Thèse soutenue

Optimisation de la performance thermique du détecteur Pixel Alpine

FR  |  
EN
Auteur / Autrice : Zhan Zhang
Direction : Lucia Di Ciaccio
Type : Thèse de doctorat
Discipline(s) : Physique appliquée
Date : Soutenance le 01/12/2015
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale physique (Grenoble ; 1991-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'Annecy-le-Vieux de physique des particules
Jury : Examinateurs / Examinatrices : Didier Ferrère, Stéphane Jézéquel, Sylvie Rosier-Lees
Rapporteurs / Rapporteuses : Philippe Schwemling, Giovanni Ambrosi

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Le détecteur ATLAS est le plus grand détecteur après du Grand Collisionneur de hadrons (LHC) du CERN. L'un des objectifs les plus importants de ATLAS était la recherche de la pièce manquante du Modèle Standard, le boson, de Higgs, qui a été trouvé en 2012. Afin de continuer à chercher les inconnues, il est prévu d'améliorer le LHC. La haute luminosité pour le LHC est un projet, visant à augmenter la luminosité d'un facteur cinq ou plus au-dessus de la conception nominale. En parallèle à l'amélioration de l'accélérateur aussi ATLAS sera amélioré pour faire face au vieillissement des détecteurs et parvenir à la même ou meilleure performance avec un taux d'événements augmenté et une dose de rayonnement plus important.Cette thèse discute un nouveau design pour le détecteur pixel d'ATLAS , appelé “détecteur Alpine“ , pour la phase de haute luminosité du LHC. La structure du support local du détecteur Alpine est proposé, optimisé et testé avec un système avancé de refroidissement à deux phases qui utilise le dioxide de carbone ( CO2).Un programme de simulation du transfert de chaleur par évaporation du CO2 est mis au point au utilisant les modelés le plus récent de transfert de chaleur du CO2 pour caractériser le fonctionnement d'un évaporateur. Ce programme peut être utilisé pour analyser les aspects concernant les paramètres du système de refroidissement à l'intérieur et à l'extérieur du détecteur. Dans cette thèse, ce programme est principalement utilisé pour vérifier que un système à deux phases avec le CO2 peut être employé pour refroidir le détecteur Alpine. Plusieurs fonctions de calcule sont intégrées dans le programme dans une interface utilisateur graphique (GUI) afin d'avoir une large utilisation à l'intérieur de la communauté ATLAS.Pour faciliter l'analyse de la performance thermique du prototype, le modèle de la structure de support local est construit et analysé par analyse par éléments finis (FEA). Des nouveaux matériaux sont étudiés afin de faire face à la plus forte densité de puissance dégagée pour les modules au cours de la prise de donnée du HL-LHC.Les deux simulations par le programme numérique et par FEA sont combinées a fin de caractériser la performance thermique des deux prototypes: prototype Proof-of-Concept (PoC) et prototype Démonstration Fonctionnelle (FD). Ils sont produits par une société et un laboratoire de recherche respectivement et sont analysées et testées. Des études préliminaires des incertitudes les résultats ont été effectués. Les mesures du prototype PoC montrent que le refroidissement par évaporation du CO2 est efficace pour le détecteur Alpine.Par contre le premier prototype FD produit sur la base de la géométrie alpin avec une amélioration limitée de la matière n'aboutit pas à un résultat satisfaisant. Effets possibles pendant la production sont identifiés. Afin d'obtenir la performance thermique attendue, les futurs prototypes FD seront produits avec une procédure de production améliorée et de nouveaux matériaux.