Thése de Marta Soare, Lille 1, 2015

Ecole Doctorale Sciences pour I'Ingénieur

Inria Lille - Nord Europe
Université Lille 1

THESE DE DOCTORAT

présentée pour obtenir le grade de
DOCTEUR EN SCIENCES DE L’UNIVERSITE LILLE 1

Spécialité : Informatique

présentée par

Marta SOARE

SEQUENTIAL RESOURCE ALLOCATION
IN LINEAR STOCHASTIC BANDITS

sous la direction de M. Rémi MUNOS
et le co-encadrement de M. Alessandro LAZARIC

Rapporteurs: Mme. Michele SEBAG CNRS, Université Paris Sud
M. Csaba SZEPESVARI University of Alberta

Soutenue publiquement le 14 décembre 2015 devant le jury composé de :

© 2015 Tous droits réservés.

M. Olivier CAPPE CNRS, Télécom ParisTech Examinateur
M. Rémi GILLERON Université de Lille Examinateur
M. Alessandro LAZARIC INRIA Co-encadrant
M. Rémi MUNOS INRIA & Google DeepMind Directeur

M. Liva RALAIVOLA Université Aix-Marseille Examinateur
Mme. Michele SEBAG CNRS, Université Paris Sud Rapportrice
M. Csaba SZEPESVARI University of Alberta Rapporteur

doc.univ-lille1.fr



Thése de Marta Soare, Lille 1, 2015

© 2015 Tous droits réservés. doc.univ-lille1.fr



Thése de Marta Soare, Lille 1, 2015

Sequential Allocation of Resources in Linear Stochastic Bandits

This thesis is dedicated to the study of resource allocation problems in uncertain
environments, where an agent can sequentially select which action to take. After each
step, the environment returns a noisy observation of the value of the selected action.
These observations guide the agent in adapting his resource allocation strategy towards
reaching a given objective. In the most typical setting of this kind, the stochastic multi-
armed bandit (MAB), it is assumed that each observation is drawn from an unknown
probability distribution associated with the selected action and gives no information
on the expected value of the other actions. The MAB setting has been widely studied
and optimal allocation strategies were proposed to solve various objectives under the
MAB assumptions. Here, we consider a variant of the MAB setting where there exists
a global linear structure in the environment and by selecting an action, the agent also
gathers information on the value of the other actions. Therefore, the agent needs to
adapt his resource allocation strategy to exploit the structure in the environment. In
particular, we study the design of sequences of actions that the agent should take to
reach objectives such as: (i) identifying the best value with a fixed confidence and using
a minimum number of pulls, or (ii) minimizing the prediction error on the value of each
action. In addition, we investigate how the knowledge gathered by a bandit algorithm
in a given environment can be transferred to improve the performance in other similar
environments.

Keywords: sequential learning, bandit games, adaptive sampling, stochastic opti-
mization
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Allocation Séquentielle de Ressources dans le Modele de Bandit Linéaire

Dans cette these nous étudions des problemes d’allocation de ressources dans des en-
vironnements incertains ot un agent choisit ses actions séquentiellement. Apres chaque
pas, 'environnement fournit une observation bruitée sur la valeur de 'action choisie
et I'agent doit utiliser ces observations pour allouer ses ressources de fagon optimale.
Dans le cadre le plus classique, dit modele du bandit a plusieurs bras (MAB), on
fait I’hypotheése que chaque observation est tirée aléatoirement dune distribution de
probabilité associée a ’action choisie et ne fournit aucune information sur les valeurs es-
pérées des autres actions disponibles dans I’environnement. Ce modele a été largement
étudié dans la littérature et plusieurs stratégies optimales ont été proposées, notam-
ment pour le cas ou le but de I'agent est de maximiser la somme des observations. Ici,
nous considérons une version du MAB ou les actions ne sont plus indépendantes, mais
chaque observation peut étre utilisée pour estimer les valeurs de I’ensemble des actions
de T'environnement. Plus précisément, nous proposons des stratégies d’allocation de
ressources qui sont efficaces et adaptées a un environnement caractérisé par une struc-
ture linéaire globale. Nous étudions notamment les séquences d’actions qui meénent a

(i) identifier la meilleure action avec une précision donnée et en utilisant un nom-
bre minimum d’observations, ou (ii) maximiser la précision d’estimation de la valeur
de chaque action. De plus, nous étudions les cas ou les observations provenant d’un
algorithme de bandit dans un environnement donné peuvent améliorer par la suite la
performance de I'agent dans d’autres environnements similaires.

Mots-clés: apprentissage séquentiel, jeux de bandits, échantillonnage adaptatif,
optimisation stochastique
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CHAPTER 1

Introduction

Overview of the Studied Problem

This dissertation is dedicated to the study of the sequential resource allocation problem
in an unknown environment, with a fixed and finite set of possible actions to take.
While the per-step cost of choosing an action is constant over actions and time, the
value of an action strictly depends on the information about the environment gained
by choosing that action at a certain time step.

In this setting, the goal of a learner is to design an optimal sequence of actions
(here seen as an optimal sample allocation strategy) that allows to acquire the infor-
mation on the environment needed to reach a predefined optimality criterion. For this,
the learner will develop active learning strategies, allowing to sequentially update
the estimated value of each option and to choose in an optimal manner what actions
to take at the next time step.

Adaptive design

When being faced with a choice, a decision maker can only rely on a limited number
of observations (or evidence) on the possible choices offered to him. If the learner can
control the collection of the observations giving information on the value of the choices,
then he has a chance to make more informed decisions. Whether we refer to the
process as data collection, resource allocation, or experimental design, it is well known
that one can provably obtain better solutions by adapting to the previously obtained
information about the unknown environment.

In the most classical setting, known as passive data collection or fized experimental
design, all decisions concerning the sampling procedure are taken prior to the obser-
vations about the environment and the learning is performed only when all resources
are allocated. In contrast, sequential, adaptive procedures allow the sampling process
to be more flexible, deciding after each new observation whether the decision maker
needs more information about the environment (Are additional samples needed?) or
on which factors of the environment the uncertainty is still too high (Where to sample
next?). The two inherent advantages of this flexibility in adjusting the strategy as
new information about the environment is gathered are (i) the more efficient use of
resources, thus reducing the costs of the experiment/sampling process and (ii) the
potential improvement in the accuracy of the solution, due to the additional

9
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knowledge about the environment, potentially obtained by controlling the information
collection.

To be able to define a decision rule or design, a learner is provided with some prior
information on the environment (for instance, the number of available options, the
number of allowed observations, or the existence of a global structure connecting the
value of the options). More importantly, the learner will be guided by an optimality
criterion, which is the basis for the exploration of the space (as it defines what is the
needed information) and which also gives the measure of performance for his decisions.

Theoretical Setting

The settings we consider in the thesis come from Bandit Theory and also take inspi-
ration from Optimal Experimental Design, both fields providing well suited tools for
managing and analyzing the trade-off between gaining information on the environment
and attaining a given optimality criterion.

Departing from the traditional, widely studied multi-armed bandit (MAB) setting,
where the value of each choice is independent, we consider throughout the dissertation
the Linear Stochastic Bandits setting. In this scenario, we assume the available
options (arms) are d-dimensional vectors and their values are given by the linear com-
bination between the arms and an unknown vector of parameters 6* characterizing the
underlying linear function. This global structure of the environment is such that by
observing a noisy reward from an arm, we also (indirectly) gain information on the
value of the other arms. Knowing that after each arm pull (allocated sample) we ob-
tain a noisy observation of the value of the chosen arm and that the observations are
expensive (limited sampling budget), the goal of a learner is to exploit the global linear
structure to design adaptive allocation strategies that only sample the most informa-
tive arms. More precisely, the aim of the decision-maker is to allocate samples only
to the arms whose observed rewards allow to improve the estimation of the features of
0* with accuracy levels that allow to meet a specific optimization criterion.

Given the linear stochastic setting, for the objectives we consider the exploration-
exploitation trade-off will differ from the MAB setting with independent arms. Thus,
we will design and analyze adaptive algorithms for several objectives, starting from the
traditional cumulative regret minimization and extending the performance measure to
optimality criteria coming from the Optimal Design of Experiments literature. More
precisely, we design and analyze adaptive allocation strategies meant to minimize
the accuracy of predicting the arm values.

Motivation

The stochastic linear bandit problem (LB), introduced in [Auer, 2002], is a natural
extension of the typical MAB setting, mostly relevant in applications where the number
of available arms is very large or observations are very expensive (limited sampling
budget). In fact, the uncertainty of the environment in this setting is concentrated

10
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in the unknown parameter §* € R? characterizing the linear function. Therefore, the
estimation of the value of each arms is replaced by the estimation of the d features of
0* and the problem changes fundamentally.

More in general, the linear bandit framework extends the applications of classical
multi-armed bandit by offering a formalization proper also for sequential decision mak-
ing problems where the set of feasible decisions is very large (or even infinite). The
possibility of indirectly learning about all possible options after each pull values is par-
ticularly relevant for settings where the emphasis is put on obtaining information on
the environment. This typically appears in problems where there is a huge cost or risk
involved in acquiring information (like in medical trials, or measurements performed in
high risk environments) and then the goal of the sampling can be for instance, to allow
to rapidly discard uninteresting options, or to be sure to avoid the most risky options.

Nevertheless, there is a second dimension of the problem to be considered. Ideally,
among the available options, there are some that can indeed provide the information
needed to reach the required optimality criterion. However, in many cases, the learner
can only choose among a given, fixed set of arms and it might be the case that
either the number of arms is very limited (insufficient to learn the needed information
about the environment), or there can be plenty of arms that are non-informative for
his objective, or even the measurements about the values of the options can suffer
from huge variance. Therefore, infeasible optimal design might also appear in certain
environments, caused by the additional constraints on the properties of the available
options.

Applications

In this section we detail some examples of real-world applications that are relevant for
the linear stochastic bandits setting and where the use of adaptive allocation strategies
can lead to a better performance.

On-line recommendation. One of the real-world problems that fits into our
framework and where linear stochastic bandits are already used in practice is the on-
line recommendation of products and on-line advertising. Relying on the contextual
information about users [Li et al., 2010], on personal history, and/or similarity of past
behavior, one can learn the user preference, which can be seen as the underlying pa-
rameter to be estimated. The goal is to learn the user preference, while minimizing the
regret of recommending products or displaying advertisements that are not in the direct
interest of the user. More specifically, consider for instance a movie recommendation
system and assume that all persons in a population of interest put similar weights on
the features of the movie to decide whether they see a movie or not. After the user
reveals his ratings for some (smartly chosen) movies, we can use this information to
infer his rating on the rest of the movies. The problem becomes even more interesting
when the recommender system has to deal with several users with similar preferences,
in which case the system can transfer the knowledge gained through interactions with
past users, thus needing a considerable lower number of interactions with a new user.

11
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Medical trials. Another application example, which is also the historical mo-
tivation of stochastic multi-armed bandits [Thompson, 1933], comes from adaptively
prescribing medical treatments. It is typically assumed that a drug has the same reac-
tion on all patients and a doctor needs to find out which is the best drug, out of several
drugs with unknown effects. The doctor is then faced with a trade-off since on the one
hand he needs to explore the different drugs (to get information on their effects) and
on the other hand he wants to exploit (administer to all patients) what seems to be the
best drug. Assuming in addition that there exists a global relation between the type
of drugs and their effects on the patients allows to focus more rapidly on the subset
of the most beneficial drugs, possibly discarding some of the drugs without actually
testing them, but based only on previous observations on some other drugs.

Active polling. Consider also the situation where a company has to make an
accurate prediction of the result of a poll (e.g., an election). The company has rele-
vant information on all the participants (age, profession, etc), but can only question
a small number of them on their voting intentions. The obtained responses can then
be used to infer a preference model for all the individuals in the group. To obtain
an accurate estimation of the result of the election, the company should use a strat-
egy which sequentially selects the most informative members of the group and adapts
the repartition of the questionnaires such that even the voting intentions of the more
heterogeneous groups are well estimated.

Contributions

In this context of sequential decision making problems where observations are expensive
and there exists a linear global structure of the problem, our goal is to exploit the
global linear structure of the setting to design sampling strategies concentrating on
the most informative arms. We focus on three objectives, each relying on a different
exploration-exploitation trade-off:

e Identifying the best arm with a fixed confidence. Here the objective is
to design sample allocation strategies that allow to identify the best arm with a
fixed confidence, while minimizing the number of pulled needed. This problem
is by now well understood in the MAB setting, here we show how the strategies
become very different when moving to the linear bandit setting. We begin with
the study of the complexity of the best-arm identification problem in the linear
bandit framework and we show the importance of exploiting the global linear
structure to improve the estimate of the reward of near-optimal arms. Then, we
propose and analyze static and adaptive allocation strategies and compare their
empirical performance.

e Sequential transfer of samples. Here we consider the case where one needs
to solve a sequence of similar linear bandit tasks. In this setting the performance
measure is given by the per-task cumulative regret. Under the assumption that
one can use very few costly samples from a linear bandit task, we investigate the

12
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reduction in the per-task regret brought by transferring samples from other simi-
lar tasks. While the potential gains of these approaches have been well studied in
batch learning scenarios, the transfer learning setting has received far less atten-
tion for sequential decision making problems with limited feedback. We propose
multi-task algorithms that manage to avoid the negative transfer effects and are
effective in reducing the per-task regret. We provide a theoretical analysis of the
transfer problem in this setting and offer some empirical results for our proposed
methods.

e Minimizing the prediction error for the arm values. Inspired by the
Optimal Design of Experiments (OED) literature, we study two heteroscedastic
regression problem, where the noise in the observations depends on the unknown
arm-specific variance. Given a limited sampling budget n, our first goal is to direct
the sampling allocation such that the obtained parameter estimate, denoted ém
minimizes the total prediction error of the value of the arms. This objective is
also known as the V-optimality criterion.

In addition, we investigate the sample allocation strategies that allow to predict
with equal accuracy the value of each arm, the performance of the allocation
strategy being given by the worst estimated arm value. This objective is also
known as the G-optimality criterion.

For each setting, we formalize and study the complexity of the learning and estima-
tion problems. Then, we propose and analyze the theoretical and empirical properties
of adaptive allocation algorithms, designed to improve the estimate on the unknown
parameters according to the optimization criterion at hand.

Structure
Objective MAB LB
Cumulative Regret (CR) [Robbins, 1952]... [Auer, 2002]. ..

Simple Regret [Audibert et al., 2010]. .. Chapter 3
OED [Antos et al., 2010].. . Chapter 4

CR + Transfer [Gheshlaghi Azar et al., 2013]... Chapter 5
Figure 1.1: Summary of the topics studied in the thesis.

Outline

The remainder of this thesis is organized as follows:

- In Chapter 2 we provide some preliminary notations, definitions, and tools from
the literature. This includes a brief overview of known results in the multi-armed and
linear bandit settings with stochastic rewards.

- In Chapter 3 we provide our results on the best arm identification problem in the
linear bandits setting with a fixed confidence.

13
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- In Chapter 4 we provide the formulation of two optimal design criteria in a linear
bandit setting and provide some experimental results for bandit inspired algorithms.

- Then, in Chapter 5 we investigate the interest that transfer of samples might have
when solving a sequence of similar linear bandit tasks, each having a limited per-task
sample budget.

- We conclude the thesis in Chapter 6, discussing future directions and providing
some closing remarks.

14
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CHAPTER 2

Preliminaries

In this chapter we introduce the notation and basic assumptions later used in the
settings of our study. We present here the concepts and tools from the Bandit Theory
literature on which we build our work. We begin by introducing briefly the multi-armed
stochastic bandit setting and its methods and results. Then, we focus on the setting
where arms are correlated, in particular where a linear structure is assumed in the
rewards. We then refer to some of the extensions to the classical objective of minimizing
the cumulative regret, based on new performance measures. These extensions will be
then theoretically and empirically analyzed in the following chapters of the thesis.

Contents
1 Stochastic Multi-armed Bandits. . . . . ... ... .... ... 15
2 Stochastic Linear Bandits . . .. ... ... ... ........ 19
3 Performance Measures . . .. ... ... ... ... 23
4 Conclusion . . .. . ... ittt e e 26

1 Stochastic Multi-armed Bandits

The stochastic multi-armed bandit (MAB) was first introduced in [Robbins, 1952] and
takes the name from a casino slot machine. In this initial formulation, a player (or
learner) has a finite gambling budget (given number of coins). In the casino there are
several slot machines (one-armed bandits) and some of them might be better for the
gambler, that is, they might return a higher monetary reward. Unsurprisingly, the goal
of the gambler is to obtain as much reward as possible using his available gambling
budget. For this, he needs to explore the casino to identify the slot machines that are
the more profitable, but also to exploit the machines that seem to be better given the
rewards he already observed. A smart coin allocation strategy is one that finds an
effective exploration/exploitation trade-off, or in other words, a strategy that allows
the gambler to maximize his sum of rewards.

Despite the name, the historical (and more important) motivation behind the MAB
model dates back to [Thompson, 1933] and concerns the adaptive design of medical
trials. As briefly explained in Chapter 1, the goal in this setting is to identify the best

15
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drug out of a finite number of drugs with unknown effects. To do this, one sequentially
selects one of the drug and administers it to the patient at hand. After observing the
effects of the drug, one chooses the drug to be administered to the next patient. The
assumption is that a drug has the same effects on all patients and the natural goal is
to maximize the number of patients that are treated with the best drug. The trade-off
that appears here comes on the one hand from the need to explore the different drugs
(to get information on their effects) and on the other hand, from the will to exploit
(administer to all patients) what seems to be the best drug.

1.1 Formalization

The stochastic multi-armed bandit game is a simple, repeated game, between a learner
and the environment. This game can be formalized as follows: A learner is given
a finite set of choices (arms), X = {z1,...,xx} with unknown returns and a certain
number of allowed interactions with the environment (budget/time horizon), denoted
n. The total budget may or may not be known in advance by the user. With the goal
of maximizing the sum of the observed rewards, the learner chooses at each
time step ¢t = {1,...,n}, an arm x;;, where 1 <14 < K, and observes an independent
reward, denoted r;;, drawn from an unknown distribution v; of mean p;. This reward
is the only information that the learner gets at time step ¢ and we call this a bandit
feedback setting, to stress the difference from the more traditional full feedback setting,
where after each interaction the learner gets to observe rewards from all arms.

Algorithm 1 The stochastic MAB game
The player knows: K — number of arms (z1,...,2;,...,2k) ; n — total budget

Uncertain environment: v, ..., vg — unknown reward distributions
fort=1,...,ndo
The player selects an arm x;
The player observes an independent reward r;; ~ v;
end for
Goal: maximize Y} r;,.

After the learner consumes all the budget, we compare the sum of the rewards he
observed with that of an oracle strategy that knows in advance the arm distributions
11, ...,vg. In fact, when the distributions are known, the best choice is to pull at each
time step the arm with the largest mean. But since the learner first has to explore the
environment to get information about the reward distribution of each arm, unavoidably
some suboptimal arms will be pulled.

The goal of the learner is then to design a sequence of arm pulls that leads to a sum of
rewards which is as close as possible to that of the oracle that uses all the budget to pull
the arm with the largest mean. This difference between the performance of the oracle
and the expected sum of rewards obtained by the learner is called cumulative pseudo-
regret and is the typical performance measure in the MAB setting. Formally, if we

16
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denote the best arm z* € X as the arm having the largest mean p* = max;—;  x i,
then the cumulative pseudo-regret of the learner after n time steps is defined as:

R, = ]E[nu* — zn:ri,t}, (2.1)
t=1

where the expectation integrates over the randomness in the pull of the rewards. This
initial objective of minimizing the cumulative regret in MAB has been widely studied.
In the following, we briefly describe the main strategy and its performance.

1.2 Algorithms and Results

The paper [Lai and Robbins, 1985] proposes the first asymptotically optimal bandit
algorithms in the case of Bernoulli distributions. These algorithms work by construct-
ing arm indices based on the observed rewards. After each update, the arm with the
largest index is chosen. To express more formally the properties of asymptotically opti-
mal bandit strategies, we begin by restating in Prop. 2.1 the problem-dependent regret
lower bound provided also in [Lai and Robbins, 1985].

Definition 2.1. Let N,,, denote the number of pulls to arm x; after consuming an
overall budget of n pulls. We say a sampling strategy is consistent if for any stochastic
bandit problem with a unique best arm, for any budget n and any o > 0, the property

E[N;n] = o(n®) (2.2)
holds true for any suboptimal arm x;.

Proposition 2.1. For any consistent strateqy, for any stochastic bandit problem with
Bernoulli distributions B(p) of parameters p < 1, the cumulative regret R, is such that

.. R, W — [
lim inf > , 2.3
B8 logn) 2, 2= . KL(B(w), B (23)

where KL is the Kullback-Leibler divergence.

The previous result implies that any efficient allocation strategy samples at least
Q(log(n)) times each sub-optimal arm. Also, notice that a sub-optimal arm z; is pulled
W log(n) times. Thus, the closer y; is to p*, the more samples are allocated
to arm z;. Finally, we say that a bandit allocation strategy is asymptotically optimal,

if it has the property that

. E[N; ] 1
lim sup — <

20 Yog(n) = KL(B(w), Bu:)) 24)

for any sub-optimal arm x;.

The results of [Lai and Robbins, 1985] generated a lot of interest leading to
extensions on multiple levels. On the one hand, asymptotically optimal algo-
rithms were proposed for wider classes of distributions, notably the algorithms
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in [Honda and Takemura, 2011] are shown to be asymptotically optimal for arbitrary
distributions with finite support. On the other hand, in [Agrawal, 1995], a simple
and explicit way of constructing the arm indices is proposed, namely the using as in-
dices upper-confidence bounds (UCB) based on the empirical mean of arm-specific
rewards and the number of arm pulls.

In the UCB class of algorithms, a particularly important breakthrough was the in-
troduction of an algorithm with a finite-time analysis in [Auer et al., 2002]. Relying
on the Chernoff-Hoeffding inequality, the algorithms in this paper consider arm indices
given by a high-probability upper-bound on the expected value of the arm. Specifically,
in the UBC1 algorithm of [Auer et al., 2002], after time step ¢, the score B;; for arm
xr; € X is computed as

2logt
Nii '

Biy = [z + (2.5)
where t is the number of total rewards observed so far, N;; is the number of rewards
coming from arm z; and observed up to time ¢, and fi;; is the empirical mean of the
N, rewards obtained by pulling arm z;. Thus defined, the arm indices of the UCB
algorithms can also be interpreted as the largest statistically plausible mean value of
the arm, given the current available observations. As shown in the pseudo-code of

Algorithm 2 The uBc1 algorithm
The player knows: K — number of arms (z1,...,2;,...,Zx) ; n — total budget
Uncertain environment: vy, ..., vk — unknown distributions, bounded in [0, 1]
Initialization: Pull each arm once
fort=K+1,...,ndo
2logt 2logt

Compute/Update arm indices: By, = fiy; + N, By = i + =

Pull arm z;; = argmax; B, ;
Observe an independent reward r;; ~ v;
end for
. ] 3 n
Goal: maximize Y} | r;,.

UuBCl (Alg. 2), after computing the index for all arms, the UCB algorithm follows the
principle of Optimism in the Face of Uncertainty (OFU) and chooses to pull the arm
with the largest index. This principle thus suggests to follow what seems to be the
best arm, based on the optimistically constructed arm-scores. The same principle is
employed in a various sequential decision making problems, ranging from optimization
to planning, as shown on the recent survey [Munos, 2014].

It is also important to note that from the definition of the arm index B;; one can
see that an arm x; might have the largest index at time step ¢ due to its empirical
mean [i;; (the exploitation term) and/or to the uncertainty one has about the true arm
value (the exploration term), directly dependent on how many rewards from arm x;
were actually observed. In particular, the exploration term in the construction of the
B, ; guarantees that all arms will be pulled infinitely often.
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Although efficient and achieving cumulative regret of order log(n) when the arm
distributions have bounded support, the strategy introduced in [Auer et al., 2002]
is not optimal. Improvements in the regret of finite-time strategies were later ob-
tained by using more refined arm indices based on the empirical variance of the arms
in [Audibert et al., 2009]. Still in the finite budget setting, for problems with finite
support distributions, the authors of [Cappé et al., 2013] propose algorithms that use
Kullback-Leibler confidence bounds to achieve asymptotically optimal sequential allo-
cations.

Besides the direct improvements concerning the optimality of the algorithms, the
classical stochastic MAB problem has been followed by multiple extensions, out of
which two type of directions were particularly popular: First, there is the Adversarial
Bandits family, where the assumption that the rewards coming from an arms are no
longer i.i.d (as in the stochastic MAB), but chosen by an adversary. Then, there is
the Bandits with Structure family, where the assumptions of global or partition-
wise reward functions is made. Motivated by practical applications and leading to an
important number of interesting problems and solutions, these extensions to the MAB
setting are at the moment very popular. The various settings and results recently
obtained are presented in the resent survey [Bubeck and Cesa-Bianchi, 2012].

In the following section, we are going to look in more detail only to the stochastic
linear bandits setting, common to all the problems that we present in the following
chapters of the thesis.

2 Stochastic Linear Bandits

An interesting variant of the MAB setup is the stochastic linear bandit problem, in-
troduced in [Auer, 2002]. In the linear stochastic bandit (LB) setting, the input set
X = {x1,..., 2k}, is a subset of R The set X is fixed and revealed to the learner.
When pulling an arm x € X', the learner observes a noisy reward whose expected value
is the inner product between z and an unknown parameter 6* € R%:

ry = xtTG* + (2.6)

where x; is the arm pulled at time step t, 6* is the unknown parameter characterizing
the underlying linear function and 7, is the noise affecting the reward observation at
time step t. Typically in this setting the assumption is that the noise 7 is centered and
has bounded variance. However, more details on the noise models we consider are to
be specified in each problem definition.

The linear bandit setting becomes particularly interesting in applications where the
number of arms is very large or at least larger than the available budget. In such cases,
a learner facing a MAB would not even get to observe a reward from each arm. On the
other hand, under the assumption of the global structure, in linear bandits, pulling an
arm gives information about the parameter #* and indirectly, about the value of other
arms. Therefore, the estimation of K mean-rewards in MAB is replaced here by the
estimation of the d features of 6*.
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In designing sampling strategies for the linear stochastic bandits, we are still going
to rely on upper-confidence bounds on the arms values. As in the MAB setting, here
the value of an arm = € X is given by x ' 0*, that is, the expected reward that we obtain
by pulling arm x. Similarly, the definition of the cumulative regret after n observations
becomes:

L= (270" — =>(a* —x,)"0", (2.7)
t=1

t=1

where * = argmax,c, ' 6* is the best arm and z; is the arm pulled at time step .
How big is the regret depends here on how well the parameter #* € R? is estimated,
or more precisely, whether the observed rewards provide enough information on 6* to
identify the best arm(s). Thus, in this setting a learner also has to find the appropriate
balance between on the one hand, the exploration of the environment, that is, sampling
arms that allow to improve the estimation of certain features of #* and on the other
hand, the exploitation of what seems to be the best arm in order to maximize the sum of
observed rewards. In the following, we describe how the arm indices are constructed by
taking into account the uncertainty in the parameter characterizing the linear function.

2.1 Concentration Inequalities

Since in this setting the arms are correlated and the uncertainty of the environment
is concentrated in the unknown parameter 6%, clearly, to guide the sample allocation
strategy we will rely on the estimate of 8* obtained from the observed rewards. Indeed,
after observing a sequence of n rewards, one can define a least-squares estimator for
the parameter 6* as follows. Let x,, = (z1,...,2,) € X" be a sequence of arms and
(r1,...,7rs) the corresponding observed (random) rewards. An unbiased estimate of 6*
can be obtained by an ordinary least-squares (OLS) method as

0, = A'bs,, (2.8)

where A,, =1 7z € R™? is the design matrix taking into account the pulls to
arms x € X and by, = > ), 141y € R? is the vector of all the observed rewards. The
OLS estimate enjoys a series of interesting properties. First, it is an unbiased estimator
since E[f,|x,] = 6*. Furthermore, for any arm = € X the mean-squared error of the
estimated reward xTén is

(26" —270,) x| = V[l 2T Agte = V] ||2]%s, (2.9)

where V[n] is the variance of the additive noise and ||z||,y = " Mz denotes the M-
weighted norm of x. More importantly, we can obtain high-probability bounds for the
prediction error of 0, on the expected reward of the arms in the given set. What is
important to take into account when constructing the confidence set is the sequence of
pulls x,, = (z1,...,z,) € X". Specifically, the sequence of samples used in constructing
the estimate 6,, can be obtained either using a static or an adaptive allocation strategy.
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The static allocation corresponds to an experimental design fixed in advance, where
the sequence of arm pulls is not influenced by the observed rewards. This would
correspond to the passive data collection. On the other hand, we say that a strategy
is adaptive when at time step ¢, the choice of the arm to be pulled depends on the
previously observed rewards: rq,79,...,7;_1. For the two kind of strategies, we can
obtain high-probability bounds for the prediction error of the least-squares estimate
after an arbitrary number of observations n, as presented in the following propositions.

Proposition 2.2. Let ¢ = 2H+\/2 and ¢ = 6/7% and 6, the least-squares estimator
obtained using the observed rewards coming from a fixzed sequence x,. It holds true

that
270"~ 278, < c||x||Axu/log(c’n2K/5)) >1-46  (2.10)

Proposition 2.3 (Thm. 2 in [Abbasi-Yadkori et al., 2011]). Let 6" be the solution
to the reqularized least-squares problem with reqularizer v and let Al = 114+ Ax. Then
for any x € X and any adaptive sequence x,, such that at any step n > 0, x,, only
depends on (x1,71,...,Tpn_1,Tn_1), w.p. 1 — 39, we have

1+nL?/t .
< [fellag, - (HWlog (B 1 ||), (211)

where L = maxyey ||z]|2.

P(VnEN,VxE X,

oo — 2",

In both bounds the key component in the prediction of the true value of arm z is
the weighted norm ||z||,_1. In fact, one can see that the more z € R? is correlated to
the design matrix Ay, , the more its norm weighted by the inverse of the design matrix
will be small. If we restrict only to « € X this follows the simple intuition that the
more an arm gets pulled (information captured in the design matrix), the more we will
be able to obtain an accurate estimation of its value.

As for the differences between the two bounds, note in particular the presence of
an additional factor v/d in Eq. 2.11, the price to pay for adapting x, to the samples.
By definition, bandit algorithms adapt the allocation on the rewards observed over
time. Therefore, in the sequel we will mostly rely on the high-probability bound on the
prediction error of an estimate obtained through an adaptive allocation of resources.

2.2 Algorithms and Results

It is also by using the aforementioned concentration inequalities and high-probability
bounds on the arms values that the bandit algorithms are build. Specifically, based
on the empirical estimate 0, we construct confidence ellipsoids FE,, whose center
is the empirical estimate and which containing all statistically possible values for 6*.
Importantly, the construction of the confidence set needs to be such that at each time
step 0" belongs to the set with probability 1 — d. Let us define

E,={0eR": (|0 -0,
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where the term (3,,(0) is chosen such that
P(vn >1,0" € E,) > 1—04. (2.12)

In fact, since the uncertainty here comes from the value of the d features of 8*, then the
width of the ellipsoid in a certain direction is determined by the accuracy in the esti-
mates corresponding to that direction. Thus, while respecting the property in Eq. 2.12,
the goal is to be able to shrink as fast as possible the volume of the confidence ellip-
soid as we observe more and more samples. Also, based on the consistent confidence

Figure 2.1: Illustration of the confidence ellipsoid E, built around én

ellipsoid E,,, similarly to the MAB setting, the algorithms for cumulative regret min-
imization in the linear stochastic setting construct upper-bounds on the arms values
using the margins of the confidence ellipsoids. Then, according to the OFU principle,
the argorithms pull the arms with the largest index. Thus, at time step ¢ + 1, the
algorithms select arm x;,; defined as

Tpp1 = arg max (xTét + ||z ;i Bt) : (2.13)
zeX ¢

This is a direct adaptation of the UCB type bounds, that start from the empirical
estimate on the arm value xTét, to which an exploration term is added, based on the
uncertainty of estimating the reward of x. Specifically, here the uncertainty is captured
in the width of the confidence set E; in direction x. This construction of arm indices
was introduced in [Auer, 2002], then the good empirical performance of a simple index
following this type of construction was shown in [Li et al., 2010].

The construction of the arm indices can also be seen as a joint optimization problem.
As proposed in [Abbasi-Yadkori et al., 2011}, the empirical estimate 0, is used explicitly
only for the construction of E,,. Then, the optimistic index for an arm x € X will be
given by the dot product of x with any convenient 6 in E,. Specifically, the index for
arm x at time step ¢ is given by

By(z) = arg max z'0,
0EE,

and the algorithm then selects the arm with the largest index

Ty, = argmax By(r) = arg max max z ' 6. (2.14)
TEX zex U€bn
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We now come back to the most important point of the method: the construction of
the confidence ellipsoids FE,. Clearly, the tighter the confidence sets, the better the
estimation of the arm values and therefore, and the more chances to minimize the
overall regret. Several consistent (that is, respecting the property in Eq. 2.12) and
efficient (that is, insuring the volume of F,, shrinks at a fast rate) methods have been
proposed for the construction of confidence sets. First, in [Dani et al., 2008], the
authors propose the CONFIDENCE BALL algorithm where the region of the confidence
set is bounded at time step n is computed as

Bn(d) = Jmax (128d10g(n) log(t2/96), 694 lgg (7?;)) (2.15)

For this algorithm the authors prove that the cumulative regret is at most
O (d log(n)q/nlog(n/é)) with high probability. The state of the art result was ob-
tained using a technique based on self-normalized bound for vector-value martingales,
introduced in [Abbasi-Yadkori et al., 2011]. Here, the authors propose the OFUL
algorithm, based on the confidence set!:

1 L2
< H\/dlog <+7;/L> + L1/2||9*||} . (2.16)

0 — 0!
A

Xn

Enz{eeRd:]

OFUL was shown to achieve better empirical performance and it also improves the the-
oretical performance achieving a regret that is at most O (d log(n)y/n + y/dnlog(n/ 5))
with high probability.

Now that we (briefly) introduced the results of stochastic linear bandit algorithms
in the typical cumulative regret setting, in the next section we introduce the extensions
to this model which considers different performance measures. In Chapter 3 we use
the simple regret, then in Chapter 4 we consider two optimality criteria coming from
the OED literature. These measures will then be detailed in their dedicated chapters.
We then come back to the cumulative regret as a performance measure in Chapter 5,
when another type of extension is considered, namely, the multi-task linear bandit.

3 Performance Measures

In this section we introduce different formulations of bandit problems which extend the
typical bandit setting by no longer using as performance measure the cumulative regret,
but rather focus on acquiring information on the environment. More specifically, we
will present the metrics relevant to the problems studied in the following chapters of
the thesis.

IThe same technique and result were used to define in Eq. 2.11 the prediction error of the least-
squares estimate obtained using an adaptive sampling strategy.
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3.1 Simple regret

Typically, given a limited number of pulls, the goal of a learner is to maximize the
sum of rewards, given rise to the so-called exploration-exploitation trade-off, where
the exploration of the arms improves the knowledge about the environment, while
the exploitation (according to the estimated arm values) leads to maximize the sum
of rewards. More recently, a different viewpoint on the same problem has received
considerable attention: In what is referred to as the simple regret setting, introduced
in [Bubeck et al., 2009b], the forecaster’s only goal is to identify the best arm. Thus,
he suffers no regret for spending his budget on pulling sub-optimal arms. However, it
is in his best interest to only pull informative arms that help him in identifying the
best-arm. There are typically two type of constrains for the user in this setting:

e Either he has a fixed budget of pulls, in which case he must design an adaptive
sample allocation strategy that identify the best arm with as much confidence as
possible.

e Either he has to pull arms until reaching a fixed confidence in having identified
the best arm. In this case, his goal is to design algorithms that reach this fixed
confidence using as few arm pulls as possible, or in other words, algorithms with
small sample complexity.

After reaching the fixed budget or the fixed confidence constraints, the design algorithm
uses the information gathered in the process to return the estimated best arm,
denoted Z(n) and defined by

#(n) = {z; € X : p(a; () = max_p(z,(n))}, (2.17)
where the index n is the number of observations used by the learning algorithm before
returning the estimated best arm. The performance measure in this setting is given
by the difference between the expected reward of the true best arm and the expected
reward of the arm returned by the adaptive strategy. Thus, by denoting p(Z(n)) the
mean of the estimated best arm Z(n) we obtain the following definition of the simple
regret in the stochastic MAB setting:

Ry = " — u(@(n)). (2.18)

Since arms are evaluated according to their expected reward, the difficulty of the
best-arm identification (BAI) problem comes from being able to estimate the arms
values up to a point where we can distinguish the one with the largest expected reward.
The difficulty of the BAI problem thus depends on the value gaps between arms: the
more the arms have similar values (that is, similar expected rewards), the harder it will
be for the learner to identify the true best one. Let A(xz,2’) = (z —2') T6* be the value
gap between two arms, then we denote by A(z) = A(z*, x) the gap of x with respect to

the optimal arm and by A, = e/rvnir;é *A(aj) the minimum gap, where A, > 0. We

will rely on the gaps between arm values to define the complexity of the BAI problem.
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In MAB, the BAI problem has been widely studied, in various settings: fixed
budget [Audibert et al., 2010, Bubeck et al., 2009a], fixed confidence [Even-Dar et al.,
2006, Jamieson et al., 2014], identifying the m best arms [Bubeck et al., 2013,
Kaufmann and Kalyanakrishnan, 2013], or multi bandit BAI [Gabillon et al., 2011].
In the MAB case where arms are independent, the complexity of BAI is given by the

problem-dependent quantity
K
1
Hyag =) A2

=1

(2.19)

the inverse of the gaps between the best arm and the suboptimal arms. In the fixed-
budget case, Hyap determines the probability of returning the wrong arm, while in
the fixed-confidence case, it characterizes the sample complexity. Also, the connection
between the two settings has been studied in [Gabillon et al., 2012] and the recent
paper [Kaufmann et al., 2015] introduces refined lower-bounds for both fixed-budget
and fixed-confidence settings in the specific case of two armed-bandits, suggesting that
the fixed-confidence setting has higher complexity.

In Chapter 3 we study in detail the BAI problem in the linear bandit case. We
analyze the complexity of the problem and propose sample allocation strategies that
manage to take into account the global structure of the problem to efficiently identify
the best arm, given a fixed confidence.

3.2 OED inspired Optimality Criteria

The two performance measures presented so far consider the regret of the learner when
his goal is to maximize the sum of rewards or to identify the best arm. Both of these
goals require a very good knowledge of the expected rewards when pulling near-optimal
arms. For the rest of the arms provided in the setting there is no explicit accuracy goal:
either they are pulled only until their sub-optimality is certain (as in the cumulative
regret case), or they are pulled because of their informative role in estimating the
near-optimal arms (as in the simple regret case). In Chapter 4, we consider a more
global approach, where the goal to use the sampling budget to obtain an overall good
knowledge on the environment, that is, we aim at knowing with equally good accuracy
the arm value for all arms.

These optimality criteria for the adaptive sampling strategies that we wish to study
are inspired from the Optimal Experimental Design (OED) literature [Fedorov, 1972,
Pukelsheim, 2006], where a limited number of experiments can be performed and the
goal is to select the sequence of experiments that leads to maximize the overall infor-
mation gained over the environment. Typically, the goal is to minimize the prediction
error for the results of experiments, where for each arm z € X we define the prediction
error of 6, as the expected quadratic loss Ly (z) = E[(z0, — 276)2]. Overall, the loss
of the allocation strategy corresponds to some global measure of the prediction error
over all arms. In this case, the regret of a given adaptive strategy is defined as the
difference between the its loss of that of an oracle allocation.

We discuss and analyze the properties of strategies designed for reaching the
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G-optimality criterion in heteroscedastic noise scenarios (a setting also studied
by [Wong and Cook, 1993]) and the V-optimality criterion. For the latter, we propose
a sequential allocation strategy based on the recent paper by [Wiens and Li, 2014].

3.3 Cumulative Regret in Multi-task Linear Bandits

In Chapter 5, we study the case when the same learner is facing a sequence of un-
known environments. Under the assumption that these environments have a similarity
that can be exploited, we investigate whether the learner might improve the per-task
cumulative regret by transferring observations and knowledge gathered at previous
tasks.

4 Conclusion

This chapter gives a succinct overview of the basic notations, tools, and methods specific
to the bandit literature to which belong the problems studied in the thesis. We first
focused on the most classical setting, where the arms are independent and the goal is to
maximize the sum of rewards. Then, getting closer to the settings proposed in our work,
we introduced the assumptions specific to the linear stochastic bandits and the main
method based on confidence ellipsoids. Lastly, we mentioned some extensions to the
classical setting where the goal is no longer the typical maximization of the observed
rewards, but instead, to identify the best arm or return an arm with lowest possible
simple regret. We end the chapter with a glossary of the most frequent notations and
their definitions.
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Notation | Definitions, properties
X given set of arms
K number of arms, |X| = K
d dimensionality of the problem, X C R¢
n total sampling budget
t current number of observed rewards: 1 <t <n
X arm ¢ in the set X', column vector of d features
L upper-bound on the ¢, norm of arms: max,ey ||z||2 = L
Tiy arm ¢ in X selected at time step ¢
Tit reward observed when pulling arm z;,
n parameter for the noise in the rewards
x* best arm in X
W expected value of z*
it empirical mean of arm x; after ¢ overall observations
o7, variance of arm x;
c/rai,t empirical variance of arm x; after ¢ overall observations
N times that arm x; was pulled up to total time ¢
0 confidence parameter
B, high prob. upper-bound on the value of x; after ¢t overall observations
0* vector of parameters characterizing the linear function, #* € R?
S upper-bound on the ¢5 norm of 6*
9n OLS estimate of 6* obtained after n observations
l|lz|las | M-weighted norm of vector x, where M € R is a pos. def. matrix
X, sequence of n pulls x, = (z1,...,2,) € X"
Ax, design matrix obtained from the sequence of n pulls x,,
b, reward vector obtained from the sequence of n pulls x,,
A(x,2') | value gap between arm x and arm 2”: A(x,2') = (z — 2') 0"
A(x) value gap between best arm z* and arm z: A(z) = (z* — z) ' 0"
Anin smallest gap between x* and the second best arm; A;, > 0
Yy set of directions y = x — 2/, where z # 2/ € X
y* set of directions y = x* — 2/, where o/ # zx € X
m number of tasks considered in the transfer scenario

© 2015 Tous droits réservés.

Table 2.1: Table of Notations

doc.univ-lille1.fr



Thése de Marta Soare, Lille 1, 2015

© 2015 Tous droits réservés. doc.univ-lille1.fr



Thése de Marta Soare, Lille 1, 2015

CHAPTER 3

Best-arm Identification in Linear
Bandits

We dedicate this chapter to the study of the best-arm identification (BAI) problem in
the linear stochastic bandit'. We begin with the characterization of the complexity
of the best-arm identification task when the environment has a global linear structure
and the comparison with the known complexity results in the MAB case. Then, we
introduce static and adaptive sample allocation strategies designed to identify the best
arm with a fixed confidence, while minimizing the number of samples.

In our analysis, we show the importance of exploiting the global linear structure
to improve the estimate of the reward of near-optimal arms. In particular, as opposed
to stochastic linear bandits algorithms designed for cumulative regret, here we show
how pulls to sub-optimal arms might be critical to obtain the information needed to
distinguish among near-optimal arms.

We give sample complexity guarantees for the proposed strategies and also provide
an empirical evaluation of their performance. Finally, we point out the connection to
the G-optimal allocation strategy from the Optimal Experimental Design literature,
which provides a worst-case optimal allocation for the best-arm identification problem.
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! This chapter is a joint work with Alessandro Lazaric and Rémi Munos. A part of the chapter was
presented in our NIPS paper [Soare et al., 2014b].
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1 Introduction

While most of the literature in bandit theory focused on the problem of maximization of
cumulative rewards, where the learner needs to trade-off exploration and exploitation,
recently the pure exploration setting has gained a lot of attention. As briefly presented
in Sect. 3.1, in the simple regret setting the learner uses the available budget to identify
as accurately as possible the best arm, without trying to maximize the sum of rewards.

In the MAB setting, best-arm identification strategies start by considering all arms
as potentially optimal, then proceed by sequentially discarding the arms which no
longer fulfill the optimality condition. When fized budget settings are considered (see
e.g., [Audibert et al., 2010]), the budget is divided in K — 1 rounds and at the end
of each round, the arm with the lowest empirical mean is eliminated. On the other
hand, in the fized confidence settings (see e.g., [Even-Dar et al., 2006]), the decision to
discard an arm depends on the probability of that arm to be dominated by another
arm in the input set.

If in the MAB setting the best-arm identification (BAI) problem is by now well
understood, with multiple available results in both fixed-budget and fixed-confidence
constraints, in the linear stochastic bandit setting this problem is mostly unexplored in
the literature. The fundamental difference between the MAB and the linear bandit best-
arm identification strategies comes from the fact that in MAB an arm is no longer pulled
as soon as its sub-optimality is evident (in high probability), while in the linear bandit
setting even a sub-optimal arm may offer valuable information about the parameter
vector 6* and thus improve the accuracy of the estimation in discriminating among
near-optimal arms. For instance, consider the situation when K — 2 out of K arms
are already discarded. In order to identify the best arm, MAB algorithms would
concentrate the sampling on the two remaining arms to increase the accuracy of the
estimate of their mean-rewards until the discarding condition is met for one of them.
On the contrary, a linear bandit pure-exploration strategy would seek to pull the arm
x € X whose observed reward allows to refine the estimate 6* along the dimensions
which are more suited in discriminating between the two remaining arms.

In the rest of the chapter, we present our study on the sample complexity required
to identify the best-linear arm with a given confidence. For this, we design strategies
that explicitly take into account the geometry of the space. In Sect. 2 we introduce
the details of the problem formulation and we restate the tools needed. In Sect. 3 we
characterize the complexity of the best-arm identification in linear bandits. Then, we
design both static (Sect. 4) and adaptive strategies (Sect. 5) for the BAI problem and we
analyze their theoretical performance. We also show the practical effectiveness of our
proposed strategy, by providing in Sect. 6 an illustration of their empirical performance.
Finally, in Sect. 7 we draw conclusions and discuss future research directions.
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2 Preliminaries

We consider the standard linear bandit model. X C R? denotes the finite set of arms,
where |X| = K and we assume the fo-norm of any arm x 