomorphism H → 2  × 2  associated to inversion of the fibers is 
 

         3 21 0, 2 0 , 1 1, 2 1 .      R R
 

 
 

C.6.1.4. The parallelogram structure  
 
Finally, if the two families of fibers are not orthogonal and have different material properties, we 

have the parallelogram structure of Figure C.6.1 d. The symmetry group describing the 

anisotropy of this material is 

 

1 0 1 0
,

0 1 0 1prH
     

           
Ι Ι  

 
and H′pr reduces to the identity, while the homomorphism H → 2  × 2  is just 
 

    1 1, 2 1 .   Ι
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C.7. Application to a fibered surface without bending and twisting 

stiffness 
 
We apply the above results to find a representation for the surface strain energy function of the 

form W = W (C), that is invariant under the action of the material symmetry group 

associated to the fibers. As a first step, we neglect the bending and twisting effects in this 

section. 

Let H be the full material symmetry group of the structure; then, according to the generalized 

Rychlewski’s theorem ( J. Rychlewski et al., 1990), the condition 

W (C) = W (RCR⊤) ∀R ∈ H 

is satisfied if and only if the strain energy can be written as an isotropic function W


of C and the 

two structural tensors 1 1A A , 2 2A A  

   1 1 2 2 1 1 2 2, , , ,T T T
W Q Q Q Q Q Q W
 

    C Α Α Α Α C Α Α Α Α  

This strain energy function is additionally invariant under the permutations of the structure 

tensors corresponding to H, i.e, 

          1 1 2 2 1 1 2 2, , , ,W W    

 

    C Α Α Α Α C Α Α Α Α  

 
In fact, the eight invariants introduced previously are needed to fully describe the material 

response; we know that, in general, all polynomial isotropic functions of three 2 × 2 symmetric 

tensors 

 1 2 3, ,f f s s s  

 
Can be written as a function of the basic invariants 
 

2 2

2 2 2
1 2 3

( ), ( ), ( ), ( ),

( ), ( ), ( ).

i i i j i j

i j i j

tr s tr s tr s s tr s s

tr s s tr s s tr s s s
 

 
Specifying to our case of absence of bending and twisting, and neglecting trivial invariants 

(such as 1 2.Α Α ), we find that the elastic energy W must be a function of the following eight 

invariants 
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 

1 2 3 1 1 1

2 2
4 1 1 1 5 2 2 2 6 2 2 2

7 1 2 1 2 1 2

I ( ) tr , , I ( ) det( ), I ( , ) .C ,

I ( , ) . , I ( , ) . , I ( , ) .C ,

I ( , , ) . .C

  

  



C C C C C Α Α Α
C Α Α C Α C Α Α CΑ C Α Α Α

C Α Α Α Α Α Α
 (C.43) 

 
 
Now, by the standard representation for quadratic forms, one obtains  
 

 1 1 1 2 2 1 2 2
11 12 22C C C       C A A A A A A A A  , .

ij i j
C A CA  

 
Hence, the invariants become functions of the right-Cauchy Green components 

as 

 

 

 

2 21 1 2 2
1 11 12 22

2 11 12 22

3 11

2 22 1 1 2 2 2
4 11 11 12 12

5 22

2 22 1 1 2 2 2
6 12 12 22 22

1 2
7 2 12

2 . ,

, ,

,

2 . ,

2 . ,

( , ) . ,

I C C C

I P C C C

I C

I C C C C

I C

I C C C C

I C C

  





  



  



A A A A

A A A A

A A A A

A A A

 (C.44) 

 
with P (C11, C12, C22) t h e r e  a b o v e  a second degree-polynomial in its 

arguments.  Hence, two cases are possible: 

(i) 1 2. 0A A  ⇔ 1 2. 0A A , i.e., the fibers are orthogonal (square and rectangular 

structures). Then  (3.11)  reduces  to 
 
 

1 11 22

2
2 11 22 12

3 11

2 2
4 11 12

5 22

2 2
6 12 22

I C C ,

I C C C

I C ,

I C C ,

I C

I C C ,

 

 


 


 

 (C.45) 

So that the independent invariants are the three coefficients 
 

2
11 22 12, ,C C C  (C.46) 
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Notice that the shear coefficient C12 only intervenes through its square, which entails 

that the sign of the shear does not intervene 

 
(ii) 1 2. 0A A  , i.e., the fibers are not orthogonal (rhombic and parallelogram 

structures). In this case, (3.44) reduces to the set of independent invariants 

 

11 22 12, ,C C C  (C.47) 

which are exactly the components of C in the basis ( 1A , 2A ); here, the sign of the shear is 

important. 

Notice that if the fibers are supposed inextensible, the equality 11 22 1 C C  holds 

identically (in the basis made of the two fibers). Taking into account permutations, 

we may henceforth propose the following classification of two fibers families:  

 
- for networks with square symmetry, formed by two orthogonal families of 

equivalent fibers, the permutation group
sqH is 2s ,so that the energy is a symmetric 

function of 11C
 
and 22C  ,but depend from the square of 12C i.e.,  

 

 2
11 22 11 22 12, ,W W C C C C C   (C.48) 

 
- for networks with rectangular symmetry, formed by two orthogonal families 

of non equivalent fibers, the permutation group H’′rt is the identity, so that the 

energy has the form 

 

 2
11 22 12, ,W W C C C  (C.49) 

Notice that, in the above both cases, the restriction imposed by invariance forces the 

energy to depend from the square 2
12C , which is just 2sin  , with   the angle of shear 

Physically, this means that a shear of angle γ has the same effect than the shear of 

angle −γ on the shear density. 

 
- for networks with rhombic symmetry, formed by two non-orthogonal families 

of equivalent fibers, the permutation group '
rbH is again 2s , so that the energy is a 

symmetric function of 11C
 
and 22C  i.e.,  
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 11 22 11 22 12, ,W W C C C C C   (C.50) 

 
- In the general case of networks with parallelogram symmetry, for networks with 

parallelogram symmetry, formed by two non-orthogonal families of non 

equivalent fibers, the permutation group '
prH is the identity, so that the energy has 

the form 

 

 11 22 12, ,W W C C C  (C.51) 

 
So that is is just an arbitrary function of the components of C.  

In both cases above, the situation is radically different from the square and 

rectangular structures: since the energy depends arbitrarily on coefficient 12C , a shear 

of angle   does no more have the same effect than the shear of angle  . 

The previous classification shows that there are at most three independent invariants 

for a network of two families of fibers, consisting of the components of C in the 

basis of the fibers. In this representation, there is thus no split of the energy into a 

pure matrix contribution and contributions due to the fibers. Instead, the strain 

energy density has arguments reflecting directly interactions between the fibers and 

the matrix.Considering previous classification, there is still some freedom in the 

choice of the argument of the strain energy function, since one may for instance 

express the components 11 22 12, ,C C C  versus the eigenvalues of the C  tensor. In the 

thesis of (Y. Aimene et al., 2008), the author makes different choices for the 

argument of the strain energy density for anisotropic hyperelastic solids reinforces 

by two families of fibers; the three choices of arguments of the strain energy function 

are shown in the following Table C.1. 

 
 
Table C.1  Different sets of invariants consider as arguments of the strain energy function. 
 
 

Invariants 
type 

Strain energy function Tension Shear 

Type 1 
   11 22, ,W WC C L L     i iiI Tr i 1,2 C.L   12 11 22

1 2

1
I Tr .

I I
 C.L C.L  

Type 2 
 1 2, ,cosW W        i elongat iion 1,2    cos   

Type 3 
   11 22 1 2 12, , I ,I ,IW W



C L L     i iiI =Tr i 1,2C.L   12 11 22I Tr . C.L C.L  
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where  ii i i i 1,2L L  L  , 1I  and 2I  and 12I  are the structural tensors of the two fiber 

directions 1 2L ,L , the tension invariants and the shear invariant respectively. 

Focusing on the type two, we express the strain energy function of a surface made of 
two families of intersecting fibers based on the invariants 1 2, ,cos   , viz  

 

 1 2, ,cosW W   
 

where 1 2,  are the elongations in two directions and cos is the angle between the two fiber 

directions. After several steps and choosing a polynomial function of the strain energy in terms 

of the elongation 1 2,   for the first part, and a polynomial function of the cosine of angle   in 

the expression of the shear strain energy delivers the strain energy function 

   2 2 1
1 2

0 0 0

1 1 1
1 1 cos

2 2 1

pm n

W a b c
  

  
  

  
  

  

  

    
      

The derivative of the strain function with respect to the strain gives the Second Piola-Kirchhoff 
stress as 

1 21 2

1 2

cos
2 2

cos

           
       

 

c

ij

ij

W W W W
S

C C C C

  
    

11 1 2
0 01

cos
cos

pm

S a c
 

 
 

 
 

    (C.52) 

 

22 2 2
0 02

cos
cos

pm

S b c
 

 
 

 
 

    (C.53) 

 

12
01 2

1
cos

p

S c






  

   (C.54) 

 
The three unknown sets of constants a ,b and c  of this phenomenological 

constitutive model written at the mesoscopic scale of a continuum shall be identified 

for dry textile monolayers in the second part of this chapter, based on numerical 

results of the homogenization of the fibrous microstructure. Before that, we expose a 

review of the modeling approaches of woven fabrics.  
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Appendix D: Methodology Used to Express the Transverse Forces 

and Hyper Forces in the Second Order Gradient Model 
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In case of a. bea.m loaded by a. distribution of efforts {F(s)} along the mean line 
pa.ra.meterized by the curvilinea.r abscissa. s, the local equilibrium equations write 

{ d:~s)} + {F(s)} ~ {A(s)} (.1) 

The edge conditions at the terminal abscissa sl and s2 of the bearn write 

{T(sl)} ~- {F(sl)} (.2) 

and 

{T(s2)} ~ + {F(s2)} (.3) 

One can perform the comment of any torsor {V'(s)}, and integrate over the 
bearn length for equation .1. In equations .2 et .3, one can sum the product with 
the terms {V'(sl)} and {V'(s2)}. This leads to the following formulation, often 
coined the principal of virtual power: 

L2 

[ { d:~•)} + {F(s)}- {A(s)} })li{V'(s)} ds+[{T(sl)} + {F(sl)}]®{V'(sl)} 

+ [- {T(s2)} + {F(s2)}]® {V*(sl2)} ~ 0 (.4) 

Integrating by part the term J.': { ~s)} ® {V*(s)} ds, one can notice: 

!.~ { ~~s) }®{V'(s)} ds ~ {T(s2)}®{V'(s2)}-{T(sl)}®{V'(sl)}-L2 

{T(s)}®{ dV~(s)} ds 

(.5) 
Inserting theo previous development .5 into equation .4, one notices that the 

edge contributions cancel to deliver a s.impler expression of the form 

/.•2 /.'2 /.'2 - {T(s)}®{ Ï>'(s)} d.s+ {F(s)}®{V' (s)} d.s+ L {F(s;)}O{V'(s;)} ~ {A(s)}®{V' (s)} ds 
s1 s1 i .al 

(.6) 

denoting therein { dV~ ( 8 ) } ~ { i>• ( s) } . The fust term corresponds to the 

virtual power of the inter-<lfforts, the second one to the virtual power of line efforts; 
the right.hand side includes the virtual power of acceleration quantities. This last 
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equation .6 is the point of departure of the a.pproximate solution method by finite 
elements . 

. 2. D2.Application of the FE method to beamB 

A few authors present equation .6 under the virtual work principle, replacing the 
virtual velocity {V'(s)} by the virtual displacernent {U*(s)}, corresponding to the 
integration of {V'(s)} during an interval oftime dt. We can then write the following 
equation 

-/.
82 

{T(s)}®{D*(s)} ds+/.
82 

{F(s)}®{U'(s)} ds+ ~ {F(s;)}®{U*(s;)} = /.'
2 

{A(s)}®{U'(s)} ds 
al 1:11 i s1 

(.7) 
We assume no line effort, and restrict to the static situation; equation . 7 then 

simplifies to 

1
·2 

- al {T(s)} ® {D*(s)} ds + L {F(s;)} ® {U*(s;)} = 0 

• 
(.8) 

The virtual work of inter-<>fforts is equal to the work of external nodal forces; 
accounting for the small displa.cements torser, the small strains torser {D(s)} writes 

{ 

da d(3 dcjJ } 

{U(s)} = {: ~!} ==? {D(s)} = { ~s)} = g~ dvd~ q, dwd: (3 

ds ds ds 

(.9) 

Under Bernoulli beam a.ssumption, this torsor simplifies, as two of its compo­
nents can be considered as nil 

{

da Jlw Jlv} 
{D(s)} = :: -~s' ~2 (.10) 

In the same ma.nner, we can write the torsor of the virtual strain 

{ 

da' Jlw• tf'v• } 

{D*(s)} = ::· - ~82 d~2 (.11) 

The left band side of equation .8, representing the virtual work principle then 
writes as 
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(.12) 

.3. D3.Discretization of the beam problem 

Fbr a 2D bea.m subjected to traction-compression and flexion, with local axes 
(x,, y., z,), and under flexion in the xOy plane, each of the node has three de­
grees of freedom, pictured in figure??: two translations along the (two) bea.m axes, 
x,, y,, and the rotation around the axis orthogonal to the plane z,. The vector of 
d.o.f. is of dimension 6, as well as the load vector, and thus the stiffness matrix is 
of size 6x6. 

The bearn section is considered as constant, and the neutral axis is supposed 
to have the required syrnmetries so that the torsion center and gravity center co­
ïncide. The bearn is supposed to be slender enough to neglect the deformation 
due to transverse shear, thus Bernoulli bearn kinematics holds. According to those 
assumptions, the bearn behavior is the superposition of two simple independent be­
haviors: traction-compression and :Bexion in the principal plane; one can separate 
bath behaviors to construct the rigidity matrix . 

. 4. D4.Beam under traction-compression 

Although the result is simple and well-known in this loading situation, the method­
ology proves usefnl to treat next the more complex case of a bearn nndergoing pure 
flexion. For a bearn submitted to a concentrated tension Nx, in the direction of its 
axis x,, the only deformations arise from the component u of the torsor of small 
displacements 

{ ..p-o } { 7=0 } 
{U(x)} = u = :(x)x '* {D(x)} = e = dt) x (.13) 

The virtual work of inter-efforts is evaluated as 

W;" = J.•> {Es du du" } ds 
81 ds ds 

(.14) 

One selects a displacernent field expressing versus the displacements of nodes 1 
and 2; sin ce there are two d.o.f., a linear displacernent field involving two constants 
is conaidered: 
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u(x) =ax+b (.15) 

with the following edge conditions 

u(O) = u1 et u(L) = u2 

thus giving 

L-x a: 
u(x) = ui-L- + u2L =[</>(x)] [U] (.16) 

denoting 

[U] = [~~] 
the column vector of displacements and the vector of shape functions 

[
L-x x] 

[rf>(x)] = -L- L ' 

the row of the shape functions of the element. The derivative d:~) is easily 

calculated as 

du( x) = -u1.!. + u2.!. = [.P[ [U] 
dx L L 

(.17) 

We notice that the terms of [1/>] are constants. It is easy to next integrat.e the 
virtnal work of inter-efforts 

wt =-foL ES [u]' [.Pl' [.Pl [U'] dx = -ELS [u]' [.Pl' [.Pl [U'] (.18) 

One next notes [Kte] the square matrix obtained by 

[Ktc] = ELS [.Pl' [.Pl 

The prodnct [.Pl' [,P] is evalnated as 

[.Pl' [.Pl = ;2 [ ~1 ~1 ] 

(.19) 

(.20) 

Finally, the virtual work of inter-efforts writes under traction-compression as 

W;" = [U]' [Ktcl [U'] (.21) 

with 

ES [ 1 -1] 
[Ktc] = L -1 1 (.22) 
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Regarding the virtua.l work of external forces, since we do only consider concen­
trated forces at the nodes, the formulation is quite simple: 

w; = L {F(s;)} ® {U"(s;)} = LN,u; = [F]' [U•] (.23) 

with [F] the column of nodal forces . 

. 5. D5.Beam under jfe.zion 

In the cMe of a bearn undergoing flexion, four kinematic conditions are available at 
the nodes: 

dv dv 
v(O) = v1; v(L) = v2; dx (O) = <}.>1; dx (L) = <}.>2 

In this condition, it is necessary to consider a third order displacement function, 
involving four constants: 

v(x) = a:x3 + bil +ex+ d'* d';):) = 3a:x2 + 2b:x + c (.24) 

One obtains the constants from the initial conditions: 
c= <}.>1; d = v1; 

2 1 3 1 
a= P (vl- v2) +V (4>1 + <}.>2); b =-V (v1- v2)- L (24>1 + cf>2) 
This leads to the matrix like expression of the vertical displacement 

,,., ~ 1'-•e +"" L(<-"" +el""-,. L <-<' +<'1 1 [jl: 
= [cf>(x)] [U] (.25) 

with (= Î;· 
In the expression of the work of internai forces, one noods the following second 

ordre derivative 

tFv(x) [ 6 2 6 2 l [~~] ~ = v (-1+ 2ç) r; (-2+3Ç) v (t- 2ç) r; (-1+ aç) ~~ 

= [,P(x)] [U] (.26) 

The terms therein are no more constants, so that one has to integrate these 
functions over the element to derive the expression of the vU:tnal work: 
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W;' =-foL EI~~ z dx = -EI [U]' foL [,P(x)]' ['1/J(x)] dx [U"] (.27) 

The square stiffuess matrix for flexion [K td is obtained as 

= -EI foL [.P(x)]' [.P(x)] dx = EI [ ~~ :~ ~~~ :~ l 
L" -12 -6L 12 -6L 

6L 2L2 -6L 4L2 

(.28) 

By assembling the two matrices !Ktc] and IKt•l, we obtain the elementary s­
tiffness matrix in the local system of axes K, so that the virtual work principle 
writes 

Wt+W:=o (.29) 

"*" [u]' [KJ [U*l = [F]' [U"l (.30) 

Previous relation is valid for any [U*], and can thus be rewritten under the form 

with 

]U]= 

u1 
vl 
~1 ; [F]= 
u2 
v2 

Flx 
Fly 
Mlz 
F2x 
F2y 

~2 M2z 

[K] = 

ES 
L 
0 

0 
ES 
L 

0 

0 

]K] [U] = [F] (.31) 

(.32) 
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8.1  Introduction 

 
L’objectif de ce chapitre est de développer une nouvelle méthodologie pour homogénéiser le 

comportement mécanique de structures d’architecture discrète, dont la géométrie change en 

raison des déplacements et rotations importants subis par les éléments structuraux lors de 

l’application d’un chargement externe. Les structures envisagées peuvent être assimilées en 

général à des réseaux de poutres quasi périodiques. Les applications concernent aussi bien les 

milieux fibreux artificiels (les tissages 2D et 3D en construction mécanique et en aéronautique) 

que naturels (les membranes biologiques, l’os trabéculaire), que des structures reconfigurables 

(antennes déployables de grande taille, structure interne d’ailes d’avion à géométrie variable). Le 

calcul de ces structures de grande taille à un coût qui peut être prohibitif en raison du grand 

nombre de degrés de liberté présent ; aussi est-t’il préférable de remplacer ces structures par un 

milieu homogénéisé continu doté de propriétés effectives.  

Les modifications de géométrie que subissent ces structures nécessitent de prendre en compte les 

grandes transformations dans les lois de comportement homogénéisées (effectives), ce qui 

constitue l’aspect novateur principal de la thèse. Nous proposons une nouvelle approche qui 

repose sur les équations de poutres à l’échelle microscopique d’un volume élémentaire 

représentatif, qui sont ensuite homogénéisées dans un contexte de nonlinéarités de nature 

géométrique, afin de construire par un schéma d’homogénéisation discret asymptotique la 

réponse de la structure, vue comme un milieu continu. Les modèles d’homogénéisation 

développés ont vocation à traiter a priori autant les nonlinéarités matérielles que géométrique ; 

en raison des faibles déformations des éléments structuraux (les modules de traction sont d’un ou 

plusieurs ordres de grandeur supérieur aux modules de flexion), il est cependant raisonnable de 

négliger les nonlinéarités matérielles, pour ne considérer que les nonlinéarités géométrique. 

Une classification des milieux continus effectifs visés est proposée dans ce travail, en fonction 

des échelles de longueur relatives présentes. Nous considérons dans ce chapitre des milieux 

continus de type micropolaire, qui comportent un degré de liberté en translation et en rotation.  
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8.2 Equations de poutres dans un contexte de nonlinéarités 

géométriques 
 

On note 
o

B la configuration de référence de chaque poutre du réseau ; on écrit tout d’abord la 

cinématique des poutres, afin d’en déduire des expressions des résultantes et des moments pour 

chaque élément de poutre. La torsion et le gauchissement de la section ne sont pas pris en 

compte. Après de longs calculs et en considérant uniquement l’expansion au premier ordre de la 

série de Taylor des fonctions trigonométriques (Klaus Jurgen Bathe and Said Bolourchi, 1979 ), 

les forces et les moments résultant peuvent s’écrire : 
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(8.1) 

Ces expressions sont générales dans un contexte de réponse élastique nonlinéaire. Cependant, 

afin de pouvoir appliquer la méthode d’homogénéisation asymptotique, des simplifications sont 

apportées : on considère des poutres initialement rectilignes, d’où il résulte l’absence de 

déformations et de courbures initiales, ce qui implique la nullité des variables 01 02 03 03, , ,    . On 

déduit alors des expressions précédentes les relations discrètes correspondantes en replaçant les 

dérivées par rapport à l’abscisse curviligne par des différences finies, afin de transformer le 

problème continu initial en un système d’expressions discrètes en vue du schéma 

d’homogénéisation :   
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 (8.2) 
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On a introduit dans ces expressions les variables suivantes : A  est la section de la poutre, l  sa 

longueur,  
z

I le moment quadratique, eb  et eb  les vecteurs unitaires directeurs et normal à 

l’élément de poutre respectivement, 
s

E  et G  les modules de traction et de cisaillement, et 
c

  la 

rotation du nœud central de chaque élément de poutre.  

8.3 Méthode d’homogénéisation discrète 

 
L’homogénéisation discrète est une technique mathématique pour construire le comportement d’un 

milieu continu homogénéisé représentatif d’un réseau de poutres quasi périodique constitué de la 

répétition d’un motif élémentaire. Cette technique est inspirée de l’homogénéisation de milieux 

continus périodiques développée dans les années 1980 par différents auteurs ((Sanchez, 1980; 

Bakhvalov et Panasenko, 1989) et plus récemment (Warren and Byskhov,  2002; Mourad and 

Caillerie,  2003; D. Caillerie et al., 2006; Raoult et al., 2008; Dos Reis and Ganghoffer, 2012 ; 

Pradel et Sab, 1998 ; Pindera et al., 2009; Charalambakis, 2010, Warren et al.,1989; Warren and 

Kraynik, 1991 ; Wang and Cuitino, 2000 ; Hohe and Beecker, 2003 ; (Janus Michalska and 

Pecherski, 2003; Janus Michalska, 2005, 2011 ; Andrea et al., 2014). Elle consiste en l’écriture de 

développements asymptotiques des variables cinématiques à l’échelle des nœuds du treillis de 

poutres en fonction d’un petit paramètre  , rapport de la taille de la cellule de base à une dimension 

macroscopique du treillis, qui sont ensuite insérées dans les expressions des variables statiques 

(forces et moments).  

Les équations d’équilibre des forces et des moments sont ensuite écrites sous forme de puissances 

virtuelles discrètes, et sont finalement converties dans la limite 0  en des intégrales de Riemann 

continues, faisant ainsi apparaitre des mesures continues de contraintes et de déformation ainsi que 

la loi de comportement homogénéisée.  

8.3.1 Modèle de poutre simplifié 
 

On néglige dans ce qui suit la partie nonlinéaire de la déformation ainsi que le couplage entre 

déplacement et rotation dans (2.44). On peut alors écrire les expressions de l’effort normal et 

transverse, ainsi que le moment aux extrémités de chaque poutre O(b)M  et E(b)M  , en fonction des 

variables cinématiques nodales, selon  
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 (8.3) 

Les details relatifs à la méthode asymptotique sont exposés dans (F. Dos Reis, 2010). 

 

8.3.2 Position du Problème 
 

Le treillis est décrit par la répétition périodique d’un motif élémentaire constitué d’un 

assemblage de poutres, et il est parfaitement décrit par la position des nœuds et leur connectivité. 

On note 
R

N et 
R

B respectivement les ensembles de nœuds et de poutres au sein de la cellule unité 

de référence. Le treillis est supposé périodique dans sa configuration déformée. Les cellules sont 

numérotées par le triplet d’entiers  1 2 3, ,i    ; les noeuds du treillis sont alors paramétrés 

par le quadruplet  1 2 3 3, , ,
R

n n N     . De la même façon, les poutres du treillis sont 

numérotées par le quadruplet  1 2 3 3, , ,
R

b b B     . On peut sélectionner un nœud origine 

dans la cellule de référence, soit ( )O b , positionné par le quadruplet  1 2 3, , ,n    . Le nœud 

extrémité ( )E b  n’appartient pas nécessairement à la cellule de référence, mais à une cellule 

adjacente  1 1 2 2 3 3, ,        , avec le triplet  1 2 3 3, ,     et où l’entier  1,0,1 i

indique la translation vers la cellule adjacente correspondante. On néglige les forces d’inertie, 

soit on considère un équilibre statique. L’équilibre de chaque poutre au sein du réseau se traduit 

par l’équation TE(b)= –TO(b) (Fig. 8.1). 
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Figure 8.1. Grandeurs cinématiques et statiques pour une poutre 

 

L’équilibre des forces s’écrit après insertion des développements asymptotiques des variables 

cinématiques selon  
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Avec v (.) un champ de vitesse virtuel, choisi nul sur les bords du réseau, et Tb le vecteur qui 

assemble la somme des résultantess, et qui se décompose en un effort normal N
 et transverse 

t
T

 , soit : 

b b b b b

t
T N T

 e e
 (8.5) 

Pour tout champ de vitesse virtuel assez régulier v , un développement en série de Taylor 

conduit à  

      ib
bEbO 






i

v
)(v)(v





 

(8.6) 

L’équilibre des moments s’écrit de façon similaire selon  
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avec w(C(b)) la vitesse de rotation virtuelle du noeud central de chaque pouter ; on écrit les 

développements suivants des taux de rotation virtuels : 
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(8. 9) 

8.3.3 Description de la géométrie du treillis 
 

La méthode d’homogénéisation asymptotique requiert le développement de toutes les variables 

en série de Taylor, soit la longueur de la poutre bl  (uniquement en grandes perturbations), sa 

largeur bt , son épaisseur be , le déplacement nu  et la rotation des nœuds tu réseau n  en 

fonction du petit paramètre  . On peut selon (A. Mourad, 2003) écrire 
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l l l
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La difference de déplacement bU  entre les noeuds d’extrémité de chaque poutre s’exprime 

selon  
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(8.12) 

Le développement asymptotique de la microrotation nodale n est ici limité au premier ordre en 

ε; la rotation nodale s’écrit aux noeuds extrémité de chaque poutre selon  
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Le développement asymptotique des efforts et moments s’écrit selon  
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Celui des moments se formule selon 
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L’équilibre des forces prend la forme d’une somme double ordonnées selon les puissances 

successives de  ε selon 
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(8.13) 

La limite continue est ensuite obtenue à partir du résultat mathématique suivant : pour toute 

fonction régulière g, la quantité  
3

3

i

i
g



 

  s’interprète comme l’intégrale de Riemann 

  dg )(  en 3-D quand 0 .  

Cela conduit aux équations d’auto-équilibre suivantes : 

 
 
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v
. 0i

d

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
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(8.14) 

Avec le vecteur contrainte iS  qui se décompose en une contribution du premier et du second 

ordre, soit 
 1 2

i i i S S S  , avec  
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L’équilibre des mopents s’écrit selon les puissances succesives de ε selon ives (plus de détails 

sont donnés dans (Dos Reis et al., 2012) 
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L’équation précédente peut s’écrire dans la limite  ε → 0  sous la forme de l’équation d’auto-

équilibre en flexion 
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 (8.16) 

Le vecteur couple de contraintes incorpore les vecteurs de micro-moments également écrits sur 

deux ordres 2
1 2

i i i  μ μ μ , chacun d’eux prenant la forme d’une somme sur les poutres de la 

cellule de référence   
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(   (8.17) 

 

La forme générale de la loi de comportement en régime linéaire relie les contraintes et couples de 

contraintes homogénéisées aux déformations et micro courbures homogénéisées, formés des 

produits dyadiques des vecteurs contrainte et couple de contraintes avec le gradient de position 

i




R


: 
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avec g le Jacobien de la transformation des coordonnées cartésiennes en curvilignes. 

Pour des structures périodiques uniformes dotes d’une symétrie centrale, les coefficients 

d’élasticité sont invariant par inversion, d’où il résulte que le pseudo-tenseur Bijkl s’annule ; cela 

implique la nullité des vecteurs i
1ȝ  et i

2S , d’où la simplification importante des expressions des 

vecteurs contrainte et couple de contrainte : 
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(8.20) 

Les grandeurs 1
b

N , 1
b

t
T  et 2

n
M  sont respectivement l’effort normal et transverse au premier ordre 

et le moment au second ordre, obtenu par l’expansion des expressions (8.3) en fonction de  . 

Ces expressions impliquent les variables cinématiques inconnues de déplacement et rotation aux 

nœuds, qui sont calculées en résolvant le problème de localisation à partir des équations 

d’équilibre (8.4) et (8.7). 

Comme on le verra plus loin, la résolution du problème linéaire sur une configuration de treillis 

donnée constitue aussi bien l’étape initiale de détermination des modules effectifs dans le régime 

linéaire que la base d’un schéma incrémental pour calculer la réponse d’une structure de treillis 

dans le régime nonlinéaire. 
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8.4 Problème nonlinéaire 

 
On décrit dans cette section l’impact d’une modification de la géométrie du treillis sur les 

propriétés effectives afin de modéliser la réponse nonlinéaire du treillis. La nonlinéarité 

principale est ici de nature géométrique, compte tenu des modules de flexion très faibles en 

regard des modules de traction des poutres du treillis. On vise ainsi à prendre en compte la 

variation de longueur et d’orientation des poutres. 

On écrit pour chaque poutre  
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de calculer les vecteurs contraintes et couples de contrainte oiS et oi  respectivement. La 

résolution se fait pour un macrogradient de déformation imposé au niveau du continuum 

équivalent, soit l’application tangente iG , pour chaque poutre ,bB
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N T M donnés par leurs expressions en (8.3).  

En différentiant les equations d’équilibre (8.2) et (8.5), le problème incrémental induit est résolu 

avec la méthode de Newton-Raphson :  
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La perturbation des équations d’équilibre des moments (8.7) s’écrit 
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Dans les équations d’équilibre précédents, la variation de la géométrie est prise en compte par la 

perturbation des longueurs et orientations des poutres, selon   
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En introduisant l’opérateur de projection  1
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(8.25) 

On en déduit la variation de la longueur de chaque poutre selon   
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Ces variations induisent les perturbations suivantes de l’effort normal  
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et de l’effort transverse 
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En insérant les equations (8.23-8.29) dans la relation d’équilibre (8.21), on obtient la relation 

suivante  
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(8.30) 
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De façon analogue, la perturbation de l’équilibre des moments s’écrit   
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On identifie à partir de la perturbation de l’effort normal des équations (8.27) et (8.28) les trois 

contributions à la matrice tangent : la rigidité linéaire, la rigidité de déplacement initiale et la 

contribution de la contrainte initiale, soit successivement : 
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On réécrit alors la loi de comportement sous forme matricielle selon  
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Les equations (8.30) et (8.31) fournissent le problème perturbé à résoudre avec une méthode 

itérative de Newton-Raphson, qui a une solution à une translation et une rotation rigides près ; il 

faut fixer un nœud au moins afin d’éviter que la matrice tangente devienne singulière.  

La solution du problème de localisation à l’échelle de la cellule de référence porte sur les variables 

de position ( 1) ( ) ( )b k b k b k  B B B  du système d’équations (8.30) et (8.31); sa solution associée au 

problème d’homogénéisation fournit la loi de comportement nonlinéaire du milieu continu 

équivalent. 

Nous avons négligé la partie nonlinéaire de la déformation dans l’expression des variables 

statiques ; on peut également négliger la rigidité de déplacement initiale compte tenu de la 

méthode de Lagrangian actualisé qui est employée.   
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L’algorithme qui actualise les variables lors du changement de configuration du réseau de 

poutres est décrit dans ce qui suit.  

 

1. Initialisation : pour chaque poutre, longueur, et vecteur directeur. Vecteur position 
1 2 3( , , )  x R  

2. Transformation des expressions 

   
  

Y ,Y ,Y e ,e ,e1 2 3
i i

x y z
 

       
       

U U and  

   Y ,Y ,Y e ,e ,e1 2 3
i i

x y z

 
 

       
       

. 

3. Pour chaque poutre 
R

bB , definer la topologie initiale en terme de : 

(a) Noeud origine et extrémité ( ),  ( )O O b E E b
R R

  . 

(b) Exprime déplacement relative entre les nœuds d’extrémité: 1 1 1
b E O i

i





   



U
U u u , rigidité de 

traction et de flexion b bA E
sk

l b
L

  et
 
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E I

s z
k

f
bL

  

 

 

(c) Efforts au premier ordre :       3
b b. , .  .1 1 0 02

b b
bL O E

N k Tl t fk  
  
            

e U e U Y . 

(d) Moments au premier ordre : 

           b b
1 3 1 0 0 1 3 1 0 06 . U . (4 ) (2 ) , 6 . . (2 ) (4 ) ,
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M L M L               Y e Y U e

 

4. Calcul des inconnues cinématiques 1u n et 0
n  à partir des équations (8.4) et (8.7). 

5. Identifie la microrotation homogénéisée. 

6. Expression des forces et moments au second ordre selon : 

(a) 
2 2 2
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(c)    b b
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Résoudre pour les variables 2u n  et 1
n à partir de (8.4) et (8.7). 

7. ConstructIon des vecteurs contrainte et couple de contrainte  i
1 1

b b
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8. Construction du tenseur des contraintes 1 i
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
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

R
σ S  et des couples de contraintes 1 i
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tels que 0

0

s

 

             

σ K
m K

ò .  

9. Calcul des proprieties mécaniques effectives * * * *
55 66, , , , ,x y xy xyE E G K K
   pour cet incrément de 

chargement. 

10. Calcul de l’incrément de contrainte en fonction de l’incrément de deformation.  

11. Solution du problème inverse qui fournit le déplacement macroscopique consistent avec le 
chargement imposé. 

11. Actualisation de la géométrie du treillis et nouveau calcul élastique sur cette nouvelle 
géométrie pour un nouvel incrément de chargement 
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8.5 Exemples de calcul de tissages en régime nonlinéaire 

 
On analyse dans ce qui suit les réponses nonlinéaires de tissages monocouches d’armures toile et 

serge, pour des chargements uniaxial, biaxial et en cisaillement simple. 

 

 

 

 

 

 

 

Figure 8.2 Cellule élémentaire représentative des armures toile et sergé. 

Le tenseur gradient de la transformation s’exprime selon 

1

1
xx xy

yx yy

F
 

 
 

   
 

Il est appliqué sur la cellule élémentaire représentative du tissage avec des conditions limites de 

périodicité, avec  et   les déformations normale et de cisaillement respectivement. Les indices 

“x” et “y” désignent les directions des axes du système de coordonnées global. On rappelle 

qu’une partie seulement du gradient total de la transformation est contrôlé dans un chargement 

spécifique (il subsiste des composantes non spécifiées), de sorte qu’il faut déterminer un 

problème aux limites pour les composantes inconnues de la déformation non prescrite. 

8.5.1 Comportement mécanique nonlinéaire de tissages d’armure toile 
 

Les parameters géométriques et mécaniques de la cellule représentatives de l’armure toile du 

tissage sont donnés dans le tableau 3.6. 

 

 

Weft 

Warp 

 

Twill 

unit cell 

 

Plain weave 

unit cell 
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Tableau 8.1 : données d’entrée géométrique et mécanique pour un tissage d’armure 

toile équilibré 

Armure 

toile 

 

Tissage 

équilibré 

Chaine / 

Trame 

E= 1889 MPa L = 0.618 mm θ =40° d = 0.27 mm 

     

 

Un état de traction uniaxiale tend à aligner les fils dans la direction de sollicitation en les 
désondulant, tandis que les ondulations du fil transverse augmentent. L’ondulation est définie par 
le paramètre 

r
C construit à partir des longueurs curvilignes du fil au sein de l’armure yarnl au sein 

d’une période et de la longueur de périodicité RUCl   

1, 2 1, 2

11, 22

1, 2

yarn RUC

RUC

l l
(%)

lr
C


  

Les indices “11” et “22” désignent les directions des axes du système de coordonnées globale 

(directions chaine et trame respectivement). Les tenseurs de déformation prescrits dans le cas de 

sollicitations uniaxiales dans les directions chaine et trame sont successivement   

1 0 1 0

0 1 0 min

     
        

xx xx

f

yx yy

F
indéter ée

  
 

 

et 

1 min 0

1 0 1

   
        

xx xy

p

yx yy yy

indéter ée
F

 
  

 

On observe sur la réponse en chaine (fig. 8.3) une différence importante entre la réponse 

nonlinéaire et la réponse dans une situation linéaire (fictive), cette dernière étant obtenue en 

prolongeant la pente intiale à la réponse nonlinéaire. La rigidification progressive observée en 

fonction de la déformation est due à l’alignement des fils sollicités dans la direction de traction. 
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 Traction uniaxiale sens chaine :  
 

 

 

 

 

 

 

 

 

 

Figure 8.3. Mesure de contrainte de Cauchy en fonction de la déformation pour un essai virtuel 
de traction uniaxial sens chaine. 

On représente ensuite les modules de traction 
11hE ,

22hE , les taux d’ondulation dans les deux 

directions 
1

% rC ,
2

% rC et les coefficients de liage (contraction) 
12h ,

21h dans la figure 8.4 (a, b, c) 

respectivement. Le module de traction effectif dans la direction de traction x augmente avec 

l’élongation, ce qui traduit un effet de durcissement du aux effets d’alignement des fils ; le 

module de traction dans la direction transverse y décroit en raison de l’augmentation 

d’ondulation concomitante. La contraction 
21h et le taux d’ondulation 

11
%

r
C diminuent de façon 

monotone avec l’élongation ; le coefficient de Poisson 
12h croit jusqu’à un maximum (la 

contraction transverse est maximale pour 1.15  ) puis décroit ensuite. Le taux d’ondulation 

22
%

r
C augmente dans le sens trame en raison de la contraction dans cette direction.  

 

 

 

 

 

 

(a) (b) 
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Figure 8.4: propriétés effectives simulées. (a) Modules de traction 
11hE ,

22hE  (b) Taux 

d’ondulation 
11

%
r

C ,
22

%
r

C . (c) Coefficients de contraction 
12h ,

21h  en fonction de la dilatation 

dans la direction  x. 

 Traction uniaxiale sens trame 

 
On représente de la même façon l’évolution de la composante du tenseur de contrainte de 

Cauchy ainsi que celle des propriétés mécaniques effectives en fonction de la dilatation sens 

trame (direction y). 

 

 

 

 

 

 

 

 

 

Figure 8.5. Composante selon y du tenseur de contrainte Cauchy en fonction de la dilatation dans 
la même direction 

(c) 
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La différence entre les réponses linéaire et nonlinéaire (fig. 8.5) est de 102% pour un taux de 

déformation de 35% ; ceci est conforme à l’augmentation observée du module de traction 
22hE

dans la direction y et celle de la contraction 
21h , figure 8.6 (a, c). A l’opposé, le module de 

traction dans la direction x, 
11hE ainsi que la contraction 

12h diminuent. Le taux d’ondulation 

décroit dans la direction de sollicitation et augmente dans la direction transverse (figure 8.6 (b)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.6. Propriétés effectives en function de la dilatation sens trame. (a) Modules de traction 

11hE ,
22hE  (b) Taux d’ondulation 

11
%

r
C ,

22
%

r
C . (c) Coefficients de Poisson 

12h ,
21h  en fonction de 

la dilatation dans la direction y. 

 

(a) 

(b) 

(c) 
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 Traction biaxiale 

 
Les simulations de traction biaxiale sont contrôlées par le rapport entre les deux déformations 

(sens chaine et trame), le paramètre scalaire 

2

1

k



  

avec 1  la déformation imposée en chaine et 2  la déformation imposée sens trame. Le tenseur 

gradient de transformation prend la forme suivante 

1 0

0 1
xx xy

yx yy

F
 

 
  

    
 

La  figure 8.7 (a,b) montre les évolutions du tenseur de Cauchy dans les directions x et y pour 

différentes valeurs du rapport de biaxialité, soit  1,2,3k . Une réponse quasi linéaire est 

obtenue dans toutes les configurations de chargement ; le cas uniaxial (k=0) est construit de telle 

sorte qu’aucune contraction ne se produise dans la direction transverse.   

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.7 Contrainte de Cauchy (a) direction x et (b) direction y en fonction de la déformation 
pour un tissage déséquilibré pour différentes valeurs du rapport de biaxialité. 

On observe un durcissement de la réponse pour des rapports de biaxialité croissants. 

(a) (b) 
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 Réponse en flexion du tissage d’armure toile équilibré 
 

La réponse en flexion de structures peut être calculée dans le régime nonlinéaire sur la base de la 

partie flexionnelle de la réponse micropolaire en grandes transformations, en mettant à profit le 

schéma incrémental décrit précédemment. Cette démarche est mise en œuvre pour le tissage 

monocouche d’armure toile aux fins d’illustration ; on rappelle auparavant les équations de la 

flexion pure des poutres. 

On considère une poutre de longueur initiale 
o

L (non déformée) en figure3.20 (gauche); on 

suppose connu le lieu de la position de la section droite où 
o

L   , avec   le rayon de 

courbure et   l’angle de flexion, comme étant l’axe neutre de la poutre: il s’agit du lieu où la 

longueur de la fibre déformée est identique à la longueur initiale de la configuration non 

déformée.   

 

 

 

 

Figure 8.8  Flexion pure d’un élément de poutre et axe neutre 

Soit y la distance d’un point matériel à l’axe neutre ; le rayon de courbure pour tout y est 

 y   et la longueur finale de la fibre correspondante vaut  

 L y    

La deformation de flexion est définie selon 

 
o

o

yL L

L

  



 

   

y


   (8.32) 

L’expression (8.32) montre que la deformation s’annule sur l’axe neutre (en 0y  ), et varie 

linéairement en fonction de y. Pour des poutres épaisses, y prend des valeurs élevées, mais reste 
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petit pour des poutres élancées ; ceci explique que des poutres épaisses aient des rigidité en 

flexion plus importantes que des poutres élancées. Pour des angles   , la courbure vaut 
1


 . 

La déformation de flexion s’exprime en fonction de la courbure selon  

y   (8.33) 

L’angle d’ondulation du tissage est choisi en fonction de l’épaisseur h de l’armure dans le 

modèle ; on considère ici des angles faibles, soit  fθ 5 ,2  (figure 8.9), comme le montre la 

figure 8.9 (a, b), et des déformations de flexion appliquées jusque 20%. Il en résulte alors selon 

(8.33) la courbure / h   ; la hauteur de la cellule se calcule selon fsin(θ )h L . Le module de 

flexion effectif dépend a priori du rapport de l’épaisseur effective, h, à la longueur de la cellule 

élémentaire, paramètre f2Lcosθ , de telle sorte que f fh / L tanθ / 2 θ / 2  , compte tenu des 

faibles valeurs de l’angle. Cette analyse, bien que sommaire, explique les faibles effets de 

nonlinéarités attendus en flexion.  

La figure 8.10 montre que la réponse nonlinéaire est plus souple que la réponse linéaire 

extrapolée, ce qui s’explique par le fait que la traction qui se développe lors de la flexion 

diminue l’ondulation initiale (une coque résistant par sa forme, elle devient a contrario plus 

souple lorsque l’épaisseur effective diminue). La flexion est donnée par la relation entre la 

composante du tenseur de couples de contraintes 
xy

m  en fonction de la composante 

correspondante de la microcourbure 
xy

  selon 

33xy xy
m k 

 

 

 

 

 

 

 

Fig. 8.9 A 3D lattice model of balanced plain weave. 
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Figure 8.10. Evolution du couple de contraintes en function de la microcourbure pour les 

réponses nonlinéaire et linéaire extrapolée. (a) fθ 5   (b) fθ 2 . 

 

L’adoucissement observe correspond à une diminution du module de flexion homogénéisé 33k  en 

fonction de la courbure matérielle. La longueur caractéristique en flexion est déterminée en 

fonction des rigidités effectives, selon :  
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longueur qui décroit en function de la microcourbure, figure 8.11(a,b). 

 

 

 

 

 

 

 

Figure 8.11 (a) Evolution du module micropolaire effectif 33K
  en fonction de la courbure 

matérielle (b) Evolution de la longueur caractéristique en fonction de la microcourbure 

 

8.6 Validation des réponses homogénéisées par des analyses 

éléments finis 

 
On compare les réponses homogénéisées avec des résultats de simulation par éléments finis 

(ABAQUS), pour les trois chargements considérés précédemment ; on restreint ici la validation 

aux chargements uniaxial et équibiaxial. Les fils chaine et trame sont maillés par des éléments à 

8 nœuds hexaèdre de type C3D8); le maillage de la cellule représentative du tissage toile 

équilibré comporte 14,804 éléments. Afin de prendre en compte le glissement relatif entre les 

fils, le contact avec frottement est pris en compte dans une approche de type maitre / esclave. Le 

comportement tangentiel des surfaces en contact dans le contexte du frottement de Coulomb est 

défini par une méthode de pénalité ; le coefficient de frottement est choisi 0.05, selon des 

données de (Peng and Cao, 2002). On applique sur le VER le tenseur gradient de transformation  

1

1
xx xy

yx yy

 
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   
F  

en contrôlant les déplacements des quatre nœuds de la cellule élémentaire, dotée de conditions 

limites de périodicité. Les composantes , ,xx yy xy    sont les composantes normales et de 

cisaillement respectivement. Les réponses uniaxiale et équibiaxiale (fig. 8.12 et fig. 8.13) 

obtenues par homogénéisation sont en très bon accord avec les analyses EF, avec des écarts 
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respectifs de 1.41% et de 15 % (Fig. 8.13). Nous avons préféré l’élément de type C3D8 à 

l’élément C3D4, ce dernier faisant montre de performances plutôt faibles dans la littérature. 

 

Fig. 8.12. Comparaison de la réponse uniaxiale en traction selon x pour le tissage d’armure toile 

équilibré obtenue par homogénéisation et par EF (ABAQUS). 

 

Fig. 8.13 Comparaison de la réponse équibiaxiale en traction selon x pour le tissage d’armure 

toile équilibré obtenue par homogénéisation et par EF (ABAQUS). 

 

Les distributions des champs de déplacement et de contrainte pour les deux chargements sont 

représentées sur les Fig. 8.14 et Fig. 8.15. L’écart obtenu de 13% pour le test équibiaxial est lié 

selon nous à la présence de gradients internes des champs de déformation et de contrainte, ce qui 
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plaide pour une extension du modèle aux gradients d’ordre supérieur du déplacement (modèle du 

second gradient), qui sera développé dans l’avenir.  

 

 

 

 

 

 

 

 

 

 

Fig. 8.14. Distribution des champs de déplacement (gauche) et contrainte (droite) pour le tissage 

monocouche d’armure toile soumis à une traction uniaxiale 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.15. Distribution des champs de déplacement (gauche) et contrainte (droite) pour le tissage 

monocouche d’armure toile soumis à une traction équibiaxiale 
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8.7 Identification d’une densité d’énergie hyperélastique 

 

En vertu de son caractère prédictif, l’homogénéisation discrète asymptotique est mise 

à profit pour calibrer un modèle de comportement effectif hyperélastique ; cette 

démarche est mise en œuvre pour le tissage d’armure toile. On s’appuie sur une 

expression polynomiale de la densité d’énergie, qui s’exprime en fonction des 

dilatations principales 1 2,     et de l’angle de cisaillement  , selon 

      
pm n

22 2 1
1 2 r1 1 2 r2 1 2

0 0 0

1 1 1
W a 1 b 1 c cos k k

2 2 1
  

  
  

            
       

 Traction uniaxiale  
 

Un polynôme de degré trois est utilisé pour interpoler la courbe de réponse ii iS   calculée par 

l’homogénéisation discrète. Les paramètres matériau de la loi de comportement, soit 

r1 r2a ,b ,c ,k ,k   , sont identifiés en minimisant l’écart quadratique entre la réponse prédite par 

l’homogénéisation discrète pour uen combinaison de tests virtuels en traction uniaxiale, cisaillement 

simple et traction biaxiale et celle obtenue par le modèle hyperélastique :  

    
r1 r 2

1/22 2 2e DH DH DH
r1 r2 11 11 22 22 12 12

a ,b , c ,k ,k
Min S a ,b ,c ,k ,k :

  
        S S S S S S  

Les coefficients r1 r2k ,k  sont nécessaires afin d’introduire une dépendance des deux composantes 

11 22S ,S   en fonction des deux dilatations principales. Le second tenseur de Piola-Kirchoff est obtenu 

selon  

 1 2

1 2

W W W W cos
2 2

cos

            
        

 
S

C C C C
  

Table 8.2: Jeu de paramètres de la densité d’énergie hyperélastique. 

1a

 MPa

 

2a

 MPa

 

3a

 MPa

 

1b

 MPa

 

2b

 MPa

 

3b

 MPa

 

1rk

 MPa

 

2rk

 MPa

 

1c

 MPa

 

2c

 MPa
 

3c

 MPa

 

-7.73 -211.3 153.6 -106.5 -164.1 151.2 94.25 -14.39 4.83 10.514 3.521 
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Fig. 8. 16. Evolution des composantes normales 11S  et 22S du second tenseur de Piola-

Kirchhoff en fonction des dilatations principales par l’homogénéisation et le modèle 
hyperélastique 
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Fig. 8.17. Evolution de la composante de cisaillement du second tenseur de Piola-Kirchhoff 

12S  par l’homogénéisation et le modèle hyperélastique 

 

Il est possible d’exprimer de façon alternative la densité d’énergie hyperélastiques en fonction 

des trois invariants de la déformation 

2
1 2 1 2 1 2 1 2 12I I ,   I I ,   I cos           

ce qui permet de revenir à une formulation plus intrinsèque selon 

      stretch shear
1 2 12 1 2 12Ŵ I , I , I W I , I W I   

En séparant les effets d’extension pure des effets de cisaillement. 

Cette expression de la densité d’énergie ne prend pas en compte la présence éventuelle d’une 

matrice additionnelle, qui doit alors être ajoutée à  1 2 12Ŵ I , I , I .  
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8.8 Conclusion 
 

L’homogénéisation discrète permet une étude systématique de la réponse nonlinéaire de réseaux 

de poutres quasi périodiques pour différents modes de déformation de la structure. Elle fournit le 

comportement anisotrope évolutif en fonction des déformations imposées. Une difficulté de la 

méthode est le contrôle des conditions limites en déformation, qui nécessite de calculer les 

déformations non prescrites à partie des modules effectifs actualisés (sur la nouvelle géométrie 

calculée). La méthode est très efficace et versatile, car elle permet de traiter tout type de structure 

2D ou 3D. Le caractère prédictif permet d’identifier une densité d’énergie d’un milieu 

hyperélastique équivalent ; ceci permet ensuite de réaliser des calculs de structure de façon plus 

efficace. Les développements futurs porteront principalement sur la simulation de structures 3D 

(interlocks épais). 
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Modèles de comportement non linéaire des matériaux architecturés par des méthodes 

d'homogénéisation discrètes en grandes déformations. Application à des biomembranes 

et des textiles 

Ce travail porte sur le développement de modèles micromécaniques pour le calcul de la 

réponse homogénéisée de matériaux architecturés, en particulier des matériaux se présentant 

sous forme de treillis répétitifs. Les matériaux architecturés et micro-architecturés couvrent un 

domaine très large de de propriétés mécaniques, selon la connectivité nodale, la disposition 

géométrique  des éléments structuraux, leurs propriétés mécaniques, et l'existence d'une 

possible hiérarchie structurale. L'objectif principal de la thèse est la prise en compte des 

nonlinéarités géométriques résultant des évolutions importantes de la géométrie initiale du 

treillis, causée par une rigidité de flexion des éléments structuraux faible en regard de leur 

rigidité en extension. La méthode dite d'homogénéisation discrète est développée pour 

prendre en compte les non linéarités géométriques pour des treillis quais périodiques; des 

schémas incrémentaux sont construits qui reposent sur la résolution incrémentale et 

séquentielle des problèmes de localisation - homogénéisation posés sur une cellule de base 

identifiée, soumise à un chargement contrôlé en déformation. Le milieu continu effectif 

obtenu est en général un milieu micropolaire anisotrope, dont les propriétés effectives 

reflètent la disposition des éléments structuraux et leurs propriétés mécaniques. La réponse 

non affine des treillis conduit à des effets de taille qui sont pris en compte soit par un 

enrichissement de la cinématique par des variables de microrotation ou par la prise en compte 

des seconds gradients du déplacement. La construction de milieux effectifs du second gradient 

est faite dans un formalisme de petites perturbations. Il est montré que ces deux types de 

milieu effectif sont complémentaires en raison de l'analogie existant lors de la construction 

théorique des réponses homogénéisées, et par le fait qu'ils fournissent des longueurs internes 

en extension, flexion et torsion. Des applications à des structures tissées et des membranes 

biologiques décrites comme des réseaux de filaments quais-périodiques ont été faites. Les 

réponses homogénéisées obtenues sont validées par des comparaisons avec des simulations 

par éléments finis réalisées sur un volume élémentaire représentatif de la structure. Les 

schémas d'homogénéisation ont été implémentés dans un code de calcul dédié, alimenté par 

un fichier de données d'entrée de la géométrie du treillis et de ses propriétés mécaniques. Les 

modèles micromécaniques développés laissent envisager du fait de leur caractère prédictif la 

conception de nouveaux matériaux architecturés permettant d'élargir les frontières de l'espace 

'matériaux-propriétés'. 

Mots-clés : renforts tissés, analyse mésoscopique, Homogénéisation, second gradient, propriétés 

mécaniques, modelés micropolaires 



299 

 

Nonlinear constitutive models for lattice materials by discrete homogenization methods 

at large strains. Application to biomembranes and textiles 

 
The present thesis deals with the development of micromechanical schemes for the computation 

of the homogenized response of architectured materials, focusing on periodical lattice materials. 

Architectured and micro-architectured materials cover a wide range of mechanical properties 

according to the nodal connectivity, geometrical arrangement of the structural elements, their 

moduli, and a possible structural hierarchy. The principal objective of the thesis is the 

consideration of geometrical nonlinearities accounting for the large changes of the initial lattice 

geometry, due to the small bending stiffness of the structural elements, in comparison to their 

tensile rigidity.  

The so-called discrete homogenization method is extended to the geometrically nonlinear setting 

for periodical lattices; incremental schemes are constructed based on a staggered localization-

homogenization computation of the lattice response over a repetitive unit cell submitted to a 

controlled deformation loading. The obtained effective medium is a micropolar anisotropic 

continuum, the effective properties of which accounting for the geometrical arrangement of the 

structural elements within the lattice and their mechanical properties.  

The non affine response of the lattice leads to possible size effects which can be captured by an 

enrichment of the classical Cauchy continuum either by adding rotational degrees of freedom as 

for the micropolar effective continuum, or by considering second order gradients of the 

displacement field. Both strategies are followed in this work, the construction of second order 

grade continua by discrete homogenization being done in a small perturbations framework. We 

show that both strategies for the enrichment of the effective continuum are complementary due to 

the existing analogy in the construction of the micropolar and second order grade continua by 

homogenization. The combination of both schemes further delivers tension, bending and torsion 

internal lengths, which reflect the lattice topology and the mechanical properties of its structural 

elements. Applications to textiles and biological membranes described as quasi periodical 

networks of filaments are considered. The computed effective response is validated by 

comparison with FE simulations performed over a representative unit cell of the lattice. The 

homogenization schemes have been implemented in a dedicated code written in combined 

symbolic and numerical language, and using as an input the lattice geometry and microstructural 

mechanical properties. The developed predictive micromechanical schemes offer a design tool to 

conceive new architectured materials to expand the boundaries of the 'material-property' space.   

Keywords: lattices, membranes, anisotropy, discrete homogenization, structural computations, 

hyperelasticity, micropolar continuum, second order continua, higher order tensile and flexural 

moduli, internal length 
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