Groupes d’Artin-Tits et de Garside : points fixes, métriques, et double centralisateurs

par Oussama Ajbal

Thèse de doctorat en Mathématiques et leurs intéractions

Sous la direction de Eddy Godelle.

Le président du jury était Luis Paris.

Le jury était composé de Eddy Godelle, Luis Paris, François Digne, Juan González-Meneses López, Paolo Bellingeri, Jean Mairesse.

Les rapporteurs étaient François Digne, Juan González-Meneses López.


  • Résumé

    Les groupes d'Artin-Tits et de Garside, qui sont deux généralisations des groupes de tresses, sont à leurs tours deux cas particuliers des groupes préGarside. Dans cette thèse, nous généralisons certains résultats vérifiés pour les groupes de tresses, aux groupes d'Artin-Tits, de Garside, et préGarside. On étudie dans la première partie les sous-monoïdes des points fixes et des points périodiques d'endomorphismes des monoïdes préGarside, d'Artin-Tits, et de Garside. Nous prouvons que ces sous-monoïdes héritent, sous certaines conditions, de la structure du monoïde ambiant. Dans la deuxième partie on étudie des métriques sur ces mêmes monoïdes. Nous comparons ces métriques, montrons des équivalences et non- équivalences entre elles dans des cas généraux et particuliers, et donnons une caractérisation des contractions sur les monoïdes d'Artin-Tits. En troisième partie, nous calculons le double centralisateur d'un sous-groupe parabolique d'un groupe d'Artin-Tits de type sphérique.

  • Titre traduit

    Artin-Tits and Garside groups : fixed points, metrics and double centralizers


  • Résumé

    Artin-Tits and Garside groups, two generalizations of braid groups, are both particular types of preGarside groups. In this thesis, we extend some results proved for braid groups, to Artin-Tits, Garside, and preGarside groups. First, we focus on the submonoids of fixed points and periodic points of endomorphisms of preGarside, Garside and Artin-Tits monoids. We show that these submonoids inherit, under some conditions, the structure of the ambient group. Then, we study some metrics over these same monoids. We compare these distances, show some equivalences and non-equivalences between them in general and in some particular cases, and then we provide a characterization of those endomorphisms of Artin-Tits monoids that are contractions. Finally, we calculate the double centralizer of any parabolic subgroup of any Artin-Tits group of spherical type.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (IV-96 f.)
  • Annexes : Bibliogr. 76 ref. Index

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Caen Normandie. Bibliothèque Rosalind Franklin (Sciences-STAPS).
  • Non disponible pour le PEB
  • Cote : TCAS-2015-46
  • Bibliothèque : Université de Caen Normandie. Bibliothèque Rosalind Franklin (Sciences-STAPS).
  • Disponible pour le PEB
  • Cote : TCAS-2015-46bis
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.