Thèse soutenue

Etude expérimentale des cavités latérales en écoulements à surface libre

FR  |  
EN
Auteur / Autrice : Wei Cai
Direction : Emmanuel MignotNicolas Rivière
Type : Thèse de doctorat
Discipline(s) : Mécanique des fluides
Date : Soutenance le 15/07/2015
Etablissement(s) : Lyon, INSA
Ecole(s) doctorale(s) : Ecole doctorale Mécanique, Energétique, Génie Civil, Acoustique (Villeurbanne ; 2011-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire de mécanique des fluides et acoustique (Rhône) - Laboratoire de Mecanique des Fluides et d'Acoustique / LMFA
Jury : Président / Présidente : Jean-Yves Champagne
Examinateurs / Examinatrices : Emmanuel Mignot, Nicolas Rivière, Jean-Yves Champagne, Gilles Belaud, Frédéric Y. Moulin, Anne Sara Puijalon
Rapporteurs / Rapporteuses : Gilles Belaud, Frédéric Y. Moulin

Résumé

FR  |  
EN

Les cavités latérales sont des zones mortes à surface libre situées sur le côté d’un écoulement fluvial ou côtier. Les vitesses caractéristiques au sein de la cavité étant beaucoup plus faibles que celles de l’écoulement, une couche de mélange se développe à l’interface entre ces deux régions. Cette couche de mélange peut alors transférer de la quantité de mouvement de l’écoulement vers la cavité et ainsi mettre en mouvement la cavité et peut aussi transférer de la masse entre les deux régions, telle une pollution venant de l’écoulement amont. L’étude de cette thèse a alors consisté à étudier les caractéristiques de la couche de mélange, qui est rendue spécifique par le fait qu’elle se développe entre deux coins géométriques formés par l’intersection entre les parois de la cavité et celles de l’écoulement principal. Nous avons alors pu identifier l’origine et l’alternance des mouvements de fluide dans la direction transverse: de la cavité vers l’écoulement et inversement. Concernant la mise en mouvement de la cavité, le choix a été fait de considérer un écoulement principal fixé et de modifier l’extension de la cavité dans la direction perpendiculaire à l’écoulement, passant ainsi d’une cavité rectangulaire alignée avec l’écoulement principal à une cavité allongée dans le sens opposé. La mesure de champ de vitesse par PIV 2D a alors montré une forte évolution de la forme de l’écoulement à mesure que la géométrie de la cavité évolue : un système avec deux cellules alignées dans le sens de l’écoulement à un système à une seule cellule, puis un système à deux cellules et enfin un système complexe 3D ont ainsi été observés pour une cavité de plus en plus allongée. Ensuite, une modification du dispositif expérimental a permis de mesurer de deux façons différentes le transport de scalaire de l’écoulement principal vers la cavité, de comprendre les processus associés à ce transfert et enfin de quantifier cette capacité de transfert pour différents écoulements principaux et différentes géométries de cavités. Nous avons notamment montré que la géométrie de la cavité a peu d’effet alors que le nombre de Reynolds et la profondeur d’eau normalisée ont un effet majeur sur cette capacité de transfert de masse entre les deux régions.