Thèse soutenue

Méthode de conception des systèmes différentiels RF utilisant le formalisme des Modes Mixtes
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Yves phaede Germain
Direction : Bernard JarryJulien Lintignat
Type : Thèse de doctorat
Discipline(s) : Electronique des Hautes Fréquences, Photonique et Systèmes
Date : Soutenance le 21/01/2015
Etablissement(s) : Limoges
Ecole(s) doctorale(s) : École doctorale Sciences et ingénierie pour l'information, mathématiques (Limoges ; 2009-2018)
Partenaire(s) de recherche : Laboratoire : XLIM
Jury : Président / Présidente : Thierry Monédière
Examinateurs / Examinatrices : Bernard Jarry, Julien Lintignat, Francis Doukhan, Luc Lapierre, Stephane Rochette
Rapporteurs / Rapporteuses : Daniel Pasquet, Farid Temçamani

Résumé

FR  |  
EN

Ces travaux de recherche visent à introduire et à généraliser l'utilisation des systèmes différentiels dans les applications RF et Micro-ondes. En particulier, dans la conception de dispositifs pour les fonctions d'amplification à faible bruit. Pour cela, il est indispensable de développer des outils fiables et rigoureux tels que le formalisme des modes mixtes introduit par Bockelman. C'est dans cet esprit que s'inscrit la première phase de l'étude. Le but étant de développer un outil pour l'analyse de la stabilité linéaire des systèmes différentiels à trois et quatre accès. Par ailleurs, les interfaces des circuits numériques ultra-rapides (CNA) sont de topologie différentielle. Ce qui augmente encore l'intérêt de disposer de méthodes rigoureuses pour la conception des systèmes différentiels. Dans la deuxième phase de l'étude la problématique de l'intégration système des CNAs dans les nouvelles générations des chaines de transmission RF des satellites de télécommunications est traitée. La conception d'un balun actif large bande capable d'assurer la conversion de la sortie analogique différentielle du CNA en sortie simple accès (Single-ended) référencée par rapport à la masse est détaillée. Afin de répondre aux contraintes d'intégration, une technologie BiCMOS SiGe 0.25 μm est utilisée pour son implémentation. Les performances obtenues par la mesure de la puce Silicium réalisée respectent les spécifications techniques initiales de l'application. Ce qui permet de valider la méthodologie de conception utilisée. L'objectif final est d'être capable d'intégrer sur un même substrat monolithique le CNA et le balun actif large bande de conversion de modes.