Thèse soutenue

Sur l'utilisation des techniques de réduction de l'ordre de modèle pour le problème de contact élastohydrodynamique
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Daniel Maier
Direction : Philippe VergneWolfgang Seemann
Type : Thèse de doctorat
Discipline(s) : Génie mécanique
Date : Soutenance le 06/02/2015
Etablissement(s) : Lyon, INSA en cotutelle avec Karlsruher Institut für Technologie
Ecole(s) doctorale(s) : Ecole Doctorale Mecanique, Energetique, Genie Civil, Acoustique (MEGA) (Villeurbanne)
Partenaire(s) de recherche : Laboratoire : LaMCoS - Laboratoire de Mécanique des Contacts et des Structures (Lyon, INSA ; 2007-....) - Laboratoire de Mécanique des Contacts et des Structures / LaMCoS
Jury : Président / Présidente : Martin Gabi
Examinateurs / Examinatrices : Philippe Vergne, Wolfgang Seemann, Martin Gabi, Francisco Chinesta, David Dureisseix, Nicolas Fillot, Hartmut Heltzler
Rapporteurs / Rapporteuses : Francisco Chinesta, Wolfgang Seemann

Résumé

FR  |  
EN

Des simulations numériques rapides et précises du contact élastohydrodynamique (EHD) sont recherchées pour aider au développement de produits. L'objectif de cette thèse est de proposer un modèle compact pour le problème du contact EHD en appliquant des méthodes de réduction de modèle. Dans ce but l'équation de Reynolds (non-linéaire), l'équation d'élasticité (linéaire) et l'équilibre de la charge, sont résolus dans un système d'équations unique par la méthode de Newton. La réduction s'effectue par projection sur un sous espace de faible dimension, qui repose sur des solutions du système complet. De plus, une approximation du système est effectuée, dans laquelle les matrices du système réduit sont approximées. Pour le problème du contact EHD stationnaire, un algorithme de génération automatique des modèles compacts est présenté. L'algorithme fournit des modèles réduits stables et rapides sur une région de paramètres définies. La méthode de Newton réduite est également étendue aux fluides non-newtoniens. Les résultats du modèle réduit sont en très bon accord avec ceux du système complet, malgré un temps de calcul clairement plus petit. Par ailleurs, une nouvelle formulation pour le problème de contact EHD transitoire est introduite, dans laquelle la région de calcul est adaptée à la taille du contact. Ceci permet d'obtenir des modèles réduits efficaces, en particulier pour des excitations à grandes amplitudes. Alternativement, la méthode "Trajectory-Piecewise-Linear" (TPWL) est appliquée au problème du contact EHD transitoire. Cette méthode permet une accélération du calcul conséquente.