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General introduction 

Refractory materials are present in a large panel of industrial applications due to their 

specific properties. They are applied in several parts of many installations designed to face 

severe working environments such as high temperature, corrosion and thermal shock 

solicitations. Among the required properties, thermal shock resistance is a key parameter to 

enhance their service life. This thermal shock resistance is usually directly related to a specific 

mechanical behaviour induced by a voluntary micro-cracked microstructure. Indeed, 

depending on micro-cracking level, the mechanical behaviour will change from pure elastic to 

a “non-linear” one. 

In order to accurately determine constitutive laws for such materials to feed finite 

element method (FEM), it was necessary, during the past 15 years, to develop uniaxial tests 

taking into account that these materials are characterized by a low level of strain-to-rupture. 

Nowadays, accurate instrumented tensile test using extensometers are available. However, 

such tensile devices involve some complexity for tests management (sample machining and 

well aligned loading grips). Fortunately, the occurrence of optical techniques such as digital 

image correlation (DIC) which allows to obtain the overall strain fields on a given loaded 

sample, coupled to FEM modelling, give today new opportunities for experimental 

investigations of refractory materials exhibiting a non-linear mechanical behaviour.  

In this context, the main objective of the present PhD was to enrich the mechanical 

characterization of refractory materials by evaluating the efficiency of DIC applied on quite 

common mechanical tests in this scientific community: such as four-points bending test, 

Brazilian test and Wedge splitting test. For this purpose, it was necessary first for SPCTS 

laboratory to master this new DIC measurement tools and to apply them on refractory 

materials which exhibit low level of strain-to-rupture. 

This research activity has been developed in the framework of the Federation for 

International Refractory Research and Education (F.I.R.E) which aims to promote a 

worldwide collaboration between academic institutes and industrial companies to pool the 

expertise at master and PhD levels in the field of refractories. In this purpose, multi-partners 

programs are regularly launched to support research activities. The present PhD (funded by 

the region of Limoges) has been part of F.I.R.E project D which took place between 2011 and 
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2014 and which was devoted to “dense refractories with enhanced flexibility for thermal 

shock”. This research program was organized through a collaboration between two 

laboratories (SPCTS-Limoges-France, RWTH-Aachen-Germany) and four industrial 

partners (Alteo-France, RHI-Austria, Tatasteel-Netherland and Tenaris-Argentina). 

Even if the objective of the present PhD was to apply DIC techniques to refractory 

characterization, one should note here that absolutely no DIC expertise was present at SPCTS 

laboratory before the present work. Thus, in addition to the previously indicated partnerships, 

and in order to take advantage of the great expertise in photo-mechanics which has been 

developed for many years in Pprime Institute-Poitiers, a close collaboration has been also 

established with these colleagues. Nevertheless, due to the very low level of strain-to-rupture 

of refractory materials, it has been necessary to improve DIC techniques for our own purpose.  

The first chapter is dedicated to establish the state of the art concerning thermal shock 

of refractories and non-linear behaviour by mechanical and energetic approaches. Then, 

optical methods used to complete the mechanical investigation of refractories such as DIC and 

mark tracking method have been introduced. Besides, in order to overcome the problem of 

mechanical characterization of the non-linear behaviour, kinematic fields obtained by DIC are 

conjugated to FEM in the framework of the identification technique by finite element method 

updating (FEMU-U). 

The chapter II aims to present different experimental characterization techniques. The 

mechanical ones are associated to optical methods which are here described in details. Then, 

the studied materials chosen in order to develop and to valid efficiency of DIC are introduced. 

Among these materials, a model one based on aluminium titanate (AT) developed for 

academic purposes, and some industrial ones based on magnesia spinel systems delivered by 

industrial partners.  

The main objective of the first investigation, detailed in chapter III, is to demonstrate 

the efficiency of the DIC technique as an effective tool to complete the mechanical analysis of 

refractory materials. This first study highlights the specific non-linear mechanical behaviour 

of AT during four-points bending test at room temperature. 

In chapter IV, the acquired DIC expertise has been used to complete the 

characterization of industrial magnesia spinel refractories. Even if spinel inclusions are used 
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to promote micro-cracking by thermal expansion mismatch with the magnesia matrix, the low 

level of flexibility of these industrial materials which is less accentuated than AT, pushed us 

to improve the accuracy of DIC measurements.  

After having studied experimentally the non-linear mechanical behaviour of several 

refractories, chapter V is dedicated to the numerical development of FEMU-U for linear 

elastic behaviour materials under four-points bending test, then, the developed approach has 

been applied for flexible AT materials. 
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State of the art concerning the non-linear mechanical 

behaviour of refractory materials and the measurement 

techniques for kinematic fields 
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I. Introduction 

Refractories, widely used in many industrial areas such as steel, cement, lime, non-

ferrous metals and glass processing, are known for their ability to resist to high temperature 

loading and to sustain, in the same time, significant levels of mechanical stress and strain. 

These materials can also develop improved resistance against corrosion mechanisms to face 

their severe working environments. In a same way, the knowledge concerning their thermal 

shock resistance, but more specifically, their thermal shock behaviour is of prime importance 

to enhance lifetime. This property of thermal shock resistance is known to be closely related 

to the crack growth behaviour of such materials. Consequently, the occurrence of a significant 

micro-cracked network within the material will lead to the change in the mechanical 

behaviour, from pure elastic to a “non-linear” one as well as the level of strain increases. Until 

today, the characterization of this non-linear behaviour in many cases is still done using 

classical mechanical techniques which identify some parameters thanks to equation that are 

only valid for materials whose behaviour is pure elastic. That is why, the occurrence of optical 

methods for kinematic fields’ measurement and numerical methods is considered as a 

promising support for allowing to perform the characterization of materials with such specific 

non-linear behaviours. 

The following items will detail and present initially the relationships between the onset 

of micro cracking, the induced mechanical behaviour and the thermal shock resistance. 

Secondly, a gathering and a discussion of the applied techniques to measure the kinematic 

fields for the investigation of the specific “non-linear behaviour” of these materials will be 

done. 
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II. Thermal shock resistance and non-linear mechanical 

behaviour of refractories 

II.1. Origin of thermal stresses 

Thermal stresses is a well-known phenomenon and its influence on ceramics has been 

highlighted for a long time (Norton, 1925). In this paragraph, some sources of thermal stresses 

are described and detailed. 

Firstly, for a homogeneous, isotropic sample completely restrained from expanding by 

application of restraining forces, when temperature rises from T0 to T1, stresses appear and 

arise. According to Kingery (Kingery, 1955), the expression of these stresses in the case of 

two dimensional solid is: 

)1(
).(. 01

 
 TTE

    Eq. I-1 

where E is Young’s modulus, is the thermal expansion coefficient and  is Poisson ratio of 

material. 

Secondly, for multi-phased (heterogeneous) materials constituted by crystals with 

anisotropic behaviour at a uniform temperature, stresses will occur due to the difference of 

thermal expansion between phases or between crystal’s directions. The magnitude of stresses 

will depend on elastic properties and  of components in different directions. These stresses 

have been investigated in connection with material’s properties and can lead to serious 

weakening or fracture in extreme cases (Laszlo, 1943; Buessem et al., 1952). At a larger 

scale, a similar effect can be observed for example between enamel and the ceramic substrate. 

Heterogeneous material’s behaviour is difficult to describe because of the presence of 

numerous mechanisms taking place at the same time during heating or cooling. To clarify 

this, the most convenient approach consists on simplifying the microstructure to two isotropic 

constituents only: two phases materials obtained by sintering step and composed of a matrix 

(m) and spherical inclusions (i). Matrix and inclusions are constituted of two different 

isotropic phases. Depending on the thermal expansion mismatch between the two phases 
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(∆α=αm-αi) and on the microstructure, three different configurations are possible when a 

sample is cooled to room temperature (Figure I-1). 

 

Figure I-1: Different configurations of internal thermal stresses field which can occur according 

to α differential between the two phases of a glass alumina sintered materials  

(Tessier-Doyen et al., 2006) 

 

 ∆α = 0 (quite thermal expansion coefficient equality), the inclusion and matrix 

are subjected to the same strain state, and so no internal stress appears during cooling, 

and thus, no damage is observed. 

 ∆α < 0, a debonding of the interface can occur as the matrix is subjected to 

radial tensile stresses. The interfacial gap can increase with the ∆α range. 

 ∆α > 0, there is a presence of radial compressive stresses and circumferential 

(orthoradial) tensile stresses. The arising of these circumferential tensile stresses leads 

to radial micro cracking.  

Whatever the case is ( or, the defects induced by thermal stresses lead to 

Young’s modulus decrease. 

Finally, thermal shock is another origin of thermal stresses. It may occur under 

specific conditions such as the presence of severe thermal gradient resulting from sudden 

heating or cooling. It has an influence on material properties and on components service life. 
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In some cases, it can be severe and can induce the total ruin of the component (Peruzzi, 2000) 

as illustrated in Figure I-2. 

 

(a)  (b) 

Figure I-2: Examples of ruin due to thermal shock on some refractory products such as nozzle  

(a) and ladle shroud (b) used in continuous casting (Peruzzi, 2000)  

 

In fact, during a sudden hot thermal shock, the surface in direct contact with heat 

source (e.g. steel) becomes hotter than the other locations whose temperature remains lower. 

This may induce compressive and tensile stresses (Peruzzi, 2000; Grasset-Bourdel, 2011) 

respectively at the inner and the outer surfaces. 

II.2. Crack growth process in refractories submitted to a thermal 

shock 

As shown previously, in industrial applications of refractories, fracture is one of the 

two most common modes of failure. The other one is chemical attack, or corrosion by the 

material that refractories are containing within the process vessel, as example molten metal 

slag or glasses at very high temperature. In this study, we will focus on the fracture aspects of 

these materials

-a- -b-

Radial cracks

Longitudinal 
crack
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II.2.1. Crack growth mechanisms 

All refractory materials were considered for a long time as ceramics which exhibit a 

linear elastic mechanical behaviour. In the last decades, a deviation from this linear elastic 

behaviour called “non-linear character” has been introduced with specific concepts (Gogotsi 

et al., 1978; Harmuth et al., 1997; Huger et al., 2007). Non-linear mechanical behaviour of 

specific developed ceramics associated to their type of microstructure leads to the increase of 

their strain-to-rupture level. This allows a better accommodation of the high level of strain 

induced by thermal shock solicitations. It is characterized with a low stress-to-rupture  

(Figure I-3) and a presence of an irreversible strain when unloading in comparison with pure 

elastic behaviour of classical ceramic materials. 

 

Figure I-3: Typical stress/strain behaviours observed on refractory materials (Huger et al., 2007) 

 

This non-linear mechanical behaviour results of the complexity of the different 

inelastic phenomena occurring in crack region. The variety of these mechanisms are behind 

an important energy dissipating phenomenon, occur around the cracks and consume a large 

amount of energy as the crack front is progressing (Bradt, 1981). 

According to the theory of linear elastic fracture mechanics, a crack propagates when 

the stress intensity factor K (MPa.m1/2), at the crack tip, reaches the critical constant value KIC 

of the material. K characterises material fracture toughness which describes its ability to resist 

failure in the presence of a crack. 
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The crack region can be divided to two areas: the frontal process zone and the 

following wake region as represented in Figure I-4. 

 

Figure I-4: Schematic representation of the crack propagation zone  

for refractories (Bradt, 2004) 

 

The frontal process zone is localized ahead of the main crack and corresponds mainly 

to micro-cracking. It may lead to a large crack branching phenomenon depending on the 

microstructure and involving high energy consumptions. The size of this frontal process 

region depends on the type of refractory.  

The following wake region is located behind the crack front and across the fracture 

surface. The phenomena occurring in this region are the most important from an energetic 

point of view. The main mechanisms are bonding of silicate ligament and bridging of 

aggregates (Figure I-4).  

The bonding of silicate ligament is a consequence of refractory fracture at elevated 

temperatures where the glassy silicates become viscous and can flow and form bonding 

ligaments between the newly created fracture surfaces. In the other hand, the bridging of 

aggregates can appear at room temperature and contributes also to the crack growth 

resistance, but details about its mechanisms are still not fully clear (Bradt, 2004). 

Nevertheless, among the most common mechanisms are the bridging across the created crack 
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surfaces and the frictional effects of pull-out of the aggregates from one side of the passing 

crack.  

As the phenomena which occur behind the advancing crack front have the most 

important effects to the crack growth resistance of refractories, some researchers have 

proposed numerous solutions to improve such property. It can be done by enhancing the 

fracture mechanisms using structural and microstructural design of aggregates such as particle 

size, geometrical aspects and strength of aggregates.  

In fact, an aggregate must be at least as large as the crack mouth opening displacement 

(CMOD) so as to bridge the crack (Homeny et al., 1985). It is preferable to have angular 

aggregates as they can afford a mechanical interlocking effect greater than spherical 

aggregates. Besides, larger aspect ratio of the aggregates (ratio between their sizes in different 

dimensions) will give improved crack growth resistance. In addition to that, stronger 

aggregates are better than weak ones, and rough surfaces on the aggregates are preferred to 

smooth ones. In fact, when aggregates are stronger than their matrix bonding, the crack 

circumvents the aggregates and loops around them. This encourages the dissipation of energy 

during the bridging phenomena following the crack (Bradt, 2004). 

II.2.2. Energetic approach 

After a reminder about the relationship between the possible origin of thermal stresses 

(mechanical constraints, thermal expansion mismatch and thermal gradient) and 

microstructural crack growth mechanisms, this paragraph links these crack growth 

mechanisms with thermal shock resistance of materials. 

Thermal shock resistance is the ability of the material to withstand thermal stresses 

with minimal cracking (Baxendale, 2004). It can be characterized using experimental testing 

such as thermal cycling method (ASTM C1171-96) or calculations from material properties 

using Hasselman parameters (Hasselman, 1963, 1969). Hasselman proposed an attempt to 

rank materials quantitatively according to their thermal shock resistance using the parameters 

R’’’’ and Rst. They allow forecasting the behaviour of defects inside the material during a 

temperature variation T. 
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R’’’’ (in m) is the thermal shock damage resistance parameter that compares the degree 

of damage after a given number of thermal shocks. It corresponds to the case of initially 

damaged materials with small cracks. In a first step, before Tc is reached, this crack 

propagates in an unstable way. In a second step, since the initial crack is much larger the 

crack extends in a stable way. The maximization of this parameter R’’’’ is expected to reduce 

dynamic (or unstable) crack propagation.  

Rst (K.m1/2) is a quasi-static (or quasi-stable) crack growth damage resistance 

parameter defined to characterize thermal shock resistance of materials with large initial 

cracks. 

2

.
''''

r
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R 
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Eq. I-2 
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
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st      Eq. I-3 

where s (N.m-1) is the surface fracture energy of the material and r (MPa) material strength. 

Hasselman approach supposes that the material is initially damaged and this thermal 

shock causes the propagation of already existing cracks in unstable (R’’’’ ) or stable (Rst) ways. 

From the expression of these two parameters, we can notice that they depend on elastic 

modulus and strength. Using simple form for stress expression and simple approximations 

such as 
E

E
2

2.
  , it seems that both R’’’’ and Rst are inversely related to 

E

2
which 

corresponds to the stored elastic strain energy in a sample at the stress level  (Popov, 1999). 

This energy can be considered as the driving force for fracture or crack growth whether the 

thermal shock damage is either kinetic or quasi-static. 

It is worth mentioning that thermal shock damage resistance parameter decreases as 

strength increases which means that high-strength refractories are much more sensitive to 

thermal shock damage. For this reason, industrials did not focus only on producing or 

developing high-strength refractories (Bradt, 2004) but they took into account their thermal 

shock resistance. 
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II.2.3. R-curve approach 

After detailing crack growth mechanisms and the energetic approach, this paragraph 

links these two aspects by introducing the R-curve concept of refractories. 

The R-curve concept describes the evolution of the energy consumed for crack 

propagation as a function of the crack extension c. This concept was proposed in 1954 by 

Irwin and Kies (Irwin et al., 1954). Its major developments and initial experimental 

applications date from 1960 and were mainly devoted to metal and alloys (Boyle, 1962; Lauta 

et al., 1965; Forman, 1966). It was noticed in such kind of materials that a slow stable crack 

growth takes place prior to catastrophic failure for a cracked thin metal sheet. 

It was then applied for different materials such as ceramics and especially refractories 

when Adams and Bradt noticed that long cracks were much more difficult to extend than short 

cracks by experimenting alumino-silicate refractories (Adams et al., 1981). Marshall and 

Swain (Marshall et al., 1988) pointed out that there was no unique R-curve for a material 

since it depends on experimental conditions of testing, size of sample and the location and 

depth of initial crack c. Currently, R-curve concept is becoming recognized as a basis for 

useful test methods applicable to less brittle materials (Mat et al., 1986; Evans, 1990; 

Saadaoui, 1991). Figure I-5 illustrates the R-curve evolution for different kinds of ceramics 

(Steinbrech, 1992). 

 

Figure I-5: R-curves of ceramic materials results of measurements on long cracks in compact 

tension samples (Steinbrech, 1992) 
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For brittle materials, the R-curve is flat that means that the crack growth resistance is 

constant with crack length. In this case, the R-value is just 2s (Bradt, 2004). 

For large grained ceramics such as refractories, the R-curve is rising. As the crack 

extends, it gets more difficult for it to grow, due to the occurrence of new mechanisms in the 

following wake region of the crack (Figure I-4). These curves confirm that few phenomena 

are activated at crack initiation. During its propagation, the number of activated mechanisms 

increases and so the total energy release rate becomes higher. These mechanisms make the 

refractory stronger before its failure and generate a non-linear mechanical behaviour. This 

non-linear behaviour has been related to the improvement of thermal shock resistance in the 

late 1970s (Gogotsi et al., 1978; Gogotsi, 1993). So, the rising R-curves can be directly 

associated to thermal shock resistance of refractory materials. 

In fracture mechanics, by definition, crack propagation occurs when the total energy 

release rate per unit surface of propagation (or strain energy release rate) G is higher than R 

which corresponds to the crack growth resistance (or energy dissipation rate).  

According to Griffith approach, G can be obtained using the following equations in 

plane stresses case for a thin rectangular plate with a crack perpendicular to the load:  

E

c
G

2.. 
 

   
 

Eq. I-4 

To understand easily the relation between the R-curve and fracture mechanisms, Figure I-6 

represents a typical rising R-curve associated to the one of G at two different states 1 and 2 

(1 < 2). G is linear for a given state of stress (Green, 1998). 
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Figure I-6: Schematic R-curve representation (Green, 1998) 

According to the stress level, different cases can be observed (Wachtman et al., 2009). 

For an initial crack c0 under 1, no crack propagation will occur ( RG )( 1 ). An initial crack 

c1 under the same stress, an extension with unstable crack propagation will occur ( RG )( 1 ) 

until reaching c2 ( RG )( 1 ). As the applied stress  is increasing (from 1 to 2), the 

extension of crack propagation will occur in a stable way until c3 where RG )( . Then, 

G(2) becomes higher than R, so unstable crack extension happens and induces the rupture of 

material.  

 

III. Optical and numerical approaches in mechanical 

characterization of refractories 

In the last decades, numerous numerical methods of simulation have been developed 

to investigate mechanical issues with different degrees of complexity at both a macro and a 

micro-scale. These techniques allow the prediction of the mechanical behaviour of materials 

during their service life.  

Besides, the appearance of optical methods to achieve kinematic measurements is 

considered as a promising support in the real characterisation of mechanical behaviour of 

heterogeneous materials at different scales. It can investigate the mechanical behaviour 

without using classical techniques such as strain gages and extensometers which still limited 
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in terms of measured area. Thanks to the efficiency of these techniques, their application can 

be extended to components under mechanical solicitations such as slide gates and ladle 

shroud. 

III.1. Optical methods 

Aside from classical techniques widely used for characterisation, various non-contact 

optical methods have been developed and applied for this purpose. These methods are now 

appreciated by the researcher community as they provide efficient pieces of information on 

the analysed surface, in addition to their other advantages such as their simple experimental 

setup and low cost implementation. 

III.1.1. Digital image correlation 

Among the most common optical techniques, digital image correlation (DIC) is one of 

those that this thesis is focused on. DIC measurements accuracy has been improved in the last 

researches according to the application used for.  

III.1.1.1. Context 

DIC appeared in the early 80s and was developed by a group of researchers at the 

university of South Carolina (Peters et al., 1982, 1983; Chu et al., 1985; Sutton et al., 1986). It 

is based on mathematical computations and progresses taking into account the optical devices 

evolution. Then, the technique has been simplified and optimized in terms of calculation 

parameters in order to be applied by different kinds of users. Many names have been given to 

this practice such as: DIC (Chu et al., 1985), electronic speckle photography (Sjödahl et al., 

1993), texture correlation (Bay, 1995), digital speckle correlation method (DSCM) (Zhang et 

al., 1999) and computer-aided speckle interferometry (CASI) (Gaudette et al., 2001). 

Nevertheless, the method is called DIC in this study, considering its popularity in most of the 

published literature. 

It allows measuring kinematic fields by operating digital images obtained before and 

after deformation using different means of non-contact optical acquisitions (Figure I-7). 
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Figure I-7: Schematic of DIC (Lecompte et al., 2006) 

 

This technique can be applied at different scales depending on acquisition device. 

CCD cameras (Lecompte et al., 2006) (Figure I-7) or various high-spatial-resolution devices 

such as optical microscopy (Sun et al., 1997) and scanning electron microscopy (SEM) 

(Sabate et al., 2006) can be used to process the technique. Recent released cameras allow 

instantaneous deformation measurement thanks to high-speed digital image recording 

equipment (Barthelat et al., 2003). From recorded images, kinematic fields can be obtained 

using appropriate correlation software. 

DIC has been significantly improved for expanding its application range. It can be 

directly applied for the characterisation of deformation mechanism of various materials (e.g. 

metal, composite, polymer, wood, biological materials) subjected to different types of 

loadings (thermal, mechanical or other) (Bastawros et al., 2000; Wattrisse et al., 2001; 

Abanto-Bueno et al., 2002; Périé et al., 2002; Chevalier et al., 2001; Xiang et al., 2007; 

Chiang, 2008; Feissel et al., 2009, 2012, 2013). Recently, numerous works were carried out to 

better understand the behaviour of refractory materials thanks to this technique such as the 

characterisation of mechanical behaviour of fiber reinforced refractory castables (Orteu et al., 

2007; Robert et al., 2007; Dusserre et al., 2013), the thermal strain behaviour of Al2O3-MgO 

castables (Kamio, 2011; Kamio et al., 2011) or the asymmetric behaviour of aluminium 

http://creativecommons.org/licenses/by-nc-nd/2.0/fr/


Chapter I: State of the art 

BELRHITI Younès | Thèse de doctorat | Sciences et Ingénierie en Matériaux, Mécanique, Énergétique et Aéronautique | Université de Limoges | 2015 18 

 

titanate Al2TiO5 ceramics and identification of their stress-strain law (Leplay et al., 2010, 

2012). 

III.1.1.2. Measurement of kinematic fields 

In this paragraph, the measurement of displacement and strain fields using DIC is 

introduced. 

After recording images, a computation allows the comparison between two images. 

One corresponding to the reference state and the other corresponding to the deformed one 

(Figure I-8). The zone of interest (ZOI), in which the calculation is carried out, is divided into 

a numerous correlation windows which are a part of a virtual grid (Figure I-8). The number 

and size of those windows determine the measurements accuracy. Each window contains a 

given grey level values. These grey level values (positive integers) are considered as input 

data for DIC computation and vary between 0 and 256 for an 8-bit sensor which is the most 

used. 

 

 

Figure I-8: Description of computational state between reference and deformed state (Pop, 2013) 

 

Zone of interest

Window of correlation

Reference state

Deformed state
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Displacements are computed within correlation windows in order to obtain 

displacement field measurements in the ZOI. These displacements are defined by a plane 

material transformation linking the reference state coordinates to the deformed state ones. The 

computation principle will be more detailed in chapter 2. 

Displacement field is useful for detecting cracks presence as it induces a discontinuous 

displacement field (Grédiac et al., 2011). However, for other applications, such as describing 

deformation behaviour, strain fields estimated from displacement fields can be more relevant.  

Strain field is evaluated from displacement field using finite differences as will be 

detailed in chapter 2. This means that strain field accuracy depends on the quality of the 

displacement measurements. 

III.1.2. Mark tracking method 

 Among the optical techniques which allow the characterisation of material behaviour, 

mark tracking method can be quoted. Unlike DIC, regular markers deposited on the studied 

surface are used instead of speckles. This method consists in tracking these markers during 

the test. It can be used for instance to evaluate displacements and strains on a surface under 

mechanical solicitation. The measurements resolution depends on the size and the distance 

between these markers. From these average strains and using the applied stresses, an average 

value of Young’s modulus and Poisson ratio on the area of interest can be determined as 

represented in Figure I-9 on a PET plastic under tensile test (Brémand et al., 2011).  

 

 

Figure I-9: An example of mark tracking application in the characterisation of local material 

properties from (Brémand et al., 2011) 
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III.1.3. Accuracy of kinematic measurements and sources of errors 

Kinematic measurements quality depends on sample preparation, experimental 

conditions and on images numerical processing.  

Firstly, a great attention must be paid to the sample surface preparation. For example, 

to enhance the contrast of this surface, a random speckle pattern is applied. It provides a 

unique texture or signature to every element on the recorded surface. This pattern can be the 

natural specimen texture or may be obtained artificially by spraying black and/or white paints 

or other techniques. The quality of speckles can be evaluated using various parameters such as 

the number of pixels per droplet, the mean speckle size (Lecompte et al., 2006) and the grey 

level distribution in the ZOI which should cover a wide range (Robert et al., 2007)  

(Figure I-10).  

 

 

Figure I-10: Example of a random grey pattern and its associated grey level  

distribution (Robert et al., 2007) 

 

Secondly, sample surface has to be flat and parallel to the CCD camera sensor. Out-of-

plane motion of the specimen during loading should be small enough to be neglected. This is 

due to the fact that out-of-plane motion can cause the presence of additional in-plane 

displacements. Obviously, this condition is difficult to achieve experimentally.  
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Finally, after recording images, the choice of correlation parameters, such as the 

position and size of correlation windows, has a great influence on determined results quality. 

To achieve a reliable correlation analysis using DIC, the size of the correlation window has to 

be large enough to distinguish the windows between the others so as to obtain distinctive 

information. Small correlation window leads to high accuracy in displacement values and the 

distance between these windows determines the strain measurements accuracy. The above 

two properties imply that there is a compromise to find to be satisfied. 

III.2. Finite element method updating (FEMU): identification of 

material properties 

Although mechanical analytical approaches allow getting valuable pieces of 

information on the required material properties, classical equations used for such purpose are 

still only available for the characterization of elastic linear behaviours of classic ceramics but 

cannot really be applied for refractories which often refer to a non-linear mechanical one. 

During the last decades, Finite Element Method (FEM) was and still a useful technique to 

predict material behaviour during its application. Besides, the apparition of optical methods 

leads scientists to conjugate them with FEM to propose new areas of investigation to enrich 

the mechanical characterisation of materials. 

III.2.1. Introduction to identification methods 

Identification methods are divided into updating and non-updating ones. Among the 

updating techniques, finite element method updating (FEMU), constitutive equation gap 

method (CEGM), reciprocity gap method (RGM) can be quoted. In the other hand, as 

example of non-updating methods, equilibrium gap method (EGM) and virtual field method 

(VFM) may be cited. 

Coupling these identification techniques with digital image correlation methods make 

it possible these last to increase significantly their potential of characterization. Various 

mechanical parameters of a material can be further identified based on the computed 

displacement field or strain field. Identified parameters include Young’s modulus and Poisson 

ratio (Cho et al., 2005; Zhang et al., 2006), in addition to stress intensity factor (McNeill et 
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al., 1987; Roux et al., 2006), residual stress (Sabate et al., 2007) and thermal expansion 

coefficient (Lyons et al., 1996; Bing et al., 2009). 

In updating methods, displacement fields are numerically computed, usually by FEM 

analyses, using an initial guess. Then the identification is done by minimizing an objective 

function. It can leads to iterative computational procedures, which may be CPU-intensive, and 

besides tend to become sensitive to measurement scattering if based on insufficient 

experimental data (thus regularization approaches are required). Non-updating methods have 

the advantage of usually leading to fast computational procedures. Besides, they specifically 

require full-field displacement data determination with sufficiently spatial resolution. A recent 

study (Avril et al., 2008) compared these different identification methods in order to 

determine elastic properties (Young’s modulus and Poisson ratio) of a composite material. 

Based on this study outputs, it appears that, using the same data, each method can provide 

quite different result, especially for Poisson ratio. They are sensitive to error sources in data, 

and this sensitivity to error sources is higher for non-updating approaches which may fail to 

provide a solution when data have low spatial resolution. 

Among updating methods, the FEMU (Haddadi et al., 2005; Lecompte, 2007; 

Cooreman et al., 2008; Decultot, 2009) stills one of the most used for material properties 

identification of heterogeneous and homogenous materials whose geometry is the cause of the 

generation of heterogeneous stresses (Grédiac et al., 2011). This is why it will be considered 

in this study. 

III.2.2. Finite element method updating 

III.2.2.1. Overview of finite element method (FEM) 

The finite element method (FEM) is a useful engineering tool for numerical 

approximating of physical systems which are too complex for an analytical solution or 

governed by behaviour that is highly complicated. It is used in engineering to estimate a 

solution to partial differential equations and integral equations. 

The value of studied parameters for a specific element is approximated and depends 

on the element size and estimating technique. Simple models with large elements are quickly 
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computed and complex models with fine resolution (small elements, fine mesh) can yield 

more realistic results at the cost of increased computational time. 

III.2.2.2. Description of FEMU 

FEMU is based on a coupling of a finite element model and an optimization algorithm. 

It was presented in 1971 by Kavanagh (Kavanagh et al., 1971) and has known important 

evolutions. FEMU consists in performing iteratively finite element simulations (FEM) in 

order to minimize the difference between experimental and simulation results using an 

objective function. Many iterations may be required for convergence, thus models should be 

simplified as much as possible in order to reduce the computational time at each iterations 

(Jonsson et al., 2007). Different approaches of FEMU exist and are mainly based on the 

comparison between experimental and simulated data. These data can be an applied load 

(FEMU-F) or a displacement (FEMU-U). It is also carried out in the identification of thermo-

mechanical models where temperature fields are used (FEMU-T) (Figure I-11). 
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Figure I-11: Principle of identification method using FEMU-T (Pottier, 2010) 

 

FEMU-U can be associated with DIC in order to determine material elastic properties. 

Displacement fields obtained using DIC were preferred to strain fields in order to avoid 

additional scattering obtained by differentiating displacement fields (Decultot, 2009). 

IV. Conclusion 

This first chapter allowed us to establish the state of the art concerning thermal shock 

resistance of refractory materials and non-linear mechanical behaviour of these materials by 

analysing both energetic and mechanical approaches. This deviation from linear elastic 

behaviour can be considered as a solution to improve thermal shock resistance of refractory 

materials. However, to characterize such materials, it is necessary to develop some 

experimental techniques in order to evaluate in the best reliable way their specific properties. 
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Besides, the occurrence of optical methods that allow non-contact full-field measurements 

such as digital image correlation and numerical techniques like finite element method 

updating provides the advantage to investigate refractory materials. In the present work, 

different refractory materials chosen in purpose for their non-linear mechanical behaviour will 

be studied using different mechanical tests. Some of these tests are commonly applied for 

elastic linear materials. Here, the originality of the study is to achieve the coupling of non-

contact optical methods in order to better understand the overall behaviour of these non-linear 

refractory materials. 
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I. Introduction 

Fracture of granular materials in general and refractories in particular is usually 

associated with the concept of strength. Refractories strength can be determined using 

different mechanical tests. As examples, we can quote the three-point bending test which 

permit to investigate flexural strength, frequently called “modulus of rupture MOR” (ASTM 

C133-97) or the Wedge Splitting Test (WST) that provides a nominal notch tensile strength 

(Brühwiler et al., 1990) to be determined or the Brazilian test allowing the evaluation of 

tensile strength (ASTM D3967-95a) thanks to indirect solicitation (compression).  

However, the parameters extracted from these experimental tests cannot be sufficient 

to perform a full mechanical characterisation of some materials which exhibit singular 

behaviours such as non-linear ones. For this reason, in order to feed FEM, the knowledge of 

constitutive laws was necessary. To do so, it was important to develop uniaxial tests taking 

into account that these materials are characterized with a low level of strains. Nowadays, to 

determine local material constitutive laws to feed finite elements method, accurate 

instrumented tensile test with extensometers are used (Marzagui, 2005; Kakroudi, 2007). 

Besides, the occurrence of optical techniques such as DIC and the development of 

identification methods like FEMU-U over the last decades give new areas and opportunities 

of investigation of refractories showing a non-linear mechanical behaviour. These techniques 

were developed for various materials, but few applications were applied on refractories.  

This chapter aims to present the different techniques of characterization used and 

associated to DIC. To do so, a development of the technique is required and was done on a 

model material, then applied on several industrial ones. These materials will be introduced at 

the end of this chapter. 

II. Determination of elastic properties: Ultrasonic technique at 

room temperature 

The first properties needed for material characterization are elastic properties 

(Young’s modulus E, Shear modulus G and Poisson ratio ). 
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In infinite medium, two propagation modes exist, Longitudinal (Pressure waves P) and 

Transversal ones (Shear waves S). The associated velocities are respectively estimated 

according to the following expressions: 

L
L

e
V       Eq. II-1 

T
T

e
V       Eq. II-2 

where e (m) is sample thickness. L (s) and T (s) were measured respectively by a pair of 

longitudinal and transversal transducers. 

Then, Young’s modulus E (Pa) and shear modulus G (Pa) can be calculated using the 

following equations 
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From E and G, Poisson ratio is deduced thanks to the equation below: 

1
2


G

E
     

Eq. II-5 

 

III. Characterization of mechanical behaviour 

III.1. Four-points bending test 

In some specific applications, four-points bending test can be preferred to three-point 

bending test which is the most commonly applied experiment to refractory materials (ASTM 

C133-97). In fact, the difference lies in the stress distribution within the loaded sample. 

Unlike three-points bending test, it has a uniform stress distribution in the central part of 

sample (Figure II-2a) which is better to access easily to reliable elastic properties.  
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where P (N) is the applied load, b (m) and h (m) are respectively the width and the thickness 

of the specimen, L (m) and l (m) are the distances between the lower and the upper rolls. 

Using the Eq.II-6 stress-to-rupture can be calculated. 

Theoretically speaking, Young’s modulus E is given by the following equation: 

).22.(.
.8

22
3 llLL

P

bh

lL
E       Eq. II-7 

where(mm) is the deflection. 

Nevertheless, during experimental test, material depression under rolls is inevitable 

and usually leads to an overestimation of  which induces an underestimation of E. For this 

reason, strain gauges are often preferred to measure deformation. One can be glued on the 

upper surface of sample and another one on the lower surface. Elastic properties can be then 

determined using stress-strain values. In such case, Figure II-3 is an example of stress-strain 

curve of recorded values. From this figure, E is calculated using the slop at the very early part 

of the curve; it corresponds to an elastic linear behaviour. It assumes a symmetric tensile-

compressive behaviour. 

 

Figure II-3: Example of stress-strain curve obtained for an aluminum titanate sample 

 

The two equations (Eq.II-6 and Eq.II-7) are established within the framework of linear 

elasticity theory. As a consequence, it leads to incorrect estimations in the case of asymmetric 

non-linear tensile-compressive mechanical behaviours. It can contribute to a gap between 

effective and estimated values which can reach around 40% for strength at room temperature 

(Leplay et al., 2012). 
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III.2. Brazilian test 

Brazilian test has been developed in the early 1940’s to face a challenging engineering 

problem: a church was located in the axis of a new avenue to be built in Rio de Janeiro. The 

engineering solution that was found to avoid the demolition of the church was to move it on 

concrete rolls as the production of steel was directly focused to the war effort.  

Concrete rolls testing were done by a Brazilian team which was in charge of testing 

the cylindrical concrete rolls. This induced the development of a test for the tensile strength 

that could be performed on normalized cylinders defined by the Brazilian standards for 

compressive tests (150 mm, L= 300 mm). The method was presented in 1943 at the 5th 

meeting of the Brazilian Association for Technical Rules (ABNT) (Carneiro, 1943). For the 

records, two months later, a similar method was independently presented in Japan by 

Akazawa (Akazawa, 1943) without any communication between researchers (Brazil and 

Japan were on opposite sides in World War II). 

Then, in the following years, some researches were focused on the comparison 

between Brazilian disc, and uniaxial tensile tests as well on the validity of tensile strength of 

rocks and rock-like materials obtained by Brazilian test (Fairhurst, 1964; Hobbs, 1965; 

Hiramatsu et al., 1966). Indirect tensile test of anisotropic rocks were experimentally and 

investigated (Barla et al., 1973). The Brazilian test had become then very popular to measure 

tensile strength of rocks all over the world (Andreev, 1991). The improvement of this test has 

been extensively studied and discussed.  

The principle of the test consists of applying a diametrical compressive force along the 

length of a cylindrical concrete specimen until failure occurs (Fairhurst, 1964; Andreev, 1991; 

Guo et al., 1993; Wang et al., 2004; Huang et al., 2012). This loading induces tensile stresses 

on the plane containing the applied load and relatively high compressive stresses in the area 

close to the contact zone. Tensile failure occurs rather than compressive failure (Rodríguez et 

al., 1994). This test has been normalized in the standard ASTM D3967-95a and nowadays 

used by many industrial laboratories. 

This test is easy to handle, and is used currently by many communities such as 

refractory one (for instance Tatasteel R&D). Sample preparation requires a specific attention 

to obtain repeatable results. According to ASTM D3967-95a, test specimen shall be a circular 
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disk with a thickness-to-diameter ratio (e/D) between 0.2 and 0.75 in order to be in a plane 

stress configuration (Darvell, 1990). The diameter of specimen shall be at least 10 times 

greater than the largest mineral grain constituent.  

Different typical loading configurations exist and are represented in Figure II-4. 

 

(a)    (b)          (c) 

Figure II-4: Examples of Brazilian test configuration. (a) flat loading bearings, (b) curved 

bearings and (c) flattened Brazilian disc (Chen et al., 2013) 

 

In the Brazilian test, the contact point between the loading bearings and the circular 

boundary of the specimen will lead to stress concentration at the loading contact. This stress 

concentration may lead to undesired damage in this area. Two attempts have been made to 

avoid this undesired failure in disc specimen (Chen et al., 2013). One was changing the flat 

loading bearings (Figure II-4a) into curved bearings to fit the specimen (Figure II-4b). The 

other attempt was to modify the sample shape by machining two opposing flat ends on sample 

to fit the regular loading bearings (Figure II-4c). In the present work, curved bearings will be 

used (Figure II-5). 
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AEE st .
    

Eq. II-9 

where Es is defined as splitting elastic modulus which can be determined from the following 

equation: 

5.0

5.0e
sE

    
Eq. II-10 

where 5.0  and 5.0e  correspond respectively to half test values of stress and strain  

(Figure II-6). This choice is proposed to overcome non-linearity of the curve. 

A is a correction coefficient, related to the presence of biaxial stresses, which depends on 

sample geometry and Poisson ratio :  
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Eq. II-11 

where 2L(m) is strain gauge length. 

 In the present study, strain measurement by gauges will be replaced by DIC. 

Figure II-6 represents a typical load-displacement curve obtained using Brazilian test. 

This curve can be divided in four stages: 

 Stage 1: Load-strain curve exhibits an upward curvature related to the elastic 

linear behaviour of the tested material.  

 Stage 2: Load-strain curve shows a downward curvature linked to stable crack 

propagation until the load reaches the maximum value. 

 Stage 3: The load decreases rapidly as the crack widens in the unstable crack 

extension stage.  

 Stage 4: An increase of load occurs again and is related to the two separate disc 

halves.  

An attempt to estimate the surface fracture energy is proposed using the ratio: 
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Figure II-8: Schematic representation of wedge splitting test: (a) cracked specimen, (b) stress 

distribution in specimen (a is crack length) (from Löfgren et al., 2007) 

 

FH is calculated from FV taking the wedge angle  into account and neglecting any 

friction effects due to rolls: 

v
H

F
F

2 tan( / 2)
       

Eq. II-13 

The horizontal force FH is much higher than vertical one to reduce the machine applied 

load and thus allows storing less elastic energy in the frame. 

First, experimental results can be used to characterize material strength. This strength 

is called the nominal notch tensile strength (NT): 

H,max H,max
NT 2

6 y F F

b h b h

         
Eq. II-14 

where b (m) and h (m) are sample dimensions. FH,max (N) is the maximum horizontal force and 

y (m) is the distance between the fulcrum of FH,max and the middle of h shown in Figure II-7. 

The surface fracture energy Gf (N.m-1) is defined as the mean work per unit of projected 

fracture area required to propagate a crack. Gf is calculated using the following equation: 
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Eq. II-15 
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divided into many correlation windows whose size and number determine measurements 

density. These windows contain a number of grey levels. Each window is supposed unique. 

The windows can be square or rectangular, located next to each other or overlapped. The 

shape and size of these windows should be carefully chosen in accordance with calculation 

aim. 

Displacements are defined by a plane material transformation  linking the coordinates 

of the reference state (X) to the deformed state ones (x) by the following equation: 

)(Xx 
     

Eq. II-16 

The degree of similarity between f and g, which correspond respectively to the grey 

levels of the reference and the deformed states, is given by the minimization of the correlation 

coefficient C (Doumalin, 2000; Bornert et al., 2008; Barranger et al., 2012): 
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Eq. II-17 

where Df and Dg  are the averages of grey levels on correlation window in its reference (D) 

and deformed (D) state. The C value decreases with the optimization of the degree of 

similarity. 

Four-points bending, Brazilian and wedge splitting tests have been coupled to digital 

image correlation to obtain kinematic fields on sample surface during material mechanical 

characterization.  

The following paragraphs describe different steps and critical points which require a 

great attention. 

IV.1.1. Sample preparation 

A great attention must be paid to sample surface preparation in order to avoid artefacts 

of correlation results between deformed and reference states. To do so, the dynamic signal of 

the image has to be between 0 and 255 avoiding saturation in white or in black.  
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IV.1.2. Image acquisition 

A digital 8-bit IDS UI-1480SE-M-GL CMOS (Complementary Metal Oxide Semi-

conductor) USB2.0 camera (2560x1920 pixels²) is used to record speckled specimen surface 

during loading in order to perform optical measurements. CMOS is constituted by a matrix of 

photosensitive cells that retain their charge and convert it by themselves in tension. These 

cells in the case of CCD (Charge Couple Device) captor transfer the charge line by line to a 

manifold which transfers the entire charge to the converter. CMOS are much more compact 

than the CCD. For this reason, CMOS based cameras are smaller than the CCD ones. These 

latter are known with their high efficiency but allow slow acquisition speeds in comparison 

with CMOS. 

As DIC is based on the comparison of grey level images, monochrome (black and 

white) images satisfy the DIC purpose and at the same time avoid the complexity (and 

inaccurate) of full colour image treatment. An optical lens Fujinon 1:1.8/50 mm has been used 

to guarantee a sufficient light source and to minimize optical distortion.  

The camera (Figure II-12) is related to the acquisition software “Deftac” which was 

developed by Pprime Institute of Poitiers University (Bretagne et al., 2005b). It is preferable 

to link the camera to the computer around 30 minutes before starting the acquisition to ensure 

a thermal stability of the device. Image number is synchronized with mechanical load values 

(from load cell) using a National Instrument USB-6210 DAQ which receives an analogical 

signal from the electromechanical machine (0-10 V) and converts it to a numerical one. Image 

acquisition frequency adopted is 1 image per second. 
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Figure II-12: Digital image acquisition of a speckled instrumented sample during  

four-points bending test 

 

IV.1.3. Images analysis by DIC 

After recording digital images of the speckled material surface, the correlation 

algorithm implemented in the software “Correla” measures the degree of similarity between 

selected images (reference and deformed ones, Eq II-17). “Correla” is developed by Pprime 

Institute of the University of Poitiers.  

From the computation results, displacement fields (Figure II-13) can be represented 

using softwares of visualisation such as “Voxler” or “Surfer”. These softwares can easily 

combine data and display it using a variety of formats and colours. The accuracy and the 

quality of the represented displacement fields depend on the following parameters to be 

determined before running the computation: 

 ZOI size (horizontal hzoi and vertical vzoi size in pixels): defines the area of 

sample in which the calculation will be done (Figure II-13). 

 Correlation windows size (horizontal hcor and vertical vcor size in pixels): 

defines the number of correlation windows and so measurement point density. 

These correlation windows discretize the ZOI. They can be square or rectangular. 

 Correlation windows gap (horizontal hgap and vertical vgap gap in pixels): 

determines if the windows are overlapped or not and the number of windows. 

Light projector

Camera and tripods

Specimen

Mechanical data
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critical as strain-to-rupture of studied refractory material is low and requires high 

measurement accuracy. 

IV.1.4.1. Influence of sample preparation and processing parameters 

An accurate DIC calculation requires appropriate digital images of a well prepared 

sample. Indeed, the quality of DIC measurements depends on sample surface and processing 

parameters. For instance, correlation windows size is chosen taking into account speckles 

quality and the ZOI. Each window should contain enough droplets and each droplet must have 

around 3~15 pixels (Barranger et al., 2012). Otherwise, correlation problems may occur. 

Figure II-14 illustrates a DIC stress-strain curve containing experimental disturbance. Stresses 

and strain values were obtained, respectively, from the electromechanical machine and DIC 

computation. It can be due to a lack of information in terms of pixels in the analysed droplets 

and so in correlation windows. This makes it difficult to evaluate the correspondence between 

the reference and deformed states. To overcome this problem, larger windows of correlation 

and an optimized speckled surface can be preferred (Figure II-15).  

 

Figure II-14: DIC tensile stress-strain curve obtained containing experimental disturbance 
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Figure II-15: An improved DIC tensile stress-strain curve 

 

IV.1.4.2. Temperature variation effect 

A study has been carried out to understand the influence of temperature variation of 

specimen during the mechanical test on strain measurement obtained by DIC. Light projector 

was one of temperature variation sources. Figure II-16 represent strains calculated on the 

surface of an unloaded refractory sample using respectively normal light projectors and cold 

light projectors. The frequency of acquisition is 1 image per 5 seconds. Temperature 

acquisition was done using K-type thermocouple placed near sample. 
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Figure II-16: The influence of temperature variation on strain values evolution: (a) normal light 

projector, (b) led projector 

 

Actually, the use of suitable projectors enhance the contrast and the brightness of 

images grey level, however, some of them can be considered as the origin of temperature 

variation during acquisition. Halogen projector induces significant temperature variation 

during the test which leads to an increase of strain value due to thermal expansion  

(Figure II-16a). To overcome this problem, we preferred to use cold light projector (LED) for 

this work (Figure II-16b). 
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where Is is the lower limit of the light intensity to distinguish if a pixel is a part of the marker 

or is a part of the background and I(i,j) the light intensity of the pixel whose coordinates are 

(x(i,j) , y(i,j)).  

As geometric centres of markers can be determined, it is possible to evaluate material 

rigid body motion from their displacements and rotations. 

V. Materials selection 

Different materials with a non-linear mechanical behaviour have been chosen to 

develop and to valid the DIC approach of refractory mechanical characterization. Among the 

studied materials, a “flexible” model refractory material based on aluminium titanate 

developed for academic purpose has been considered. It develops a non-linear mechanical 

behaviour thanks to its thermal expansion mismatch according to the different 

crystallographic axis.  

Besides, industrial partners of the project FIRE D suggested industrial magnesia 

refractories. These materials have been also studied as they exhibit a non-linear mechanical 

behaviour thanks to the thermal expansion mismatch between the different present phases. 

V.1. Why flexible ceramics? 

As explained in chapter 1, the non-linearity of refractories or “flexibility” permits to 

admit large strain-to-rupture when they are submitted to thermo-mechanical solicitations. It is 

directly related to their microstructure design.  

Itacolumite, which is frequently called “flexible sandstone”, illustrates a natural 

flexible material. Sandstone is a generic name of rocks constituted of sand grains (mainly 

quartz) integrated into natural cement. Itacolumite (Dusseault, 1980) is a particular case 

where quartz grains are angular and characterised by inter-granular spaces arranged like a 

puzzle. The cohesion of this material is not achieved by inter-granular mineral cement but by 

the morphology which allows some free motion from grain to grain into the void spaces as 

illustrated in Figure II-19 (Doncieux et al., 2008). 
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Figure II-19: An Itacolumite deflecting under load (a) and a representation of its cross section in 

an unstressed state (b) and in a state under bending stresses (c)  

(from Dusseault, 1980 and Doncieux et al., 2008) 

 

For these reasons, Itacolumite, which is a natural material, has been used as a model 

for designing new refractory materials with large decohesions between constituents. This 

work did not study the Itacolumite, but focuses on refractories developed and inspired by 

mimicking this natural material. This is expected to improve thermal shock resistance of 

refractories. 

V.2. Aluminum titanate as a model flexible refractory 

Due to its properties, aluminum titanate has been chosen as a model material to 

develop the flexibility of refractories by mimicking Itacolumite. This choice was done 

according to numerous reasons.  

Al2TiO5 (AT) is a synthetic material of potential interest. It is obtained by synthesis of 

an equimolar mixture of Al2O3 and TiO2 at temperatures above 1280°C. It is an excellent 

thermal shock resistant material thanks to its low thermal expansion coefficient and low 

Young’s modulus (Babelot et al., 2009). Besides, it has a high melting point (1860°C).  

(b)

(a)

(c)
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However, AT materials have a relatively low mechanical strength due to micro-cracks 

induced by the high anisotropic thermal expansion of its grains after sintering. Along the a  

axis:a=-2.9 x 10-6 K-1, along the b axis:b=10.3 x 10-6 K-1 and along the c axis:  

c=20.1 x 10-6 K-1 (Babelot et al., 2009). Furthermore, pure Al2TiO5 tends to decompose into 

Al2O3 and TiO2 at temperature ranging from 800°C to 1300°C. The thermal stability can be 

improved by decreasing decomposition temperature and limiting its grain growth using some 

additives (Kim, 2010). 

These properties make AT suitable for high temperature applications where thermal 

shock resistance are required. For instance, it is used in diesel particular filters (DPF)  

(Figure II-20). 

 

Figure II-20: Examples of diesel particle filters 

 

The development of flexible AT was done in the framework of a previous study in 

which different thermal cycles were used to investigated the relationship between sintering 

cycles, microstructure and flexibility (Babelot et al., 2010). Indeed, three types of AT were 

elaborated; non flexible AT (AT NF), flexible AT (AT F) and very flexible AT (AT VF). AT 

NF has a quasi-brittle behaviour characterised by rather linear elastic stress-strain law as 

major ceramics. AT F and AT VF exhibit a non-linear “ductile” behaviour which leads to 

much larger strain to rupture. AT VF is more flexible than AT F and this flexibility is 

associated to a decrease in Young’s modulus (Babelot et al., 2009) as represented in  

Figure II-21. 

Al2TiO5

SiC
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Al, Fe and Cr (Zhang et al., 2004). Among spinels associated with refractory systems 

MgAl2O4 (Magnesium aluminate spinel called in general “spinel”) and FeAl2O4 (Hercynite) 

can be quoted. Some of their properties are listed in the following table (Zhang et al., 2004). 

Table II-1: Properties of spinel and hercynite (from Zhang et al., 2004) 

 MgAl2O4 Spinel FeAl2O4 Hercynite 

Composition (wt %) MgO   28.3 FeO   41.3 

Al2O3   71.7 Al2O3   58.7 

True density (g.cm-3) 3.58 4.40 

Melting point (°C) 2135 1450 

 

V.3.2. Magnesia spinel refractories 

A further major advantage of magnesia spinel refractories is that they exhibit an 

improved thermal shock resistance unlike pure magnesia refractories, and it has been 

confirmed that (Ghosh et al., 2004) two to three times longer service life can be obtained, 

compared to a conventional magnesia-chrome brick. The reason for the improved thermal 

shock resistance has been linked to the large difference in thermal expansion coefficient 

between magnesia (∼13.5x10-6 °C-1) and MgAl2O4 (∼7.6x10-6 °C-1). On cooling from 

sintering temperature (about 1700 C), the thermal expansion mismatch leads to micro-cracks 

development around the spinel grains (Aksel et al., 2002). Magnesia spinel refractory 

materials are used mainly in the cement kilns in particular in the cooling zone and the upper 

part of kilns (Figure II-22). 
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(a)    (b)    (c) 

Figure II-22: Industrial magnesia spinel refractories: Cement rotary kiln (a), installation of 

these materials (b) and microstructure (c) (Grasset-Bourdel, 2011) 

 

In order to apply DIC approach and to understand the mechanical behaviour of these 

refractories, different materials were elaborated (by RHI Company) and compared to a 

reference pure magnesia brick to understand the influence of spinel addition on crack process 

mechanisms and on their mechanical properties. 

V.3.3. Magnesia hercynite refractories 

Magnesia hercynite refractory is also an important chrome-free refractory. It was find 

to increase the flexibility of based refractories (Liu et al., 2012). This is due to the thermal 

expansion mismatch between hercynite (10.3 x 10-6 °C-1) compared to surrounding matrix 

(Lee et al., 1999). In addition to that, during firing, possible mechanisms related to the 

reaction between MgO and hercynite are possible. Among these phenomena, the diffusion of 

Fe2+ into MgO matrix and the partial diffusion of Mg2+ into the hercynite grains and thereby 

Mg2+ ions form a local MgO-Al2O3 spinel with a surplus of MgO and the Al2O3 from 

hercynite (Liu et al., 2012). Magnesia hercynite materials are used in cement kilns.  

V.3.4. Magnesia carbon refractories 

Magnesia carbon refractories (MgO-C) are widely used in basic oxygen furnaces, 

electric arc furnaces and steel ladles. These refractories have an excellent slag resistance and 

thermal shock resistance due to the good properties of carbon. The slag cannot wet MgO-C 

structure because of the low wettability of carbon, so the service life of the MgO-C bricks 

increases.  
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In contact with molten iron and slag, the magnesia is modified by reaction with oxides 

present in the slag. To reduce the rate of chemical aggression, particularly slag corrosion and 

wear, the grains are embedded in a carbon material, which forms the so-called binder phase. 

For MgO-C materials, two kinds of binder are used; pitch binder and phenolic-resin binder.  

Pitch is produced by distillation of high petroleum (Robin et al., 1998). It has a 

complex composition with a large number of polycyclic aromatic molecules mostly 

hydrocarbon in nature.  

The second class of binder is generally composed of phenol-formaldehyde resins 

which polymerise at low temperature.  

However, carbon tends to oxidize at high temperatures. After the oxidation of carbon, 

the structure of MgO-C brick is destroyed and the slag can penetrate into the structure. 

Therefore, metals, compounds or alloys so-called antioxidants are added during fabrication to 

prevent oxidation of carbon. 

Several researchers have studied the oxidation behaviour of antioxidants. Aluminium 

is one of the most used antioxidant due to its low cost and effective protection. However, it 

has hydration problems when Al4C3 forms, since this phase is easily hydrated, even at room 

temperature (Wang et al., 2001). The hydration of Al4C3 causes volume expansion and cracks 

and is illustrated in Figure II-23.  

(a)  (b) 

Figure II-23: MgO-C sample with an antioxidant Al before (a) and after (b) hydration 
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This catastrophic phenomenon should be avoided with an accurate control of storage 

conditions in metallurgical applications.  

An investigation of the mechanical behaviour of pitch and resin bonded MgO-C 

refractory materials has been carried out in order to understand the effect of thermal evolution 

and micro-cracking on mechanical properties of lining refractories. In this work, we would 

focus on variables that could mainly affect materials’ flexibility due to the evolution of micro-

cracking network. The idea is to fix aggregate’s mix quality, mix size distribution, and 

impregnation conditions and to evaluate the effect of some variables such as microstructural 

evolution during operation, graphite content, binder type and presence of additives. The study 

will be completed by the use of DIC. 

VI. Conclusion 

This chapter aimed to present the experimental characterization techniques and 

materials that exhibit a non-linear mechanical behaviour considered in the study. These 

materials, used for their high thermal shock resistance, exhibit such behaviour thanks to the 

network of micro-cracks present in their microstructure. In the present study, they were 

chosen in order to develop and to valid DIC for mechanical refractories characterization. 

Among these materials, a model aluminium titanate samples, developed for academic 

purposes, have been studied (Chapter 3). Besides, industrial magnesia materials which exhibit 

a non-linear mechanical behaviour which have been proposed by FIRE project D partners 

(Chapter 4). 

Elastic properties of each material will be determined using ultrasonic measurement at 

room temperature, than mechanical properties will be determined using four-points bending, 

Brazilian and wedge splitting tests. The main objective of this work was to complete the 

mechanical characterisation of refractories by coupling DIC to mechanical tests and to 

implement a FEMU-U numerical approach (Chapter 5). 
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Chapter III 

 

 

 

First application of DIC for the non-linear mechanical 

characterization of a model material “very flexible 

aluminium titanate”  
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I. Introduction 

Aluminum titanate (AT) is a good candidate to develop flexibility of refractories due 

to its properties presented in chapter II. In the framework of a previous study, different types 

of AT with various degrees of flexibility were obtained by controlling sintering parameters: 

VF (very flexible), F (flexible) and NF (non-flexible). After a general presentation of these 

refractories and their preparation conditions, AT VF will be considered in this chapter. 

During thermal shock solicitation, refractories are subjected to compressive and tensile 

loadings. Considering that, four-points bending test appeared as one of the appropriate 

experimental methods to investigate compressive and tensile behaviour at the same test. It has 

been coupled to DIC in order to better characterize the mechanical behaviour of AT. 

This chapter aims to validate the DIC that allows obtaining kinematic fields. It permits 

completing the mechanical characterization and has been used for materials whose behaviour 

is non-linear with high strain levels such as alloys and plastics; however, its application on 

ceramics is still remaining not widespread. 

Here, DIC will be applied on an AT VF sample that exhibits a high strain-to-rupture in 

comparison with common ceramics. Contrary to materials already characterized with DIC, it 

shows low strain levels (lower than 1%). In parallel, the boundary conditions of the loading 

system and their influence on material properties are experimentally evaluated thanks to mark 

tracking technique. 

II. AT as model material of flexible refractories 

II.1. Flexible AT preparation 

AT VF, AT NF and AT F were elaborated from a granulated industrial powder (TM-

20P, Marusu, Japan) in the framework of a previous collaboration with NITECH (Japan) by 

mimicking Itacolumite (Doncieux et al., 2008; Babelot et al., 2010). They have been shaped 

by uniaxial pressing with a pressure of 25 MPa. Each type has its own degree of flexibility 

thanks to its microstructure characterized with a specific grains size and different micro-

cracking level. Table III-1 represents details about their preparation conditions and properties. 
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Table III-1: Sintering cycle, microstructure characteristics, and mechanical properties of the 

three references of AT samples (from Babelot et al., 2010) 

 AT NF AT F AT VF 

S
in

te
ri

n
g

 

co
n

d
it

io
n

s 

Sintering temperature (°C) 1500 1600 1600 

Dwell time (h) 1 8 16 

Cooling rate (h) 4 4 12 

M
ic

ro
st

ru
ct

u
re

 

Grain boundary micro-cracking 
level 

Partly Totally Totally 

Grain size (m) <20 <150 <200 

Micro-crack width (nm) <100 <150 <500 

M
ec

h
a

n
ic

a
l 

b
eh

a
v

io
u

r 

Young’s modulus (GPa) 11.7 7.1 3.6 

Strength (MPa) 18 16 13 

Deflection at rupture (mm) 0.27 0.7 1 

 

According to (Babelot et al., 2010), for a Ts = 1500°C, whatever the dwell time is, the 

samples have a low flexibility characterized with a poorly non-linear behaviour and a brittle 

rupture. At Ts = 1600°C, the samples have a marked non-linear behaviour. Their flexibility 

increases and strength decreases between 1 and 8h of dwell time. From 8 to 16h of dwell time, 

the strength decreases but the flexibility still remains the same. 

In addition to that, a slower cooling rate induces a higher flexibility as the micro-

cracks width increases. In the same time, the strength of the samples remains relatively equal. 

As a consequence, AT NF is partly micro-cracked as its grain size is low. The AT F 

grain growth is more important and thus grain boundaries are totally micro-cracked. AT VF, 

has a higher grain size than AT F due to a longer sintering dwell time and cooling rate. AT 

VF micro-cracks are wider, and so induce the possibility to support larger strain-to-rupture.  

Young’s moduli were measured by ultrasonic technique at room temperature. Strength 

and deflection at rupture were estimated by three-point bending tests made on parallelepiped 

samples (100 x 12.6 x 11 mm3) with a constant crosshead displacement velocity of 1 mm/min. 

The mechanical behaviour is shown in Figure III-1. The AT NF sample has brittle behaviour 

without a post-peak occurrence, as typical ceramics. AT F and AT VF samples have non-
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linear evolution that leads to a higher flexibility associated to a post-peak region which is 

more marked for the AT VF sample. This is why, this last reference was chosen. 

 

Figure III-1: Three-points bending test results of the three types of AT samples. Young’s moduli 

were measured by ultrasonic measurements (Babelot et al., 2010) 

 

II.2. AT VF microstructure characterization 

Figure III-2a represents the microstructure of AT VF obtained using scanning electron 

microscopy (SEM). AT grains (light gray) are surrounded by a silicate glass phase (dark gray) 

and porosity (black). After sintering, the microstructure becomes micro-cracked as 

represented in Figure III-2b, and this induces a flexible behaviour of such materials.  
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(a)       (b) 

Figure III-2: Details of AT VF microstructure with different magnification  

(Gallet-Doncieux et al., 2011) 

 

The micro-cracked microstructure of AT VF can be explained, as detailed in chapter I, 

by the occurrence of thermal stresses due to the high anisotropic thermal expansion 

coefficients () of AT VF grains according to the different crystallographic axis ( a , b  and c  

axis). As presented in chapter II, in the case of AT, the thermal expansion coefficient are 

:a=-2.9 x 10- 6 K-1, b=10.3 x 10-6 K-1 and c=20.1 x 10-6 K-1 (Babelot et al., 2009).  

From chapter I: § II.1, different mechanisms occur according to the crystallographic 

axis and . Figure III-3 is a schematic representation of an equivalent homogeneous AT 

material whose average thermal expansion is 9.6 x 10-6 K-1. It allows explaining what is 

happening in the microstructure and especially between grains during cooling step after 

sintering.  
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temperature is around 4 GPa and its evolution at high temperature is a hysteresis cycle. 

During the increase of temperature, the micro-cracks initially present in sample are closing, 

then, the material tends to reduce its damage and so, Young’s modulus values become higher 

progressively until 900°C. After that, they increase significantly until 1250°C. At higher 

temperatures, Young’s modulus decrease as the glassy phase becomes less viscous. It can be 

noticeable that during cooling, Young’s modulus values still remain high since micro-cracks 

are closed until reaching 700°C. After this temperature, they decrease due to the damage 

caused by the sudden reopening of micro-cracks. 

 

Figure III-4: Evolution of AT VF Young’s modulus versus temperature 

 

III. The application of DIC to investigate the non-linear 

mechanical behaviour of AT VF 

III.1. Introduction 

The mechanical characterization of AT VF is done using four-points bending test. As 

mentioned before (chapter II: § III.1), this test suits well with the mechanical solicitations 

type and can be easily adopted in association to DIC as it permits to have plane surfaces 

submitted to stresses. The experimental configuration is coupled with DIC as detailed in 

chapter II: § III.1. 
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Tested AT VF specimens (85 x 12.5 x 10.5 mm3) are obtained directly from sintering 

with a rectangular cross-section. To practice image acquisition, a sample preparation has been 

done using black and white speckles to enhance contrast of investigated surface. Firstly, a 

black opaque paint layer was deposited on material surface, then, white droplets were 

projected on (chapter II: § IV.1.1). Strain gages were glued on material upper and lower 

surface for strain measurements.  

The frequency of image acquisition was 1 image per second. The applied loading rate 

is 0.5 mm/min.  

In order to calculate rolls displacements and rotations (chapter II: § IV.2), different 

markers were drawn on rolls surface. Using mark tracking method, the measurement of 

markers displacement allows evaluating boundary conditions of the experimental 

configuration during the test. 

 

Figure III-5: Speckles and markers are respectively visible on sample surface and on the rolls. 

Besides, ZOI is defined 

 

III.2. Mechanical behaviour 

According to Figure III-6, at room temperature, AT VF sample exhibits a large non-

linear evolution which demonstrates a high flexibility. 

ZOIX

Y
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Figure III-6: Stress-displacement curve of AT VF. The points A, B, C, D and E represent the five 

times chosen for full-fields strain measurements 

 

At the beginning of the curve, the mechanical behaviour is quite linear. This part is 

characterized with a symmetrical behaviour between tension and compression. For this 

reason, Young’s moduli values presented in Table III-2 were calculated using strain gages 

(Hooke law) in this part of the curve.  

Table III-2: Stress-to-rupture and Young’s modulus values obtained thanks to four-points 

bending test 

 AT VF 

σmax (MPa) 10.16 

Etension (GPa) 5.21 

Ecompression (GPa) 5.02 

Since the applied stress reaches 4 MPa, the mechanical behaviour becomes non-linear 

that leads to a higher flexibility until its value is equal to stress-to-rupture given in Table III-2. 

The rupture is not brittle and the post-peak region is more marked. 
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III.3. Asymmetric behaviour 

In order to characterize strain distribution on AT VF sample surface during the four-

points bending test, DIC has been used. Five longitudinal strain maps were presented at the 

different times indicated in Figure III-6. (A) corresponds to the end of the rather linear step, 

(B) is related to the non-linear zone, (C) is close to the peak, (D) and (E) represent crack 

propagation and material rupture. The ZOI chosen for DIC calculation is the area limited by 

the upper rolls centres and is enclosed in the dashed green rectangle shown in Figure III-5. 

The used correlation windows are 32 x 32 pixels2 with a gap of 8 x 8 pixels2 and factor scale 

equal to 37.28 m/pixel as schematically represented in Figure III-7. 

 

Figure III-7: Schematic representation of correlation windows for strain map calculation 

 

DIC calculation has been done for the whole test, however, Figure III-8 shows the 

different maps of strain along X-axis obtained at the specific mentioned times in Figure III-6. 
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In stage B, which corresponds to the beginning of the non-linear behaviour, strains in 

the bottom of sample are becoming higher in comparison with the compressive strains 

inducing the asymmetric distribution of tensile and compressive stresses.  

In stage C, the asymmetric behaviour is stronger and there is localisation of zones with 

high strain level which are concentrated where the crack may appear on the surface. Red color 

is not related to a real deformation, but corresponds to crack opening. 

Stages D and E have been chosen in order to describe the post-peak behaviour of the 

material which appears as representative of not brittle material rupture.  

In stage D, strain level around crack opening which will induce material rupture 

becomes higher in comparison with zones characterized with high strain level. 

In stage E, this crack will propagate until material rupture. High strain values localised 

in the zones become low as the applied load is decreasing. 

The evolution of these strain maps during the whole test has been represented in 

Figure III-9 and compared with a similar rectangular cross-section sample of aluminium alloy 

(2017A). These evolutions have been drawn using Voxler software from Goldensoftware.  

From Figure III-9, distribution of compressive and tensile strains versus time is not the 

same and depends on material behaviour. Aluminium alloy exhibits a symmetric distribution 

of strains (Figure III-9a) unlike AT VF sample in which tensile strains become higher than 

compressive ones as the applied load is increasing (Figure III-9b). 
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Figure III-9: Evolution of strain fields during bending test: 

Reference aluminium alloy sample (a) and AT VF sample (b) 

 

III.4. Neutral fibre evolution 

The asymmetric behaviour of AT VF as shown in previous results has a great 

influence on localisation of the neutral fibre. 

For the evaluation of neutral fibre evolution using DIC, strain fields evolution needs to 

be more accurate in deformation as explained before. To do so, the calculation has been done 

on two columns of correlation windows symmetric to the middle of sample as represented 

schematically in Figure III-10. 
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Figure III-10: Schematic representation of correlation windows for neutral fibre evolution 

 

The correlation windows used are of 256 x 32 pixels2 with a gap of 512 x 32 pixels2. 

The choice of these specific correlation windows has been done according to many reasons. 

As stress distribution is homogeneous along the horizontal direction on material surface, large 

windows were chosen. Besides, the high gap value was privileged so as to improve strain 

accuracy.  

Figure III-11 represents strain field evolution for AT VF compared to aluminium alloy 

using the same ZOI. These maps were obtained thanks to Surfer software. 
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Figure III-11: Evolution of strain fields during bending test for aluminium sample (a)  

and AT VF sample (b) 

 

At the beginning of the test, for both samples, neutral fibre is localized around the 

middle due to the symmetric tensile-compressive stress distribution. This part corresponds to 

an elastic behavior.  

In the case of aluminium sample, this stress distribution still remains for the whole test 

and induces a constant neutral fibre position (Figure III-11a).  

However, neutral fibre position for AT VF tend to move up from a specific stress 

value (Stage A in Figure III-11b) due to the asymmetric distribution of compression-tension 

stresses. This can be justified by the equality between the areas under compressive and tensile 

stresses which has to be satisfied. This explains the reason why the classical equation for 
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stress estimation and elastic properties determination are not valid in the case of such 

behaviour, and using FEMU-U introduced in chapter I may allow overcoming this 

experimental limitation. 

 

Figure III-12: Asymmetric stress distribution during four-points bending test which induces 

neutral fibre shifting 

 

III.5. Stress-strain behaviour 

Strains on the upper and lower surfaces which are in contact with rolls have been 

measured using strain gages on another sample of AT VF. The values are here compared to 

DIC calculated on the upper and lower correlation windows as shown in 

 Figure III-13. For this reason, it was necessary to improve the DIC accuracy of measurements 

by choosing specific correlation windows. 

 

Figure III-13: Schematic representation of correlation windows on AT VF sample 

 

The comparison between stress-strain curves is plotted in Figure III-14. Stress values 

are obtained using the Eq. II-6 which assumes symmetry between tension and compressive 

efforts.  

Neutral fibre
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Figure III-14: Comparison between experimental results of AT VF obtained 

 using DIC and conventional gages 

From the very beginning of the test, Young’s modulus values in compression and in 

tension have been evaluated and are presented in Table III-3. As shown in Figure III-14, 

tensile Young’s modulus has been calculated up to 2 MPa and compressive one is estimated 

up to 4 MPa. 

Table III-3: Young’s moduli values 

 Compression (GPa) Tension (GPa) 

DIC 4.52 5.28 

Gages 5.02 5.21 

Considering the overall measurement during the test, in one hand, strains obtained 

using DIC and gages (Figure III-14) show a good agreement. In the other hand, AT VF 

exhibits an asymmetric behaviour between tension and compression; this induces the neutral 

fibre shift as schematically represented in Figure III-12.  

Unlike other ceramics, AT VF exhibits high level of strains, for this reason, it was 

possible to underline the efficiency of DIC technique. However, for other refractories, an 

improvement of the accuracy of DIC measurement is required. 
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At the beginning of the curve, the material is submitted to elastic sollicitations, so the 

total energy is equal to elastic one. Since the curve started to become non-linear, the 

dissipated one appears due to the specific micro-cracked microstructure of AT VF. This 

energy is dissipated throw different damage mechanisms occuring mainly in the following 

wake region as explained in chapter I. 

The total energy becomes higher as the applied load increases until the crack initiation 

and propagation. After the peak, the total energy rises slightly when at the same time the 

elastic energy decreases. 

III.7. Bending device behaviour 

During each experimental bending testing, different factors may have an influence on 

the evaluated results such as the presence of friction. To avoid this phenomenon, rolls of some 

bending devices are designed free to rotate along their axes (Figure III-16).  

 

Figure III-16: Designed four-points bending test with different degrees of freedom 

 

Taking into account stress distribution during this mechanical test, which means, the 

upper and lower parts of sample are submitted respectively to compressive and tensile 

stresses. Then, the upper (the lower) surface has tendency to be compressed (stretched).  
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As a consequence, it is predictable that rolls displacements and rotations will behave 

according to mechanisms occurring on these surfaces. For this reason, mark tracking method 

is used to quantify the behaviour of rolls and their influence on material properties. 

Rolls rotation is obtained by measuring the displacement of two points diametrically 

opposite marked on each roll surface (Figure III-5). From this, rotation angles are determined 

using trigonometric relations and are presented in Figure III-17. 

 

Figure III-17: Rotation of rolls during the test 

 

Relative distance between rolls is estimated by measuring lateral displacement of one 

point on the surface of each roll numerated in Figure III-16. Figure III-18 represents the 

relative variation of the distance between lower and upper rolls observed during the test. 
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Figure III-18: Evolution of relative distance between rolls 

 

Upper rolls become closer to each other due to compressive stresses presence unlike 

lower ones which tend to move away in the opposite direction owing to tensile stresses 

occurance. This makes sens according to the stress distribution during a four-points bending 

test. 

The equation Eq. II-6 used for stress calculation depends on the distance between 

rolls. Taking into account the results obtained by mark tracking method, its influence on 

material properties can be evaluated. It is quantified by comparing stress values measured 

between a configuration with and another one without taking into account rolls displacements. 

According to this, rolls movement yields to a stress variation of 2%. 

 

IV. Conclusion 

The main objective here was to demonstrate the efficiency of this technique as an 

effective tool to complete the mechanical characterization of refractory materials. 

Due to the lack of DIC skills in the laboratory, the first step was to acquire enough 

knowledge in this field and to master the technique. To do so, in this chapter we have 
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performed a preliminary study done on a single phase flexible material (AT VF) whose 

microstructure could be considered as a model for refractories to improve their thermal shock 

resistance. 

This study highlights the asymmetric and non-linear behaviour of AT VF during four-

points bending test at room temperature which is characterized by the shift of the neutral 

fibre. Besides, the relative variations of the distance between rolls and their rotations which 

permit avoiding friction are quantified using mark tracking method. 

In the next chapter, DIC will be used to complete the characterization of multi-phased 

industrial refractories. These latter develop the flexibility, which is less accentuated than AT 

VF, thanks to the mismatch between thermal expansion coefficients of the different phases.  
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I. Introduction 

In the previous chapter, as a first investigation, DIC has been applied to study the non-

linear mechanical behaviour of a model aluminium titanate material. This step allows to 

master the DIC technique and to valid the efficiency of the technique in order to enrich the 

mechanical characterization of refractories. 

In this chapter, the expertise developed previously over the DIC technique will be 

applied on different kinds of industrial refractories and especially on magnesia based 

materials. These materials, introduced in chapter II, are magnesia spinel and magnesia 

hercynite. 

Magnesia spinel materials have been already investigated during the Ph.D. of Renaud 

Grasset-Bourdel (Grasset-Bourdel, 2011) which focused on the relationship existing between 

the microstructure and the associated thermo-mechanical properties. Here, thanks to DIC and 

WST, the influence of spinel addition on fracture mechanisms will be underlined. 

However, the other types of materials processed by RHI have not been investigated in 

SPCTS laboratory yet. For this reason, a first characterization round has been conducted. 

Then, their mechanical behaviour investigation will be coupled to DIC. 

II. Analysis of spinel addition influence on fracture mechanisms 

in magnesia spinel refractories using DIC 

II.1. Magnesia spinel materials description 

These industrial materials, already studied (Grasset-Bourdel, 2011), were simplified 

(MSp) and elaborated especially without any other constituent in order to understand the 

influence of spinel addition on the non-linear mechanical behaviour of magnesia refractories. 

Their processing was obtained using a maximum pressure of 140 MPa and a maximum 

sintering temperature of 1600°C. 
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As explained before (chapter II: § V.3.2), these materials exhibit a non-linear 

mechanical behaviour thanks to their microstructure represented in Figure IV-1. This matter 

of fact is due to the micro-cracking network developed by the thermal expansion mismatch 

existing between magnesia matrix (13.3 x 10-6 K-1) and spinel inclusions (8.9 x 10-6 K-1) in the 

range of 400-200 °C. 

 

Figure IV-1: Microstructure of a simplified MSp materials (Grasset-Bourdel, 2011) 

 

In the previous work, many MSp materials with different spinel rates were studied. 

Elastic properties were determined using ultrasonic measurements at room temperature and 

compared to the values calculated using Hashin and Shtrikman’s model (Figure IV-2). This 

latter is dedicated to isotropic materials composed of a matrix and inclusion with perfect 

matrix/inclusion bondings. 

MgO matrix

Spinel inclusion
Microcracks
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Figure IV-2: Evolution of experimental Young’s modulus of the MSp composites vs. spinel 

inclusion content and comparison with the lower bound of the Hashin & Shtrikman’s model 

(Grasset-Bourdel, 2011) 

 

According to this model, a higher value of spinel inclusion content is supposed to 

increase Young’s modulus of the composite. This is not in agreement with the obtained 

experimental data. Indeed, spinel addition induces a decrease of Young’s modulus value. This 

difference is explained by the presence of a micro-cracking network in these thermally 

damaged materials. 

In addition, Young’s modulus evolution at high temperature was investigated using 

ultrasonic measurements. The studied materials exhibit an hysteretic cycle (Figure IV-3) 

which is characteristic of thermally damaged materials (Huger et al., 2007) with a micro-

cracked microstructure: a high increase and decrease of Young’s modulus during thermal 

cycle are mainly due to micro-cracks closure (heating) and opening (cooling) respectively. 

Besides, the maximum value of Young’s modulus, reached during the beginning of cooling, is 

found around 950°C for all studied samples and the major decrease in Young’s modulus 

occurs in the 950°C-600°C range. We can notice that the maximum value is not similar to the 

Hashin & Shtrikman’s model, this means that there is not a complete closing of micro-cracks.  
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Figure IV-3: Evolution of the Young’s modulus vs. temperature of the MSp composites with a 

spinel grain size of 1-3 mm and different spinel inclusion contents (Grasset-Bourdel, 2011) 

 

Besides, the evolution of the thermal expansion coefficient vs. of the spinel inclusion 

content either at the beginning (1200-1000°C) and the end of cooling (400-200°C) was 

determined and represented in Figure IV-4. Thanks to these results, a huge part of micro-

cracks present in the microstructure seems to be closed at the beginning of cooling. At lower 

temperature, stress relaxation, involved by micro-cracks opening during cooling leads to 

lower thermal expansion values than expected. 

 

 

Figure IV-4: Influence of spinel inclusion content on the thermal expansion coefficient of 

composites either at the beginning (1200-1000°C) and the end (400-200°C) of cooling  

(Grasset-Bourdel, 2011) 

 

The work initiated by Grasset-Bourdel has been continued in the present work, in 

order to study the influence of damage induced by spinel inclusions on the non-linear 
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mechanical behaviour and fracture mechanisms, two types of MSp materials with different 

spinel content (5 wt.% and 15 wt.%) has been tested by WST using DIC and compared to 

pure magnesia (MgO) material.  

II.2. Non-linear mechanical behaviour of magnesia spinel refractories 

The WST test was conducted on two samples (100 x 100 x 100 mm3) of each material 

type; the aim was here to analyse crack propagation in the different studied materials. 

II.2.1. Load-displacement curves obtained by WST 

Figure IV-5 represents the typical horizontal load-displacement curves of pure MgO 

and MSp materials obtained by WST.  

The mechanical behaviour of all these materials is characterized by three stages: 

 The first stage corresponds to materials linear elastic behaviour. 

 The beginning of non-linearity is related to the occurrence of micro-cracking 

network (stage 2). 

 The maximum of the curve is linked to the macro-crack onset. The following part of 

the curve represents the crack propagation (stage 3). 

 

Figure IV-5: Horizontal load-displacement curves of pure MgO and MSp materials obtained 

thanks to WST 
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Horizontal load-displacement curves of pure MgO exhibits a much higher maximum 

load, a lower strain at the peak, and a reduced post-peak region. 

Curves of MSp present a much accentuated non-linear mechanical behaviour up to the 

peak with a significant post-peak region. The increase of spinel content seems mainly to lower 

the maximum load, to enhance the pre-peak non-linear stage and to intensify the post-peak 

region. As introduced previously, this is explained by the high level of micro-cracking in the 

case of MSp developed during cooling and toughening mechanisms occurring around the 

crack, especially in the following wake region, which increase the resistance to crack 

propagation (Chapter I).  

II.2.2. Energy and fracture analysis 

Elastic energy, dissipated energy and total energy are evaluated and their evolution is 

given in Figure IV-6. Total energy is deduced from the overall area under horizontal-

displacement load curves obtained by WST divided by final crack surface. Elastic energy is 

estimated by considering a linear elastic behaviour which is related to the area of the triangle 

between the current point and the beginning of the curve. The dissipated energy corresponds 

to the difference between the two previous areas. 
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For the three materials, at the beginning, the total energy corresponds to the elastic 

one. In stage 2, a consumption of energy is effective thanks to the occurrence of the different 

mechanisms which happen in the following wake region. In the case of MSp, the dissipated 

energy required for material rupture is much higher than for the case of pure MgO. 

Nominal notch tensile strength NT and the surface fracture energy Gf were calculated 

respectively using Eq. II-14 and Eq. II-15. Gf values have been calculated from the area under 

the horizontal load-displacement curves for  values from zero up to the displacement 

corresponding to 15% of the maximum load which suppose a full crack opening. 

These fracture parameters are reported in Table IV-1. 

Table IV-1: Fracture parameters of pure MgO and MSp obtained using WST 

 NT (MPa) Gf (N.m
-1

) GF/NT (mm)x10
-3

 

Pure MgO Sample 1 14.35 231.00 16.13 

Sample 2 14.38 182.00 12.66 

Average 14.36 206.50 14.39 

MSp (5% of spinel) Sample 1 9.73 359.00 36.94 

Sample 2 10.19 423.00 41.51 

Average 9.96 391.00 39.22 

MSp (15% of spinel) Sample 1 6.55 326.00 49.86 

Sample 2 6.75 396.00 58.63 

Average 6.65 361.00 54.25 

This table confirms that the nominal notch tensile strength decreases and the fracture 

resistance increases with the spinel rate.  

The higher values of energy in the case of MSp are due to the dense network of micro-

cracks created during the crack initiation and propagation. 

The ratio GF/NT is a parameter that evaluates the brittleness of the studied material: 

the more brittle material is, the lower value of the ratio is.  
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applied load is decreasing (step C), the crack propagates in a stable way until the total fracture 

of sample. It splits the sample in two parts as represented in displacement along X-axis in 

Figure IV-8b.  
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II.2.3.2. Presence of crack branching phenomenon 

Displacement field are useful for detecting cracks presence as it induces 

discontinuities (Grédiac et al., 2011). However, for the description of deformation behaviour, 

strain fields can be more relevant. From displacement maps, strain maps along X and Y axis 

(eXX and eYY) have been thus calculated. Figure IV-9, Figure IV-10 and Figure IV-11 

represent the evolution of strains along X and Y axis during WST respectively for pure MgO, 

MSp with 5% and 15% of spinel. The chosen steps are the same as the represented steps in 

Figure IV-8. The mechanical behaviour of the three samples chosen was given in Figure IV-6. 

In the following results, crack presence and its opening correspond to the local highest 

strain values. Indeed, a specific strain colour scale has been chosen here. The choice of 

colours was done first in order to identify the evolution of the local highest strains (from grey 

to red) and to eliminate measurement disturbance (black colour). A presence of a crack 

corresponds to a strain threshold higher than 0.001 (grey colour) taking into account the 

accuracy of measurements.  

 

Figure IV-9: Maps of longitudinal strains along X and Y axis for pure MgO sample 
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Figure IV-10: Maps of longitudinal strains along X and Y axis for MSp 5% of spinel 

 

 

Figure IV-11: Maps of longitudinal strains along X and Y axis for MSp 15% of spinel 
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eXX strain maps describe crack opening and its propagation in mode I. In the case of 

pure MgO, there is only one crack that propagates in a vertical direction. However, the strain 

maps show that the crack in the case of MSp materials doesn’t propagate only in a vertical 

direction and has a specific mode of propagation: bifurcation in the case of MSp with 5% of 

spinel and generation of crack branching phenomenon in the case of MSp with 15% of spinel. 

In addition to eXX strains, eYY strains maps show a presence of tensile strains in the 

area near to the notch due to the vertical tensile stress from bending moment. Even if eYY 

strains are in any case lower than eXX strains, these strains are related to numerous 

mechanisms occurring in the crack propagation area (micro-cracks and crack bifurcation). 

Then, using DIC, the presence of “crack branching” is clearly revealed in the case of 

MSp with 15% of spinel and results of many interacting micro-cracks or micro-branches 

(coalescence of micro-cracks). This confirms the complexity of crack growth processus in 

heterogeneous materials due to the presence of several phases with different properties 

(thermal expansion coefficient and stiffness). Then, this can explain the high value of 

dissipated energy exhibited by MSp materials. 

 

III. The non-linear behaviour of magnesia hercynite refractories 

Unlike to the simplified MSp materials presented previously and which were 

processed especially for the study, the following materials are industrial ones supplied also by 

RHI Company. These materials contain hercynite, which is, as mentioned in chapter II, 

another type of spinel. 

III.1. Microstructure characterization 

Three types of industrial materials were studied: magnesia spinel (MS), magnesia 

spinel type 1 (MST1) and magnesia spinel type 2 (MST2). As mentioned previously, these 

materials were not characterized before at SPCTS laboratory. For this reason, a classical 

package for characterization has been conducted. Table IV-2 presents density and porosity of 

these materials measured according to ASTM C830-00. Thanks to ultrasonic measurements 
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presented in chapter II, elastic properties have been determined at room temperature and are 

also given. 

Table IV-2: Properties of the studied MS materials (MS, MST1 and MST2) 

 MS MST1 MST2 

Density (g.cm-3) 2.94 (+/-0.01) 2.98 (+/- 0.02) 3.01 (+/- 0.02) 

Porosity (%) 16.07 (+/- 0.50) 15.75 (+/- 0.50) 15.11 (+/- 0.29) 

Young’s modulus E (GPa) 31.43 (+/- 3.43) 34.96 (+/- 3.59) 39.26 (+/- 3.56) 

Shear modulus G (GPa) 13.48 (+/- 1.79) 15.00 (+/- 1.60) 16.89 (+/- 1.61) 

Poisson ratio  0.17 (+/- 0.03) 0.17 (+/- 0.04) 0.16 (+/- 0.02) 

From these first experimental results, we can conclude that the MS, MST1 and MST2 

contain probably around 10 – 15% of spinel (MgAl2O4 or FeAl2O4) taking into account the 

evolution of Young’s modulus vs. spinel fraction presented in Table IV-2. 

In order to identify the type of spinel which has been introduced in the three types of 

materials, some microstructure investigations have been conducted. Scanning electron 

microscope (SEM) with back-scattered electrons (BSE) has thus been applied to MS, MST1 

and MST2 materials (Figure IV-12). It appears that MST1 and MST2 exhibit a much larger 

contrast from the aggregates. Thanks to Energy Dispersive Spectroscopy (EDS) technique, it 

was possible to identify the brightest aggregates as hercynite (FeAl2O4). More details are 

given in Appendix A. In contrast to MST1 and MST2, the material MS with the less shiny 

aggregates correspond to MgAl2O4 spinel without any FeAl2O4. Finally, MST2 contains only 

FeAl2O4 inclusions, besides, MST1 reveals a mixture of FeAl2O4 and MgAl2O4. 

 

(a)    (b)    (c) 

Figure IV-12: Backscattered SEM analysis on (a) MS, (b) MST1 and (c) MST2 
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Since the three materials MS, MST1 and MST2 don’t contain the same kind of spinel 

exhibiting different expansion coefficient values, it is interesting to characterize the thermal 

expansion behaviour of these materials (Figure IV-13). The three curves are not linear, and 

the slopes at low and high temperature are quite different. As micro-cracking occurs during 

cooling, thermal expansion coefficients of these materials have been calculated during cooling 

between 1200°C and 1000°C and then between 400°C and 200°C. The values are represented 

in Table IV-3. 

 

Figure IV-13: Evolutions of thermal expansion of the: MS, MST1 and MST2 samples 

 

At high temperature (1200-1000 °C), it appears that in the case of MST1 and MST2, 

the thermal expansion is quite similar to magnesia sample whose expansion coefficient value 

is 1200-1000°C=16.3x10-6 °C-1 (Grasset-Bourdel, 2011). This demonstrates that for these two 

materials, there are probably rather no micro-cracks (micro-cracks are closed) in this 

temperature range. In comparison to MST1 and MST2, the thermal expansion of MS at high 

temperature is much lower. This can be explained by the difference between thermal 

expansion coefficient of FeAl2O4 (∼10.3 x 10-6 °C-1) and MgAl2O4 (∼7.6x10-6 °C-1). As a 

consequence, MS is the most micro-cracked since the thermal expansion mismatch 

between the present phases is higher than MST1 and MST2. This is confirmed by a much 

lower value of thermal expansion of MS in the low temperature range 400-200°C. 
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Table IV-3: Thermal expansion coefficient values of MS, MST1 and MST2 

 MS MST1 MST2 

1200-1000°C (°C)
-1

 14.6 x 10
-6 

 16.0 x 10
-6 

 16.1 x 10
-6 

 

400-200°C (°C)
-1

 10.3 x 10
-6 

 11.9 x 10
-6 

 11.9 x 10
-6 

 

Taking into account these results and the ones presented in Table IV-2 in terms of 

micro-cracking density and Young’s modulus, MST2 seems to be most probably the less 

flexible one, but however, hercynite can be preferred for its low cost in industrial applications. 

III.2. Mechanical behaviour using DIC at room temperature  

It could be interesting now to understand the relationship between the stress-strain law 

and the microstructure, the main difference between materials being here the type of spinel 

inclusions inside magnesia matrix.  

III.2.1. Four-points bending test 

The stress-strain curves of MS, MST1 and MST2, obtained by four-points bending test 

on samples of 130 x 25 x 25 mm, are presented in Figure IV-14. Stress values were calculated 

using the Eq.II-6. The three materials exhibit a non-linear asymmetric mechanical behaviour. 

One can remind that Eq.II-6 gives valid results for symmetric behaviour. That is why, the 

stress values here obtained should be considered with caution.  

Considering the three obtained curves of Figure IV-14, it confirms that MST2 is the 

less flexible material compared to MS and MST1. In fact, strain-to-rupture of MST2 is the 

lowest one. Strain-to-rupture of MS and MST1 are rather similar and larger. Considering 

stress analysis, MST2 exhibits a high stress-to-rupture which can be explained by its low 

porosity level. 
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Figure IV-14: Stress-strain curves of MS, MST1 and MST2 materials 

 

As MST2 materials exhibit the lowest strain-to-rupture compared to MS and MST1, 

and in the aim to improve the accuracy of DIC measurements, the following paragraphs will 

focus on MST2 in order to complete the development of this optical technique started using a 

very flexible material (AT VF presented in chapter III). 

III.2.2.  Brazilian test 

Brazilian test has been enforced for many years as an industrial easy test to obtain 

reliable values of tensile strength for refractories. The idea here is to combine this test with 

DIC to enrich the mechanical characterization. To do so, MST2 sample has been chosen. 

III.2.2.1. Load-displacement curves 

Figure IV-15 represents a typical load-displacement curve of MST2 characterized with 

a non-linear mechanical behaviour due to the microstructure as explained before. On this 

curve, different steps are defined in order to analyse the material behaviour during the test.  
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Figure IV-15: Load-displacement curve of MST2. The points A, B, C, D, E correspond to the 

steps analyzed using DIC 

 

As detailed in chapter II, the tensile strength deduced from the Eq. II-8 used at the 

maximum load, has been estimated for MST2 and corresponds to t= 3.98 MPa.  

III.2.2.2. Stress-strain curve deduced from DIC 

In order to obtain strain-stress curve using DIC, a choice of small size correlation 

windows has been done in purpose located in the central part of the sample since the stress 

state in this area can be assume rather homogeneous (see following paragraph III.2.2.4). 

These correlation windows have been localized symmetrically from the vertical axis of the 

sample. In such condition, we can assume that the strain is uniform in this overall central part. 

The X-axis strain obtained in such manner during the complete test allows then to obtain the 

stress-strain curve for MST2 illustrated in Figure IV-16. 
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diametrical horizontal line). Along diametrical vertical line, tensile stress is quasi-uniform, 

this is a key point for a Brazilian test from which we can evaluate the tensile strength. 

It can be noticed that tensile stresses are lower than compressive ones; however, 

tensile ones are those which induce the material ruin. Indeed, for brittle materials, tensile 

strength is around 10 times weaker than compressive one. 

In one hand FEM analyses give us an idea about theoretical stress distribution on 

sample surface during Brazilian test, and in the other hand; DIC is useful to obtain strain 

fields in the central part during the test. To do so, strain calculations have been computed 

between many correlation windows localized in the zone represented in Figure IV-20a. This 

specific area was chosen taking into account stress distribution obtained by FEM analysis 

(Figure IV-19). Thus, a map of strain evolution in the vertical diametrical line vs. time is 

represented in Figure IV-20b.  

 
(a)       (b) 

Figure IV-20: Evolution of exx strains along vertical Y-axis: (a) localization of the correlation 

windows for computation, (b) orange colour indicates the exx horizontal tensile strain level 

(dashed point line correspond to vertical applied load) 

 

At the beginning of the test, the load level is quite low, and then the strain 

measurements are noisy. As the applied load is increasing, tensile strain becomes higher 

(orange colour) and its profile is quite in agreement with FEM calculation. Around image 

250, initial crack occurs till the final rupture of the sample around image 280. In this stage, 
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tensile strain profile evolves since the central initial crack develops up to the boarder of the 

sample.  

III.2.2.5. Energetic approach 

As DIC contributes to determine crack initiation and its propagation, the idea here is to 

combine crack extension which can be obtained by DIC with dissipated energy which can be 

calculated from the load-displacement curve at each stage (principle explained in Figure II-6). 

In order to increase the number of images acquired during the very short rupture sequence, a 

rate of 50 images per second was chosen for acquisition during the overall test. In order to 

eliminate DIC noise and to estimate accurately crack length at each stage, a specific scale 

colour threshold has been set.  

This approach has been applied for the stages 2 and 3 defined in Figure II-6, that 

means starting at the end of linear part of the loading curve up to the minimum load observed 

just after the final rupture. At the beginning of stage 2, even if the loading curve is no longer 

linear, no significant cracks can be observed using DIC. As matter of fact, the first significant 

cracks can only be detected for the image 17700 (Figure IV-21a). Thus, using this approach, 

crack length has been evaluated from image 17700 to image 20800 (final rupture) represented 

in Figure IV-21a, and its evolution is plotted in Figure IV-21b. A numerical fitting has been 

applied in order to remove experimental measurement disturbance. 

 

(a)       (b) 

Figure IV-21: Attempt of crack length measurement using DIC data: (a) selection of the images 

corresponding to the rupture sequence indicated by the green dashed window, (b) obtained 

crack length for these images. 
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By associating crack length evolution and dissipated energy calculated for each single 

image using the load-displacement curve, an estimation of energy evolution vs. crack length 

has been determined and is represented in Figure IV-22. 

 

Figure IV-22: Representation of dissipated energy vs. crack length for MST2 material 

during Brazilian test 

 

Even if Brazilian test is not devoted to such purpose due to the thickness of tested 

samples is not large enough, the obtained results are however interesting. Indeed, the 

increasing shape of this curve corresponds to R-curves already detailed in chapter I. 

III.2.3. Wedge Splitting test 

As already managed for magnesia spinel materials (§ II.2.2), the aim is here to analyse 

crack propagation in MST2 material using classical WST combined with DIC.  

III.2.3.1. Load displacement curves 

The horizontal load-displacement curve for MST2 material obtained by WST is 

represented in Figure IV-23. The dimensions of sample are 100 x 100 x 70 mm since the 

thickness of delivered bricks was only 70 mm. As expected and like MSp materials, the 

mechanical behaviour of MST2 is non-linear before rupture and characterized with an 

interesting post-peak region. It confirms that the addition of hercynite enhances the non-

linearity of magnesia materials, decreasing maximum load to rupture, increasing strain-to-

rupture and improving the post peak region in comparison with pure MgO. This post peak 
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The first significant cracks detected are those determined for the image 120  

(Figure IV-24a). Thus, using this approach, crack length has been evaluated from image 120 

to image 410 (corresponding to 15% of FH,max). These images are represented in  

Figure IV-24a, and crack length evolution is plotted in Figure IV-24b. A numerical fitting has 

been applied in order to remove experimental measurement disturbance. 

 

(a)       (b) 

Figure IV-24: Attempt of crack length measurement using DIC data: (a) selection of the images 

corresponding to the crack propagation indicated by the green dashed window, (b) estimated 

crack length for the selected images. 

The dissipated energy, which corresponds to the difference between total and elastic 

energies, has been calculated at different steps until corresponding to 15% of FH,max. For 

each analyzed image, the dissipated energy has been coupled to the estimated values of crack 

length and represented in Figure IV-25. 

 

Figure IV-25: Representation of dissipated energy vs. crack length of MST2  

during Wedge Splitting test 
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The rising behaviour of the curve confirms that, as the crack is propagating, the 

process requires more and more energy to pursue its progression. The increasing of dissipated 

energy value is related to the difficulty of the crack to extend. This is due to the occurrence of 

new mechanisms mainly located in the following wake region. Since these mechanisms were 

not activated at crack initiation, thus, the lower value of dissipated energy is observed at the 

beginning. These mechanisms make the refractory tougher before its failure and generate a 

non-linear mechanical behaviour associated to an increase of thermal shock resistance. 

IV. Conclusion 

Thanks to the knowledge acquired during the first experiments on a model single 

phase flexible material (AT VF) which was the main aim of the previous chapter, the current 

chapter was dedicated to apply these DIC skills on industrial heterogeneous materials 

exhibiting a high heterogeneity and which are characterized with much lower strain-to-rupture 

level in comparison with AT VF. 

As strain level for these industrial materials was expected to be much lower, it was 

necessary to improve the accuracy of DIC technique so as to enlarge its application on 

different classical mechanical tests often applied to characterize refractories. Indeed, in 

addition to four-point bending test, DIC has been coupled to Brazilian and Wedge Splitting 

tests. 

During Brazilian test, tensile stresses are acting horizontally in the central part of the 

sample until failure happens and this has been clearly visualized thanks to strain map 

experimentally obtained by DIC. In fact using different strain maps, the vertical crack appears 

in the central part of the sample, and as the applied load is increasing, this crack propagates in 

either sides from the center of sample until the final failure. From the evolution of strain fields 

during the test, the crack’s length has been determined at each single stage and coupled to 

energetic calculation. Thus, even if Brazilian test is not dedicated for such purpose, it has 

been possible to illustrate a R-curve behaviour. 

Besides, Wedge Splitting test combined to DIC allows studying the mechanisms of 

micro-cracking and its influence on the non-linearity of mechanical behaviour of these 
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materials. Indeed, the thermal expansion mismatch between the different phases (magnesia, 

spinel and hercynite) in studied industrial materials induces a large network of micro-cracks 

which lead to crack branching occurrence during Wedge Splitting test. This phenomenon is 

clearly visualized thanks to DIC. Similarly to Brazilian test, DIC allows the possibility to 

investigate crack length evolution and to combine it to dissipated energy in the aim to 

represent the R-curves. 
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I. Introduction 

From displacement maps obtained using DIC, it is possible to determine mechanical 

properties of materials. This can be reached by coupling these displacements with finite 

element method (FEM) in the framework of FEMU-U already introduced in chapter I.  

To achieve this goal and due to the lack of knowledge and expertise on this specific 

numerical topic in the SPCTS laboratory, a specific numerical development has been carried 

out. Even if the aim is to apply this technique on refractories exhibiting non-linear mechanical 

behaviour, the first step of this chapter is to implement this approach using simple 

configuration with a material whose mechanical behaviour is well-known. The study is 

carried out thanks to four-points bending test which has been privileged as it permits 

obtaining higher values of displacements on material surface in comparison with Brazilian 

test.  

Here, the first chosen material is aluminium which exhibits a linear elastic mechanical 

behaviour with Young’s modulus in the same range than many refractory materials. Then, the 

developed approach was applied on AT VF flexible refractory sample, already introduced in 

chapters II and III. 

II. Global approach of FEMU-U 

FEMU-U is one among the updating methods of identification. It consists in 

performing iteratively FEM calculation in order to minimize the difference between 

experimental and simulation data using an objective function. This latter determines the 

convergence satisfaction criterion. In our case, the compared results are experimental and 

simulation displacements respectively noted (UEXP) and (UFEM). UEXP corresponds to those 

obtained by DIC. The very first FEM calculation is computed thanks to an initial parameter 

set Pi (to be chosen by the operator) and then, taking into account the value of the objective 

function, new parameter set Pi+1 is determined for the following calculation up to the 

satisfaction of the convergence criterion. This overall process is resumed in Figure V-1. 
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secondly, the overall geometry of the sample and finally, the position of rolls contact used to 

apply the load (Figure V-2). 

 

Figure V-2: Geometry and meshing of the simulated sample under four-points bending test 

 

From DIC calculation, which generates displacements in the centre of each correlation 

window, an extraction of these data is conducted using Python script. At this stage, a 

particular attention has been paid in order to extract the coordinates of those experimental 

DIC calculation points to build the corresponding meshing grid which will be considered in 

Code Aster for simulation (ZOI in Figure V-2). Indeed, every single mesh nodes in ZOI 

should correspond accurately to the centre of each DIC correlation windows. This means that 

the distance between two nodes might correspond to the correlation windows size. 

Out of the ZOI, the meshing becomes random and the area close to rolls contact is 

finely sub-meshed in order to avoid mesh abnormal distortions.  

The imposed boundary conditions for simulation were chosen in order to be in 

accordance with the experimental ones for a four-points bending test: the nodes corresponding 

to the lower roll contacts are blocked along Y-axis (Figure V-2). Then, a vertical load, 

corresponding to the experimental one, is applied on nodes related to the upper roll contacts.  

Using these boundary conditions and a given applied load, simulated strain maps can 

be obtained along X and Y axis (as represented in Figure V-3). The aim of this classical 

simulation configuration is to confront DIC and simulation as will be detailed in the following 
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paragraphs. As expected, between the upper rolls, the area will be under horizontal 

compressive stresses unlike the lower one which is submitted to tensile horizontal stresses. 

 

Figure V-3: An example of strain fields which can be obtained by FEM simulation for a linear 

elastic material during four-points bending test 

 

III.3. Pertinence of DIC results using control cards 

From experimental data, during DIC calculation, some points may be outliers. In such 

case, these unreliable data may cause significant troubles for the comparison of displacements 

between FEM and DIC. For this reason, control cards have been used in order to eliminate 

these outliers points. To do so, three parameters have been defined to control DIC 

displacement values as represented in Figure V-4: 

 The target corresponds to the arithmetic average of the points. 

 Controlling limits (horizontal red lines) determine the interval where the 

measurements vary in a confidence level of 99,8% from the average. Then, an 

Inferior Controlling Limit (ICL) and a Superior Controlling Limit (SCL) are 

defined. 

Using these limits, all points localized out of the ICL-SCL interval are automatically 

busted (red dots in Figure V-4) and then not taken into account for the FEMU-U calculation. 
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It should be noticed here that experimental bending device induces parasite 

displacement of the sample (rotation around Z-axis: c, translation along X and Y axis: Uxc, 

UycThese displacement parameters must be taken into account in the comparison with 

FEM simulation results. In this purpose, this rigid body motion of sample must be subtracted 

to experimental DIC results by using the coordinate (X, Y) of each point and a set of 

correction displacement parameters (c, Uxc and Uyc). This set allows to determine the 

experimental coordinates free of rigid body motion ( POS EXP) taking into account the 

coordinates of each point of the ZOI, and the raw displacement results directly obtained from 

DIC (UDIC) with its two components UxDIC and UyDIC. 







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ccDICcDIC
cccEXP

UyUyYUxX

UxUyYUxX
UyUxPOS 


cos)(sin)(

sin)(cos)(
),,(   Eq. V-1 

Finally, the global optimization must take into account five parameters: three coming 

from rigid body motion (c, Uxc, Uyc) and two from material properties (E, ). These five 

parameters are gathered in the vector PARAM : 



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
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


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c

c

      Eq. V-2 

For each point of the ZOI, the difference between experimental and simulated 

displacements ( EXPU  and SIMU ) can be then calculated from the values of their positions  

( POS EXP and POS SIM). Searching to reduce the global difference for all the points of the ZOI 

consists thus in minimizing an objective function )(PARAM  defined as follow: 

2

2
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   Eq. V-3 
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where    






SIM

SIM
SIM

UyY

UxX
EPOS ),(      Eq. V-4 

This minimization of )(PARAM  allows to obtain, by iterative calculation, the 

sample rigid body motion and the material elastic properties. 

III.5. Newton Raphson optimization method 

Prior to apply any inverse estimation procedure, a very simple systematic scanning 

procedure has been used for the determination of elastic properties in a given predefined 

range. This method (detailed in appendix C) allows to obtain a good estimation of elastic 

properties, however, it may require a great computation time depending on the investigated 

range for each parameter and on the scanned interval between each step of calculation 

(targeted accuracy).  

For a better efficiency, iterative computation optimization methods are usually 

preferred. The aim of these types of algorithms, which can use different strategies, is to find, 

in the quickest way, the best set of parameters which leads to the global minima of the 

objective function. Among the available techniques, gradient based ones are commonly 

applied such as Newton-Raphson (NR) method, already implemented in DIC software 

Correla. This NR method has been considered here.  

Newton-Raphson method is an iterative numerical technique that allows to find zeros 

of a mathematical function. Given an initial set of parameters 0PARAM , this set can be 

iteratively refined in a sequence 0PARAM , 1PARAM , … , iPARAM , 1iPARAM  until the 

satisfaction of a predefined convergence criterion. The initial set of parameters 0PARAM

should not be chosen too far from the final solution to avoid any divergence problems. NR 

technique uses the derivative of the objective function to update the set of parameters at each 

step of calculation.  

To illustrate the algorithm in the simple case of a unique parameter P  (example of a 

vector PARAM  containing only one coordinate P) and of a basic objective function )(P , 
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iPARAM  becomes a vector  containing five components. Thus the Eq. V-6 becomes 

vectorial as follows: 

0.)()()(   iii JPARAMPARAM     Eq. V-8 

where: 

   represents the vector from which the numerical objective function )( iPARAM  is 

calculated using its norm. As mentioned previously, taking into account the n points in 

the ZOI, with the two coordinates of each point, the vector   contains 2.n elements 

and is defined as follows:  

 : ℝ5 → ℝ2n 
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    Eq. V-9 

with xk ,  and yk ,  are respectively the components of   along x and y axis at the node 

number k. 

 (J i) is the Jacobian matrix (at the step i) that contains partial derivatives of the first 

order of xk ,  and yk , . This matrix can be written as following: 

 

Eq. V-10 
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At a given step i, each term of this Jacobian matrix can be numerically calculated 

using a predefined set of increments for each parameter to be optimized. The chosen values of 

these increments are summarized in Table V-1. 

Table V-1: Increment values added to the set of parameters defined in PARAM  

dE 0.1 GPa 

d 0.001 

d 0.001° 

dXc 0.01 mm 

dYc 0.01 mm 

When (J i) is an invertible matrix, the Eq. V-8 can be resolved directly through the 

following equation: 

)(.)( 1
1 iiii PARAMJPARAMPARAM       Eq. V-11 

However, in our case, (J i) is a noninvertible matrix, thus, to solve this system a 

specific formulation is needed to convert this matrix into an inversible one. This can be 

obtained using the Moore-Penrose pseudo-inverse matrix [(J i)
T.(J i)]

-1(J i)
T where (J i)

T is the 

transpose matrix. The Eq. V-11 can be rewritten as followed: 

)(.).()].()[( 1
1 i

T
ii

T
iii PARAMJJJPARAMPARAM      Eq. V-12 

The resolution of the system expressed in the Eq. V-12 consists then on the 

determination of ii PARAMPARAM 1  using the Gaussian elimination adapted for solving 

systems of linear equations.  

The numerical calculations explained above should be done at each iteration step. To 

fix a limit for these iterative calculations, a convergence criterion has been defined as follows: 

 ii PARAMPARAM 1      Eq. V-13 

where   valueis chosen taking into account the DIC measurement noise. 
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The optimization process takes into account 5 variables included in PARAM . 

However, only material parameters will be presented in the following parameters 

IV. Applications 

The first part of this chapter was devoted to the details of FEMU-U technique 

considered in this work. In the following paragraphs, this developed approach will be applied 

firstly, on aluminium which exhibits a linear elastic mechanical behaviour, then, on AT VF 

flexible refractory material supposed to exhibit a significant non-linear behaviour. 

IV.1. Case of aluminium  

An aluminium alloy sample (8.5 x 10.5 x 85 mm) has been characterized using four-

points bending test. The sample surface has been prepared thanks to the application of white 

droplets on a black paint layer. Windows of correlation are 32 x 32 pixels2 in the ZOI limited 

by the axis of upper rolls as shown in Figure V-6. 

 

Figure V-6: Sample image acquisition of aluminium sample during the test 

 

From displacement field obtained by DIC at a given applied load (2040 N 

corresponding to a stress level of 131 MPa at the bottom face) and after generating a similar 

geometry and meshing using Python script, the optimization process is computed and the 

results of optimization process are given in Figure V-7:  

ZOI
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(a) 

 

(b) 

Figure V-7: Young’s modulus (a) and Poisson ratio (b) determination 

 

Young’s modulus highly increases in the first iteration, then, rises until stabilization 

around 70 GPa value. The stabilization was reached in the 2nd iteration.  

In a similar way, Poisson’s ratio extremely strongly increases in the first iteration, 

then, decreases slightly until its value becomes steady around the value of 0.3 reached in the 

8th iteration. 

The aluminium material has been studied here in order to check the efficiency of 

FEMU-U. Elastic properties of such materials can be estimated correctly using the classical 

equations which are valid only for materials whose behaviour is pure elastic. 
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IV.2. Case of AT VF sample  

The main reason for FEMU-U development was initially to estimate mechanical 

properties of materials with specific non-linear behaviour as their characterization is often still 

done using classical equations as explained in chapter I. For this reason, the following 

application of FEMU-U will be on an AT VF sample (10.5 x 12.5 x 85 mm) introduced in 

chapter II and characterized using DIC developed in chapter III.  

For such material with a non-linear mechanical behaviour, it is more relevant to use a 

non-linear stress-strain law that takes into account damage evolution during loading.  

In order to represent material damage in Code Aster, it is possible to use “softening” 

behaviours in which, after reaching a threshold (stress or strain), stress decreases as strain 

values increase. In Code Aster, such behaviour may be obtained by: 

 using elasto-plastic models with negative hardening such as BETON_DOUBLE_DP 

and DRUCK_PRAGER laws. 

 taking into account the growth of cavities with plasticity such as the ROUSSELIER 

law which describes an elasto-plastic behaviour.  

 adding an interne variable D which vary between 0 and 1 and represents the decrease 

of material Young’s modulus compared to its initial values E0: 

0)1( EDE      Eq. V-14 

This variable was introduced by Kachanov (Kachanov, 1958) who pioneered the 

concept of the effective (undamaged) configuration and introduced the basis for the 

continuum damage mechanics theories. From the Eq. V-14, the material is completely 

damaged for D= 1. Followed by his pioneering work, many researchers have used the 

effective configuration concept to model the irreversible damage processes in engineering 

materials (Lemaitre et al., 1990). 

As an example, damage law of Lemaître-Chaboche (VENDOCHAB law) has been 

used by Leplay (Leplay, 2011) to simulate damage in a similar material and might has been 

interesting in our case for AT VF. This VENDOCHAB law is expressed by the following 

equation: 
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))exp(1.()(
b

aD eq
eq

ee      Eq. V-15 

where a, b are parameters of the damage law, eeq is the equivalent strain which may be 

obtained by : 

  2121 1
ee

eee eq    Eq. V-16 

where e1 and e2 are the principal strains and   are Macaulay brackets.

This would have required to take into account, in the previous python development, 

additional parameters (a , b and E0). However, due to the lack of time for further script 

development during the PhD, the computation in the case of AT VF has been managed only 

considering the 5 parameters contained in the vector PARAM  which has been defined 

previously (Eq. V-2) for a linear elastic behaviour. Nevertheless, in order to consider the 

change in elastic property during loading, different steps (from A to E in Figure V-8) 

corresponding to increasing level of load have been analysed. Such approach will only allow 

us to estimate an average damage parameter at each step. 

 

Figure V-8: Stress-displacement curve of AT VF with the analyzed stages by FEMU-U 
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From displacement fields obtained by DIC at these steps, a simulated geometry and 

meshing identical to the experimental one has been generated using Python script (as 

explained before), then, the optimization process of VFATPARAM  was computed. The 

evolution of the obtained Young’s modulus, which represents material rigidity, values for 

these five stages is represented in Figure V-9. 

 

Figure V-9: Evolution of Young’s modulus values obtained by FEMU-U 

 

In fact, as the applied load increases, Young’s modulus decreases due to the 

development of micro-cracks network already present in the AT VF (chapter III: § II.2) and 

so, damage level is enhanced. 

From Young’s modulus values, the evolution of damage D was obtained using the  

Eq. V-14 and an initial Young’s modulus value at room temperature dE0  ~ 10 GPa  

(chapter III: Figure III-4). This evolution has been represented with the red curve in  

Figure V-10b. However, dE0  value takes into account the pre-existing damage within the 

microstructure of AT VF material induced by cooling. In order to consider this damage, 

another evolution of damage has been calculated based on this ndE0  value which has been 

chosen for a state in which micro-cracks are closed and the value considered is around 
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ndE0 ~ 160 GPa (chapter III: Figure III-4). From this, a second curve (blue one) has been 

represented in Figure V-10a. 

 

(a) 

 

(b) 

Figure V-10: Evolution of damage for AT VF material: (a) referred to an initial Young’s 

modulus without any damage, (b) referred to an initial Young’s modulus taking into account the 

damage induced during cooling 

From the evolution of damage for AT VF without any damage (Figure V-10a), there is 

only 5% of damage induced by the applied stresses. This confirms that the majority of 

damage is induced during thermal treatment and especially during cooling. Besides, in the 

case of AT VF with damage, the damage represented in Figure V-10b corresponds mainly to 

damage induced by the mechanical solicitation. 
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V. Conclusion 

The main objective here was to describe and to apply FEMU-U which is a numerical 

tool that allows determining material properties from displacement fields obtained by DIC. 

Due to the lack of FEMU-U skills in the laboratory, the first step was to acquire 

enough knowledge in this field and to develop numerically the adopted technique using 

Python. The adopted approach has been detailed in the first part of this chapter.  

Using experimental four-points bending test, FEMU-U method has been applied first 

on aluminium that exhibits a linear elastic behaviour. This first step has allowed us to validate 

the efficiency of the developed FEMU-U tool. Then, in a second step, this developed 

approach has been applied on AT VF material and allows determining elastic properties at 

different load level. From these values, damage evolution was then deduced. 
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Conclusion and perspectives 

High local thermal stresses induced by thermal shocks can be catastrophic in many 

cases for industrial refractory installations. Thermal shock resistance of materials is known to 

be closely related to their crack growth resistance behaviour. For this reason, acquiring better 

knowledge in the field of thermomechanical properties of refractories is of a prime 

importance to improve this thermal shock resistance. This latter is linked to the ability of 

refractory materials to exhibit a specific non-linear mechanical behaviour promoted by a 

voluntary micro-cracked initial microstructure. 

In order to characterize such non-linear behaviour, stress-strain laws determination 

during uniaxial loading is required. For this purpose, specific tensile tests were developed in 

different laboratories during the past 15 years. Recently, the occurrence of optical techniques 

like digital image correlation (DIC), that allows recording strain fields on sample surface 

during a mechanical test, has found a very interesting application in the characterization of 

refractory materials.  

The aim of the present thesis was to apply digital image correlation as a support for the 

experimental characterization of refractory materials with specific non-linear behaviour using 

quite common mechanical tests for refractories.  

To do so, different types of materials were chosen as they exhibit such behaviour 

thanks to an initial network of micro-cracks voluntary generated within their microstructure:  

• A single phase model flexible aluminium titanate (AT VF) material developed 

for academic purposes by improving the grain growth. Its non-linear mechanical behaviour 

was obtained thanks to the thermal expansion mismatch of its grains according to the different 

crystallographic axis.  

• Multi-phased industrial magnesia materials that exhibit a non-linear 

mechanical behaviour (less accentuated than AT VF), thanks to the mismatch between 

thermal expansion coefficients of its different phases. 
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The experimental part allowed, in a first step, to acquire enough expertise about the 

optical techniques such as DIC and mark tracking method thanks to cooperation with Pprime 

laboratory (Poitiers - France). 

In a second step, DIC has been applied on an AT VF material during four-points 

bending test at room temperature. The obtained results in this part allowed to underline an 

asymmetric mechanical behaviour which induces a significant shift of the neutral fibre. 

Besides, using mark tracking method, the relative variations of the distance between rolls and 

their individual rotations (avoiding friction) were quantified. 

After the validation of the efficiency of DIC on AT VF, the following step was to 

apply this optical technique on industrial refractory materials (magnesia spinel and magnesia 

hercynite) which are characterized by lower strain-to-rupture level. To do so, an optimisation 

of the experimental testing conditions and of the images treatments, in order to improve DIC 

measurements accuracy, was required. In addition to four-points bending, other common 

mechanical tests for refractories were also investigated: Brazilian test and Wedge Splitting 

test.  

The experimental study using Brazilian test combined to DIC confirms clearly that 

tensile stresses, which are acting horizontally in the central part of the sample, are behind the 

occurrence of the vertical crack which appears in the central part of the sample and which 

induces material failure. Besides, Wedge Splitting test associated to DIC allows to underline 

the presence of crack branching phenomenon in such multi-phased material which is 

promoted thanks to initial micro-cracks network voluntary introduced by thermal expansion 

mismatch between the different phases (magnesia, spinel and hercynite). Since these initial 

micro-cracks promote crack branching, they enhance the non-linearity of the mechanical 

behaviour. Additionally, at each stage, from the evolution of strain fields during the test, 

crack’s length has been estimated using DIC during Brazilian test and Wedge splitting test. 

Even if Brazilian test is not dedicated for such purpose, crack’s length evolution has been 

combined to the dissipated energy in the aim to represent the R-curves behaviour in both 

cases. 

The numerical part was focused on the development of finite element method updating 

(FEMU-U) which couples displacement fields obtained by DIC with finite element method in 

the aim to determine material properties. Similarly to DIC, the first step was to acquire 
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enough knowledge for the development of this method at SPCTS laboratory. In a second step, 

the adopted approach was programmed using python language, then, firstly applied on an 

aluminium material whose mechanical behaviour is well known (linear elastic) and whose 

Young’s modulus is in the same range of refractory materials. The chosen experimental test 

for this application was the four-points bending test as induced displacement values are higher 

in comparison with Brazilian test and Wedge Splitting test. 

After validation of the FEMU-U using aluminium, the developed technique was 

applied on AT VF material in the purpose of elastic properties determination at different load 

levels. This allows the quantification of Young’s modulus decrease (increase of material 

damage) with the increase of the applied stress. 

The perspectives of this work could be numerous. First, concerning the experimental 

part, the optimisation of DIC may allow this technique to be extended for other applications 

from macro-scale strains characterization to micro-scale one. Indeed, strains are usually 

measured at macroscopic level because of the need of homogeneous material equivalent 

properties. However, due to anisotropy of individual grains (as in the case of aluminium 

titanate) and or due to heterogeneities of phases (as in the case of industrial refractory 

materials), it could also be very interesting to record strain field at local scale (combining DIC 

with microscope) to study in more details the influence of microstructure organisation during 

loading. 

In the present work, DIC has been only applied at room temperature. But, in the case 

of refractories, it could be also useful to do similar experiments at high temperature (similar 

conditions to industrial applications). Image acquisition for accurate strain measurement at 

high temperature is not an easy task since many additional parameters can disturb the data: 

thermal expansion of the sample itself due an unstable temperature, luminosity variation due 

to working conditions within the furnace above 600°C, thermal convection flux which can 

modify local optical properties of the air between the sample and the camera. 

Concerning the numerical part, the work on the developed approach of FEMU-U has 

to be continued in order to take into account a non-linear strain-stress law for identification of 

the material properties. To do so, other stress-strain law has to be investigated and additional 

parameters have to be considered in Newton Raphson optimization. Besides, this developed 

approach can also be adapted to other mechanical tests such as Brazilian test and Wedge 
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Splitting tests. Finally, from the eventual displacement fields obtained at high temperature by 

DIC, the identification of material properties may be evaluated also at high temperature. 
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Figure A-2: An example of the EDS analysis on a MST1 sample 
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Figure A-3: An example of the EDS analysis on a MST2 sample 

MgO matrix

Hercynite grain

MgO grain

Hercynite grain

MgO grain

MgO grain



 Appendixes 

135 

 

Appendix B 

Influence of carbon rate, binder type and antioxidant addition on the non-linear 
mechanical behaviour of magnesia refractories 

B.1. Materials selection 

The initial purpose of the work described in this part was to obtain some information 

about the thermo-mechanical behaviour of magnesia carbon refractories used in steelmaking 

vessels. The idea was to focus on different process parameters that could affect materials 

properties. Five types of magnesia carbon bricks were provided by RHI. Starting from similar 

magnesia aggregates, the aim was to evaluate the effect of carbon content, binder type and 

additives presence.  

 Pitch bonded magnesia carbon: 

 5% of carbon (MgO-5%C-PB) 

 10% of carbon (MgO-10%C-PB) 

 14% of carbon (MgO-14%C-PB) 

 Resin bonded magnesia carbon: 

 10% of carbon (MgO-10%C-RB) 

 10% of carbon with an antioxidant (Aluminium) (MgO-10%C-RB-AL) 

Due to materials anisotropy, all mechanical characterizations (stresses during  

four-points bending tests) have been managed along the pressing direction (Figure B-1). 





 Appendixes 

137 

 

B.3. Mechanical behaviour characterization 

B.3.1. Stress-strain curves obtained using four-points bending test 

Figure B-2 represents the evolution of stress-strain curves obtained during four-points 

bending test using strain gages for the different studied materials. 

 

Figure B-2: Stress-strain curves of the different MgO-C samples 

The observed stress-strain laws are nonlinear for all materials (Figure B-2). The 

addition of carbon (MgO-5%C-PB, MgO-10%C-PB and MgO-14%C-PB) seems to increase  

strain-to-rupture and to decrease stress-to-rupture. Pitch binder allows getting higher stress-to-

rupture and low strain-to-rupture in comparison with resin binder (MgO-10%C-PB and MgO-

10%C-RB). Besides, the addition of the antioxidant to resin samples improves stress-to-

rupture and strain-to-rupture (MgO-10%C-RB and MgO-10%C-RB-AL). 

From the maximum value of the applied load, the stress-to-rupture values are 

calculated using the Eq. II-6 that assumes symmetry between tension and compression 

behaviours. Young’s modulus values were evaluated at the beginning of these curves. The 

values are given in Figure B-2.  
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Table B-2: Mechanical parameters obtained during four-points bending test 

 Pitch bonded Resin bonded  

5%C 10%C 14%C 10%C 10%C+Al 

Ecompression (GPa) 28.57 7.90 6.37 9.81 9.44 

Etension (GPa) 27.04 6.86 5.80 8.78 7.38 

max (MPa) 4.61 3.17 2.69 1.97 2.21 

 
 

B.3.2. Asymmetrical behaviour thanks to DIC approach 

These materials have different levels of asymmetry between tension and compression. 

For this reason, their asymmetrical behaviour was underlined using DIC by plotting the 

evolution of the neutral fiber. Figure B-3 represents the behaviour of two samples: MgO-

5%C-PB and MgO-14%C-PB. 
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(a) 

 

 

(b) 

Figure B-3: Evolution of neutral fiber for MgO-5%C-PB (a) and MgO-14%C-PB (b) 

In both samples, at the beginning of the test, the neutral fibre is localized in the central 

part of sample. As the load applied increases, it shifts highly in the case of  

MgO-5%C-PB due to the asymmetrical behaviour in tension and compression and it moves 

up slightly in the case MgO-14%C-PB due to a quite symmetry between tensile and 

compressive levels. The high symmetrical behaviour of MgO-5%C-PB in comparison with 

the other samples was not predicted as it exhibits a less accentuated nonlinear mechanical 

behaviour. 
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obtained in few hours for a large interval [0 GPa – 100 GPa] with a calculation step of  

10 GPa).  

From this first scanning, an idea about the minimum localization is obtained. Then, a 

refinement of the interval of Young’s modulus variation is set and lower calculation step is 

chosen. The evolution of the gap between experimental and simulated results with a refined 

scanning window is represented versus Young’s modulus variation in Figure C-2. 

 

Figure C-2: The evolution of the gap between experimental (non-corrected values of UEXP) and 

simulated results obtained for different Young’s modulus values for loading in the stage A 

The minimum of this function corresponds to the parameter allowing a best matching 

between USIM and UEXP obtained using DIC.  

These results did not take into account the influence of rigid body motion parameters 

on UEXP. For this reason, an estimation of these last parameters has been obtained using a 

least squares minimization taking into account displacement results calculated with a 

simulated state for which elastic properties have been chosen closed to well-known values for 

an aluminum (E=73 GPa and =0.33). From this evaluation, UEXP has been corrected using 

the following equations: 

cYEXPXEXPcorYEXP XUUU   sincos._    Eq. C-1 

CYEXPXEXPcorYEXP YUUU   cossin._    Eq. C-2 
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Using these corrected experimental displacements, a new scanning to estimate the gap 

between experimental and simulated results has been managed again as explained previously 

within a large, and then refined Young’s modulus values interval, and results obtained for this 

last refined interval are presented in Figure C-3. 

 

Figure C-3: Objective function estimation versus Young’s modulus after UEXP correction 

Table C-1 summarizes the Young’s modulus and the rigid body motion parameters 

obtained with this here presented scanning approach on the studied aluminium sample. 

Table C-1: Young’s modulus and rigid body motion parameters obtained by scanning approach 

 Before correction After correction 

E (GPa) 67.40 76.90 

Tx (mm) - 0.41 

Ty (mm) - -0.09 

(degree - 0.0020 

 

The obtained value of Young’s modulus after rigid body motion correction is then not so far 

from the well-known value of 73 GPa. 
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Abstract: 

The present thesis aimed to apply digital image correlation (DIC) used for kinematic fields’ 
measurements as a support for the experimental characterization of refractory materials with specific non-linear 
behaviour. Model and industrial materials with different degrees of flexibility were studied. The first type of 
materials was a single phase model flexible aluminium titanate material (AT VF) developed for academic 
purposes by improving the grain growth. Its non-linear mechanical behaviour was obtained thanks to the thermal 
expansion mismatch of its grains according to the different crystallographic axis. The second one is multi-phased 
magnesia based industrial materials, whose flexibility is less accentuated, and for which the non-linear 
mechanical behaviour is obtained thanks to the thermal expansion coefficients mismatch between spinel 
aggregates and magnesia matrix. In order to apply the optical methods on these materials which exhibit lower 
strain-to-rupture, it was necessary to optimize the accuracy of these techniques by improving experimental 
conditions.  

In the case of AT VF, DIC and mark tracking method have been applied on four-points bending test at 
room temperature to underline the material asymmetric mechanical behaviour which induces a significant shift 
of the neutral fibre and to evaluate the relative displacement of rolls. The application of DIC has been extended 
to other experimental testing method such as Brazilian and Wedge Splitting test using the multi-phased magnesia 
based materials. This highlighted fracture mechanisms (crack occurrence and propagation) and the presence of 
crack branching phenomenon promoted thanks to an initial micro-cracks network voluntary introduced by 
thermal expansion mismatch between the different phases so as to improve their thermal shock resistance. From 
displacement experimentally obtained by DIC, a finite element method updating (FEMU-U) has been developed 
to determine material properties.  

Keywords: Digital image correlation, Refractories, Thermal shock resistance, Asymmetric non-linear mechanical 
behaviour, Aluminium titanate, Crack branching phenomenon, Magnesia-spinel materials, Finite element 
method updating. 

Résumé: 

Cette thèse avait pour objectif de mettre en place et d’appliquer les techniques de mesure de champs de 
déplacements et de déformations (corrélation d’images numériques CIN) pour caractériser le comportement 
mécanique non linéaire de matériaux réfractaires. L’étude a été réalisée sur différents types de matériaux 
présentant des degrés variables de flexibilité : un matériau modèle monophasé à base de titanate d’aluminium 
(TA VF) et des matériaux industriels multi-phasés à base de magnésie. La flexibilité dans le cas du TA VF est 
obtenue grâce à l’anisotropie de la dilatation thermique entre les trois axes cristallographiques, et dans le cas des 
matériaux industriels grâce à la différence de coefficients de dilatation entre les agrégats de spinelle et la matrice 
magnésienne. Ces matériaux industriels ayant une déformation à rupture plus faible, la technique de corrélation 
d’images a dû être optimisée en ajustant au mieux les conditions expérimentales.  

La CIN et la méthode de suivi de marqueurs ont permis de mettre en évidence le caractère 
dissymétrique du comportement mécanique en flexion du TA VF entre la zone de l’éprouvette sollicitée en 
traction et celle en compression et d’investiguer le déplacement relatif des rouleaux du dispositif de flexion. 
Cette dissymétrie de comportement engendre un déplacement progressif de la fibre neutre au fur et à mesure que 
la charge appliquée augmente. Cette technique a ensuite été étendue à d’autres essais tels que l’essai brésilien et 
le Wedge Splitting appliqués aux matériaux industriels magnésiens. La CIN a ainsi permis d’illustrer les 
mécanismes de rupture (initiation et propagation de fissures) et de mettre en évidence la présence de 
phénomènes de « crack branching » obtenus grâce au réseau initial de microfissures volontairement généré au 
sein du matériau par différentiel de dilatation entre phases dans le but d’améliorer sa résistance aux chocs 
thermiques. Enfin, à partir des champs de déplacements obtenus par corrélation d’images, la méthode de 
recalage par éléments finis a été développée et utilisée pour déterminer l’évolution des propriétés élastiques du 
matériau pendant l’essai. 

Mots clés: Corrélation d’images numériques, Matériaux réfractaires, Résistance aux chocs thermiques, 
Comportement non linéaire dissymétrique, Titanate d’aluminium, phénomène de « Crack Branching », Magnésie 
spinelle, Méthode de recalage par éléments finis. 



 

La durabilité de matériaux réfractaires par rapport à leur environnement de travail est 

aujourd’hui un défi à la fois technologique et économique majeur. Par la nature de leurs 

domaines d’application les matériaux réfractaires sont souvent soumis à des sollicitations 

thermomécaniques cycliques extrêmes et/ou à des agents fortement agressifs de 

l’environnement de travail. Parmi les domaines d’applications, nous pouvons rappeler ici 

l’utilisation de matériaux réfractaires comme revêtements de fours rotatifs de cimenterie ou en 

sidérurgie, applications dans lesquels la température d’utilisation peut atteinte  

1450 °C – 1700°C. L’industrie automobile est un autre domaine qui utilise ces matériaux dans 

fabrication de filtres à particules. Cette multitude d’applications techniques nécessite d’orienter 

l’élaboration du matériau réfractaire en conformité avec les exigences d’un cahier de charge 

strict en termes de réfractarité, tenue à la corrosion et résistance aux chocs thermiques. Cette 

dernière propriété, qui est fortement reliée aux mécanismes de fissuration, est parmi les 

paramètres clefs de l’optimisation de la durée de vie de ces matériaux. C’est pour cette raison 

que la génération volontaire d’un réseau de microfissures au sein de la microstructure en jouant 

sur les coefficients de dilatations va permettre d’obtenir un comportement mécanique non-

linéaire caractérisé par une faible contrainte et une forte déformation à la rupture. Ces deux 

paramètres sont primordiaux dans l’amélioration de la résistance aux chocs thermiques et 

permettent de retarder la dégradation du matériau. D’où l’intérêt d’étudier ce comportement 

mécanique non-linéaire. Jusqu’à présent, la caractérisation de ce type de comportement se fait 

dans certains laboratoires en utilisant des essais uniaxiaux qui sont valides uniquement pour des 

matériaux dont le comportement mécanique est linéaire élastique afin de déterminer les lois de 

comportement qui seront utilisées par la suite dans le calcul par éléments finis. Ces essais 

consomment un temps fastidieux pour la préparation et la mise en place des éprouvettes. C’est 

pour cette raison, que l’apparition des méthodes optiques telles que la corrélation d’images 



numériques (CIN) a permis de faire réfléchir par rapport à la caractérisation des comportements 

mécaniques non-linéaires. 

Cette thèse avait pour objectif de mettre en place et d’appliquer les techniques de mesure 

de champs de déplacements et de déformations telles que la CIN pour caractériser le 

comportement mécanique non linéaire de différents matériaux réfractaires à faible déformation 

à la rupture, présentant des degrés variables de flexibilité : un matériau modèle monophasé à 

base du titanate d’aluminium (TA) et des matériaux industriels à base de magnésie spinelle 

(MSp). 

Le TA est utilisé dans plusieurs applications dans l’industrie automobile pour sa bonne 

résistance aux chocs thermiques à des températures inférieures à 1000 °C. Cette propriété est 

obtenue grâce à l’anisotropie des coefficients de dilatations suivant les 3 axes 

cristallographiques. Dans le cadre d’une collaboration avec NITECH au Japon, différentes 

nuances du TA ont été développées en travaillant sur les conditions de préparation. Parmi ces 

nuances, le TA VF (TA très flexible) a été choisi pour cette étude. La magnésie pure est réputée 

pour sa bonne résistance à la corrosion, par contre, sa résistance aux chocs demeure moyenne, 

c’est pour cette raison que l’incorporation des grains de spinelle permet d’améliorer leur 

résistance aux chocs thermiques permettant ainsi de prolonger deux fois la durée de vie des 

fours rotatifs à ciment et de remplacer les matériaux à base de chrome qui sont interdits pour 

des raisons environnementales. La flexibilité de ces matériaux est obtenue grâce à la différence 

de coefficients de dilatation entre les agrégats de spinelle et la matrice magnésienne. Différents 

essais ont été utilisés et mis en place pour évaluer le comportement mécanique de ces matériaux, 

certains d’entre eux sont connus dans le domaine des matériaux tels que l’essai de flexion 4 

points, d’autres le sont moins tels que l’essai brésilien et l’essai du Wedge Splitting. Ces 

différentes techniques ont été associées à la CIN qui permet d’obtenir les champs de 

déformations et de déplacements à la surface du matériau. Ce travail a été réalisé avec une 



étroite collaboration avec l’équipe Photomechanics & Experimetal Mechanics de l’institut 

Pprime de l’université de Poitiers.  

Le développement des méthodes optiques de mesures de déplacements et de 

déformations est d’une grande importance dans la caractérisation du comportement mécanique 

des matériaux hétérogènes à différentes échelles.  

Parmi les techniques optiques utilisées, la méthode de corrélation d’images numériques 

CIN (Digital image correlation DIC), apparue au début des années 80 grâce à Chu et Sutton, 

connaît un développement remarquable et n’arrête pas de séduire les mécaniciens des solides 

en général et les chercheurs et les industriels dans le monde des réfractaires en particulier.  

C’est une technique réputée par sa rapidité, sa précision et son économie. Elle exploite 

des images numériques issues majoritairement des moyens d’acquisitions optiques sans contact 

qui sont devenus de plus en plus performants et moins coûteux. A titre d’exemple, certains 

d’entre eux peuvent présenter une bonne tolérance aux conditions agressives telles que la 

variation de la température. D’autres peuvent être utilisées suivant une gamme d’échelle de 

temps très large et permettent l’acquisition d’une image par un millier de seconde voire une 

microseconde. En plus, grâce à des systèmes multi caméras, on peut accéder au champ de 

déplacement tridimensionnel à la surface d’un objet (la stéréo corrélation) ou encore à des 

images tridimensionnelles de tomographie. 

La corrélation d’images numériques repose sur le principe que la quantité imagée est 

associée à une propriété physique de la matière de la zone étudiée. 

En effet, les données d’entrée de cette technique sont des niveaux de gris (valeurs entières 

positives) de deux images numériques de la partie du matériau étudié. Une image de référence 

qui correspond à un état non déformé, et une seconde qui correspond à un état déformé.  

Le principe de la CIN est de comparer le degré de similarité entre les différentes images 

de la surface du matériau acquises en utilisant une caméra numérique lors d’un essai mécanique. 



Ces images sont comparées avec l’image de référence qui correspond à un état auquel le 

matériau est au repos. 

Un grand intérêt est porté à la texture de la surface filmé du matériau qui doit satisfaire 

certains critères. En effet, chaque élément de la surface doit avoir une texture ou une signature 

unique. De plus, comme l’identification a lieu grâce aux niveaux de gris des pixels, il faut que 

les niveaux de gris aient une large dynamique couvrant le mieux possible la profondeur des 

niveaux de gris de l’encodage des images. Il est préférable aussi que l’image présente un fort 

contraste d’un pixel à l’autre pour pouvoir être sensible à de faibles déplacements. 

Dans certains cas, il est possible d’appliquer la méthode directement en utilisant la 

texture naturelle du matériau si elle satisfait ces deux hypothèses. Par contre l’existence d’un 

tel contraste n’est toutefois pas garantie. Afin de résoudre le problème, une préparation 

artificielle de la surface des éprouvettes appelée « mouchetis » a lieu sur la surface à l’aide 

d’une bombe aérosol, d’un aérographe ou d’autres moyens. Pour ceci, une couche de peinture 

noire (ou blanche) est déposée sur la surface de l’éprouvette et après séchage, des gouttelettes 

fines de peinture blanche (ou noire) sont déposées dessus pour garantir un bon contraste. Ceci 

peut être obtenu en utilisant des bombes à peinture ou un aérographe qui permet de former un 

aérosol dont la taille des gouttelettes peut être ajustée par une buse adaptée. Dans certains cas, 

comme des cas de forte déformabilité, le dépôt de poudre permet une bonne stabilité de la 

texture jusqu’à plusieurs centaines de pourcents de déformation.  

La qualité et la précision des mesures de déplacements et des déformations de la 

corrélation d’images sont liées directement à la qualité des conditions expérimentales et au 

calcul numérique. En effet, avec de bonnes conditions expérimentales et un bon choix des 

paramètres de calcul, on peut mesurer des déplacements de l’ordre de 1/100ème à 1/1000ème de 

pixels. 

D’une manière générale, nombreuses sont les sources d’erreurs qui affectent les résultats 

de corrélation d’images, parmi ces sources d’erreurs on peut citer : 



 La préparation de la surface de l’échantillon 

 Un défaut de parallélisme entre le capteur de la caméra CCD et la surface de 

l’échantillon et les déplacements hors plans 

 Des bruits pendant l’enregistrement des images 

 La taille des fenêtres de corrélation 

 

Dans le cadre de la thèse aussi, la méthode de recalage par éléments finis a été 

développée. Cette technique permet de déterminer les propriétés des matériaux à partir des 

champs des déplacements obtenus par CIN. Le principe de la méthode est de comparer ces 

champs avec les champs de déplacements calculés par simulation avec un jeu initial de 

paramètres matériaux en utilisant une fonction objective. Si le résultat obtenu par cette fonction 

satisfait le critère de convergence, les paramètres utilisés pour la simulation vont correspondre 

aux paramètres matériaux, si non, un deuxième jeu de paramètres sera calculé en utilisant la 

méthode de Newton-Raphson. 

La caractérisation du comportement mécanique non-linéaire du TA VF a été réalisée 

grâce à un essai de flexion 4-points en utilisant la corrélation d’images. L’évolution des champs 

de déformations a mis en évidence qu’au début de l’essai, il y’a un équilibre entre les efforts de 

traction et les efforts de compression. La fibre neutre de déformation nulle est représentée par 

le contour noir, qui malgré le bruit de mesure, est localisé au milieu de l’éprouvette. Au fur et 

à mesure que la charge appliquée va augmenter, la partie sous traction devient de plus en plus 

importante par rapport à la partie en compression jusqu’à l’amorçage de la fissure et sa 

propagation. D’un autre côté, la fibre neutre avait tendance à se déplacer vers le haut. 

L’évolution de cette fibre neutre a été étudiée et comparée avec celle d’un matériau dont 

le comportement est linéaire élastique (aluminium) pour mettre en évidence le comportement 

non linéaire du TA VF.  



Pendant ce test, les rouleaux du montage de flexion se déplacent. En effet, les rouleaux 

supérieurs ont tendance à se rapprocher contrairement aux rouleaux inférieurs à cause de la 

dissymétrie entre la traction et la compression. Ceci peut engendrer des erreurs de l’ordre de 

2% sur les valeurs calculées des contraintes à rupture. Par contre, ce déplacement n’a pas 

d’influence significative sur le comportement dissymétrique du matériau. 

A partir des champs de déplacements obtenus par CIN, la méthode de recalage par 

éléments finis a permis de mettre en évidence la diminution de la rigidité du matériau (module 

d’Young) au cours de cet essai à cause du réseau de microfissures qui s’est créé et s’est 

développé au fur et à mesure que la charge appliquée devient de plus en plus importante. 

Après avoir mis en place la technique de corrélation d’images en utilisant un échantillon 

du TA VF, il a fallu optimiser la précision de mesure de cette dernière pour s’adapter au niveau 

de déformation de d’autres types de matériaux. La deuxième catégorie des matériaux de l’étude 

contient des matériaux à base de MgO-Spinelle dans le but d’étudier l’influence de la spinelle 

sur le comportement mécanique non-linéaire et les mécanismes de fissuration. Grâce à l’essai 

du Wedge splitting, nous avons confirmé que la spinelle dégrade la contrainte à rupture et 

augmente l’énergie de fissuration. Les valeurs élevées de l’énergie sont dues au réseau de 

microfissures créé pendant l’initiation et la propagation de la macrofissure.  

Afin d’étudier la complexité de la microfissuration dans ces matériaux hétérogènes, la 

CIN a été appliquée sur ces matériaux pendant cet essai. Différentes cartographies de 

déformations à différents instants ont été représentées. 

Contrairement à la MgO pure, nous constatons que dans le cas des matériaux à base de 

MgO-Spinelle, en plus des déformations liées à la propagation de la fissure principale, nous 

constatons la présence de déformations liées au réseau de microfissures créé et qui se développe 



au fur et à mesure que la macrofissure se propage. C’est ce qu’on appelle le phénomène du « 

crack branching ».  

Des échantillons de MgO-Spinelle ont été soumis à un essai brésilien. C’est un essai de 

compression diamétrale dans lequel les contraintes de compression vont se transformer en 

contraintes de traction au milieu de l’éprouvette. Ceci a été confirmé par la CIN. 

Une analyse visuelle nous permet de dire que la fissure commence à partir des zones de 

contact et se propage. Grâce à la CIN, la déformation en traction qui apparaît au milieu de 

l’éprouvette a été mise en évidence par l’amorçage de la fissure et sa propagation jusqu’à la 

rupture du matériau. Les zones du matériau en contact avec les appuis sont soumises à la 

compression. 


