Thèse soutenue

Croissance auto-catalysée de nanofils d'InP sur silicium par épitaxie par jets moléculaires en mode vapeur-liquide-solide : application aux interconnexions optiques sur puce

FR
Auteur / Autrice : Jean-Baptiste Barakat
Direction : Michel Gendry
Type : Thèse de doctorat
Discipline(s) : Physique des matériaux
Date : Soutenance le 22/10/2015
Etablissement(s) : Ecully, Ecole centrale de Lyon
Ecole(s) doctorale(s) : Ecole doctorale Matériaux de Lyon (Villeurbanne ; 1992?-....)
Partenaire(s) de recherche : Laboratoire : Institut des Nanotechnologies de Lyon (Ecully, Rhône)
Jury : Président / Présidente : Jean-Christophe Harmand
Examinateurs / Examinatrices : Thierry Baron, Jésus Zúñiga-Pérez
Rapporteurs / Rapporteuses : Sébastien Plissard, Vincent Sallet

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

L’intégration monolithique de matériaux semi-conducteurs III-V sur substrat de Silicium est essentielle pour le développement de la photonique sur Silicium. L’objectif est de réaliser une micro-source optique à base d’un réseau ordonné de Nanofils (NFs) III-V (InAsP/InP) placés sur un guide d’onde Si. De par leur aptitude à relaxer les contraintes, les NFs sont d’un grand intérêt. C’est dans ce contexte que s’est déroulée cette thèse axée sur la croissance autocatalysée de NFs InP sur Silicium par épitaxie directe. Nous avons ainsi montré que la croissance auto-catalysée de NFs InP denses et verticaux dépend directement de la nature de l’oxyde de surface du substrat Si. Une distribution monomodale ou bimodale de NFs ont été achevées en fonction des conditions de formation des gouttelettes d’indium ou des paramètres de croissance. Une pression critique et une température critique ont permis de délimiter des domaines favorables à la croissance. Les propriétés optiques intrinsèques des NFs ont été déterminées suffisantes pour l’objectif visé. Enfin, des résultats sur la simulation optique et la polarisation de la lumière émise dans les NFs et le guide d’onde ont permis d’établir un cahier des charges pour la croissance des NFs verticaux sur SOI pour que le couplage/partage de leurs modes optiques soit le plus efficace possible aux longueurs d’onde télécom.