Thèse soutenue

Etude structure-fonction du canal Kir6.2 et de son couplage avec des partenaires naturels et artificiels

FR  |  
EN
Auteur / Autrice : Maria Antonietta Principalli
Direction : Michel VivaudouJean Revilloud
Type : Thèse de doctorat
Discipline(s) : Biologie structurale et nanobiologie
Date : Soutenance le 09/10/2015
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale chimie et science du vivant (Grenoble ; 199.-....)
Partenaire(s) de recherche : Laboratoire : IBS - Institut de Biologie Structurale - Institut de biologie structurale (Grenoble)
Jury : Président / Présidente : Pierre-Jean Corringer
Examinateurs / Examinatrices : Patrice Catty
Rapporteurs / Rapporteuses : Anna Moroni, Bruno Allard

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Les canaux potassiques sensibles à l'ATP (K-ATP) jouent un rôle fondamental au sein de la cellule, puisqu'ils ajustent le potentiel de membrane en fonction de l'état métabolique. Ils combinent deux types de protéines: le récepteur des Sulfonylurée (SUR), protéine régulatrice faisant partie des transporteurs ABC, et le canal potassique rectifiant entrant Kir6. Elles s'associent en formant un hétérooctamère (4 SUR/4 Kir6) d'une taille de ~ 1MDa. A l'heure actuelle, l'unique structure disponible de ce complexe est une structure basse-résolution de 18 Å qui ne permet pas de visualiser correctement l'arrangement des différentes sous-unités. Le but principal de ce projet de thèse était d'obtenir des informations à la fois structurales et fonctionnelles sur le couplage entre Kir6.2 et SUR.Il existe 2 isoformes du Kir6 humain (Kir6.1 et 6.2) et 3 isoformes de SUR : SUR1, principalement exprimée avec Kir6.2 dans les cellules β pancréatiques et les neurones ; SUR2A, très abondante avec Kir6.1 dans les muscles cardiaques et squelettiques ; et SUR2B, présent avec Kir6.1 au niveau des muscles lisses. La façon dont SUR est capable de moduler l'ouverture du canal en réponse à la fixation d'un ligand est encore mal comprise.Au sein du canal K-ATP, SUR a un rôle de modulateur du gating de Kir6.2. Il a été montré que trois résidus (E1305, I1910, L1313) dans SUR2A, étaient impliqués dans la « voie d'activation » liant la fixation d'un ligand sur SUR2A et l'ouverture du canal Kir6. Afin d'examiner le rôle des résidus correspondants au sein de SUR1, nous avons réalisé des chimères entre SUR1 et le transporteur ABC MRP1 (qui n'interagit pas avec Kir6.2) et utilisé la technique du patch-clamp pour évaluer leur fonctionnalité. Nos résultats ont montré que les mêmes résidus au sein de SUR1 et SUR2A sont impliqués dans l'association fonctionnelle avec Kir6.2, mais que les spécificités au niveau de la chaine latérale pourraient expliquer les propriétés propres aux canaux pancréatiques et cardiaques. En effet, dans le pancréas, les canaux SUR1/Kir6.2 sont partiellement actifs au repos tandis que les canaux SUR2A/Kir6.2 du cœur sont principalement fermés. Cette spécificité peut être expliquée par les interactions spécifiques de SUR1 et SUR2A avec Kir6.2.La participation du canal Kir6.2 dans le couplage avec SUR ne peut être facilement étudiée puisque la région allant du N-terminal de Kir6.2 jusqu'à sa première hélice est physiquement associée à SUR. Des mutations à ce niveau pourraient affecter à la fois l'interaction physique et fonctionnelle avec SUR. Pour passer outre cet obstacle, nous avons utilisé la technologie ICCR développée dans notre laboratoire. Les ICCRs sont des protéines artificielles créées par couplage physique du C-terminal d'un RCPG au N-terminal de Kir6.2. Cette technologie permet l'étude de la fonction du N-ter de Kir6.2 puisque la fusion entre le RCPG et le canal assure une association fonctionnelle : le signal électrique généré par le canal ionique est directement lié à la fixation du ligand sur le RCPG. Le domaine reliant les deux protéines est essentiel pour la fonction de l'ICCR et sa longueur affecte la régulation du canal. De façon intéressante, deux ICCRs de même longueur mais ayant 9 résidus de différence présentent deux phénotypes différents : un fonctionnel, un inactif. L'ICCR inatif est caractérisé par la perte des résidus 26 à 34 du N-ter contenant 5 arginines. Nous avons réalisé la cartographie fonctionnelle de ces résidus essentiels pour la régulation de Kir6.2. Successivement, nous avons effectué les mêmes mutations d'arginines au sein du canal naturel K-ATP, mais n'avons pas observé de différence entre le canal muté et sauvage. Ces résultats suggèrent qu'il existe au moins deux voie de régulation pour le gating de Kir6.2 : une via les arginines du N-ter (utilisé par les RCPGs) et l'autre, toujours inconnue, utilisée par SUR.