Damage mechanisms in silicon nitride materials under contact loading - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2015

Damage mechanisms in silicon nitride materials under contact loading

Mécanismes d’endommagement des nitrures de silicium sous un chargement de contact

Résumé

This work deals with the mechanical properties and damage mechanisms under contact loading of dense and porous silicon nitrides materials. These technical ceramics exhibit a very interesting combination of mechanical properties: low density, high hardness and strength, good corrosion resistance and a low thermal coefficient. They are used in many applications including ball bearings for the automotive and aerospace industries. The characterization of the local behaviour under contact loading is then a crucial issue. Spark plasma sintering technique is used to process silicon nitride ceramics with addition of different amount of yttrium oxide as sintering aid. Controlling the sintering temperature and the applied pressure has permitted to obtain materials with fine, medium and coarse microstructures. In addition, materials with different porosity contents have been obtained. First, we have investigated the influence of processing conditions (temperature, pressure, amount of yttria on the microstructure and mechanical properties at the macroscopic scale (elastic parameters, Vickers hardness, flexural resistance ...). Hertzian contact tests were then performed to identify the damage mechanisms at the surface and subsurface of the sintered materials. The use of indenting spheres of different radii permitted to observe a significant size effect. Brittle mode consisting of surface ring cracks were observed at large scale (macroscopic scale) while localized plastic deformation with microcracks randomly distributed was observed at small scale (mesoscopic scale). Transmission electron microscopy observations of thin foils machined by ion milling were performed to investigate the subsurface damage. Numerical simulations with a code developed internally in LaMCoS laboratory enabled to follow the evolution of the plastic zone under pure rolling conditions. In these simulations, the nonlinear behaviour of ceramics was modelled using a bilinear law where Sy is the yield stress and K a hardening parameter of the ceramic specimen. Instrumented indentation tests were performed using a diamond spherical tip of radius 42 µm. Experimental load versus displacement curves were used as input data for an inverse identification purpose. Levemberg-Marquart algorithm was used to minimize the gap in the least squares sense.
Ces travaux de thèse portent sur la détermination des propriétés mécaniques à différentes échelles ainsi que les mécanismes d'endommagement des nitrures de silicium denses ou avec différents taux de porosités. Ces céramiques techniques présentent des propriétés mécaniques forte intéressantes : une faible densité, une dureté élevée, une bonne résistance à la corrosion et un faible coefficient de dilatation thermique. Elles sont notamment utilisées dans la fabrication des billes de roulement pour des applications dans les industries automobiles et aéronautiques. La caractérisation du comportement local sous un chargement de contact est donc un enjeu majeur. Les matériaux étudiés ont été obtenus par frittage flash d'une poudre de Nitrure de Silicium avec différents pourcentages d'oxide d'yttrium comme additif. Le contrôle de la température et de la pression de frittage a permis d'obtenir des matériaux denses avec différentes tailles de grain mais aussi avec une porosité résiduelle variable. La première partie de ce travail consistait à caractériser l'influence des conditions d'élaboration (température, pression, pourcentage d'additif) sur la microstructure (taille des grains, compositions ...) et les propriétés mécaniques à l'échelle macroscopique (module élastique, dureté Vickers, résistance à la flexion ...) des matériaux frittés. Des essais de contact de Hertz ont été ensuite réalisés afin d'identifier les mécanismes d'endommagement. L'utilisation de sphères de différents rayons a mis en évidence un important effet d'échelle : des fissures circonférentielles à échelle macroscopique (mode fragile) et des déformations plastique localisées à l'échelle mesoscopique avec des micro fissures distribuées aléatoirement (mode quasi-ductile). Les tests de nanoindentation permettent de solliciter localement les échantillons pour obtenir les propriétés élastiques des courbes force-déplacement. Des méthodes d'identification inverses permettent aussi d'extraire les paramètres d'écoulement. Le comportement non linéaire des céramiques a été modélisé en utilisant une loi bilinéaire où Sy est la limite d'élasticité et K un paramètre d'écrouissage. Afin d'identifier ces deux paramètres, un modèle éléments finis axisymétrique avec une pointe sphérique déformable a été construit sous Abaqus. Le modèle a été couplé à un module d'identification inverse fondé sur l'algorithme de Levemberg-Marquart pour minimiser l'écart (au sens des moindres carrés) entre les courbes expérimentales et numériques. Les simulations avec le code Isaac développé au sein du laboratoire LaMCoS ont permis de suivre d'évolution de la zone plastique lors d'un chargement de roulement.
Fichier principal
Vignette du fichier
these.pdf (4.94 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-01278519 , version 1 (24-02-2016)

Identifiants

  • HAL Id : tel-01278519 , version 1

Citer

Nacer Azeggagh. Damage mechanisms in silicon nitride materials under contact loading. Materials. INSA de Lyon; Tōhoku Daigaku (Sendai, Japon), 2015. English. ⟨NNT : 2015ISAL0075⟩. ⟨tel-01278519⟩
210 Consultations
763 Téléchargements

Partager

Gmail Facebook X LinkedIn More