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Résumé Détaillé de la Thèse

Introduction

La programmation par contraintes (CP) est un cadre puissant utilisé pour
modéliser et résoudre des problèmes combinatoires, employant des techniques
d’intelligence artificielle, de la recherche opérationnelle, de théorie des graphes,
. . . ,etc. L’idée de base de la programmation par contraintes est que l’utilisateur
exprime ses contraintes et qu’un solveur de contraintes cherche une ou plusieurs
solutions.

Les problèmes de satisfaction de contraintes (CSP) [Montanari, 1974], sont
au coeur de la programmation par contraintes. Ce sont des problèmes de décision
où nous recherchons des états ou des objets satisfaisant un certain nombre de
contraintes ou de critères. Ces problèmes de décision revoient vrai, si le problème
admet une solution, faux, sinon. Les problèmes de satisfaction de contraintes
sont le sujet de recherche intense tant en recherche opérationnelle qu’en intelli-
gence artificielle. Beaucoup de CSPs exigent la combinaison d’heuristiques et de
méthode d’inférences combinatoires pour les résoudre dans un temps raisonnable.

La résolution des CSPs peut rapidement devenir difficile quand le problème
représente un volume important de données. Les solveurs sont composés
de deux mécanismes importants : la “recherche” et “l’inférence”. En effet,
le mécanisme “d’inférence” se réfère à l’élaboration des déductions, tandis
que, le mécanisme de “recherche” consiste à l’élaboration d’une solution en
étendant itérativement une solution partielle. Pour former une solution, ou
prouver qu’aucune solution n’existe, un solveur alterne entre la recherche et
l’inférence. Il prend une nouvelle décision pour étendre une solution partielle
et fait ensuite autant de déductions que possible. La déduction pourrait,
par exemple, enlever toutes les valeurs qui ne peuvent plus apparâıtre dans
une solution. Quand il n’y a plus de déduction qui pourrait être déduite
de la dernière décision, le solveur prend une nouvelle décision. En fait, la
décision est faite sur la base d’une heuristique donnée, c’est-à-dire, le solveur
attribue une valeur à une variable choisie par l’heuristique qui supposent que
ce choix puisse accélérer la recherche ou mener à une solution. Ce n’est pas le

10



cas toujours, c’est pourquoi le solveur pourrait effectuer un retour en arrière
jusqu’aux décisions précédentes, concluant que la dernière décision mène à
un échec et, ainsi, aucune solution ne pourrait être trouvée à partir de cet endroit.

Avec l’amélioration des ordinateurs, la résolution de plus grands problèmes
devient plus facile. Bien qu’il y ait plus de capacités offertes par la nouvelle
génération de machines, les problèmes industriels deviennent de plus en plus
grand ce qui implique un espace énorme pour les stocker et aussi plus de temps
pour les résoudre. Durant ces dernières décennies, plusieurs travaux ont été
proposés pour traiter ces problèmes.

D’une part, plusieurs approches ont été proposé pour réduire l’espace mémoire
requis pour représenter les contraintes et, particulièrement les contraintes table
qui sont des contraintes exprimés en extension. De différentes approches
utilisent des structures de données compactes pour représenter des contraintes
table comme des Tries [Gent et al., 2007], des Diagrammes de Décision multi-
valués (MDDs) [Cheng and Yap, 2010] et des Automates Finis Déterministes
(DFA) [Pesant, 2004]. D’autres ont proposé des nouvelles représentations
compactes comme les tuples compressés [Hubbe and Freuder, 1992], des
short supports [Nightingale et al., 2011, Nightingale et al., 2013], les smart
tuples [Mairy et al., 2015] et des approches basées sur la fouille de données
[Jabbour et al., 2013a, Jabbour et al., 2013b].

D’autre part, plusieurs travaux ont proposé des approches différentes
pour l’accélération du temps de résolution à travers l’utilisation des archi-
tectures parallèles. Nous distinguons des techniques différentes comme le
work sharing [Schulte, 2000, Régin et al., 2013, Régin et al., 2014], le work
stealing [Sleep, 1981, Kotthoff and Moore, 2010, Kotthoff and Moore, 2010,
Chu et al., 2009], la Recherche Multi-agent [Rao and Kumar, 1988,
Bordeaux et al., 2009] et l’utilisation des Portfolios [Gomes and Selman, 2001,
O’Mahony et al., 2008, Amadini et al., 2015, Dasygenis and Stergiou, 2014].

Dans cette thèse, nous nous intéressons aux problèmes de satisfaction de
contraintes et en particulier les différentes techniques utilisées dans la réduction
de l’espace mémoire requis pour la représentation des contraintes et aussi le
temps de résolution. Dans le premier chapitre, nous introduisons les notions
de bases de l’état de l’art utilisés dans ce manuscrit. nous détaillons aussi les
différentes techniques utilisées dans la recherche et l’inférence. Le deuxième
chapitre se compose principalement de deux parties. Dans la première partie,
nous décrivons les différentes méthodes de l’état de l’art utilisées dans la com-
pression des contrainte table. Tandis que la deuxième partie, décrit l’état de l’art
de la programmation parallèle ainsi que les différents travaux utilisant une archi-
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tecture parallèle dans la résolution des CSPs. Dans le troisième chapitre, nous
présentons deux contributions autour la compression des contraintes table. Pour
chacune des contributions, nous décrivons la méthode de compression ainsi que
l’algorithme de filtrage. Dans le quatrième chapitre, nous présentons une con-
tribution qui consiste à résoudre une instance CSP en établissant des cohérences
en parallèle. En effet, nous explorons une nouvelle manière d’utilisation d’une
architecture parallèle dans laquelle un solveur principale est aidé par différent
esclaves qui établissent des cohérences fortes qui sont couteuse pour être main-
tenue durant la recherche. Finalement, nous concluons et nous présentons les
perspectives de nos travaux dans le dernier chapitre.

Préliminaires

Un réseau de contraintes (discret) (CN) N est un ensemble fini de n variables
reliées par un ensemble fini de e contraintes. Chaque variable x a un domaine qui
représente l’ensemble fini de valeurs qui peuvent être assignées à x. Le domaine
initial d’une variable x est noté dominit(x) tandis que le domaine courant de x
est noté dom(x). Nous avons toujours dom(x) ⊆ dominit(x). Chaque contrainte
c porte sur un ensemble ordonné de variables, appelé portée (scope) de c et
noté scp(c), et est sémantiquement défini par une relation, notée rel(c), qui
contient l’ensemble des tuples autorisés pour les variables impliquées dans c.
Une contrainte table (positive) c est une contrainte telle que rel(c) est définie
explicitement en énumérant les tuples qui sont autorisés par c (voir exemple ci-
dessous). L’arité d’une contrainte c est la taille de scp(c). L’arité maximale du
réseau sera notée r.

Exemple 1 Soit c une contrainte table positive portant sur les variables
x1, x2, x3, x4, x5 telles que dom(x1) = dom(x2) = dom(x3) = dom(x4) =
dom(x5) = {a, b, c}. La table 1 liste les 7 tuples autorisés par la contrainte
c.

x1 x2 x3 x4 x5

τ1 (c, b, c, a, c)
τ2 (a, a, b, c, a)
τ3 (a, c, b, c, a)
τ4 (b, a, c, b, c)
τ5 (b, a, a, b, b)
τ6 (c, c, b, c, a)
τ7 (a, c, a, c, a)

Table 1: Une contrainte table c portant sur x1, x2, x3, x4, x5.
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Soit X = {x1, . . . , xr} un ensemble ordonné de variables. Une instanciation
I de X est un ensemble {(x1, a1), . . . , (xr, ar)} qui est également noté {x1 =
a1, . . . , xr = ar} tel que ∀i ∈ 1..r, ai ∈ dominit(xi). X est notée vars(I) et chaque
ai est notée I[xi]. Un littéral est une paire (x, ai) où x ∈ X et ai ∈ dom(x).
Une instanciation I est valide ssi ∀(x, a) ∈ I, a ∈ dom(x). Un r-tuple τ sur X
est une suite de valeurs (a1, . . . , ar) telle que ∀i ∈ 1..r, ai ∈ dominit(xi); la valeur
ai sera notée τ [xi]. Un tuple défini sur un ensemble X peut être vu comme une
instanciation de X et inversement. De ce fait, un r-tuple τ sur scp(c) est valide
ssi l’instanciation sous-jacente est valide. Un r-tuple τ sur scp(c) est un support
sur la contrainte r-aire c ssi τ est un tuple valide qui est autorisé par c. Si τ est
un support sur une contrainte c impliquant une variable x et tel que τ [x] = a, on
dit que τ est un support pour (x, a) sur c. GAC est une cohérence de domaine
définie comme suit :

Définition 1 Une contrainte c satisfait la cohérence d’arc généralisée (GAC)
ssi ∀x ∈ scp(c), ∀a ∈ dom(x), il existe au moins un support pour (x, a) sur c.
Un CN N est GAC ssi chaque contrainte de N est GAC.

L’application de GAC implique la suppression de toutes les valeurs qui n’ont
pas de support sur une contrainte. De nombreux algorithmes ont été mis au
point pour établir GAC selon la nature des contraintes. STR [Ullmann, 2007]
est l’un de ces algorithmes pour les contraintes table : il supprime les tuples
invalides lors de la recherche de supports en utilisant une structure de données
qui sépare les tuples valides des tuples invalides. Cette méthode de recherche
des supports améliore le temps de recherche en évitant les tests redondants sur
des tuples invalides qui ont déjà été détectés comme invalides lors des précédents
application de GAC. STR2 [Lecoutre, 2011], une optimisation de STR, évite
certaines opérations de base concernant la validité de tuples et l’identification
des supports, par l’introduction de deux ensembles importants appelés Ssup et
Sval (décrits ultérieurement). Dans le meilleur des cas, STR2 est r fois plus
rapide que STR.

La compression des contraintes tables

STRc

La première approche, appelée (STRc), consiste à combiner l’algorithme
STR avec un algorithme de compression basé sur les “tries”, qui diffère des
approches décrites dans [Katsirelos and Walsh, 2007] et [Xia and Yap, 2013]
où une représentation sur la base des produits cartésiens est utilisée pour la
compression. L’idée de base est d’identifier les motifs récurrents, appelés sous
tuples, dans le tuples de chaque contrainte et remplacer leurs occurrences par des
références vers une table de motifs. Le processus de filtrage est une adaptation
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de l’algorithme STR qui prend en considération les motifs apparaissant dans
des positions différentes.

Méthode de compression Un motif µ d’une contrainte table c est une
séquence de valeurs consécutives (sous-tuples) dans un tuple τ d’une table. On
note |µ| la longueur d’un motif µ, et nbOcc(µ) le nombre d’occurrences du motif
repérées dans l’ensemble des tuples d’une contrainte donnée.

Afin de réduire la complexité spatiale de la représentation des tuples de
chaque contrainte, nous allons repérer les motifs les plus fréquents et remplacer
chaque occurrence de motif par un symbole unique. De ce fait, la taille utilisée
pour représenter la table sera d’autant plus faible que la longueur des motifs sera
grande et que leur nombre d’occurrences sera important.

Il est important de noter que nous considérons que les motifs extraits dans le
cadre de notre approche sont indépendants de leur position initiale dans le tuple.
En conséquence, un motif ne correspond pas obligatoirement à l’affectation des
mêmes valeurs aux mêmes variables mais plutôt la même suite d’affectation à
une séquence de variables consécutives. Ce choix a été fait dans l’espoir d’obtenir
des motifs les plus fréquents possibles, et donc une meilleure compression.

Pour identifier les motifs pertinents, nous allons dans un premier temps créer
une forêt d’arbres de préfixes à partir des différents tuples d’une contrainte ta-
ble donnée. Un arbre enregistre toutes les séquences existantes de valeurs de
longueur donnée et leur nombre d’occurrences. Pour garantir un certain niveau
d’efficacité de compression, la longueur minimale des séquences est fixée dans
notre approche à 3, et la longueur maximale à l’arité de la contrainte moins 1.

Dans un second temps, il nous faut identifier les motifs les plus efficaces pour
le processus de compression. Pour cela nous allons introduire la notion de score
d’un motif µ comme suit :

score(µ) = —µ— × nbOcc(µ)

Un seuil de sélection est fixé, seuls les motifs dont le score est supérieur au seuil
de sélection sont retenus dans l’algorithme de compression et stockés dans la
table des motifs. Pour des raisons d’efficacité, le nombre total de motifs retenus
est borné par un second paramètre afin de contrôler le temps de compression.

Le processus de compression utilise donc les motifs dont le score est supérieur
au seuil de sélection. Un parcours de la table est effectué pour détecter la présence
des motifs retenus et établir une référence vers la table de motifs. Si dans un
tuple, plusieurs motifs se recouvrent, l’algorithme de compression choisit en pri-
orité le motif ayant le meilleur score. Après compression, la table contient des
tuples de longueurs différentes composés de valeurs et de références vers la table
des motifs.
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La figure 3.4 illustre la structure de données compressée. En fait, une fois
qu’un motif est trouvé, il est remplacé par une référence vers une table de motifs
où les motifs fréquents sont stockés. La référence est codée par un entier négatif
(-patternid). En fait, le tuple ne contient pas les valeurs composant le motif,
mais plutôt une référence vers le motif.

(a) Les tuples.
(b) Les tuples compressés avec les
références.

Figure 1: Compression des tuples.

L’algorithme 24 décrit la méthode de compression. D’abord, pour chaque
tuple de la contrainte table nous cherchons le meilleur motif contenu dans FP -
Queue. En cherchant le meilleur motif, nous respectons un ordre décroissant des
scores. Si un motif est trouvé, nous l’ajoutons à la table de motifs et remplaçons
ensuite son occurrence dans le tuple par une référence vers celui-ci dans la table
des motifs. Ce processus continue jusqu’à il n’y a plus de motif possible qui
pourrait être remplacé dans le tuple. Nous notons qu’en cherchant le meilleur
motif contenu dans un tuple, nous prenons en considération les remplacements
fait auparavant. En conséquence, les motifs ne se chevauchent pas puisque nous
choisissons de remplacer toujours l’occurrence du meilleur. Une fois que nous
avons itéré sur toutes les valeurs d’un tuple nous vérifions si nous avons déjà
remplacé au moins un motif. Si c’est le cas, le tuple τi de la contrainte est
remplacé par sa version compressée τ ci . La table 3.1 présente une contrainte
table positive d’arité 5, impliquant les variables x1, x2, x3, x4 et x5. nous notons
que plusieurs motifs sont répétés sur l’ensemble des tuples tels que cbc, aab et
abb comme des motifs de taille 3 et aabb, acbc et cbca comme des motifs de taille
4. En itérant sur l’ensemble des tuples de notre contrainte, on peut construire le
trie décrit dans la figure 3.5, où le nombre des occurrences est donné au niveau
de chaque noeud. Chaque noeud représente un chemin µ (allant de la racine à
une feuille) associé avec le compteur nbOcc(µ).

Le mécanisme de compression engendre une réduction importante de l’espace
mémoire occupé par la contrainte table. La vue physique décrite dans la figure 3.8
illustre mieux ce phénomène. Les tuples compressés font référence à leur motifs
correspondant stockés dans la tables des motifs. La contrainte table est donc
composée de tuples de différentes longueurs puisqu’ils contiennent des motifs de
différentes tailles.
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Algorithm 1: compress-STRc(c: Constraint,FP -Queue: Queue)

1 foreach τi ∈ table(c) do
2 repeat

// searching for the best frequent pattern contained in

τi
3 bestPattern ←≺�
4 foreach µi ∈ FP -Queue do
5 if contains(µi,τi) then
6 bestPattern ← µi
7 bestPattern.position ← index(µi,τi)
8 break

9 if bestPattern 6= nil then
// Compressing each tuple τi of c: τ ci is the

prospective compressed tuple which is encoded as

an array of maximal length |scp(c)|. Its length is

denoted lengthc

10 position ← 0
11 lengthc ← 0
12 while position < τi.length do
13 if position=bestPattern.position then
14 τ ci [lengthc] ← -bestPattern.id // a reference

towards the pattern

15 position ← position + bestPattern.length

16 else
17 τ ci [lengthc] ← τi[position]
18 position ← position + 1

19 lengthc ← lengthc + 1

20 until bestPattern = nil
21 if lengthc < τi.length then
22 τi ← τ ci

Algorithme de filtrage Lors du filtrage d’une contrainte table, il est
nécessaire de vérifier la validité des tuples, ce qui implique de vérifier la validité
des motifs. Quand un motif apparâıt plusieurs fois dans la table à partir de la
même position, nous souhaitons n’effectuer le test de validité du motif qu’une
seule fois, ce qui permet de traduire la compression spatiale en une réduction du
temps de filtrage.

Pour ce faire, nous utilisons un compteur time qui est incrémenté à chaque
filtrage de la contrainte table et un tableau stamps[µi, j] associé à la contrainte.
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x1 x2 x3 x4 x5

⇒ τ1 (c, b, c, a, c)
τ2 (a, a, b, b, a)
τ3 (a, c, b, c, a)
τ4 (b, a, c, b, c)
τ5 (b, a, a, b, b)
τ6 (a, c, b, c, b)
τ7 (a, c, a, c, a)

Table 2: La contrainte table Cx1,x2,x3,x4,x5 .
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Figure 2: Le trie des motifs construits à partir de la contrainte décrite dans la
table 3.1.

Pour un motif µi qui s’applique à partir d’une position j, stamps[µi, j] donne le
résultat du dernier test de validité de (µi, j) (champ stamps[µi, j].valid) ainsi que
la valeur stamps[µi, j].time du compteur time lors de ce test. Chaque fois que la
validité de (µi, j) doit être testée, nous vérifions d’abord si stamps[µi, j].time est
égal à la valeur courante de time. Si c’est le cas, la validité a déjà été testée dans
l’opération de filtrage courante et donc stamps[µi, j].valid fournit directement
la réponse, ce qui évite des calculs inutiles. Sinon, il faut effectivement tester la
validité de (µi, j) et sauvegarder le résultat dans stamps[µi, j].

La figure 3.10 illustre l’évolution de la structure stamps. D’abord, tous les
éléments sont initialisés à currentTime=0 et les champs valid reste vide (voir
figure 3.10(a)). Durant le premier filtrage de la table, le compteur global est mis
à 1. Par exemple, pour déterminer si le tuples τ3 est valid, il faut s’assurer que
µ1 à la position j = 2 est valide. Comme la valeur time du champs stamps[µ1,2]
n’est pas égal à la valeur courante du currentTime, nous constatons que le test
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(a) Compression de la contrainte table
en utilisant des références vers la table
des motifs.

(b) Vue d’ensemble de l’espace compressée.

Figure 3: La vue physique de la table compressée.

(a) Initialisation (currentTime=0). (b) À la fin de l’itération
currentTime=1.

Figure 4: Évolution de la structure stamps.

n’est pas encore fait dans le filtrage courant. Par conséquent, nous vérifions si
c, b et c sont encore présents dans les domaines respectifs des variables x2, x3

et x4. Nous supposons que c’est le cas et donc les champs time et valid de
stamps[µ1,2] prennent les valeurs 1 et true. Plus tard, quand nous testons la
validité du tuple τ6, nous nous apercevons immédiatement que la validité du
motif µ1 a été déjà vérifié dans le filtrage courant et ça suffit donc d’utiliser le
résultat enregistré dans le champs valid de stamps[µ1,2]. Supposons que µ1 est
invalide à la position 1 et 3, valide à la position 2 et que µ2 est valide à la position
1 et 2, nous obtenons à la fin du filtrage le résultat illustré dans la figure 3.10(b).

Résultats expérimentaux Pour montrer le potentiel de notre approche
(STRc), nous avons comparé le comportement des algorithmes MDD, STR1,
STR2, STR3 et STRc lorsqu’ils sont intégrés à l’algorithme de recherche MAC
(qui maintient la propriété de cohérence d’arc généralisée lors d’une recherche
arborescente). Nous avons effectué quelques tests sur des instances de différents
problèmes distincts : Les mdds introduites dans [Cheng and Yap, 2010], les
nonogrammes [Pesant et al., 2012], les Bdds, les mots croisés et les problèmes
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Instance MDD STR1 STR2 STR3 STRc

a7-v24-d5-ps0.5-psh0.7-9 17.819 879 334 367 780.318 (43.775% – 12.192)

a7-v24-d5-ps0.5-psh0.9-2 5.536 256 145 143 283.828 (43.776% – 11.511)

bdd-21-2713-15-79-9 77.171 80.2 23.3 60.0 84.608 (82,612% – 1.05)

bdd-21-2713-15-79-11 55.752 78.5 23.5 48.5 74.796 (82,643% – 1.164)

crossword-m1-ogd-23-04 104.485 82.7 78.2 103 80.085 (10.688% – 2.919)

crossword-m1c-lex-vg5-7- 86.475 43.5 31.4 36.6 49.393 (20.134% – 0.5)

nonogram-gp-108 55.732 290 78.7 118 319.613 (94.519% – 20.561)

nonogram-gp-116 16.658 102 21.7 21.9 108.098 (95.7% – 7.948)

rand-6-10-10-60-950-0 67.821 75.1 45.4 34.4 104.554 (34.317% – 21.768)

rand-7-9-9-30-980-0 47.285 26.8 18.5 46.3 50.271 (57.469% – 19.383)

Table 3: Le temps CPU (en secondes) pour quelques instances résolues avec
MAC. Les ratios et le temps CPU de compression pour STRc sont donnés entre
parenthèses.

aléatoires. Les résultats figurent en table 3.2 ; l’heuristique dom/ddeg est utilisée
pour garantir le même parcours d’arbre (dom/wdeg est plus versatile).

L’algorithme STRc permet une économie spatiale d’au moins 50% par rapport
à STR1 et STR2, et jusqu’à un facteur 4 par rapport à STR3. Nous décrivons
le temps CPU ainsi que le ratio de compression et le temps de compression.
Lorsqu’on considère le temps de recherche, il apparâıt que STRc rivalise avec
STR1, mais reste toutefois supplanté par STR2.

STR-slice: Les contraintes table fragmentées

Dans la première approche, nous avons défini un motif comme un séquence
de valeurs consécutives. Bien que cette définition nous ait permis d’obtenir
une réduction importante de la complexité spatiale, la forme compressée de
la contrainte table présente quelques inconvénients particulièrement pendant
le processus de filtrage nous empêchant d’utiliser les variantes optimisées de
STR. Pour chaque test de validité d’un tuple, il est nécessaire de réitérer sur
toutes ses valeurs (si nous ne sommes pas dans le cas de réutiliser les résultats
précédemment faits et enregistrés). Ces inconvénients sont dus à la définition
du motif : un motif pourrait impliquer des variables différentes selon sa position
dans le tuple.

Pour pouvoir profiter de variantes STR optimisées, nous avons proposé dans
cette seconde approche une nouvelle définition du motif et, ainsi, une nouvelle
forme compressée des contraintes table à l’intermédiaire des technique de fouilles
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de données.
Un motif µ d’une contrainte c est une instanciation I d’un sous ensemble de

variables de c. On note scp(µ) sa portée, qui est vars(I), |µ| sa longueur, qui
est égale à |scp(µ)|, et nbOcc(µ) son nombre d’occurrences dans rel(c), qui est
|{τ ∈ rel(c) | µ ⊆ τ}|.

Une sous-table T associée à un motif µ d’une contrainte c est la table
obtenue en ne conservant que les tuples de c qui contiennent µ et en effaçant µ
dans chacun de ces tuples.

T = {τ \ µ | τ ∈ rel(c) ∧ µ ⊆ τ}
La portée de T est scp(T ) = scp(c)− scp(µ)
Un fragment d’une contrainte c est un couple (µ, T ) tel que µ est un motif

de la contrainte c et T est la sous-table associée au motif µ.
Comme l’ensemble des tuples représentés par un fragment (µ, T ) représente

en fait le produit cartésien de µ par T , nous allons également utiliser la notation
µ ⊗ T pour désigner un fragment d’une contrainte. Après le processus de frag-
mentation d’une contrainte, l’ensemble des tuples qui ne sont associés à aucun
motif sont regroupés dans un fragment par défaut noté (∅, T )

Le motif µ=(x1 = a, x4 = c, x5 = a) de la contrainte c, détecté en figure
3.16(a), apparâıt dans les tuples τ2, τ3 et τ7. Donc le fragment résultant est
composé du motif µ et sa sous-table correspondante extraite de c, comme décrit
en figure 3.16(b).

x1 x2 x3 x4 x5

τ1 (c, b, c, a, c)
τ2 (a, a, b, c, a)
τ3 (a, c, b, c, a)
τ4 (b, a, c, b, c)
τ5 (b, a, a, b, b)
τ6 (c, c, b, c, a)
τ7 (a, c, a, c, a)

(a) Une contrainte c.

x1 x4 x5

a c a

⊗ x2 x3

a b τ2

c b τ3

c a τ7

(b) Un fragment (µ, T ) de c.

Figure 5: Un exemple de fragment de contrainte.

Le test de validité sur les tuples (classiques ou bien compressés) est une
opération très importante dans les algorithmes de filtrage pour les contraintes
table. Pour les contraintes table fragmentée, nous étendons la notion de validité
à un fragment d’une contrainte.

Un fragment (µ, T ) est valide ssi il existe au moins un tuple du produit
cartésien µ ⊗ T qui soit valide. De ce fait, un fragment est valide ssi son motif
est valide et sa sous-table correspondante contient au moins un sous-tuple valide.
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Méthode de compression Plusieurs algorithmes de fouille de données, tels
que Apriori [Agrawal and Srikant, 1994]et FP -Growth [Han et al., 2000], peu-
vent être utilisés pour identifier les motifs les plus fréquents. Dans le cadre de
notre approche, nous n’avons pas besoin d’identifier chaque motif fréquent possi-
ble mais seulement ceux qui sont utiles pour la compression, et en particulier au
plus un motif par tuple. La construction d’un FP -Tree (Frequent-Pattern Tree)
qui est la première étape dans l’algorithme FP -Growth est particulièrement bien
adapté à cet objectif car elle identifie chaque motif long et fréquent. Cette con-
struction ne nécessite que trois parcours de la table de la contrainte.

Nous expliquons brièvement la construction d’un FP -Tree dans notre con-
texte de compression de table, en utilisant la contrainte donnée par la table
3.16(a). L’algorithme prend comme paramètre minSupport qui est le nombre
minimal d’occurrences d’un motif pour qu’il soit considéré comme fréquent. Dans
notre exemple, nous allons utiliser minSupport= 2 pour identifier les motifs qui
apparâıssent au moins deux fois.

Dans une première étape, nous collectons le nombre d’occurrences de chaque
valeur. Par abus de langage, nous appellerons fréquence le nombre d’occurrences
d’une valeur. Cette étape nécessite un parcours de la table. Le résultat sur
notre exemple est donné par la figure 6(a). Ensuite, lors d’un deuxième par-
cours, nous trions l’ensemble des tuples par ordre décroissant de fréquence des
valeurs. Le résultat est donné par la figure 6(b) où la fréquence d’une valeur
est donnée entre parenthèses. Les valeurs qui ont une fréquence en dessous du
seuil minSupport sont retirées du tuple (elles sont identifiés en caractères gras)
parce qu’ils ne peuvent pas apparâıtre dans un motif fréquent. Une fois le tuple
trié et éventuellement réduit, il est inséré dans le FP-Tree qui est essentielle-
ment un arbre de préfixe où chaque branche représente la partie fréquente d’un
tuple et chaque nœud contient le nombre de branches qui partagent ce nœud.
Chaque arête liant un parent à son enfant est étiquetée avec une valeur. Le
nœud racine n’est pas étiqueté. La figure 7(a) représente le FP-Tree obtenu sur
notre exemple. Le premier tuple inséré dans l’arbre est le début de τ1 qui est
(x1 = c, x3 = c, x5 = c). Cela crée la branche la plus à gauche de l’arbre. Chaque
nœud de cette branche a initialement une fréquence de 1. Le deuxième tuple
inséré est (x4 = c, x5 = a, x1 = a, x2 = a, x3 = b) qui crée la troisième branche à
gauche dans l’arborescence (chaque nœud ayant une fréquence de 1 à cette étape).
Lorsque τ3 est insérée, la nouvelle branche (x4 = c, x5 = a, x1 = a, x2 = c, x3 = b)
partage ses trois premières arêtes avec la dernière branche. De ce fait, les
fréquences des nœuds correspondants sont incrémentées à 2. Les autres tuples
sont insérés de la même façon. Finalement, les nœuds ayant une fréquence en
dessous du seuil minSupport sont supprimés. L’arbre restant est représenté avec
des lignes épaisses et entouré par une ligne en pointillés sur la figure 7(a). Il faut
maintenant identifier les motifs du FP-tree qui sont utiles pour la compression.
Chaque nœud de l’arbre correspond à un motif fréquent µ qui peut être lu sur
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x1 x2 x3 x4 x5

a 3 3 2 1 4
b 2 1 3 2 1
c 2 3 2 4 2

(a) Les fréquences.

τ1 (2)x1 = c (2)x3 = c (2)x5 = c (1) x2 = b (1) x4 = a
τ2 (4)x4 = c (4)x5 = a (3)x1 = a (3)x2 = a (3)x3 = b
τ3 (4)x4 = c (4)x5 = a (3)x1 = a (3)x2 = c (3)x3 = b
τ4 (3)x2 = a (2)x1 = b (2)x3 = c (2)x4 = b (2)x5 = c
τ5 (3)x2 = a (2)x1 = b (2)x3 = a (2)x4 = b (1) x5 = b
τ6 (4)x4 = c (4)x5 = a (3)x2 = c (3)x3 = b (2)x1 = c
τ7 (4)x4 = c (4)x5 = a (3)x1 = a (3)x2 = c (2)x3 = a

(b) Les tuples triées selon un ordre décroissant de fréquence.

Figure 6: Les deux première étapes de compression.

le chemin menant de la racine au nœud lui-même. La fréquence f de ce motif
est donnée par le nœud lui-même. Les gains qui peuvent être obtenus par la
factorisation de ce motif fréquent est |µ| × (f − 1) valeurs (on peut supprimer
toutes les occurrences du motif, sauf une). Dans notre exemple, pour la première
branche en gras, nous pouvons voir qu’en utilisant le motif (x4 = c, x5 = a),
nous gagnons six valeurs, avec le motif (x4 = c, x5 = a, x1 = a) nous gagnons
également 6 valeurs tandis qu’on ne gagne que 4 valeurs avec la branche complète
(x4 = c, x5 = a, x1 = a, x2 = c). Par conséquent, nous réduisons l’arbre en sup-
primant les nœuds qui offrent un gain moindre que leur père. Les feuilles de
l’arbre obtenu représentent les motifs fréquents utilisé dans notre compression :
(x4 = c, x5 = a, x1 = a) et (x2 = a, x1 = b). Pour terminer, nous créons un
fragment pour chaque motif fréquent que nous avons identifié. Ces fragments
seront remplis lors d’un dernier parcours de la contrainte. Pour chaque tuple,
nous utilisons le FP-tree pour identifier si le tuple (trié) commence par un motif
fréquent. Dans ce cas, nous ajoutons le reste du tuple à la sous-table correspon-
dante. Les tuples qui ne commencent pas par un motif fréquent sont ajoutés au
fragment par défaut.

L’algorithme 27 résume les différentes étapes du processus de compression.

Algorithme de filtrage Afin d’appliquer GAC sur les contraintes table frag-
mentées, notre idée est d’adapter la technique (STR), et plus précisément la
variante STR2 optimisée. Comme une contrainte table fragmentée est composée
de plusieurs fragments, chacune composée d’un motif et d’une sous-table, le pro-
cessus de filtrage que nous proposons agit à deux niveaux distincts. Au niveau
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(a) L’arbre des péfixes fréquents (FP-tree).

x1 x4 x5

a c a

⊗ x2 x3

a b τ2

c b τ3

c a τ7

x1 x2

b a

⊗ x3 x4 x5

c b c τ4

a b b τ5

∅
⊗ x1 x2 x3 x4 x5

c b c a c τ1

c c b c a τ6

(b) Table compressée.

Figure 7: FP-tree et la table compressée.

haut, la validité de chaque fragment est déterminée, et au niveau bas, la validité
de chaque couple (motif, sous-tuple) est vérifiée. Rappelons qu’un fragment est
valide ssi à la fois son motif est valide et au moins un sous-tuple de la sous-table
est valide (voir la définition ).

Une contrainte table fragmentée c est représentée par un tableau entries[c]
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Algorithm 2: compress-STR-slice(c: Constraint, minSupport: float)

// Initialization of frequencies
1 foreach i ∈ length(frequencies) do
2 frequencies[i]← 0

// First scan:compute the frequency of each value of c
3 foreach τ ∈ table(c) do
4 foreach v ∈ τ do
5 frequencies[v]++

// Second scan:build FP-Tree

6 foreach τ ∈ table(c) do
// sorting τ and removing values less frequent than

minSupport
7 τ ← sortTuple (τ , frequencies, minSupport)

// insert τ into FP-Tree by updating nodes frequency

8 addTuple(root(FP-Tree),τ)

// removing nodes less frequent than minSupport or such that

|µ| × (f − 1) is smaller than for their parents

9 pruneTree(root(FP-Tree),minSupport,0)
// Third scan:compress c

10 foreach τ ∈ table(c) do
11 µ← searchPattern(root(FP-Tree),τ)
12 if µ 6= nil then
13 entry ← getEntry(entries[c],µ)
14 if entry = nil then

// There is no entry for this pattern

15 entry ← addEntry(entries[c],µ)

16 addSubTuple(entry,τ \ µ)

17 else
18 addSubTuple(defaultEntry,τ)

de p fragments. La gestion des fragments valides, appelés fragments courants 1,
est effectuée comme suit :

• entriesLimit[c] est l’indice du dernier fragment courant dans entries[c].
Les éléments de entries[c] aux indices allant de 1 à entriesLimit[c] sont
les fragments courants de c.

1Les fragments courants correspondent aux fragments valides obtenus comme résultat du
dernier appel de l’algorithme.
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• la suppression d’un fragment (qui est devenu invalide) à l’indice i est faite
par l’appel à la fonction removeEntry(c, i). Cet appel effectue une permu-
tation entre les fragments d’indice i et entriesLimit[c], puis décrémente
entriesLimit[c]. Notez que l’ordre initial de fragments n’est pas conservé.

• La restauration d’un ensemble de fragments se fait simplement en
changeant la valeur de entriesLimit[c].

Chaque fragment de entries peut être représenté comme un enregistrement
composé d’un champ pattern et un champ subtable. Plus précisément :

• le champ pattern enregistre une instanciation partielle µ, et peut être
représenté en pratique comme une structure composée de deux tableaux :
un pour les variables, la portée du motif, et l’autre pour les valeurs.

• la structure subtable stocke une sous-table T et peut être représentée en
pratique comme une structure composée de deux tableaux : un pour les
variables, à savoir la portée de la sous-table T , et d’autre part, un tableau
à deux dimensions, pour les sous-tuples.

Dans notre présentation, nous allons traiter directement µ et T sans tenir compte
de tous les détails d’implantation. Par exemple, T sera considéré comme un
tableau à deux dimensions. La gestion de l’ensemble des sous-tuples valides,
appelés sous-tuples courants de T , est réalisée comme suit :

• limit[T ] est l’indice du dernier sous-tuple courant dans T . Les éléments de
T aux indices allant de 1 à limit[T ] sont les sous-tuples courants de T .

• la suppression d’un sous-tuple (qui est devenu invalide) à l’indice i est
effectuée par un appel à la fonction removeSubtuple(T, i). Cet appel ef-
fectue une permutation entre les sous-tuples à indices i et limit[T ], puis
décrémente limit[T ]. Notez que l’ordre initial de sous-tuples n’est pas
conservé.

• la restauration d’un ensemble de sous-tuples se fait simplement en
changeant la valeur de limit[T ].

Notez que la gestion des fragments courants et sous-tuples courants utilise
les mêmes principes que ceux de STR. En outre, comme dans [Lecoutre, 2011],
nous utilisons deux ensembles de variables, appelés Sval et Ssup. L’ensemble Sval

contient des variables non affectées (et éventuellement, la dernière variable as-
signée) dont les domaines ont été réduits depuis le dernier appel de l’algorithme
de filtrage sur c. Pour configurer Sval, nous avons besoin d’enregistrer la taille du
domaine de chaque variable x juste après l’exécution de STR-slice sur c : cette
valeur est enregistrée dans lastSize[x]. L’ensemble Ssup contient des variables
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non affectées de la contrainte c dont les domaines contiennent chacun au moins
une valeur pour laquelle un support doit être trouvé. Ces deux ensembles perme-
ttent de restreindre les itérations sur les variables à celles qui sont uniquement
pertinentes. Nous utilisons également un tableau gacValues[x] pour chaque
variable x. A tout moment, gacValues[x] contient toutes les valeurs de dom(x)
pour lesquelles un support a déjà été trouvé : par conséquent, les valeurs d’une
variable x pour lesquelles on n’a pas trouvé de support sont exactement ceux de
dom(x) \ gacValues[x]. Notez que les ensembles Sval and Ssup sont initialement
définis par rapport à la portée de c. Cependant, pour chaque sous-table, nous
aussi allons utiliser des ensembles locaux Slval et Slsup de Sval et Ssup comme
expliqué plus loin.

L’algorithme 30 est une procédure de filtrage, appelé STR-slice, qui établit
GAC sur une contrainte table fragmentée c appartenant à un CN N .

Résultats expérimentaux Dans la table 3.6, nous comparons les comporte-
ments respectifs de STR1, STR2, STR3, MDD et STR-slice sur différentes in-
stances 2 impliquant des contraintes table positives d’arité supérieure à 2. Nous
utilisons MAC avec dom/ddeg comme choix d’ordonnancement des variables et
lexico comme heuristique de choix de valeur, pour résoudre tous ces problèmes.
Une observation générale de cette expérimentation préliminaire est que STR-slice
concurrence STR2 et STR3, sans toutefois l’emporter clairement.

L’utilisation de la La cohérence d’arc singleton

en parallèle pour l’amélioration de la recherche

Notre approche est basée sur une architecture de mâıtre/esclaves où le mâıtre
est un solveur CSP séquentiel et les différents esclaves aident leur mâıtre durant
le processus de la recherche. Ce solveur principal transmet son instantiation
courante à ses esclaves qui essayeront de déduire des informations pertinentes en
exploitant des niveaux différents de cohérence. Dès que de nouveaux faits sont
découverts, ils sont transmis au solveur principal qui les prend en compte dès que
possible. Notre but est de minimiser la synchronisation entre le solveur principal
et les esclaves. Dans notre approche, le solveur principal et les différents esclaves
utilisent des cœurs différents du même hôte.

La cohérence d’arc singleton (SAC) [Debruyne and Bessiere, 1997]
est une cohérence forte trop lourde à établir pendant la recherche
[Lecoutre and Prosser, 2006]. Par contre, dans une solveur parallèle les
cœurs disponible peuvent effectuer ces tests SAC gratuitement ( du point de
vue wall-clock). Les littéraux que l’on découvre SAC incohérent sont transmis
au mâıtre pour les éviter dans ses décisions futures.

2disponibles sur http://www.cril.univ-artois.fr/CSC09.
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Algorithm 3: STR-slice(c: constraint):set of variables

// Initialization of sets Sval and Ssup, as in STR2

1 Sval ← ∅
2 Ssup ← ∅
3 if lastPast(P ) ∈ scp(c) then
4 Sval ← Sval ∪ {lastPast(P )}
5 foreach variable x ∈ scp(c) | x /∈ past(P ) do
6 gacValues[x]← ∅
7 Ssup ← Ssup ∪ {x}
8 if |dom(x)| 6= lastSize[c][x] then
9 Sval ← Sval ∪ {x}

10 lastSize[c][x]← |dom(x)|

// Iteration over all entries of c
11 i← 1
12 while i ≤ entriesLimit[c] do
13 (µ, T )← entries[c][i] // ith current entry of c
14 if isValidPattern(µ) and then scanSubtable(T ) then
15 foreach variable x ∈ scp(µ) | x ∈ Ssup do
16 if µ[x] 6∈ gacValues[x] then
17 gacValues[x]← gacValues[x] ∪ {µ[x]}
18 if |dom(x)| = |gacValues[x]| then
19 Ssup ← Ssup \ {x}

20 i← i+ 1

21 else
22 removeEntry(c, i) // entriesLimit[c] decremented

// domains are now updated and Xevt computed, as in STR2

23 Xevt ← ∅
24 foreach variable x ∈ Ssup do
25 dom(x)← gacV alues[x]
26 if dom(x) = ∅ then
27 throw INCONSISTENCY

28 Xevt ← Xevt ∪ {x}
29 lastSize[c][x]← |dom(x)|
30 return Xevt

La figure 4.1 décrit l’architecture de notre approche. En fait, chaque mâıtre et
esclaves ont leur propre copie du problème. Le mâıtre résout le problème tandis
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Instance STR1 STR2STR3 MDD STR-
slicea7-v24-d5-ps0.5-psh0.7-9 879 334 367 25.5 200 (69% – 5.41)

a7-v24-d5-ps0.5-psh0.9-6 353 195 324 16.6 174 (62% – 5.82)

bdd-21-2713-15-79-11 78.5 23.5 48.5 82.6 31.7 (88.05% – 0.28)

crossword-ogd-vg12-13 799 342 208 > 1, 200 242 (73.46% – 0.74)

crossword-uk-vg10-13 1,173 576 589 > 1, 200 598 (89.63% – 0.48)

Table 4: Le temps CPU sur quelques instances.

que les esclaves établissent SAC sur quelques littéraux du problème. Une pile
de décisions est associée à chaque mâıtre et esclave. Le mâıtre stocke toutes les
décisions positives et négatives faites dans sa propre pile de décisions tandis que
les esclaves les copient seulement dans leurs piles, chaque fois qu’il y a de nouvelles
décisions. Cette pile décrit l’état du problème de chaque entité. Tous les esclaves
testent la cohérence des littéraux qui sont stockés dans la file de littéraux qui est
une structure de données partagée entre tous les acteurs. Établir la cohérence
SAC sur ces littéraux produit de nouveaux faits, de nouveaux messages sont alors
transférés dans la file de messages qui est une structure de données partagée entre
le mâıtre et les esclaves. Le mâıtre à son tour extrait des messages de la file de
messages pour les exploiter dans son processus de résolution en évitant ainsi des
échecs.

La pile de décisions La pile de décision stocke toutes les décisions faites par
le solveur. Elles peuvent être positives (assignation) ou négatives (réfutation).
Chaque décision positive définit un niveau auquel correspond un horodatage qui
indique l’instant ou cette décision a été prise. Cet horodatage est obtenu par un
compteur global qui est initialisé à 0 et incrémenté chaque fois qu’une décision est
prise. Ces informations sont utilisées pour identifier les modifications de la pile
de décision. En fait, un horodatage est seulement associé aux décisions positives
qui est une caractéristique du solveur AbsCon [Lecoutre and Tabary, 2007]. Des
décisions positives sont stockées dans la pile dans un ordre consécutif. Quand un
retour arrière est effectué, la valeur causant l’échec est supprimée du domaine de
sa variable et cette réfutation est ajoutée au niveau précédent.

Les esclaves obtiennent initialement une copie P ′ du problème P qui est
traité par le mâıtre (des variables, des domaines, des contraintes). Pour atteindre
le même état de recherche que le mâıtre, les esclaves peuvent soit copier le nouvel
état du problème ou obtenir seulement l’ensemble des décisions faites jusqu’ici et
les ré-appliquer de nouveau. En fait, dans une itération, ils copient d’une manière
incrémentale la pile de décisions du mâıtre (c’est-à-dire la liste de décisions prises
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Figure 8: Vue d’ensemble de l’architecture.

par le mâıtre), reproduisent le filtrage fait par le mâıtre après ces décisions pour
atteindre le même état que le mâıtre et exécutent ensuite leur propre cohérence.
La copie progressive de la pile de décisions consiste, d’abord, à identifier la partie
de la pile qui est identique dans le mâıtre et dans la copie de l’esclave et ensuite la
reproduction de chaque décision prise par le mâıtre après cette partie commune. .
L’esclave obtient d’abord l’indicateur de pile actuel du mâıtre et identifie ensuite
la dernière décision qui a le même horodatage que le mâıtre. Alors, l’esclave
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copie chaque décision du mâıtre à partir de cette dernière décision commune.
Puisque le mâıtre peut effectuer un retour arrière entre temps, l’esclave vérifie
alors que la dernière décision qu’il a copiée ait toujours le même horodatage que
dans le mâıtre. Si ce n’est pas le cas, le mâıtre a fait un retour arrière pendant
la copie et l’esclave reprend sa copie de la pile de décisions.

La file de messages Une fois qu’un esclave a une copie stable de l’état du
mâıtre, il choisit un nouveau littéral (x, a) dans la file globale de littéraux et
vérifie si le littéral (x, a) est SAC-cohérent. Si ce n’est pas le cas, l’esclave
produit un message contenant l’information x 6= a et son niveau de décision
actuel et un horodatage où ces informations ont été déduites. Le message est
stocké dans la file de Messages. Le mâıtre extraira ces informations quand il est
prêt à les l’utiliser. Après que le test SAC a été effectué sur un littéral (x, a),
il est remis à la file de littéraux, en mettant à jour sa priorité, pour tester à
nouveau sa cohérence plus tard. L’algorithme 36 illustre l’établissement de la
cohérence SAC sur l’ensemble de littéraux de la file de littéraux.

Algorithm 4: enforceConsistencyOnLiterals(Pi: Constraint Network of
slave i ,LiteralsQueue: Queue of literals)

1 valueFound← false
2 while ¬valueFound do
3 literal← getLiteral(literalsQueue)
4 if ¬assigned(literal.var) and |dom(literal.var)| > 1 then
5 valueFound← true
6 else
7 literal.countdown - -
8 insert literal to literalsQueue

// while the problem is not solved, there is always a value to

test

9 assign literal.val to literal.var
10 consistent← GAC(P, literal.var)
11 backtrack()

// going back to the previous level in order to test more

pairs

12 if ¬consistent then
13 literal.priority++
14 putMessage(currentLevel, timeStamp[level], literal)

// Putting the inferred result in the queue of messages

15 literal.countdown - -
16 insert literal to literalsQueue
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Avant qu’une décision ne soit prise, le mâıtre vérifie si quelques informations
ont été déduites par les autres esclaves. Ceci est fait en vérifiant le contenu de
la file de messages, qui est lue par le mâıtre et écrite par les esclaves. Quand un
message est extrait de cette file, le mâıtre vérifie, en premier lieu, si l’inférence
est toujours cohérente par rapport à l’état actuel du solveur. Si le message n’est
pas cohérente, il est ignoré. Autrement, l’inférence est prise en compte.

En fait, un message contient deux informations principales :

• le littéral : la paire (variable, valeur) pour éviter dans des assignations
futures;

• (niveau, horodatage) : le niveau de la paire (dans l’arbre de recherche) et
son horodatage dans lequel la propriété ”le littéral est SAC-incohérent” est
toujours pertinente.

Les algorithmes 34 et 35 décrivent la gestion des messages par le mâıtre.
L’algorithme 35 illustre le processus d’extraction des messages par le mâıtre
avant chaque décision prise. La validité du message est retournée par la fonction
34. Une fois que le mâıtre vérifie que le message est toujours pertinent, il le
stocke dans sa propre structure de données, appelée setOfInferences. En fait,
setOfInferences est une table où setOfInferences[i] définit les messages extraits et
utilisés au niveau i. Grâce à cette structure de données, le mâıtre peut réutiliser
ces inférences dans des niveaux plus hauts, quand un retour arrière est effectué.

Algorithm 5: isValidMessage(msg : Message): Boolean

1 if msg.level ≤ currentLevel and
msg.timeStamp = timeStamp[msg.level] then

2 return true // the message msg is still relevant

3 return false

La file de littéraux Pour exécuter les différents tests SAC, les littéraux
du problème sont regroupés dans une file de Littéraux. Les différents esclaves
coopèrent pour examiner chaque littéral possible aussi souvent que possible.
Puisque quelques littéraux vont plus probablement devenir SAC-incohérent, nous
utilisons des priorités pour tester ces littéraux plus souvent que les autres. Donc,
pour chaque littéral dans la file de Littéraux corresponds une priorité, qui est
incrémentée quand le littéral est identifié comme SAC-incohérent (voir la ligne
13 de l’algorithme 36). Pour gérer cette priorité nous utilisons l’algorithme Com-
pletely Fair Scheduling (CFS) [Li et al., 2009] qui assure l’exécution du processus
ayant utilisé le minimum de temps en premier lieu et donc les processus sont or-
donnés en fonction du temps d’exécution utilisé.
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Algorithm 6: applyMessages(hasBacktracked : Boolean)

1 if hasBacktracked then
2 foreach i ∈ [currentLevel+1,levelBeforeBacktrack] do
3 foreach msg : setOfInferences[i] do
4 if isValidMessage(msg) then
5 remove msg.literal.val from dom(lmsg.iteral.var)
6 add msg to setOfInferences [currentLevel ]

7 clear setOfInferences[i]
// removing the inferences stored at level i

8 foreach msg : msgQueue do
9 if isValidMessage(msg) then

10 remove msg.literal.val from dom(msg.literal.var)
11 add msg to setOfInferences [currentLevel ]

12 remove msg

Amélioration de la recherche L’algorithme 37 décrit l’algorithme de
recherche utilisé par le mâıtre. En fait, nous utilisons l’algorithme de recherche
classique MAC. En plus, on intègre l’extraction de message (ligne 4): un ap-
pel à l’algorithme 35 est effectué pour pouvoir tirer profit des faits découverts
par l’ensemble des esclaves. De cette manière, les valeurs SAC-incohérents sont
supprimés de leurs domaines respectifs en vue de les éviter dans les prochaines
décisions.

Résultats expérimentaux Les tables 4.2 et 4.4 illustrent les temps moyens
(en wall clock) pour quelques séries d’instances en utilisant respectivement les
heuristiques dom/wdeg et dom/ddeg.

Contrairement à nos attentes, notre approche semble être moins efficace que
l’algorithme de recherche le plus utilisé MAC. Ceci pourrait être dû au fait que les
valeurs incohérentes sont, en fait, facilement déduites et par la suite supprimées
par le mâıtre par la propagation. Ceci implique que les informations envoyées
ne sont pas aussi fortes que nos attentes pour pouvoir accélérer la recherche de
mâıtre. L’heuristique de choix de variable pourrait être aussi la raison derrière
l’échec de notre approche. En fait, une analyse approfondie montre que même
dans une résolution séquentielle établissant une cohérence forte gratuitement ne
peut pas impliquer une réduction importante de l’espace de recherche ce qui
explique les résultats obtenus par notre approche.
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Algorithm 7: solveProblem(P : Constraint network)

1 finished← false
2 hasBacktracked← false
3 while ¬finished do

// infer all not used messages

4 applyMessages(hasBacktracked)
// select new pair (variable,value) to assign

5 var ← getNextVariable(variableOrderingHeuristic)
6 val← getNextValue(valueOrderingHeuristic, var)
7 assign var to val
8 levelBeforeBacktrack ← |past(P )|
9 consistent← checkConsistencyAfterAssignment(P )

10 if consistent and |past(P )| = n then
11 display solution
12 finished← true

13 else
14 while ¬consistent do
15 backtrack()
16 hasBacktracked← true
17 remove val from dom(var)
18 consistent← checkConsistencyAfterRefutation(P )
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Series #inst MAC MSAC SAC+MAC Par(7)

langford 17 90.55 905.32 391.14 408.16

queen 7 785.85 4143 2382 235.42

quennsKnight 22 1473 162.39 165.97 1264

rand-8-20-5-18-800 10 45.91 517.68 1124 93.20

fapp25-2230 12 46.95 620.83 48.80 41.93

ewddr2-10-by-5 10 1.545 6.589 2.336 3.026

cc 13 2.772 19.62 2.837 13.46

BlackHole-4-4-e 10 0.458 7.858 0.485 1.110

Table 5: Le temps wall claock moyen pour des séries d’instances en utilisant
l’heuristique dom/wdeg.

Series #inst MAC MSAC SAC+MAC Par(7)

langford 17 77.828 830,090 76.995 397.311

queen 7 845.799 4,659.207 24,443.690 319.756

queensKnight 22 3,446.051 160.044 166.904 1,475.197

rand-8-20-5-18-800 10 20.221 204.801 22.192 34.837

fapp25-2230 12 46.246 619.829 49.241 43.191

ewddr2-10-by-5 10 1.518 6.888 2.362 3.046

cc 10 53.004 67.663 54.017 13.422

BlackHole-4-4-e 10 0.493 11.354 0.498 1.156

Table 6: Le temps wall claock moyen pour des séries d’instances en utilisant
l’heuristique dom/ddeg.

Conclusion

Cette thèse s’articule autour des techniques d’optimisation de la résolution des
CSPs en raisonnant sur plusieurs axes.

Dans la première partie, nous traitons la compression des contraintes table.
Vu l’expressivité offerte par ces contraintes aux utilisateurs non experts, son util-
isation est courante dans le monde industriel. Au fil du temps, le volume des
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données manipulées ne cesse d’augmenter ce qui implique l’utilisation de struc-
tures de données compactes pour les stocker, et aussi des algorithmes de filtrage
optimisés pour les gérer pendant le processus de résolution. Dans cette thèse,
nous proposons deux méthodes différentes pour la compression des contraintes de
table. Les deux approches sont basés sur la recherche des motifs fréquents pour
éviter la redondance. Cependant, la façon de définir un motif, la détection des
motifs fréquents et la nouvelle représentation compacte diffère significativement.
Les résultats expérimentaux montrent que l’approche STRc permet d’avoir une
compression importante, mais comparée aux variantes STR il rivalise seulement
avec STR1. Quant à STR-slice, les expérimentations montrent des résultats
plus compétitifs où STR-slice supplante STR2 et parfois STR3 malgré qu’elle
est pénalisée parfois par le coût de compression.

La seconde partie est consacrée à une autre façon d’optimiser la résolution
de CSP qui est l’utilisation d’une architecture parallèle. Nous proposons une
méthode où nous utilisons une architecture parallèle pour améliorer le processus
de résolution en établissant des cohérences parallèles. En fait, les esclaves en-
voient à leur mâıtre le résultat obtenu après avoir établi la cohérence partielle
en tant que nouveaux faits. Le mâıtre, à son tour essaye de profiter d’eux en
enlevant les valeurs correspondantes. Contrairement à ce qu’on pensait, le travail
fait par les esclaves n’implique pas d’amélioration significative du processus de
résolution.
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Introduction

Constraint Programming (CP) is a powerful paradigm used for modeling
and solving combinatorial constraint problems that relies on a wide range of
techniques coming from artificial intelligence, operational research, graph theory,
. . . , etc. The basic idea of constraint programming is that the user expresses
its constraints and a constraint solver seeks a solution. A constraint expresses
a restriction on the combinations of possible values assigned to variables. A
constraint network is defined by a set of variables, each one with its own domain,
and by a set of constraints. CP can be used for the most of our daily problems
such as Scheduling problems. For example, in order to make a school schedule,
we should take into consideration various constraints such as professors and
classrooms availability. In the Information Technology (IT) field, “Constraint
programming is an advance that IT has ever done that is closest to the Holy
Grail of programming: the user defines the problem, the computer solves it.”
Eugene C. Freuder.

Constraint satisfaction problems (CSP) [Montanari, 1974], is a framework
at the heart of CP problems. They correspond to decision problems where we
seek for states or objects satisfying a number of constraints or criteria. These
decision problems have two answers to the question they encode: true, if the
problem admits a solution, false, otherwise. CSPs are the subject of intense
research in both artificial intelligence and operations research. Many CSPs
require the combination of heuristics and combinatorial optimization methods
to solve them in a reasonable time.

Solving CSP instances can quickly become difficult when the order of
problem instances grow. Solvers are composed of two important components:
“search” and “inference”. In fact, the “inference” mechanism refers to making
deductions, whereas, the “search” mechanism consists in building a solution
by extending iteratively a partial solution. In order to build a solution, or to
prove that no solution exists, a solver alternates between search and inference.
It makes a new decision to extend a partial solution and then makes as many
deductions as possible. Deductions could be, for example, removing all values
that could not appear in a solution. When there are no more deductions that
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could be inferred from the last decision, the solver makes a new decision. In
fact, the decision is made with respect to a given heuristic, i.e., the solver
assigns a value to a variable chosen by the heuristic supposing that this choice
could speed up the search or lead to a solution. This is not always the case,
that is the reason why the solver could return back to the previous decisions,
concluding that the last decision leads to a failure and, thus, no solution could
be found from there.

With the improvement of computers, larger and larger problems can be
solved. However, the size of industrial problems grow faster which requires a
vast amount of memory space to store them and entail great difficulties to solve
them. In the late decades, different works were proposed in order to deal with
large problems.

On the one hand, several approaches were proposed in order to
reduce the memory space required to represent constraints and, in
particular, table constraints which are an extensional form of con-
straints. Different approaches use compact data structures to represent
table constraints such as Tries [Gent et al., 2007], Multi-valued Deci-
sion Diagrams (MDDs) [Cheng and Yap, 2010] and Deterministic Fi-
nite Automata (DFA) [Pesant, 2004]. Others proposed new compact
representations such as Compressed tuples [Hubbe and Freuder, 1992],
Short supports [Nightingale et al., 2011, Nightingale et al., 2013],
Smart tuples [Mairy et al., 2015] and Data-mining based approaches
[Jabbour et al., 2013a, Jabbour et al., 2013b].

On the other hand, different approaches were proposed in order
to speed-up the resolution time. We distinguish the use of paral-
lel computing. The problem is then solved using different cores. We
distinguish different techniques such as Work Sharing [Schulte, 2000,
Régin et al., 2013, Régin et al., 2014], Work Stealing [Sleep, 1981,
Kotthoff and Moore, 2010, Kotthoff and Moore, 2010, Chu et al., 2009],
Multi-Agent Search [Rao and Kumar, 1988, Bordeaux et al., 2009] and Port-
folios [Gomes and Selman, 2001, O’Mahony et al., 2008, Amadini et al., 2015,
Dasygenis and Stergiou, 2014].

Outline

In this thesis, we focus on Constraint Satisfaction Problems and, in particular,
the different techniques used to reduce both the required memory space and the
resolution time. The thesis is organized as follows:

• In Chapter 1, we introduce the background for constraint satisfaction
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problems (CSP) that we use in this thesis. We present, then, various
consistencies and the algorithms used to enforce such consistencies. Fur-
thermore, we describe different search algorithms such as Look-back ap-
proaches, Look-ahead approaches and Maintaining Arc Consistency search
algorithm. Finally, we present some heuristics that are used to guide the
search to the most promising research areas.

• Chapter 2 is divided into two main parts. In a first place, we investigate
different representations of table constraints and the used algorithms to
filter them. In a second place, we introduce the background for parallel
computing that we use in this thesis. We present, then, various approaches
of constraint programming using parallel computing.

• In Chapter 3, we propose two different compression techniques for table
constraints. Each of them presents a different form of compressed table
constraint aiming to reduce time and space complexity. For each approach
we describe the compression method used to obtain the new form of table
constraints and also the filtering algorithm used during search. The first
work STRc[Gharbi et al., 2013] was presented at JFPC 2013 and CP 2013
(Doctoral Program). The second work STR-slice [Gharbi et al., 2014] was
presented at CPAIOR 2014.

• In Chapter 4, we give a new approach for solving a CSP instance by
enforcing consistencies in parallel. In fact, we explore another way of using
a parallel architecture in which a main solver is helped by side workers
that partially establish consistencies, which are otherwise two heavy to be
maintained by the main solver.
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Background
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1.1. INTRODUCTION TO CSP

Constraint Programming (CP) is a framework for the representing and
solving combinatorial constrained problems. In this chapter, we present the
different basis of this framework. Since constraint solvers rely on “inference”
and “search” techniques, we introduce both of them.

This chapter is organized as follows:

• In Section 1.1, we introduce the different features of constraint satisfaction
problems;

• In Section 1.2, we describe several consistencies;

• In Section 1.3, we present Generalized Arc Consistency (GAC), the most
important consistency used in constraint satisfaction and the algorithms
enforcing GAC on so-called table constraints;

• In Section 1.4, we describe another consistency, Singleton Arc Consistency
(SAC), and its different variants;

• In Section 1.5, we describe the most used search algorithm, called MAC,
as well as many other techniques used in order to look for a solution(s);

• Finally, we present in Section 1.6 the heuristics commonly used to guide
the search .

1.1 Introduction to CSP

1.1.1 Definitions

In this section, we introduce variables and constraints before defining constraint
networks.

Definition 1 (V ariable) A variable generally denoted x has a domain, denoted
dom(x), which is the set of values that can be taken by x. The current domain of
x may change, but it is always included in the initial domain denoted dominit(x)
(dom(x) ⊆ dominit(x)).

We focus, in the context of our work, only on variables with finite domains.
A variable may take different states. For example, a variable can be “as-

signed” or “instantiated” to a value a from its domain (it is“unassigned”, other-
wise). If the domain of a variable contains only one value, it is called a “singleton”
variable.

For defining relations, we need Cartesian products.
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1.1. INTRODUCTION TO CSP

Definition 2 (Cartesian Product) Let D1, D2, . . . , Dr be a sequence of r sets.
The Cartesian product D1 × D2 × · · · × Dr, also denoted

∏r
i=1 Di, is the set

{(a1, a2, . . . , ar)|a1 ∈ D1, a2 ∈ D2, . . . , ar ∈ Dr}.

Example 1 We give an example of a Cartesian product built from domains of
variables x, y and z with dom(x) = dom(y) = dom(z) = {a, b}.

dom(x)× dom(y)× dom(z) =


(a, a, a), (b, a, a),
(a, a, b), (b, a, b),
(a, b, a), (b, b, a),
(a, b, b), (b, b, b)


Definition 3 (Relation) A relation R is defined over a sequence of r sets
D1, D2, . . . , Dr. R is a subset of the Cartesian product

∏r
i=1 Di (R ⊆∏r

i=1 Di).

Example 2 Rxyz is a relation defined over dom(x) × dom(y) × dom(z) (intro-
duced in Example 1).

Rxyz =


(b, a, a),
(b, a, b),
(a, b, a),
(b, b, a)


Definition 4 (Literal) A literal is a pair (x, ai) where x ∈X and ai ∈ dom(x).

Definition 5 (Constraint) A constraint c involves a set of variables called the
scope of c (denoted scp(c)). A constraint c is semantically defined by a relation
denoted rel(c) that exhibits the combinations of values allowed by c for all vari-
ables of its scope (rel(c) ⊆ ∏x∈scp(c) dom

init(x)). The arity of a constraint c is

the size of scp(c), and is usually denoted by r.

We distinguish three forms of constraints: intentional constraints, extensional
constraints and global constraints.

Constraints defined in intension describe, implicitly, the relation between
the variables of its scope by a predicate based on a mathematical expression
or formula. A predicate maps any combination of literals to a Boolean value.
The combination is allowed if the mapped Boolean value is true, otherwise it is
forbidden. The constraint x = y is such an intentional constraint.

Constraints defined in extension, also called table constraints, can be repre-
sented in different equivalent ways. For example:

• An explicit relation that lists the allowed or disallowed combinations of
values (tuples).
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1.1. INTRODUCTION TO CSP

Example 3 cxyz is a ternary constraint represented in extension as
follows:

x y z
(b, a, a)
(c, a, c)
(a, b, a)
(b, b, c)

• A compatibility hyper-graph H , H = (V ,E ), where V the set of vertices
(nodes) define the literals and E the set of hyper-edges linking them. Sup-
ported pairs are related by solid hyper-edges, whereas dotted links define
unsupported ones on c. A 2-uniform hyper-graph is a called a graph. For
simplicity, we use graphs in our examples.

Example 4 In Figure 1.1, cxy is a binary constraint represented by a com-
patibility graph. For example, (a, a) and (c, b) are pairs allowed by cxy
whereas (b, a) and (c, c) are disallowed ones.

Figure 1.1: The compatibility graph of constraint cxy such that dom(x) =
dom(y) = {a, b, c}.

Global constraints [Bessiere and van Hentenryck, 2003, Régin, 2011a] are
constraints defined over an unfixed number of variables. This form of constraints
facilitate the problem expression by a user providing a better view of the struc-
ture of the problem. For example, a well-known global constraint is AllDifferent
[Régin, 1994]. This constraint means that all the involved variables must take
different values, i.e. no variable can have the same value as another one. Global
constraints associated with powerful filtering algorithms (presented in Section
1.3) are one of the main strengths of constraint programming.
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1.1. INTRODUCTION TO CSP

Definition 6 (Constraint network) A finite Constraint Network (CN) P is a
triplet < X ,C ,D > where X is a finite set of variables (also denoted vars(P )),
C a set of constraints (also denoted cons(P )) such that ∀c ∈ cons(P ), scp(c) ⊆
vars(P ) and D is the domains of the variables; D = {dom(x)|x ∈X }.

The main numerical features of a constraint network P are as follows:

• n the number of variables;

• d the size of the greatest domain of a variable;

• e the number of constraints;

• r the maximum arity of the constraints.

We define below instantiations and tuples.

Definition 7 (Instantiation) An instantiation I of a set of variables S={x1,
x2, . . . , xr} is a set {(xi, ai) | ∀i ∈ [1, r]; ai ∈ dominit(xi)}
The set of variables S involved in I is denoted vars(I) and each value ai is
denoted I[xi].
An instantiation I is valid iff ∀(x, ai) ∈ I, ai ∈ dom(x).

Definition 8 (Tuple) An r-tuple τ on a constraint c such that scp(c) =
{x1, x2, . . . xr} is a sequence of values (a1, a2, . . . , ar) such that ∀i ∈ [1, r]; ai ∈
dominit(xi). The value ai is denoted by τ [xi].

In the context of this thesis, for simplicity, we make no difference between
a tuple τ = (a1, a2, . . . , ar) and an instantiation I = {(xi, ai)|∀i ∈ [1, r]; ai ∈
dominit(xi)}. We say that I is the corresponding instantiation of τ .

Definition 9 (V alid tuple) An r-tuple τ on a constraint c such that scp(c) =
{x1, x2, . . . xr} is valid iff ∀x ∈ scp(τ), τ [x] ∈ dom(x).

Example 5 Let us consider a constraint cxyz with dom(x)=dom(z)={a, b, c} and
dom(y)={a, c}. τ1=(a, a, b) is a valid tuple since τ1[x] ∈ dom(x), τ1[y] ∈ dom(y)
and τ1[z] ∈ dom(z). However, τ2=(b, b, b) is not valid since τ2[y] 6∈ dom(y).

Definition 10 (Support tuple) An r-tuple τ on scp(c) is a support on the r-
ary constraint c iff τ is a valid tuple which is allowed by c. If τ is a support on
a constraint c involving a variable x and such that τ [x] = a, we say that τ is a
support for (x, a) on c.

In Example 5, τ1 is a support for (x, a), (y, a) and (z, b) on cxyz.
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Definition 11 (Instantiation Projection) Let S be a set of variables and an
instantiation I. The projection of I on S, denoted I[S], is I[S] = {(x, a)|(x, a) ∈
I ∧ x ∈ S}.

Definition 12 (Satisfaction of a Constraint) A constraint c ∈ C is said sat-
isfied by an instantiation I iff scp(c) ⊆ vars(I) and I[scp(c)] ∈ rel(c).

The domains of variables evolve during search which affects the validity of
instantiations. In a constraint network, we distinguish several types of instanti-
ations.

Definition 13 (Partial/Complete Instantiation) Considering a constraint
network P , an instantiation I is said partial if vars(I) ⊂ vars(P ). If vars(I) =
vars(P ), I is a complete instantiation.

Definition 14 (Solution) Considering a constraint network P , an instantiation
I is a solution of P if I is a complete instantiation that satisfies all the constraints
of P .

Definition 15 (Locally consistent Instantiation) Let P =< X ,D ,C > be a
constraint network, and an instantiation I of a subset S of X . I is said locally
consistent iff ∀c ∈ C such that scp(c) ⊆ vars(I), c is satisfied by I.

Definition 16 (Globally consistent/inconsistent Instantiation) An instanti-
ation I is said globally consistent if it can be extended to a solution, otherwise
it is globally inconsistent.

1.1.2 Complexity

In this sub-section, we introduce three main complexity classes:

• P problems for which a polynomial time algorithm exists (O(nk)) such that
n is the size of the problem and k is a constant. In the complexity class P ,
problems can be solved on a deterministic Turing machine [Herken, 1995]
in polynomial time. The AKS (Agrawal–Kayal–Saxena) primality test
[Bornemann, 2003] is a problem belonging to the complexity class P. This
problem consists in determining whether a number is prime or composite;

• NP problems for which a verification algorithm exists to verify, in a de-
terministic way, if a solution to the problem is valid or not in polynomial
time. NP problems can be solved on a non-deterministic Turing machine
in polynomial time. One of the well-known problems of this class is the
integer factorization which is the decomposition of a composite number
into a product of smaller integers.
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The constraint satisfaction problem belongs to the NP-complete complexity class.
The most notable characteristic of NP-complete problems is that the required
time to solve such problems grows quickly as the size of the problem grows (under
the assumption that P 6= NP).

1.1.3 Example of a CSP: Map coloring

We take the example of a problem called “map coloring”. This problem con-
sists in coloring a map in a such way that there is no two adjacent regions
having the same color. We mean by “adjacent” two regions sharing a same
boundary line. The four-color theorem discovered by Francis Guthrie in the
early 1850s (would-be proved by Alfred Bray Kempe in 1879 and proved in
[Appel and Haken, 1977]), claims that “every planar map is four colorable”. To
illustrate that, we take the example of a Tunisian map illustrated in Figure 1.2.

Since our aim is to use only four different colors to color this map, we first
express this problem as a CSP. The four colors that we can use are white(w),
light gray(lg), mid gray(mg) and dark gray(dg) which compose the domain of
the different variables. Figure 1.2 presents all variables of the problem which are
the regions to be colored. We have 24 variables since there are 24 regions. For the
constraint part, we add a binary constraint each time we have two regions sharing
a boundary line. As a consequence, the map coloring problem is formalized as a
constraint network:

• P=< X ,D ,C >;

• X ={xi|i ∈ [0, 23]};

• D={dom(xi)|i ∈ [0, 23]} such that dom(xi) = {w, lg,mg, dg};

• C =



cx0x2 : x0 6= x2 cx0x3 : x0 6= x3 cx0x4 : x0 6= x4 cx1x2 : x1 6= x2

cx1x6 : x1 6= x6 cx1x7 : x1 6= x7 cx2x3 : x2 6= x3 cx2x7 : x2 6= x7

cx3x4 : x3 6= x4 cx3x5 : x3 6= x5 cx3x8 : x3 6= x8 cx3x9 : x3 6= x9

cx4x5 : x4 6= x5 cx5x9 : x5 6= x9 cx6x7 : x6 6= x7 cx6x11 : x6 6= x11

cx7x7 : x7 6= x8 cx7x11 : x7 6= x11 cx7x12 : x7 6= x12 cx7x15 : x7 6= x15

cx9x10 : x9 6= x10 cx10x13 : x10 6= x13 cx11x12 : x11 6= x12 cx11x15 : x11 6= x15

cx11x18 : x11 6= x18 cx12x13 : x12 6= x13 cx12x15 : x12 6= x15 cx12x16 : x12 6= x16

cx12x17 : x12 6= x17 cx13x14 : x13 6= x14 cx14x16 : x14 6= x16 cx15x17 : x15 6= x17

cx15x18 : x15 6= x18 cx16x17 : x16 6= x17 cx17x21 : x17 6= x21 cx18x19 : x18 6= x19

cx18x20 : x18 6= x20 cx18x21 : x18 6= x21 cx19x20 : x19 6= x20 cx20x21 : x20 6= x21

cx20x22 : x20 6= x22 cx20x23 : x20 6= x23 cx21x22 : x21 6= x22 cx22x23 : x22 6= x23


Figure 1.2 shows a solution to the problem where:

• x0 = x1 = x5 = x8 = x14 = x17 = x20 = w
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Figure 1.2: Complete instantiation of the Tunisian map coloring (Solution).

• x2 = x4 = x6 = x9 = x13 = x15 = x19 = x23 = lg

• x10 = x11 = x12 = x21 = mg

• x3 = x7 = x16 = x18 = x22 = dg
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1.2. CONSISTENCY

1.1.4 Solvers

In constraint programming, we distinguish two major steps: modeling problems
and solving them. Modeling problems refers to expressing its variables and con-
straints and solving them means looking for a solution or proving that there does
not exist one.

To model constraint satisfaction problems several modeling lan-
guages have been proposed such as OPL [van Hentenryck, 1999], Zinc
[de la Banda et al., 2006] and Essence [Frisch et al., 2007]. Simple formats
exist also such as XCSP based on XML [Roussel and Lecoutre, 2009].

Several solvers have been developed such as Choco [Rochart et al., 2006],
Gecode [Schulte et al., 2006], Comet [Nyström et al., 2003], Minion
[Gent et al., 2006] and ILOG 1 solver.

In the context of this thesis, we use AbsCon [Lecoutre and Tabary, 2007],
the solver developed at CRIL. We used the instances benchmarks available at
http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html

1.2 Consistency

In order to solve CSP instances, there are two major categories of algorithms
and techniques: “Inference” and “Search”. Since CSP is NP-complete, finding a
solution can be difficult. To speed up this process, we can use inference techniques
whose aim is to simplify the problem typically by reducing the search space. If we
cannot benefit from inference techniques, an “exploration” of the search space,
called “Search” (see Section 1.5), is needed in order to look for a solution.

1.2.1 Definitions

Some inference algorithms and techniques are based on “constraint filtering”
which consists in removing combination(s) of values while preserving constraints
semantics in order to speed up the search space exploration [Montanari, 1974].
This filtering process is described on the basis of “consistencies” which are con-
straint network properties. A consistency corresponds to a certain level of co-
herence. It can be “local”, if it deals with a subset of variables, or “global” if it
concerns the entire network.

Definition 17 (k-consistency) Let P be a constraint network and k be an in-
teger such that 1 ≤ k < n; n = |vars(P )|. P is k-consistent [Freuder, 1978]
iff for every subset of size k − 1 Sk−1 ⊂ vars(P ) and every additional variable
y such that y ∈ vars(P ) \ Sk−1, every locally consistent instantiation I of Sk−1

1www.ilog.com
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on P can be extended to a locally consistent instantiation I
′

such that vars(I
′
)=

Sk−1 ∪ {y}.

A 2-consistent constraint network P is said arc-consistent.
It is important to note that a k-consistent constraint network P is not neces-

sarily j-consistent with 1 ≤ j < k. A stronger property can be defined.

Definition 18 (Strong k-consistency) Let P be a constraint network and k an
integer such that 1 ≤ k < n where n = |vars(P )|. P is strong k-consistent iff it
is j-consistent ∀j ∈ [1, k].

A stronger consistency can be defined over a constraint network P (See Sec-
tion 1.4.3).

Definition 19 (Global consistency) A constraint network P is globally consis-
tent iff it is strongly n-consistent.

We focus, in the context of this thesis, on “Domain-filtering” consistencies
which detect some inconsistent values, in the domains of variables, aiming to
discard them in order to simplify the problem.

Example 6 Figure 1.3 illustrates the practical effect of enforcing a domain-
filtering consistency. Taking the example of map coloring introduced in Section
1.1.3, we present three constraints cx0x2, cx0x3 and cx0x4. The initial domains of
variables x0, x2, x3 and x4 are the same; dom(x0) = dom(x2) = dom(x3) =
dom(x4) = {w, lg,mg, dg}. After assigning w to the variable x0, enforcing
domain-filtering consistency on variables x2, x3 and x4 induces removing the
value w from their domains in order to not violate the constraints semantics
(two neighbor regions cannot have the same color).

In the context of this thesis, we focus on local consistencies which are proper-
ties applied to a subset of variables or constraints. Historically [Montanari, 1974],
distinguished three main consistencies.

• Node Consistency 1-consistency

• Arc Consistency 2-consistency

• Path Consistency

In the next sections, we introduce Arc Consistency and its generalization
GAC and also a stronger consistency SAC.

49



1.3. GENERALIZED ARC CONSISTENCY (GAC)

(a) Initial domains.

(b) Current domains after the assignment x0 = w.

Figure 1.3: Illustration of domain filtering.

1.3 Generalized Arc Consistency (GAC)

Generalized Arc Consistency (GAC) is the most important consistency, which is
a property that corresponds to the maximum level of filtering, used in practice,
when constraints are treated independently.

Definition 20 (Generalized Arc Consistency) Let P be a constraint network,
c a constraint such that c ∈ cons(P ) and x a variable such that x ∈ scp(c). A
literal (x, a) is GAC-consistent iff there is a valid tuple τ ∈ rel(c) such that τ [x] =
a. A variable x is GAC-consistent iff ∀a ∈ dom(x), (x, a) is GAC-consistent. A
constraint c is GAC-consistent iff ∀x ∈ scp(c), x is GAC-consistent. A constraint
network P is GAC-consistent iff ∀c ∈ cons(P ), c is GAC-consistent.

Example 7 Let us consider an allDifferent global constraint on three variables
x, y and z such that dom(x) = dom(z) = dom(y) = {a, b}. If we suppose that x
is assigned to a and y to b, using the domain filtering technique the domain of
z does not contain anymore a possible value since z should be different from x
and y. The allDifferent constraint is thus GAC-inconsistent.

dom(x) = {a,b} =⇒ dom(y) = {a, b} =⇒ dom(z) = {a,b}
Now, if we consider that dom(z) = {a, b, c}, by assigning a to x and b to

y, the variable z could be assigned to c and then the allDifferent constraint is
GAC-consistent.
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dom(x) = {a,b} =⇒ dom(y) = {a, b} =⇒ dom(z) = {a,b, c}

In Section 1.3.2, we explore filtering algorithms which enforce GAC on table
constraints.

1.3.1 Arc Consistency

Arc Consistency (AC) corresponds to GAC when constraints are binary.

Example 8 Let P be a constraint network described by its compatibility graph
in Figure 1.4. The variables of P are vars(P ) = {x, y, z} such that dom(x) =
dom(y) = dom(z) = {a, b, c}. The constraints of P are cons(P ) = {cxy, cxz, cyz}.
These constraints are defined in extension such that cxy = {(a, a), (b, b), (c, c)},
cxz = {(a, b), (b, a), (c, c)} and cyz = {(a, b), (c, a)}. P is not arc-consistent since
there are some values in the domain of vars(P ) which are not arc-consistent.
This is the case of the literals (z, c) and (y, b) that have no supports on cyz.

Figure 1.4: An arc-inconsistent network P .

To enforce AC on P , we proceed to several constraint filterings. We start
by enforcing AC on cyz described in Figure 1.5. The literal (z, c) is not arc-
consistent, so it is removed from the domain of the variable z. Hence, all values
supported by (z, c) lose their support (illustrated by a dotted link) since it is
discarded: cxz, originally arc-consistent, loses a support for (x, c) and becomes
not arc-consistent. The literal (y, b) is also not arc-consistent: it is removed
from dom(y) and the literal (x, b) has no more a support on cxy (originally arc-
consistent). The obtained network, denoted AC(P ) and illustrated in Figure
1.5(b), is still not arc-consistent.

As cxy and cxz become not arc-consistent, we enforce AC on them. The literal
(x, b) does not have a support on cxy, so it is removed from dom(x) causing the
inconsistency of the literal (z, a) on cxz. This is described in Figure 1.6(a). The
literals (z, a) and (x, c) are removed while enforcing AC on cxz (Figure 1.6(b)).
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(a) (y, b) and (z, c) are removed. (b) An arc-inconsistent network.

Figure 1.5: Enforcing AC on cyz.

The literal (y, c) has then no support for all the constraints of P . By removing
(y, c), we obtain the final arc-consistent network (Figure 1.6(c)).

(a) Enforcing AC on cxy. (b) Enforcing AC on cxz.

(c) An arc-consistent network P
′

= AC(P ).

Figure 1.6: Enforcing AC on constraints originally arc-consistent.
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Example 8 shows that enforcing arc-consistency on a constraint net-
work P may lead to removing a literal (x, a) which is in its turn a sup-
port for another literal (y, b). As a consequence, a AC-consistent con-
straint may become not AC-consistent due to a support removal. The pro-
cess of “constraint propagation” is repeated until it reaches a fixed point
[Granas and Dugundji, 2003, Bessiere, 2006] where the constraint network is
arc-consistent (AC(P ) = P ) or an inconsistency is detected due to a domain
wipe-out (AC(P ) = ⊥). Several algorithms have been proposed to enforce

Algorithm Time complexity Space complexity
AC1 O(end3) O(n2)
AC3 O(ed3) O(e+ nd)
AC4 O(ed2) O(ed2)
AC6 O(ed2) O(ed)
AC7 O(ed2) O(ed)

AC2001 O(ed2) O(ed)
AC3rm O(ed3) O(ed)

Table 1.1: The worst-case complexity of several AC algorithms on binary con-
straint networks.

AC: AC1 , AC3 [Mackworth, 1977], AC4 [Mohr and Henderson, 1986], AC6
[Bessiere, 1994], AC7 [Bessiere et al., 1999], AC2001 [Bessiere and Régin, 2001,
Zhang and Yap, 2001] and AC3rm [Lecoutre and Hemery, 2007]. These algo-
rithms have different complexities in terms of time and space (presented in Table
1.1).

We present only both AC3 and AC2001 algorithms. These two algorithms
use the same doAC propagation algorithm (presented in Algorithm 8) calling
Algorithm revise (in line 4) which differs from an AC algorithm to another.
Algorithm 8 takes as input a constraint network P . doAC returns a Boolean
indication; “true” if the algorithm reaches an arc-consistent network and “false”
if an inconsistency is detected (there is an empty domain), denoted AC(P ) = ⊥.
doAC algorithm maintains a propagation queue Q containing literals (c, x) where
c ∈ C and x ∈ scp(c). These literals contained in Q are revised by Algorithm
revise which removes all values a ∈ dom(x) that do not have a support on c. If
revise removes at least one value, it checks if dom(x) = ∅. If it is the case, a
global inconsistency is detected and “false” is returned, otherwise the queue Q
is updated by adding all literals (c’,y) where c’∈ C is a constraint involving x.
All these literals should be revised in the next iteration since it is possible that a
removed literal (x, a) is a support for another literal (y, b) on a constraint c’ (as
shown in Example 8). The constraint propagation achieves its fixed point when
Q is empty (Q = ∅: there is no literal (c, x) to revise) and “true” is returned
indicating that the constraint network respects the AC property.
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Algorithm 8: doAC (P = (X ,D ,C ): Constraint network): Boolean

1 Q← {(c, x)|c ∈ C ∧ x ∈ scp(c)}
2 while Q 6= ∅ do
3 choose then delete (c, x) from Q
4 if revise(c, x) then
5 if dom(x) = ∅ then
6 return false

7 Q← Q∪ {(c’, y)|c’∈ C ∧ x ∈ scp(c’)∧ y ∈ scp(c’)∧ y 6= x∧ c 6= c’}

8 return true

AC3 [Mackworth, 1977] AC3 algorithm uses revise-3 revision technique
(Algorithm 9). Each literal (c, x) is revised in a manner that revise-3 checks
if for each value in the current domain of x, there exists a support on c (Line
3). If a support is found, the checking process continues until each value of
dom(x) is verified. If revise-3 does not find a support for (x, a) on c, this value
is removed from dom(x) (Line 4). revise-3 algorithm returns true iff there is at
least one value removed from dom(x). AC3 algorithm has a time complexity of
O(ed3) where e is the number of constraints of P and d is the size of the greatest
domain of a variable of the network (as presented in Section 1.1.1).

Algorithm 9: revise-3(c: constraint, x:variable): Boolean

// scp(c) = {x, y}
1 modified← false
2 foreach a ∈ dom(x) do
3 if 6 ∃b ∈ dom(y) such that (a, b) ∈ rel(c) then
4 dom(x)← dom(x)\a
5 modified← true

6 return modified

AC2001 [Bessiere and Régin, 2001, Zhang and Yap, 2001] AC2001
has an optimized revise algorithm in a manner that speeds up the support de-
tection process. revise-2001 (presented in Algorithm 10) uses the data structure,
called last, which stores the last support found on a constraint c, such that
scp(c) = {x, y}, for a variable x and a value a. This structure will speed up
the support searching. In other terms, it is not required anymore to iterate, in
each revision, over all values of dom(y) to find a support, but only checking if
last[c, x, a] (last found support) still exists in dom(y) is enough (Line 8). If the
last found support does not exist in dom(y), the searching process continues from
last[c, x, a] position and so looking for a support does not restart from scratch
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(Line 4). This explains why the condition (b > last[c, x, a]) is added. If there
is no “new” support found, the literal (x, a) is considered arc-inconsistent and
it is removed from dom(x) (Line 5), otherwise the “new” found support (y, b)
is stored in last[c, x, a] (Line 8). The time complexity of AC2001 algorithm is
O(ed2) which is reduced compared to AC3 (O(ed3)).

Algorithm 10: revise-2001(c: constraint, x:variable): Boolean

// scp(c) = {x, y}
1 modified← false
2 foreach a ∈ dom(x) do
3 if last[c, x, a] 6∈ dom(y) then
4 if 6 ∃b ∈ dom(y) such that b > last[c, x, a] ∧ (a, b) ∈ rel(c) then
5 dom(x)← dom(x)\a
6 modified← true

7 else
8 last[c, x, a]← b

9 return modified

1.3.2 GAC for Table Constraints

Table constraints, i.e., constraints given in extension by listing the tuples of val-
ues allowed (positive table) or forbidden (negative table) for a set of variables,
are widely studied in Constraint Programming. This is because such constraints
are present in many real-world applications from areas such as design and con-
figuration, databases, and preferences modeling. Sometimes, table constraints
provide the unique natural or practical way for a non-expert user to express her
constraints. So far, research on table constraints has mainly focused on the de-
velopment of fast algorithms to enforce Generalized Arc Consistency and/or to
compress their representation. Algorithms AC3 and AC2001 presented in the
previous section are generalized for n-ary constraints as GAC3 and GAC2001
and could be used for table constraints. We introduce different variants of Sim-
ple Tabular Reduction (STR) technique used to manage table constraints during
search.

For the sake of simplicity, we only consider positive table constraints.

Classical schemes We distinguish two classical schemes for support seeking.
GAC-valid scheme iterates over valid tuples until an allowed one is found. GAC-
allowed scheme iterates over allowed tuples until a valid one is found. Since
iterating over allowed/valid tuple is expensive, several STR variants are pro-
posed to speed up enforcing GAC on table constraints. GAC-valid+allowed
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[Lecoutre and Szymanek, 2006] alternates in iteration over both valid and al-
lowed tuples without any additional data-structure.

Simple Tabular Reduction (STR)

STR [Ullmann, 2007], also called STR1, is one of the most efficient techniques to
enforce GAC on table constraints. This approach differs significantly from the
other techniques and aims to reduce dynamically, and during search, table con-
straints complexities. In fact, enforcing GAC consists in removing invalid tuples
in a manner that the table maintains only the allowed tuples. This technique fa-
cilitates detecting generalized arc-inconsistent values inducing tuples removing.
As a consequence, a table contains only supports. We present STR algorithm
and its optimized variants. However, we will keep the backtracking issues (going
back to the previous search state) for a further section (Section 1.5.1).

The table constraint table[c] is split into two major parts. The first one
contains the allowed valid tuples, also called current tuples, forming the current
table. The remaining part contains all tuples removed at different levels of search.
In our context, a level of search corresponds to the number of positive decisions
made. Managing the set of tuples is provided by:

• position[c] is an array of size t that provides indirect access to the tuples
of table[c]. In fact, this array is used in order to achieve an O(1) permu-
tation since we permute indexes instead of tuples. table[c][position[c][i]]
represents the ith tuple of c. At any given time the values in position[c] are
a permutation of {1, 2, . . . , t}.

• currentLimit[c] is the index of the last current tuple in table[c]. The ele-
ments in position[c] at indexes ranging from 1 to currentLimit[c] are posi-
tions of the current tuples of c. As a consequence, the current table of c is
composed of exactly currentLimit[c] tuples.

• levelLimits[c] is an array of size n+1 such that levelLimits[c][p] is the po-
sition of the first invalid tuple of table[c] removed at search level p. If
there is no tuple removed at level p, levelLimits[c][p]=−1. All tuples
removed at level p (if levelLimits[c][p]6= −1) can be accessed using in-
dexes at locations in array position[c] ranging from currentLimit[c]+1 to
levelLimits[c][p]. levelLimits[c] is exploited in Backtracking and it is in-
dexed from 0 to n. levelLimits[c][0] is used to store the tuples removed at
pre-processing [Benson et al., 1992] (the set of investigations done before
searching for solution(s)) .

• gacValues[c] [Ullmann, 1977] is an array of size r, where r is the arity
of c. To each uninstantiated variable x corresponds a set gacValues[c][x]
containing all values in dom(x) which are proved to have a support when
GAC is enforced on c.
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Figure 1.7: Initialization of STR data structures for a positive table constraint
cxyz; dom(x) = dom(y) = dom(z) = {a, b, c}.

Example 9 To illustrate the use of the different data structures, we describe
the different changes during search. cxyz is a ternary positive table constraint
such that scp(cxyz) = {x, y, z} and dom(x) = dom(y) = dom(z) = {a, b, c}.
rel(cxyz) is presented in Figure 1.7 which describes the initial states of position[c],
levelLimits[c], currentLimit[c] and gacValues[c].

We consider that a decision made at level 1 (for a variable of the constraint
network involving cxyz) induces (by constraint propagation) the removal of (z, a).
STR is then applied (Figure 1.8) such that dom1(x) = dom1(y) = {a, b, c} and
dom1(z) = {b, c}. Tuple τ1 is no longer valid, so it is removed by swapping its
position with the currentLimit position. levelLimits[cxyz][1] is updated to 6 as it
is the position of the first invalid tuple in this level. The currentLimit is also
updated to 5 (the last current tuple)(Figure 1.8(a)). The process is continued by
swapping position[cxyz][1] and position[cxyz][5]. The final result is described in
1.8(c). The array gacValues[cxyz] is updated where gacValues[cxyz][x]=dom1(x),
gacValues[cxyz][z]=dom

1(z) but gacValues[cxyz][y]�= dom1(y). The literal (y, b)
is not supported anymore and will be removed. currentLimit[cxyz] is equal to 3
which means that there are three remaining valid tuples in cxyz after enforcing
GAC. At level 2, the literal (x, a) is removed by propagation. Enforcing GAC
is then required. Figure 1.9 describes the final result where levelLimits[cxyz][2]
is turned to 3 referencing the first removed tuple. The variable y loses also the
value c since gacValues[cxyz][y]={a} �= dom2(y) = {a, c} meaning that this value
is no longer supported by any current tuple of cxyz.

The worst-case time complexity of enforceGAC-STR is O(r
′
d + rt

′
) where

r
′
is the uninstantiated variables (r

′
= |scp(c) \ past(P )|) and t

′
is the current
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(a) Testing the validity of τ1.

(b) Testing the validity of τ6.

(c) STR applied on cxyz; (y, b) is not supported.

Figure 1.8: Enforcing GAC-STR on cxyz after the removal of (z, a) at level 1.
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Figure 1.9: Enforcing GAC-STR on cxyz after the removal of (x, a) at level 2;
(y, c) is not supported.

tuples (past(P ) is the last assigned variable). The worst-case space complexity
of enforceGAC-STR is O(n+ rt).

STR2 [Lecoutre, 2011] An optimized variant of STR is proposed in
[Lecoutre, 2011] where we can distinguish two optimizations.

In a first place, it is useless to continue looking for supports for domain
values if these ones have already been detected GAC-consistent. To avoid such
redundant operations, the Ssup set is introduced. All uninstantiated variables in
scp(c) whose domain contains at least one unsupported value are stored in Ssup.

In a second place, useless validity operations are avoided. It is true that, for
each variable x in scp(c), if there is no backtrack and dom(x) does not change
since the last GAC-STR call, the current value τ [x] ∈ dom(x). A second set,
denoted Sval, is defined which contains all uninstantiated variables in scp(c)
whose domain has been reduced since the last call of GAC-STR.

The used GAC-STR is called enforceGAC-STR2 (presented in Algorithm 11).
The gain obtained through Ssup use is obvious in Lines 16 and 25 where, instead
of iterating over all variables in enforceGAC-STR, enforceGAC-STR2 iterates
only over those contained in Ssup. Initially contains all uninstantiated variables
(Line 7), Ssup set is updated in Line 20 where the variable x is removed if it
has been found that all the value of its domains are supported (|dom(x)| =
|gacValues[c][x]|).

The set Sval contains the last assigned variable if it is involved in scp(c)
(lastPast(P)) and, eventually all variables having a domain smaller than the last
stored size (lastSize[c][x]) in the last call (Lines 4 and 9). The set Sval is used
in isValidSTuple2 (introduced in Algorithm 12) to reduce tests to only variables
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contained in Sval whose domains has not been changed since the last call.

Algorithm 11: enforceGAC-STR2(P :constraint network, c: con-
straint):set of variables

// Initialization of sets Sval and Ssup

1 Sval ← ∅
2 Ssup ← ∅
3 if lastPast(P ) ∈ scp(c) then
4 Sval ← Sval ∪ {lastPast(P )}
5 foreach variable x ∈ scp(c)|x /∈ past(P ) do
6 gacValues[c][x]← ∅
7 Ssup ← Ssup ∪ {x}
8 if |dom(x)| 6= lastSize[c][x] then
9 Sval ← Sval ∪ {x}

10 lastSize[c][x]← |dom(x)|

// Iteration over all current tuples of c
11 i← 1
12 while i ≤ currentLimit[c] do
13 index← position[c][i]
14 τ ← table[c][index]
15 if isValidTuple(c, Sval, τ) then
16 foreach variable x ∈ scp(c)|x ∈ Ssup do
17 if τ [x] 6∈ gacValues[c][x] then
18 gacValues[c][x]← gacValues[c][x] ∪ {τ [x]}
19 if |dom(x)| = |gacValues[c][x]| then
20 Ssup ← Ssup \ {x}

21 i← i+ 1

22 else
23 removeTuple(c, i) // currentLimit[c] decremented

// domains are now updated and Xevt computed

24 Xevt ← ∅
25 foreach variable x ∈ Ssup do
26 dom(x)← gacV alues[c][x]
27 if dom(x) = ∅ then
28 throw INCONSISTENCY

29 Xevt ← Xevt ∪ {x}
30 lastSize[c][x]← |dom(x)|
31 return Xevt // Xevt constains variables with reduced domains
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Algorithm 12: isValidSTuple(c: constraint,Sval:variables, τ : tuple):
Boolean

1 foreach variable x ∈ Sval do
2 if τ [x] /∈ dom(x) then
3 return false

4 return true

According to [Lecoutre, 2011], there exists situations where applying
enforceGAC-STR2 is O(t + rd), which means that enforceGAC-STR2 is poten-
tially r times faster than enforceGAC-STR .

STR3 [Lecoutre et al., 2012] STR3 is also an optimized variant of STR
which differs significantly from STR and STR2 in representing invalid tuples.
Rather than discarding them explicitly from the table, invalid tuples are par-
titioned off in a different way avoiding duplicated effort in re-establishing the
consistency of values across the search tree as it commonly happens with conven-
tional GAC algorithms. The idea is similar to GAC4 [Mohr and Masini, 1988]:
each element of a table is examined at most once along any path of the search
tree.

The worst-case accumulated cost along a single path of length m in the search
tree involving a positive r-ary table constraint containing t tuples is O(rt + m)
for STR3 whereas it is O(rtm) for STR2. The space complexity of STR3 for a
single table constraint is O(rd + t) whereas the space complexity for STR2 is
O(r) (not counting space for the table representation itself).

Experiments in [Lecoutre et al., 2012] show that STR3 (which is greedy in
memory space) is much faster than STR2 when the average size of the tables is
not reduced drastically during search. However, where simple tabular reduction
can eliminate many tuples from the tables that they become largely empty, STR2
is faster than STR3.
Christophe: à revoir

1.4 Singleton Arc Consistency(SAC)

Singleton arc consistency (SAC) is a consistency stronger than arc consistency
allowing to identify more inconsistent values before/during search. SAC is kind
of looking one step in all directions (Breadth-First Search of level 1).
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1.4.1 Definitions

Definition 21 (Constraint network such that x = a) Let P be a constraint
network, a variable x ∈ X and a value a ∈ dom(x), P |x=a is the constraint
network obtained after reducing dom(x) to {a}.

Definition 22 (Singleton Arc-Consistent network) A constraint network P
is singleton arc-consistent iff ∀x ∈X , ∀a ∈ dom(x), GAC(P |x=a) 6= ⊥.

Example 10 We consider again the constraint network P used in Example 8
(Figure 1.4). Figure 1.10 describes enforcing SAC on a constraint network P .
Figure 1.10(a) is the obtained network after assigning a to x. dom(x) is, thus,
reduced to only a. P |x=a is GAC, and, so (x, a) is SAC. Figure 1.10(b) is the
obtained network after assigning b to x. (z, a) is the only support of (x, b) on cxz
and (y, b) is also the only one on cxy. However ,{(y, b), (z, a)} 6∈ rel(cyz). As a
consequence, GAC(P |x=b) = ⊥ and (x, b) is not SAC.

(a) P |x=a (b) P |x=b

Figure 1.10: Enforcing Singleton Arc-Consistency on P .

Singleton consistencies have received much attention: SAC1
[Debruyne and Bessiere, 1997], SAC2 [Bartak and Erben, 2004], SAC-Opt
[Bessiere and Debruyne, 2004], SAC-SDS [Bessiere and Debruyne, 2005], SAC3
and SAC3+ [Lecoutre and Cardon, 2005]. Table 1.2 describes the time and
space complexities of exploring consistencies on binary constraint networks of
these different algorithms. For SAC3+ algorithm, the variable b+ denotes the
total number of times a branch is built or checked by the algorithm and bmax
denotes the maximum number of branches recorded at the same time by the
algorithm.
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Algorithm Time complexity Space complexity
SAC1 O(en2d4) O(ed)
SAC2 O(en2d4) O(n2d2)

SAC-Opt O(end3) O(end2)
SAC-SDS O(end4) O(n2d2)

SAC3 O(en2d4) O(ed)
SAC3+ O(b+ed2) O(ed+ bmaxnd)

Table 1.2: The worst-case complexity of the SAC algorithms on binary constraint
networks.

1.4.2 SAC1

SAC1 [Debruyne and Bessiere, 1997] is the first proposed algorithm in order to
enforce singleton arc consistency. Algorithm 13 starts by enforcing GAC on
the whole constraint network (Line 1). SAC algorithm iterates then over all
literals (x, a) such that x ∈ X and a ∈ dom(x) (Line 6). If a literal is detected
to be SAC-inconsistent, it is removed from its domain and GAC is enforced
to propagate this removal (Line 8). If enforcing GAC returns an empty domain
(Lines 2 and 9) false is returned meaning that P is proved to be SAC-inconsistent
(SAC(P ) =⊥); otherwise true is returned.

Algorithm 13: SAC(P : constraint network):Boolean

1 P ← GAC(P ) // GAC is initially enforced

2 if P = ⊥ then
3 return false

4 repeat
5 modified← false
6 foreach (x, a) such that x ∈ vars(P ) ∧ a ∈ dom(x) do
7 if GAC(P |x=a) = ⊥ then
8 P ← GAC(P |x6=a) // a is removed from dom(x) and GAC

is enforced

9 if P = ⊥ then
10 return false

11 modified← true

12 until ¬modified
13 return true

SAC2 [Bartak and Erben, 2004], an optimized variant of SAC, is based on
the fact that if GAC(P |x=a) 6= ⊥ then the literal (x, a) remains SAC-consistent

63



1.5. SEARCH

as long as its supports exists. SAC-Opt [Bessiere and Debruyne, 2004], unlike
SAC1 and SAC2, doesn’t restart checking values from scratch but uses the
stored sub-problem for each SAC-consistent values. In order to avoid some
useless tests, SAC-Opt requires a huge memory space especially on large con-
straints. Ensuring a trade-off between time and space complexity, SAC-SDS
[Bessiere and Debruyne, 2005], an optimized variant, shares data structures re-
quired for establishing GAC on the different sub-problems. Unlike the previous
variants, SAC3 [Lecoutre and Cardon, 2005] does not use a Breadth-First Search
but builds fewer branches of greater length maintaining GAC at each step. In
fact, a current branch is extended until a dead-end (a domain is wiped-out so
it impossible to make a new assignment) is reached. SAC3+, also presented in
[Lecoutre and Cardon, 2005], is an improvement associating with each branch
a domain so it is easier to determine which previously built branch(s) must be
reconsidered when a value is removed.

1.4.3 Weak k-SAC

Weak k-Singleton Arc Consistency [van Dongen, 2006] is a stronger form of SAC.
It is equal to singleton arc consistency when k = 1 and stronger than SAC when
k > 1. By analogy to Definition 17, we define Weak k-SAC.

Definition 23 (Weak k-Singleton Arc-Consistency) Let P be a constraint
network and 1 6 k 6 n be an integer. A literal (x, a) of P is weakly k-SAC-
consistent iff there exists an instantiation I on a set of k− 1 variables such that
x 6∈ scp(I) and I is a valid instantiation such that GAC(P |{(x,a)}∪I) 6= ⊥. A vari-
able x is weakly k-SAC-consistent iff ∀ a ∈ dom(x), a is weakly k-SAC-consistent.
P is weakly k-SAC-consistent iff ∀ x ∈X , x is weakly k-SAC-consistent.

Algorithm 14 illustrates the enforcement of weak k-SAC consistency on a
constraint network P . Following SAC, weak k-SAC starts by enforcing GAC
on the whole constraint network (Line 1). All literals (x, a) are collected into a
queue Qwsac. Treated one by one, WSAC calls the function extendable to verify
if it is possible to instanciate k variables. If it is not the case, the literal (x, a) is
removed and the process continues with another literal.

1.5 Search

Several algorithms are proposed ensuring the “search” mechanism. We distin-
guish two major categories: look-back and look-ahead techniques.
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Algorithm 14: WSAC(P : constraint network, k: integer):Boolean

1 P ← GAC(P ) // GAC is initially enforced

2 if P = ⊥ then
3 return false

4 Qwsac ← {(x, a)|x ∈ vars(P ) ∧ a ∈ dom(x)}
5 while Qwsac 6= ∅ do
6 pick and delete (x, a) from Qwsac

7 if ¬extendable(P |x=a, k) then
8 P ← GAC(P |x6=a)

// a is removed from dom(x) and GAC enforced

9 if P = ⊥ then
10 return false

11 Qwsac ← {(x, a)|x ∈ vars(P ) ∧ a ∈ dom(x)}

12 return true

1.5.1 Look-back approaches

Standard Backtrack (SBT) Backtrack technique is usually used in order
to solve constraint satisfaction problem instances. It extends, incrementally, a
partial instantiation aiming to reach a possible solution. To do that, a depth-first
search is performed assigning variables one by one. If a conflict is detected when
assigning x = a, i.e. an instantiation I violates a constraint c, another value of x
must be found (edge 1 in Figure 1.11). If there is no value in dom(x) satisfying C
of P , a chronological backtrack is performed inducing looking for another value
for the previous variable (edge 2 in Figure 1.11). This process continues until all
variables of the constraint network P are assigned. In the other case, and after
exploring the whole search space, we say that P is “unsatisfiable”.

There are also other methods using backtracking that differs from SBT. We
distinguish:

• Gaschnig-backjumping [Gaschnig, 1979]: this approach uses back-
tracking in a different way. In fact, if for a variable x there is no value from
its domain that, added to a partial instantiation I, satisfies a constraint c
of P , the backtrack is not performed for the last assigned variable. This
approach uses “culprit” variables, which are the recent assigned variables
causing this incompatibility. As a consequence, Backtracking to the recent
“culprit” variable, could lead to a solution.

• Conflict-directed backjumping (CBJ)[Prosser, 1993]: this approach
avoids “Thrashing” which is exploring the same dead-ending sub-trees.
Using nogoods, which are assignment sets that are not contained in any

65



1.5. SEARCH

Figure 1.11: Possible standard backtracks on P .

solution, this technique avoids the “wrong” assignments that could lead to
a failure. For each conflict, the set of nogoods leading to this conflict are
stored, and thus, the backjumping is performed at the level of the recent
decision leading to the conflict.

• Dynamic Backtracking (DBT)[Ginsberg, 1993]: Dynamic Back-
tracking uses a set of nogoods in order to detect the decision in charge
of the last conflict. However, unlike the previous techniques, DBT removes
the culprit decisions while maintaining the other decisions.

1.5.2 Look-ahead approaches

Unlike look-back approaches that look back on the made decisions in order to
revise them and extend them to a solution, look-ahead approaches, introduced in
[Haralick and Elliott, 1980], enhance exploring the search space by anticipating
failures and reducing the search space. We distinguish the Partial-Lookahead
and Full-Lookahead.

These inference techniques evaluate the impact of each decision on the domain
of each unassigned variable. After each decision, a consistency is maintained
on the constraint network in order to remove the inconsistent values. As a
consequence, the search space is reduced and it contains only the consistent
values avoiding by this filtering possible failures.

We present Forward Checking (FC), a Partial-Lookahead approach, intro-
duced in [Haralick and Elliott, 1980].
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Forward Checking (FC) After each decision, FC technique applies a partial
arc-consistency form on the constraint network. Only the neighborhood (vari-
ables involved in the same constraints as the variable x) of the assigned variable
is revised.

Example 11 Figure 1.12 illustrates FC approach. After the first decision x1 =
a, the domain of x1 neighborhood is revised: the value a is removed from dom(x2)
and dom(x3) to respect the semantic of constraints cx1x2 and cx1x3. Assigning x2

to b, induces the removal of the literal (x3, b). After the decision x3 = c (c is one
of the coherent values left in dom(x3)), dom(x4) loses the value c.

(a) A constraint network P

(b) FC applied after each decision

Figure 1.12: Forward Checking on P .
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1.5.3 Maintaining Arc Consistency (MAC)

In order to enhance the effectiveness of search approaches, we may main-
tain the consistency of the constraint network associated to each node by ap-
plying one of the filtering algorithm (seen in Section 1.3 and 1.4). MAC
[Sabin and Freuder, 1994] is the backtrack algorithm that maintains GAC dur-
ing search. MAC is considered to be the most efficient complete approach to
solve CSP instances.

Algorithm 15: MAC(P : constraint network)

1 consistent← GAC(P ) // GAC is initially enforced

2 if ¬consistent then
3 return

4 I ← ∅
5 finished← false
6 while ¬finished do
7 pick a literal (x, a) of P such that x 6∈ past(P )
8 I.push(x, a)
9 dom(x).reduceTo(a, |I|) // x is assigned the value a

10 consistent← GAC(P )
11 if consistent ∧ |I| = n then
12 print(I) // a solution has been found

13 consistent← false // inserted to keep looking for

solutions

14 while ¬consistent ∧ |I| 6= ∅ do
15 (x, a)← I.pop()
16 foreach variable y ∈ vars(P ) \ vars(I) do
17 dom(y).restoreUpto(|I|+ 1) // domains are restored

18 dom(x).removeV alue(a, |I|) // a is removed from dom(x)
19 consistent← dom(x) 6= ∅ ∧GAC(P )

20 if ¬consistent then
21 finished← true

Algorithm 15 enforces MAC on a constraint network P . GAC is initially
enforced at each node (Line 1). MAC select a new unassigned variable to assign
(Line 7), GAC is then enforced on P (unlike FC). If after the assignment of x, P
is consistent and all variables are assigned, a solution is then found. Otherwise
(P is not GAC-consistent), a backtrack is performed (Lines 14 - 19) until P
becomes GAC-consistent. Inconsistent values are removed to avoid such failures
in the future.
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1.6 Heuristics

To guide a CSP instance solving, we may ensure at each node of the search tree
that the “right” decisions are made. Algorithms presented in Section 1.5 don’t
propose any order in which the variable are assigned or the values are chosen. At
a given node of search, the choice of a literal (x, a) is determined by an heuristic
that evaluates the “best” variable and the “best” value among all the possible
candidates.

According to [Wallace, 2005], two principles are used in heuristics: “fail first”
and “promise” principles. Usually, variable ordering heuristics use the “fail first”
principle and “promise” principle for value ordering heuristics. For the variables
heuristics, we distinguish three categories:

1.6.1 Static Variable Ordering (SVO)

For these heuristics, the order is defined before search from the problem struc-
tures. As a consequence, the same priority order is conserved during the search.
For example:

• lexico: the variables are ordered by a lexicographical order of their names.

• deg: the variables are ordered by their degrees. A variable degree of variable
corresponds to the number of constraints in which the variable is involved.
We distinguish maxDegree (respectively minDegree) which corresponds
to a decreasing order (respectively increasing order) of degrees.

1.6.2 Dynamic Variable Ordering (DVO)

These heuristics exploit different information on the problem current state in
order to determine the most promising variable at a search node. For example:

• ddeg: Variables are ordered in a decreasing order of their “current” degree.
In other words, ddeg chooses first the variable connected to the greatest
number of unassigned variables.

• dom/ddeg [Bessiere and Régin, 1996]: This dynamic heuristic chooses first
the variable having the smallest ratio:

current domain size

ddeg
(1.1)

1.6.3 Adaptive Variable Ordering (AVO)

AVO heuristics combine the dynamic and static information of the problem.
They exploit information about past states of the search, which are not only
about the current branch but also on the branches already explored.
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• wdeg: Variables are ordered in a decreasing order of their “current”
weighted degree. In fact, for each constraint corresponds a weight which is
incremented each time it is violated during search. As a consequence, vari-
ables involved in the constraints that are often violated, have the highest
priority.

• dom/wdeg [Boussemart et al., 2004]: This dynamic heuristic chooses first
the variable having the smallest ratio:

current domain size

wdeg
(1.2)

• Impact [Refalo, 2004]: This heuristic is based on the impact of an assign-
ment. In fact, the impact is evaluated with respect to the average space
search reduction after an assignment. The variable impact is the sum of the
assignments impacts of each value of its domain. This impact is maintained
during search.

• Counting-Based heuristic [Pesant et al., 2012]: This heuristic aims to keep
most of solutions when assigning variables. This is done by determining
what proportion of solutions to each constraint agrees with that assign-
ment.

• Activity-Based heuristic [Michel and Hentenryck, 2012]: This heuristic
chooses variables based on their activity during propagation. In fact, for
each variable x corresponds a counter which measures its activity that cor-
responds to how often the domain of x is reduced during the search. This
counter is maintained during search.
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2.1. COMPRESSION TECHNIQUES

In this chapter, we introduce the state-of-the-art of both compression and
parallel computing. This chapter is organized as follows:

• we describe several compression-based approaches for table constraints in
Section 2.1;

• we describe parallel computing features and models and we present related
parallel CSP approaches in Section 2.2.

2.1 Compression techniques

Table constraints are important for modeling parts of many problems, but they
admit practical limitations because they are sometimes too large to be repre-
sented in a direct way. In order to reduce space and/or time complexity, re-
searchers have focused on various forms of compression. In Section 2.1.1, we
present several compact data structures used in the representation of table con-
straints. Moreover, in Section 2.1.2, we introduce some compression-based ap-
proaches using both compact representation and optimized filtering.

2.1.1 Compact representation of table constraints

Several compact data structures aim to reduce the space required to represent
these constraints. We distinguish tries [Gent et al., 2007], Multi-valued Decision
Diagrams (MDDs) [Cheng and Yap, 2010] and Deterministic Finite Automata
(DFA) [Pesant, 2004]. These approaches use general structures to represent table
constraints in a compact way, so as to facilitate the filtering process.

Tries

A trie [Fredkin, 1960], also called “prefix” tree, is an ordered data structure used
to store and retrieve, usually, strings. All the children of a node have a common
prefix which allows to represent a large set of values composing a language.
The term trie comes from the word retrieval. In a trie, edges are labeled with
a symbol of the language. As a result, to read a word, it is required to go
through all the path starting from the root to the leaf or to the node ending this
word. Each node contains some information. Values are associated with leaves
or inner nodes ending a word. These values correspond to keys of interests such
as frequency or weight. Seeking for a word in a trie is done in O(k) time; where
k is the length of a search string.

Example 12 In Figure 2.1, nodes represent the word read form the root until
that node and keys are listed for the nodes corresponding to a word form the
English language (bold circles). Each complete English word has an arbitrary
integer value associated with it.
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Figure 2.1: A trie of English words.

In [Gent et al., 2007] tries are first used to represent a table of n-ary con-
straint c. The different levels of the trie are the different variables in scp(c). To
each variable corresponds a level. The variables are assigned to levels in the same
order in which they appear in the scope of the constraint. The language used to
label the edges is the domain of the variables. All paths from the root have the
same length since all tuples are a combination of the same number of values (r).

Example 13 Figure 2.2 illustrates the trie (Figure 2.2(b)) built from the positive
table constraint cxyz defined in extension (Table 2.2(a)) as in [Gent et al., 2007].
The three variables involved in cxyz are the three levels of the trie. Tuples sharing
the same first value(s) share the same first edge(s) in the trie. For example,
tuples τ1 and τ2 have the same literal (x, a) in cxyz which is represented by the
edge labeled by a in level 1. Moreover, tuples τ6 and τ7 have two literals in
common which are (x, c) and (y, c). This is the reason that they share the edge
labeled c in the first level and its child edge labeled c in the second level. The
total number of edges of this trie is 15. In this figure, all paths are ending by a
true node �t meaning that all illustrated tuples are allowed by the constraint.

Since tries allow us to share prefixes which reduce space complexity, different
tests of validity can be avoided at the first levels which may be advantageous to
reduce time complexity. In some cases, one single validity test may prevent us
from useless tests for a huge number of tuples, but this depends on the order of
the scope of the constraint. However, in [Gent et al., 2007], authors used r tries
for each constraint; each one corresponds to a variable (the order of the scope is
changed: the first level is dedicated to this variable); to speed up support seeking
which penalizes the space complexity required to represent such constraints.

Algorithm 16 describes GAC enforcement on a trie. In fact, this algorithm
looks for a valid support τ for a literal (x, a) and returns it if it exists. trie(x, a) is
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x y z
τ1 a b a
τ2 a c c
τ3 b a c
τ4 b b a
τ5 b b b
τ6 c c a
τ7 c c b

(a) Positive table constraint cxyz.

(b) Trie built from table constraint in 2.2(a).

Figure 2.2: A trie representation of a table constraint.

Algorithm 16: SeekValidSupportTrie(x: variable, a: value): Tuple

// τ is the valid support which is the output

1 τ [x]← a
2 return extendSupport(trie(x, a), τ)

the root node of the sub-trie that contains all levels except the one corresponding
to variable x. Algortihm 17 is a recursive function that performs a depth-first
search (Lines 3 - 9). If this fuction returns nil (Line 10), there doesn’t exit any
support for the literal (x, a) on the constraint represented by the trie. Otherwise,
the support is returned at Line 2 when the search achieves a true node �t .

Multi-valued Decision Diagrams

Using a trie data structure allows to discard prefix redundancy. Decision Di-
agrams allows to discard both prefix and suffix redundancy which is used in
[Cheng and Yap, 2010, Cheng and Yap, 2006]. This reduces the size of repre-
sented data and also prevents from redundant tests especially in the lower levels
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Algorithm 17: extendSupport(node: Node, τ : Tuple): Tuple

1 if node = �t then
2 return τ

3 x← node.variable
4 foreach child ∈ node.getChildren() do
5 if child.value ∈ dom(x) then
6 τ [x]← child.value

7 τ
′ ← extendSupport(child, τ)

8 if τ
′ 6= nil then

9 return τ
′

10 return nil

which is the case for tries. A Multi-valued Decision Diagram (MDD) is an arc-
labeled Directed Acyclic Graph (DAG). An MDD contains n levels such that each
level corresponds to a variable. Each edge is labeled by a symbol of the language
represented by the MDD. An MDD is either the t-terminal (allowed values) or
f-terminal (disallowed values). If all domains are binary the decision diagram is
called “binary” (Binary Decision Diagram (BDD) [Bryant, 1986]).

Example 14 Figure 2.3 illustrates the t-terminal MDD corresponding to the
positive table constraint cxyz defined in extension (Table 2.2(a)). The three vari-
ables involved in cxyz are the three levels of the MDD. Tuples sharing the same
first value(s) or/and the same last value(s) have the same edge(s) in the depicted
MDD. For example, tuples τ2 and τ3 have the same suffix (z, c) that is why they
share the same edge labeled c in the level 3. Tuples τ4, τ5, τ6 and τ7 end either
by (z, a) or (z, b) which is translated in MDD by the two shared edges labeled a
and b in the third level. The total number of edges of this MDD is 12.

Algorithm 18 describes mddc algorithm. This algorithm doesn’t use the
revision-based technique meaning that rather than looking for a support for each
value, GAC is enforced globally by discarding all GAC-inconsistent values con-
tained in the MDD starting each time from scratch. This may supplant enforcing
GAC on tries. In fact, mddc keeps for each variable xi a set Si of unsupported
values of its domain. mddcSeekSupports algorithm goes through all nodes of
MDD using a Depth First Search (DFS) for traversing the MDD from the root
node and updates the sets Si: two main sets are maintained ξY ES for visited and
consistent edges (having a positive terminating node: t-terminal), and ξNO for
inconsistent edges due to pruned values (having a negative terminating node: f-
terminal). Since each edge represents a value, after doing a DFS, the values that
have not been kept are removed since there is no longer any path from the root
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Figure 2.3: MDD built from the table constraint in Figure 2.2(a).

Algorithm 18: mddc(G: MDD root, st: state): (boolean, state)

1 ξY ES ← ∅
2 restore(ξNO, st)
3 foreach i ∈ [1..r] do
4 Si ← dom(xi) // values that have no support yet

5 ∆← r + 1
6 mddcSeekSupports(G, 1)
7 foreach i ∈ [1..∆− 1] do
8 dom(xi)← dom(xi) \ Si
9 st’← state(ξNO)
// Maintaining GAC during search

10 if ∃Si ∈ S such that Si 6= ∅ then
11 return(YES, st′) // domains have changed

12 else
13 return(No, st′)

to a t-terminal node corresponding to this value. During search some additional
data structures and optimization are used to achieve efficient operations (Lines
1, 2 and 9).

Clearly, in terms of space complexity using MDDs is more advantageous than
using trie knowing that, in [Gent et al., 2007], for each constraint r tries are
required but just one MDD is enough.

In [Perez and Régin, 2014], the authors present MDD4 algorithm, which
adapts GAC4 [Mohr and Masini, 1988] algorithm to MDD constraints. The two
main improvements are:

• the way MDD is maintained during search: Tuples are not represented
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explicitly in an MDD constraint. They are the different paths from the
root to a positive terminal. To enforce GAC, mddc checks each time it
goes through an edge if its value is still valid. MDD4 algorithm, proposes
to delete the inconsistent values, thus its corresponding edges in order to
reduce these redundant tests;

• the way S lists are maintained: MDD4 establishes a relation between the
values in domains and their corresponding edges of the MDD through S
lists. Hence, for each literal (x, a), S(x, a) contains the set of edges in the
MDD corresponding to this value (labeled with the value a in the level x).
If S(x, a) becomes empty that means that there is no more an edge for this
value and then dom(x) can be reduced by removing a.

Deterministic Finite Automata

A deterministic finite automata (DFA) M is a 5-tuple (Q,Σ, δ, q0, F ) where:

• Q is a finite set of states;

• Σ is a finite set of input symbols called the alphabet;

• δ is a transition function (δ : Q× Σ→ Q);

• q0 is the initial state (q0 ∈ Q);

• F is a set of final states (F ⊆ Q).

DFA is a deterministic finite state machine which accepts/refuses a finite set
of symbols contained in the alphabet Σ. Starting from the initial state q0, the
state machine transition for each symbol, considering the transition function δ,
from a state to another. If one of the final states included in F is reached, the
input word is said “accepted” by the state machine. As a consequence, the set of
accepted words compose the “regular” language recognized by M and denoted
L(M).

Example 15 Figure 2.4 illustrates the DFA representation of the positive table
constraint cxyz defined in extension (table in Figure 2.4(a)). The regular expres-
sion representing table[cxyz] is (a+ b)(bc+ c(a+ b)).

DFA is used in [Pesant, 2004] to represent a global constraint called regular
which is a kind of global constraint generalizing the stretch constraint introduced
in [Pesant, 2001]. This type of constraint is used in rostering problem where every
team of a working group has an identical schedule as the others but it is out of
phase. A regular expression can represent a valid sequence of activities. However,
for the allDifferent global constraint, the number of states of the associated DFA
is exponential in the number of symbols in the alphabet (|Q| = 2|Σ|).
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x y z
τ1 a c a
τ2 a b c
τ3 a c b
τ4 b b c
τ5 b c a
τ6 b c b

(a) Positive table constraint cxyz.

(b) DFA.

Figure 2.4: DFA representation of the table constraint in Figure 2.4(a).

The filtering algorithm used to enforce GAC (presented in [Pesant, 2004])
constructs, in a first stage, a directed multi-graph, and then, collects the set
of states that support a value (x, a). In [Tiedemann et al., 2007], the authors
prove that MDD reduction gives smaller and more efficient graphs in terms of
propagation time than straight DFA unfolding used for the regular constraint.

2.1.2 Compression-based approaches

Tries [Gent et al., 2007], Multi-valued Decision Diagrams (MDDs)
[Cheng and Yap, 2010] and Deterministic Finite Automata (DFA) [Pesant, 2004]
are such general structures, which are used to represent table constraints com-
pactly, so as to speedup filtering. These data structures were introduced
previously in Section 2.1.1.

Several approaches propose different compressed representations of ta-
ble constraints and different ways to filter them. Compressed tu-
ples [Hubbe and Freuder, 1992], Short supports [Nightingale et al., 2011,
Nightingale et al., 2013] and Smart tuples [Mairy et al., 2015] present new defini-
tions of supports that differ from the classic ones. Data-mining based approaches
[Jabbour et al., 2013a, Jabbour et al., 2013b] compress table constraints giving
another representation using data mining features. In this section, we introduce
four different categories of compressed tables:
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• Short Supports;

• Cartesian-product based approaches;

• Smart tuples;

• Data-mining based approaches.

In each category, we present an approach that enforces GAC using STR algo-
rithm.

Short Supports

As presented in Definition 10 in Chapter 1, a literal (x, a) is valid if there exists
a valid tuple τ in the table constraint c such that τ [x] = a. Based on this idea,
[Nightingale et al., 2011, Nightingale et al., 2013] proposes a new representation
of table constraints in which for each literan (x, a) corresponds the set of its
supporting tuples. This form is obtained before search.

In fact, a short support (i.e. tuple) is a generalization of a support tuple
defined in Definition 10.

Definition 24 A short support for constraint c is a valid tuple s built on a subset
of scp(c). Whereas, when a support is built on scp(c), it is called a full-length
support.

Example 16 Let us consider the Element [Colton and Miguel, 2001] constraint
z = xk such that dom(x0) = dom(x1) = dom(x2) = dom(z) ∈ {a, b, c} and
dom(k) ∈ {0, 1, 2}. This constraint is satisfied when the kth variable xk takes the
same value as the variable z. s = {(x1, a), (k, 1), (z, a)} is a short support satisfy-
ing this constraint. s does not contain a value for each variable, which is the case
for variables x0 and x2. As a consequence, any extension of s with valid values
for x0 and x2 is a support such as fs = {(x1, a), (k, 1), (z, a), (x0, b), (x2, c)}.

In [Nightingale et al., 2013], authors use a new symbol to represent the miss-
ing variables. In fact, considering a constraint c such that scp(c) = {x1, x2, x3, x4}
and a short support (tuple) τ = {(x1, a), (x2, b)}, τ is represented as τ =
{a, b, ∗, ∗} where ∗ indicates that variables x3, x4 are not mentioned in τ .

SHORTGAC is the algorithm that enforces GAC using short supports.
SHORTGAC maintains a set of short supports supporting all the valid values of
the variables involved in the scope of this constraint. Classically, enforcing GAC
on table constraints means looking for supports for unsupported values. SHORT-
GAC looks for support in two different ways. First, as for classic tuples, SHORT-
GAC assumes that a value (x, a) is supported if there exists a short support s
such that s[x] = a. Second, SHORTGAC considers that a value (x, a) is sup-
ported by a short support s if s does not involve x, i. e. ∀v ∈ dom(x), (x, v) 6∈ s.
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In [Nightingale et al., 2011], three main data structures are used in SHORT-
GAC algorithm:

• numSupports: the total number of valid supports.

• supportsPerV ar[x]: an array indicating the number of supports supporting
each variable x.

• supportsPerLit[x][a]: a 2-dimensional array indicating the set short sup-
ports containing the literal (x, a).

SHORTGAC algorithm considers that each variable x for which
supportsPerV ar[x] < numSupport is fully supported and there is no need to
look for supports for this variable. In fact, supportsPerV ar[x] < numSupport
for a variable x means that there exists a support s that does not involve x. As
a consequence, s is a support for all values in dom(x) and so, x is supported
and the algorithm does not have to look for supports for the literals (x, a).
Otherwise, in the case where supportsPerV ar[x] = numSupport meaning that
x is involved in all short supports, SHORTGAC seeks for a support for each
value a ∈ dom(x) for which |supportsPerLit[x][a]|=0 (i.e. the value has no
support).

Example 17 Let us consider a table constraint cx1x2x3 such that the current
domains of the variables involved in scp(cx1x2x3) are: dom(x1) = dom(x3) =
{0, 1, 2} and dom(x2) = {0, 1}. table(cx1x2x3) contains two short supports
s0 = {(x1, 0), (x2, 1)} and s1 = {(x1, 1), (x3, 0)}. Hence, numSupports = 2
as depicted in Figure 2.5(c). The data structure supportsPerLit is depicted in
Figure 2.5(a) where for each value (x, a) corresponds the list of short supports
involving it. For example, for the variable x3 only the value 0 is involved in a sup-
port of table(cx1x2x3). The two remaining values are not contained in any short
support. The symbol × indicates that a value (x, a) is not valid, which is the case
for the value (x2, 2). The supportsPerV ar data structure (Figure 2.5(b)) indi-
cates the number of short supports supporting each variable x which is the sum of
supportsPerLit[x][a] for each value a ∈ dom(x). In our case, supportsPerVar[x2]
= supportsPerVar[x3]=1 which is less than numSupports meaning that both
x2 and x3 are fully supported. We have supportsPerVar[x1]=numSupports,
so we have to look for a support for (x1, 2) since |supportsPerLit[x1][2]|=0.
table(cx1x2x3) does not contain any support for (x1, 2) so this value is removed
and supportsPerLit[x1][2] is updated to ×.

Experimental results show that in three case studies (Element
[Colton and Miguel, 2001], Lex-ordering [Frisch et al., 2002] and Rectangle
Packing [Simonis and O’Sullivan, 2008]), SHORTGAC is faster than other
methods such as GAC-Schema.

80



2.1. COMPRESSION TECHNIQUES

x1 x2 x3

0 {s0} ∅ {s1}
1 {s1} {s0} ∅
2 ∅ × ∅

(a) supportsPerLit

x1 x2 x3

2 1 1
(b)
supportsPerV ar

2
(c) numSupports

Figure 2.5: SHORTGAC data structures.

Interestingly, Simple Tabular Reduction technique is used in
[Nightingale et al., 2013] to enforce GAC on short supports (SHORTSTR2).
The main feature is that when a short support does not involve some variable
x, it supports all values of x, this is called implicit support. SHORTSTR2 is a
slight modified version of STR2 taking into consideration this new form of a
tuple. Experimental results do not show a huge compression ratio, but a GAC
algorithm that competes with STR2.

Cartesian-Product based approaches

Cartesian product is another classical mechanism to represent compactly
large sets of tuples. For instance, it has been applied successfully for
handling sets of solutions [Hubbe and Freuder, 1992, Régin, 2011b], sym-
metry breaking [Focacci and Milano, 2001, Fahle et al., 2001], and learning
[Katsirelos and Bacchus, 2005, Lecoutre et al., 2007]. So far, this form of com-
pression has been used in two distinct GAC algorithms for table constraints: by
revisiting the general GAC-schema [Katsirelos and Walsh, 2007] and by combin-
ing compressed tuples with STR [Xia and Yap, 2013]. In fact, rather than listing
allowed tuples in rel(c), Cartesian products are used (See Definition 2)

Example 18 We give an example of a relation rel(c) defined over three
variables x, y and z with dom(x) = dom(y) = dom(z) = {a, b}.

rel(c) =


(b, a, a),
(b, a, b),
(b, b, a),
(b, b, b)


Using Cartesian product rel(c) could be represented by one compressed tuple as
follows:

rel(c) =
{

({b}, {a, b}, {a, b})
}
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In [Xia and Yap, 2013], Cartesian product is used to compress tuples, called
c-tuples, in table constraints. Figure 2.6 illustrates the table constraint represen-
tation using c-tuples. The first eight tuples are compressed in τc0 as a Cartesian
product listing the possible values that could be taken by each variable.

x1 x2 x3 x4

τ0 a a a a
τ1 a a a b
τ2 a a b a
τ3 a a b b
τ4 a b a a
τ5 a b a b
τ6 a b b a
τ7 a b b b
τ8 c c c c

(a) table(cx1x2x3x4
).

x1 x2 x3 x4

τc0 {a} {a, b} {a, b} {a, b}
τc1 {c} {c} {c} {c}

(b) table(cx1x2x3x4) for STR2-C.

Figure 2.6: c-tuple representation.

To enforce GAC on such tables, authors proposed two algorithms STR2-
C (compressed tuples STR2 variant) and STR3-C based on STR2 and STR3
variants. We only illustrate the STR2-C algorithm. The validity of a c-tuple
[Focacci and Milano, 2001, Katsirelos and Walsh, 2007] is defined as: a c-tuple is
valid if the Cartesian product contains at least one valid tuple. As a consequence,
unlike STR2 which considers that all values belonging to a valid tuple are GAC
consistent, the valid c-tuple, in STR2-C, may contain GAC-inconsistent values
which implies more consistency tests for that c-tuple. That is the reason why, a
pointer is used to separate the inconsistent values from the unchecked ones for
each variable (similar to currentLimit pointer).

Let us consider the example in Figure 2.6 and assuming that the value (x4, a)
is removed, τ0,τ2, τ4 and τ6 (in Figure 2.6(a)) are no more valid. However, in
the compressed table (in Figure 2.6(b)) using c-tuple, we cannot remove tuple
τc0 since it contains tuples τ1, τ3, τ5 and τ7 that are still valid which implies the
validity of τc0.

Experimental results show that STR2-C and STR3-C are competitive with
STR variants when the table can be compressed enough to outweigh the addi-
tional costs. However, encoding table constraints as a set of c-tuples remains
difficult since it is not done in a natural way.

Smart Tables

Smart table constraints [Mairy et al., 2015] are a new compact representation
of table constraints using arithmetic constraints which reduce significantly the
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memory space required to encode such combination of values.

Example 19 Let us consider the table constraint cx1x2x3 depicted in Figure
2.7(a) such that dom(x1)=dom(x2)=dom(x3)={0, 1, 2}. This table constraint
could be represented using arithmetic constraints as in the Smart table constraint
depicted in Table 2.7(b). In fact, in all tuples of cx1x2x3 the value of the variable
x1 is always equals to the value of the variable x3. This explains the first arith-
metic constraint x1 = x3 in scx1x2x3. All the values taken by the variable x2 are
less or equal to 1 (x2 ≤ 1). The symbol ∗ taken by the variable x3 is the same
used in [Nightingale et al., 2013].

x1 x2 x3

τ0 0 0 0
τ1 1 0 1
τ2 2 0 2
τ3 0 1 0
τ4 1 1 1
τ5 2 1 2

(a) Table Constraint
cx1x2x3

.

x1 x2 x3

τ0 = x3 ≤ 1 ∗
(b) Smart Table Constraint
scx1x2x3

.

Figure 2.7: Smart table representation.

Smart table constraints could be considered a disjunction of conjunctions of
basic arithmetic constraints since each smart tuple contains a conjunction of
basic arithmetic constraints. Smart table constraints are an interesting tool to
express different global constraints.

The filtering algorithm used for smart table constraints, called smartSTR, is
inspired from STR. In fact, we associate for each smart tuple sc a sub-problem
Psc which is represented by tree-like structure (forest of trees) collecting all valid
values supporting the arithmetic constraints of sc. smartSTR checks sequentially
all the valid smart tuples. However, the only difference between smartSTR and
the classic STR is the way that valid values (i. e. supports) set is maintained.
Since the supported values in smart tuples are stored in trees, a smart tuple is
considered valid iff each tree (corresponding to each arithmetic constraint) has
at least one solution.

Experimental results show an important spatial and time complexity reduc-
tion using smart table constraints instead of classic table constraints. These
results competes with SHORTGAC and outperforms it especially when table
constraints are larger.

Short supports, compressed tuples and smart tuples introduced in the pre-
vious sections are a generalization of classical tuples in tables of constraints.

83



2.1. COMPRESSION TECHNIQUES

These new representations don’t offer the same fluency in the expression of such
constraints especially to non-expert users. C-tuples and short supports need a
compression algorithm to transform a classical table constraint. However, smart
table offers a facility of expression of constraints. In fact, it can be consid-
ered a tool that combines intentional, extensional and global constraints. It is
also possible to use C-tuples and short supports as smart tuples. For example,
a short support {a, b, ∗, ∗} is also a smart tuple since both techniques use the
“*” symbol. A c-tuple can be represented as a smart tuple as follows: τc0 =
{{a}, {a, b}, {a, b}, {a, b}} is written as sc = {∈ {a},∈ {a, b},∈ {a, b},∈ {a, b}}.

Data-mining based approaches

Other techniques of compression based on data-mining techniques are used in
order to reduce the size of table constraints. We first introduce the different
features used in data mining that are used in our contribution in Chapter 3 and
then we explore the related works using this technique.

Data-mining features Data mining is the process of discovering interesting
knowledge from a large amount of data. Since the development of computer sci-
ence, there has been an information explosion, which is increasing in a fast way.
The problem was not any more a simple problem of storage of information, but
rather the way to analyze this important heap of data, which led to the devel-
opment of data mining techniques (since the beginning of 1990s). That is why
the main objective of data mining consists in looking for and extracting “useful”
information from a big amount of data stored in databases or warehouses.

In the field of data mining, a pattern is composed of a set of items, called
itemset. This term comes from the domain of the supermarkets systems (the
market basket) [Agrawal et al., 1993] which was the source of inspiration for the
domain of data mining. In the analysis of a basket, the data consist in a number
of purchases realized by the customers. Every transaction consists of a number
of articles, which a customer bought together. In Data mining, a pattern could
be of different types: a word, a sentence, a sequence of molecules or nucleotides
in the case of looking for a sequence DNA [Witten and Frank, 2005], etc. In the
context of our contribution, a pattern is a set of values taken by variables.

Definition 25 (Transactional Database) Let I = {a1, a2, . . . , am} be a set
of items such as products (Juice, Bread, Milk, . . . , and so on). DB is a set of
transactional database DB = 〈T1, T2, . . . , Tn〉 where each transaction Ti is a set
of items such that Ti ⊆ I. Each transaction is associated with a unique identifier,
transaction identifier (TID)

The concept of frequent itemset was introduced for transactions databases.
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Definition 26 (Frequent pattern) Let I = {a1, a2, . . . , am} be a set of items,
and a transaction database DB. The support count σ (or occurrence frequency)
of a pattern µ, which is a set of items, is the number of transactions containing
µ in DB. The support s of a pattern µ is the fraction of transactions that
contains µ, s(µ) = σ(µ)/|DB|.
µ is a frequent pattern if µ’s support is greater than a predefined minimum
support threshold minSup such that minSup ∈ [0, 1].

A k-itemset µ consists of k items of I. The set of frequent patterns is defined:

F (DB,min sup) = {µ ⊆ I|s(µ) ≥ min sup} (2.1)

Example 20 Let us consider the transaction database depicted in Table 2.1,
which represents different market baskets and their contents:

TID Items
1 Bread, Milk
2 Bread, Cookies, Juice, Eggs
3 Milk, Cookies, Juice, Coke
4 Bread, Milk, Cookies, Juice
5 Bread, Milk, Cookies, Coke

Table 2.1: Transaction database of different market baskets.

As said before, an itemset is a collection of one or more items. {Bread, Milk,
Cookies} is a 3-itemset.
Support count (σ): σ({Bread, Milk, Cookies})=2, since this itemset appears
two times in transaction database.
Support: s({Bread, Milk, Cookies})=2/5 represents the fraction of transactions
that contains this itemset.
Let minSup be equal to 2/5, the pattern {Bread, Milk, Cookies} is frequent since
s({Bread,Milk, Cookies}) ≥ minSup. For simplicity, we use the support termi-
nology to represent a support count (σ) in the next examples. It is important
to note that the term support refers, in data mining context, to the frequency of
a pattern which is different from the one used in a CSP context.

Several data mining algorithms, such as Apriori [Agrawal and Srikant, 1994]
and Frequent-Pattern Growth (FP-Growth) [Han et al., 2000] among others (See
more in [Wu et al., 2008]), can be used to identify frequent patterns. We
are only introducing FP-Growth [Han et al., 2000, Han et al., 2004] algorithm
since we use it in our contribution (Chapter 3). This choice is made since
FP-Growth seems to be the suitable algorithm to use for our compression
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process since it offers the best frequent patterns detection in terms of space
and time. In fact, FP-Growth constructs a Frequent Pattern Tree (FP-Tree)
from a transaction database, which satisfy the minimum support (minSup)
[Pramod and Vyas, 2010]. This algorithm does not use the candidate genera-
tion technique, which is a feature that consists in generating k-itemsets from
(k − 1)-itemsets, and due to the compact structure used it does not require a
huge memory space. Moreover, this algorithm requires only two scans of the
transaction database.

The FP-Growth algorithm is composed of two main steps:

Step 1: FP-Tree construction This step consists of building the compact
data structure called FP-Tree. This construction is done using one pass over the
data-set. The algorithm:

1. detects the frequent items;

2. orders the transactions with respect to a decreasing order based on the
items frequencies;

3. removes the infrequent items taking into consideration the minimal support
threshold fixed.

Example 21 Let us consider a transaction database DB presented in Figure
2.8(a):

TID Items
1 {B, A}
2 {D, C, B}
3 {A, C}
4 {A, D, B}
5 {A, B, C}
6 {D, B}
7 {A}
8 {C, A, B}
9 {D, B, A}
10 {E, B, C}

(a) A data-set.

TID Items
1 {B, A}
2 {B, C, D}
3 {A, C}
4 {B, A, D}
5 {B, A, C}
6 {B, D}
7 {A}
8 {B, A, C}
9 {B, A, D}
10 {B, C, E}

(b) An ordered data-set.

TID Items
1 {B, A}
2 {B, C}
3 {A, C}
4 {B, A}
5 {B, A, C}
6 {B}
7 {A}
8 {B, A, C}
9 {B, A}
10 {B, C}

(c) A frequent data-set.

Figure 2.8: Transaction database evolution.

1. calculating support: s(B)=8; s(A)=7; s(C)=5; s(D)=4; s(E)=1.
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2. ordering itemsets: all transactions in the Figure 2.8(b) are ordered taking
into account a decreasing order of items support.

3. removing infrequent items: if we consider minSup=5, we have to remove
items D and E since they are not frequent. Figure 2.8(c) illustrates the
final result.

After ordering the transaction database and removing from it infrequent
items, the algorithm builds an FP-Tree using one pass over the transaction
database. An FP-Tree is, in fact, a trie (see Section 2.1.1) where each branch
represents the frequent part of a transaction. Each node of an FP-Tree contains
the number of branches which share that node, and labeled with the concerned
item. The root node does not have any label. FP-Growth reads one transaction
at a time and maps it to a path: a path, from the root, composed of the frequent
items of the transaction is added to the FP-Tree. The decreasing order of sup-
port is used. Paths can overlap when a transaction Ti shares the same items as
a prefix with a transaction Tj. In this case, the nodes counters are incremented.
The more paths are overlapped, the higher the compression is. The nodes labeled
with the same value are linked with a dashed link. This is used in the patterns
extraction step.

The FP-Tree allows us to obtain a smaller size of data than the uncompressed
data especially when many transactions share several items. The size of the tree
depends on how the items are ordered. Data-mining techniques experts usually
use a decreasing order based on support, but it does not always lead to the
smallest tree [Han et al., 2004].

Example 22 Figure 2.9 illustrates the different step of the FP-Tree construc-
tion. In Figure 2.9(a), we add a path corresponding to transaction 1 of the
database. In Figure 2.9(b), transaction 2 shares prefix “b” with the path added
previously which explains the fact that the two paths share node “b”. The counter
of this node is, thus, incremented. In Figure 2.9(c), we add the path correspond-
ing to transaction 3. The value “a” already exists in the FP-Tree, that is why
the two nodes labeled with the value “a” are linked with a dashed link. This is
the case for the nodes labeled with the value “c”. Adding transaction 4, incre-
ments the two nodes “b” and “a” since the path exists already (Figure 2.9(d)).
Transaction 5 adds the node “c” at the end of the path b→ a while incrementing
the nodes counters (Figure 2.9(e)). All the remaining transactions correspond to
existing path (see Figures 2.9(f), 2.9(g), 2.9(h), 2.9(i) and 2.9(j)). Figure 2.9(j)
depicts the final FP-Tree obtained at the end of step 1.

Step 2: Frequent Itemset Generation This step consists in extracting
the frequent itemsets from the FP-tree. This extraction is done using a bottom-
up algorithm, which detects frequent itemsets starting from leaves to the root.
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(a) T1

append.
(b) T2 append. (c) T3 append. (d) T4 append.

(e) T5 append. (f) T6 append. (g) T7 append.

(h) T8 append. (i) T9 append. (j) T10 append.

Figure 2.9: FP-tree construction by adding the different transactions.

First, we extract prefix path sub-trees ending in an item or an itemset. Then,
each prefix path sub-tree is processed recursively to extract the frequent itemsets.
To check if the ending item is frequent, FP-Growth accumulates linked counters
and verify if the sum is greater than minSup threshold. If it is the case, the
endings are removed from the sub-tree and the process is repeated this time to
check if we can add another item to this suffix. To do that, the algorithm uses
the conditional FP-Tree, which is an FP-Tree that would be built if we only
consider transactions containing a particular itemset.

Example 23 Figure 2.10 represents all sub-trees ending respectively with “a”,
“b” and “c”. In fact, to obtain such sub-trees, the edges not ending by such
values are removed. All these sub-trees are extracted from the complete FP-Tree
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represented in Figure 2.9(j).
For example, Figure 2.11 represents conditional FP-Trees on “a” (Figure

2.11(d)) and “c” (Figure 2.11(c)), which is the updated sub-tree of the ones
presented in Figures 2.10(a) and 2.10(c). In fact, to obtain Figure 2.11(c),
we only consider transactions that contain the item “c”. In each remaining
transaction, only the items before the item “c” are represented. It is equivalent
to keeping only the paths ending by the node “c”, from the FP-Tree represented
in Figure 2.9(j), and removing all edges pointing to the node “c”. This step aims
to look for eventual frequent items, added to “c”, we obtain a frequent itemset.
This is not the case for this conditional FP-Tree since s(a) = 1 + 2 = 3 <
minSupport = 5. In the case of condition FP-Tree on “a”, we have s(b) = 5 =
minSupport. As a consequence, “a” and “ba” are two frequent itemsets ending
in “a” extracted from FP-Tree. The result of this step is represented in Table 2.2
where the results of sub-trees are merged for the same suffix.

(a) prefix sub-tree ending
in a.

(b) prefix sub-tree ending in
b.

(c) prefix sub-tree ending in c.

Figure 2.10: Prefix path sub-trees.

Suffix Frequent Itemsets
a {a}, {b, a}
b {b}
c {c}

Table 2.2: The frequent itemsets (minSupport=5).

Data-mining based approaches: related works In [Jabbour et al., 2013b],
data-mining techniques are used to reduce the size of propositional formu-
lae in Conjunctive Normal Form (CNF). This approach is extended to CSP
[Jabbour et al., 2013a]. In fact, additional variables and values are needed, and
constraints are reformulated using Tseitin extension principle [Tseitin, 1983].
This principle consists in converting a Disjunctive Normal Form (DNF) formula
which is a disjunction of conjunctions to a CNF formula which is a conjunction
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TID Items
1 {B, A}
2 {B, C}
3 {A, C}
4 {B, A}
5 {B, A, C}
6 {B}
7 {A}
8 {B, A, C}
9 {B, A}
10 {B, C}

(a) Data-set: transac-
tions ending in c.

TID Items
1 {B, A}
2 {B, C}
3 {A, C}
4 {B, A}
5 {B, A, C}
6 {B}
7 {A}
8 {B, A, C}
9 {B, A}
10 {B, C}

(b) Data-set: transac-
tions ending in a.

(c) FP-Tree conditional on c. (d) FP-Tree conditional on a.

Figure 2.11: Conditional FP-Tree.
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of disjunctions by introducing new variables in order to prevent combinatorial
explosion due to such conversion. Let us consider a DNF:

(x1 ∧ · · · ∧ xl) ∨ (y1 ∧ · · · ∧ ym) ∨ (z1 ∧ · · · ∧ zn)

The conversion of this DNF to a CNF using the distributive characteristic of
disjunction over conjunction causes a combinatorial explosion:

(x1 ∨ y1 ∨ z1) ∧ (x1 ∨ y1 ∨ z2) ∧ · · · ∧ (xl ∨ ym ∨ zn)

Applying Tseitin extension principle, by using additional variables (t1, t2, t3), we
get:

(t1∨ t2∨ t3)∧ (t1 → (x1∧ · · ·∧xl))∧ (t2 → (y1∧ · · ·∧ ym))∧ (t3 → (z1∧ · · ·∧ zn))

Authors extend this technique to CSP and especially table constraints. This
is introduced by Figure 2.12 which illustrates the Rewriting Rule used to reduce
table constraints based on Tseitin extension principle. Let us consider the pos-
itive table constraint c in Figure 2.12(a) and the itemset I = {(x1, 0), (x3, 0)}
which occurs four times. In order to compress c, authors propose to add a new
variable z and two new values c1 and c2, such that dom(z) = {c1, c2}. In fact,
these values will replace the possible combination of values taken by x1 and x3

in the compressed table constraint such that c1 → (0, 0) and c2 → (0, 1). The
Rewriting Rule presented in this paper generate two new constraints c0 which is
defined in Figure 2.12(b), such that scp(c0) = {z, x1, x3} and c’ which is the com-
pressed form of table constraint defined in Figure 2.12(c). The space required to
represent the standard table constraint, not including the cost of the scope and
variables, is 8× 4 = 32, however, for the compressed table constraint it is equal
to 3× 2 + 8× 3 = 30. To the best of our knowledge, no experimentation on this
approach was conducted, which prevents us from concluding about the efficiency
of this approach. In other terms it is not clear if the compression is high enough
to outweigh the cost of additional variables and values.

2.2 Parallel computing

Parallel computing has evolved during these last decades. It is no longer the
matter of high equipped data centers since computers keep evolving to a higher
number of processors. With the emergence of multicore processors 1, application
need parallelism to exploit all available power of a machine offering this type of
architecture. The Central Processing Unit (CPU) of computers has more and
more cores which speeds up computing tasks. Graphics Processing Unit (GPU)
is another unit which manipulates computer graphics and image processing. This

1A multi-core processor is an integrated circuit to which two or more processors have been
attached in order to enhance performance by processing simultaneously multiple tasks.
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x1 x2 x3 x4

τ0 0 0 0 0
τ1 0 0 0 1
τ2 0 0 1 0
τ3 0 0 1 1
τ4 0 1 0 0
τ5 0 1 0 1
τ6 0 1 1 0
τ7 0 1 1 1
(a) Positive table constraint c.

z x1 x3

c1 0 0
c2 0 1

(b) c0.

z x2 x4

τ0 c1 0 0
τ1 c1 0 1
τ2 c2 0 0
τ3 c2 0 1
τ4 c1 1 0
τ5 c1 1 1
τ6 c2 1 0
τ7 c2 1 1

(c) c
′
.

Figure 2.12: Reducing table constraint: c0 and c
′
.

unit offers also a highly parallel structure making it more effective than general-
purpose CPUs for algorithms where processing of large blocks of data is done in
parallel.

Several parallel architectures have been proposed in order to benefit from
these hardware advancements and to parallelize classical sequential algorithms.

In this section, we introduce parallel models and measures to evaluate par-
allel systems, and then, present the use of parallel algorithm in the context of
constraint programming.

2.2.1 Definitions

Definition 27 (Process) A process is a computer program that is being exe-
cuted and has its own memory space.

Definition 28 (Thread) A thread is the execution in parallel of a part of the
code of a process program. Contrary to a process, the threads of a same process
share the same memory space and environment.

One of the reasons behind using threads is that they are less expensive than
creating processes.

Different measures are used to report the time spent by each thread, each
process or the entire system. We distinguish the wall-clock time and the CPU
time used in our experimentations.

Definition 29 (Wall-clock time) The Wall-clock (wck) time is the time spent
from the start to the completion of a task. This time includes programmed delays
and the time spent waiting for resources to become available.

Definition 30 (Central Processing Unit time) The CPU time is the time
during which a CPU was used. This includes processing instructions. The CPU
time is useful to quantify the overall computing effort.
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2.2.2 Parallel performance measurements

To evaluate parallel solutions several metrics are used, but the most important
one is speedup.

Speedup

Speedup describes how much faster a parallel algorithm runs with respect to the
best sequential one. For a problem of size n, the speedup Sp is expressed as
follows:

Sp =
Ts
Tp

(2.2)

where Ts is the resolution time of the sequential algorithm and Tp is the resolution
time of a parallel algorithm on p processors. We mean by resolution time the
wall clock time required to finish the resolution.

If the speedup increases linearly as a function of p, then we speak of linear
speedup. Linear speedup means that the overhead of the algorithm is always in
the same proportion with its running time, for all p. In the particular case of Tp =
Ts/p, we then speak of perfect linear speedup. In practice, most programs achieve
sub-linear speedup (Tp ≥ Ts/p). When Tp ≤ Ts/p, we achieve a super-linear
speedup. Figure 2.13 shows the four possible speedups. If a problem cannot be

Figure 2.13: Possible speedup curves.

completely parallelized (one of the causes for sub-linear speedup), only a partial
speedup is expected. Hence, rather than considering the speedup expressed in
Equation 2.2 Amdahl and Gustafson proposed each one an expression, called a
law of speedup. The two law’s give different points of view about the execution
time scale with the number of processors for computing partial speedup.
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Amdahl’s law Amdahl’s law [Amdahl, 1967] expresses the maximum expected
overall speedup of a sequential algorithm using p processors as follows:

S(p) =
Ts
Tp

=
ts + tp

ts + tp
p

(2.3)

where ts is the computation time needed for the sequential part and tp is the
computation time needed for the parallel part.
Let α denote the sequential portion of the computation:

α =
ts

ts + tp
(2.4)

We get, then

S(p) =
1

α + (1−α)
p

(2.5)

If p 7→ ∞:

S(p) =
1

1− α (2.6)

which means that if we assume that a computer has as many processors as
we want the maximum expected speedup is 1

1−α . If we take the example of a
sequential algorithm requiring 10 hours using a single processor core and only 9
hours could be parallelized, the maximum expected speedup is 10 ( 1

1
10

). Amdahl’s

law is useful for algorithms that need to scale its performance as a function of the
number of processors, fixing the problem size n. This type of scaling is known
as strong scaling. However, this law does not fully exploit the computing power
that becomes available as the number of cores increases. Figure 2.14 illustrates
the total work evolution with respect to Amdahl’s law where ε 7→ 0 when the
number of cores 7→ ∞. The assumption is “the problem size does not change
with the number of CPUs”.

Gustafson’s law Rather than fixing a problem size, Gustafson’s law
[Gustafson, 1988] uses fixed-time model. This model considers that the work per
processor is fixed when increasing the number of processors p and the size of the
problem n. Gustafson’s law states that the time of a parallel system is composed
of the computation time needed for the sequential part t∗s and the computation
time needed for the parallel part t∗p executed by p processors (T (p) = t∗s + t∗p).
The expected speedup is expressed as follows:

S(p) =
t∗s + t∗pp

t∗s + t∗p
(2.7)

Let α∗ denote the sequential portion of the computation on the parallel system:

α∗ =
t∗s

t∗s + t∗p
(2.8)
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Figure 2.14: Illustrating Amdahl’s Law (total work).

We get:
S(p) = α∗ + p(1− α∗) = p− α∗(p− 1) (2.9)

Thus, if α is small enough (i.e. the parallelizable part is big enough), the speedup
is approximately p. This type of scaling is known as weak scaling. Figure 2.15
illustrates the total work evolution with respect to Gustafson’s law. The assump-
tion is “the computation time is constant”.

Figure 2.15: Illustrating Gustafson’s Law (total work).

It is true that speedup might be one of the most important measures to
evaluate a parallel solution. However, there are also other metrics that provide
additional information about the quality of a parallel algorithm, such as the
efficiency.
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Efficiency

Efficiency metric of an algorithm using p processors estimates how well the pro-
cessors are being used in solving a problem, compared to how much effort is
wasted in communication and synchronization. It is expressed as follows:

Ep =
Sp
p

(2.10)

In fact, mostly, Ep ≤ 1 except for a super-linear speedup which is difficult to
obtain in practice (except for some cases like satisfiable instances in CP). It is
equal to 1 when we can achieve a perfect linear. Efficiency metric is as important
as speedup since it tells how well the algorithm exploits machine power.

2.2.3 Parallel programming models

Several parallel programming models are used to express a parallel algorithm
with an abstraction of a computer system. They basically describe the way the
different processors interacts or not with each other.

Communication model

Shared memory In a shared memory model, several threads (or processes)
share a common memory, i.e threads can read and write asynchronously within
this memory. Parallel algorithms using this model need to manage concurrent
access to the memory when reading/writing data. Synchronization features are
used to control concurrent threads, such as monitors [Hoare, 1974], semaphores
[Dunstan, 1991], atomic operations [Herlihy and Wing, 1987] and mutexes to
control inputs/ outputs of a common memory.

Symmetric Shared Memory multiprocessor (SMP), depicted in Figure 2.16, is
a parallel hardware and software architecture which owns identical processors, so
as to increase the computing power, while maintaining a single shared memory.

Non-uniform memory access (NUMA), depicted in Figure 2.17, is a computer
memory model. While SMP is a “share everything” system, NUMA adds an
intermediate level of memory. In fact, under NUMA, each processor has its own
local memory to which it can access faster than non-local ones.

Message passing This model is basically used in distributed systems in which
components are located on networked computers. These components communi-
cate and coordinate their actions by asynchronously or synchronously passing
(sending or/and receiving) messages. Different data structures are used depend-
ing on the way messages are sent. Several algorithms use queue data structure
to manage the different messages. Dijkstra introduced many new ideas for dis-
tributed systems based on exclusion mechanisms [Dijkstra, 2001]. Figure 2.18
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Figure 2.16: Symmetric Shared Memory multiprocessor architecture.

Figure 2.17: Non-uniform memory access model.

describes the message passing model where queues are used for each component
to manage messages.

The main disadvantage of this model is the expensive cost of communication
between the different components and especially managing messages.

Parallel strategies

Divide and conquer Figure 2.19 describes Divide and conquer model which
is a two-phase skeleton:

• divide phase consists in splitting the work up into sub-problems or tasks
until sub tasks may be directly solved;
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Figure 2.18: Message passing model.

• conquer phase where the result is recursively rebuild from partial results;
we merge the results from that work serially again.

Figure 2.19: Divide and conquer model.

MapReduce MapReduce [Dean and Ghemawat, 2008] is a well-known paral-
lel programming tool. In fact, MapReduce model is composed of Map() and
Reduce() procedures. Map() performs filtering and sorting operations on data
whereas Reduce() procedure performs a summary operation of the treated data.
Figure 2.20 describes MapReduce model for word counting problem. In fact,
words are divided to be treated in parallel. In a first step, the different words
are tagged: each world belongs to a category, such as “Friend” or “Sun”. Then,
the same words are gathered together and counted: the words of each category
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are brought together. Finally, all results are regrouped as depicted in the final
result of Figure 2.20. MapReduce model is different from divide and conquer
systems in tagging the intermediate results. In MapReduce, we divide the work
up serially, execute tasks in parallel, and then, tag the results to indicate which
results go with which other results. The merging is then serial for all the results
with the same tag, but can be executed in parallel for results that have different
tags.

Figure 2.20: MapReduce model.
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2.2.4 CSP solving using parallel programming models

We introduced previously different models of parallel programming used in sev-
eral fields. In constraint programming, several search/inference algorithms were
proposed in order to speed up the search process sequentially. With the develop-
ment of parallel programming techniques, the CSP community tried to benefit
from such parallel architecture when solving constraint problems. In this section,
we introduce:

• Distributed Arc Consistency

• Work Sharing

• Work Stealing

• Multi-Agent Search

• Portfolios

An interesting survey of parallel approaches in the literature for constraint solv-
ing is proposed in [Gent et al., 2011].

Distributed Arc Consistency

In order to speed up the solving CSP process, several works were proposed in
order to distribute computing to a set of parallel processes. Another justification
is that the problem itself may be distributed geographically or due to organiza-
tional structures.

Consistencies correspond to a certain level of coherence maintained during
search as introduced in Section 1.2. Enforcing consistency when the problem is
distributed is different from the classical sequential way to enforce consistencies.

Using a shared memory model was a first natural way to enforce AC
in a parallel way, but the proposed algorithms using such model were pe-
nalized with communication/synchronization costs. In a distributed con-
text, problems cannot be solved by a centralized solver. We call such
problems: Distributed Constraint Satisfaction Problems (DisCSP). We dis-
tinguish: Sensor networks [Domshlak et al., 2005], distributed resource al-
location problems [Prosser et al., 1992] and distributed meeting scheduling
[Maheswaran et al., 2004]. Several distributed arc consistency algorithms were
proposed in the 1960s using asynchronous message passing (Section 2.2.3).

Asynchronous Backtracking algorithm (ABT) [Yokoo et al., 1992,
Yokoo et al., 1998] is the first algorithm that maintains arc consistency in
DisCSP. Consistency is maintained based on nogood exchange between agents.
Each agent stores a set of received nogoods as justification of inconsistent
values. When an agent cannot make any assignment with respect to its current
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domains, either due to the original constraints or due to the received nogoods,
new nogoods are generated by resolution of its set of nogoods and each one is
sent to the closest agent involved, causing backtracking.

In [Nguyen and Deville, 1998], Distributed Arc Consistency (DisAC4)
algorithm is based on AC4 (time-optimal sequential algorithm
[Mohr and Henderson, 1986]). DisAC4 is a coarse-gained parallel algo-
rithm designed for distributed memory models. In fact, AC4 is maintained in
each node where a list of domains deletion is stored. After reaching a fixed
point, a node broadcasts its list of domains deletion and waits for messages from
other nodes. When the whole system reaches a fixed point, each node should
proceed to domain deletion. This algorithm has O(n2d2/p) time complexity.
DisAC4 reaches, on some instances, a speedup close to linear with respect to
the number of processors p. However, with the other instances DisAC4 reaches
a 1, 5 speedup over 8 processors. The strongest feature of DisAC4, as the
authors claim, is its suitability to be implemented on very common hardware
infrastructures.

DisAC9 [Hamadi, 1999] improves the asynchronous message passing process
since it is a difficult issue due to dependencies between deletions. DisAC9 is
optimal according to the number of message passing operations and it is consid-
ered the quickest processing algorithm of the Distributed Constraint Satisfaction
Problems (DCSP) since it minimizes the number of messages transmitted be-
tween workers (O(n2d3) complexity). In fact, a worker informs other workers
about domain deletion only if it has the unique support for their values consid-
ering a constraint c. In the other case, it is useless to send a message and the
worker stores it in the list of domains deletion that will be sent iff other sig-
nificant (unique support) deletion occurs. The crucial point while distributing
CSPs is the distribution of information among workers. In particular, partition-
ing variables in order to obtain a distributed problem is the main issue.

Work Sharing

Parallel search made simple [Schulte, 2000] is one of the well-known approaches
where the authors used work splitting technique in order to share work. They
assume that for simple and reusable parallel constraint solving, we should sep-
arate: search, concurrency and distribution. Using concurrent language Oz
[Henz et al., 1993] (Mozart implementation), they are referring to search nodes
by the term computation spaces. The main feature of their approach is assuming
that resources are cheap and mostly idle, which differs from the classical idea, in
order to obtain a good speedup rather than a good resource use. In fact, workers
use work sharing to dynamically distribute work on them. Each worker maintains
a work pool which includes all nodes to be explored. The work is managed by a
single manager through the usage of messages described in Figure 2.21. We dis-
tinguish three major steps: initialization, finding work and collecting a solution.
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In fact, in a first step a manager sends an explore-message to an idle worker
corresponding to the root of the search tree. This worker becomes busy and
starts to explore the search tree. The worker generates in turn new work which
corresponds to the unexplored branches of the search tree. The available work is
stored in its work pool. An idle worker contacts the manager in order to obtain
work by sending a find-message. The manager in its turn sends a share-message
to the first busy worker (a list of busy workers is maintained in the manager).
In case where the contacted worker has a work in its pool to give, it sends to the
manager which sends it back to the idle worker by an explore-message. Finally,
when a worker finds a solution it sends it to the manager by a collect-message.
This approach reaches an almost linear speedup.

(a) Initialization.

(b) Exploration.

(c) Finding work.

(d) Collecting a solution.

Figure 2.21: Messages communicated between workers and manager.
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More recently, the authors in [Régin et al., 2013] proposed another approach
called “embarrassingly parallel search”, which statically decomposes the initial
problem into many small sub-problems that are available to the workers and
puts them in a queue. When a worker is idle, it takes dynamically a job from
the job queue and solves it. The master maintains the concurrent access of
the queue. The resolution is finished when all sub-problems are solved. In this
approach there is no communication between workers so when a worker finds
a better solution, the other workers cannot benefit from it to improve their
current resolution. A good balancing is observed in practice. The decomposition
algorithm is improved in [Régin et al., 2014].

Work Stealing

Work stealing, first proposed in [Sleep, 1981], is the most popular architecture
for parallel search where nodes steal work from each other if they are out of
work. In fact, the problem is dynamically split during the solving process. This
guarantees that workers are always busy and ensure a dynamic load balance.
Figure 2.22 describes this architecture. In Figure 2.22(a) the work is not split
in an equitable way: we suppose that Worker4 has finished its work. Worker4

remains without work that is why it steals work w1 from Worker1 in Figure
2.22(b). The disadvantage of this approach is the communication costs between
workers in order to obtain work especially at the end of the problem solving
when many workers have no sub-problems to solve. Moreover, when asking for
work, a worker should not be given an easy work so it will not steal another
work again almost instantly. This architecture is also used in [Chu et al., 2008,
Schubert et al., 2008, Chu et al., 2009]

(a) Work distribution. (b) Worker4 steals work from Worker1.

Figure 2.22: Work stealing architecture.

In [Xie and Davenport, 2010], a masters/workers approach is proposed where
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the search space is divided between the different masters. Each master puts its
attributed sub-trees in a work pool in order to dispatch them to the workers. In
fact, an idle worker requests its master for work and does not steal work directly
from a busy worker. If there is no unexplored nodes the worker remains idle until
new jobs become available.

Another work stealing approach is presented in [Kotthoff and Moore, 2010].
The authors describe a model splitting approach which consists in modifying
the constraint model of the problem. In fact, the problem model is converted
into new models, when assigning variables for example. Added to that, several
constraints used to partition the search space are appended to the models. This
approach does not share any information between workers. The approach uses
the work stealing technique, while outputting restart nogoods for the problem
in order to prevent the worker from exploring the space just explored before (In
Figure 2.23(a), the restart nogood is x 6= 1 and x 6= 2). A job server is also
used to avoid implementing distribution. Clearly, parents give up all their search
space and split themselves into n parts. To the best of our knowledge, there is no
experiments done. Figure 2.23 describes this architecture where the search space
is split in two different conditions. In Figure 2.23(a), the search space is split
before search where the 3 branches corresponding to the assignment of variable
x is partitioned between workers. We call this an n-way branching. The main
problem of such splitting is that it is impossible to predict the size of the search
space for each of the splits: some parts could lead to a failure and then one of
the workers will be idle while the others do most of the work. The search-space
splitting in Figure 2.23(b) is done in a different way. In fact, during search and
after the two decisions, x 6= 1 and x 6= 2, the search space is split between worker.
In [Kotthoff and Moore, 2010], authors add restart nogoods which are additional
constraints to the search space of each worker.

In [Chu et al., 2009], different work stealing strategies are described which
are based on a confidence measure. This latter is the estimated ratio of solution
densities between the sub-trees at each node obtained with respect to the branch-
ing heuristic used at each node and it is updated during search. The authors
present a quantitative analysis discussing the effect of the different work stealing
strategies on the work amount performed. A function can be used to determine
the relation between the strength of the branching heuristic and the density of
solutions and, thus, ensure automatically an optimal work stealing. For example,
sometimes it appears that stealing left and low could be much better, but some-
times stealing high can be better. The authors show that in practice stealing
low increases the communication cost. This is the reason why they defined a
bound above the average fail depth below which work cannot be stolen. These
different strategies show an effectiveness ranging from speedups of 7 times to a
super linear speedup on the benchmarks in the paper using 8 threads for the
parallel search algorithm.

104



2.2. PARALLEL COMPUTING

(a) Search-space splitting before search (n-way branching).

(b) Search-space splitting during search (2-way
branching).

Figure 2.23: Search-space splitting architecture.
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Multi-Agent Search

In multi-agent search architecture, we have one problem and different agents. In
fact, each agent solves the problem independently and may communicate with
the other agents. This approach could achieve super-linear speed up even-though
the diversity among agents increases communication costs. This idea was, first,
explored in [Rao and Kumar, 1988].

In [Bordeaux et al., 2009], the authors present some “Experiments with Mas-
sively Parallel Constraint Solving” where they explore approaches avoiding com-
munication between workers. In fact, the problem is split over workers with
respect to hashing constraints. The hashing constraint of each core is unique.
The authors present promising results on more than 64 cores.

Portfolios

In this multi-core architecture, a portfolio of solvers use a variety of algo-
rithms to have a globally better solver. This architecture could be consid-
ered a multi-agent search. The idea of portfolio-based search was explored in
[Gomes and Selman, 2001]. Portfolios have been extremely used by the SAT
community and a variety of solvers were proposed. To the best of our knowl-
edge, there are two CSP portfolio solvers CPHydra [O’Mahony et al., 2008] and
Sunny-CP [Amadini et al., 2015]. CPHydra, a sequential portfolio, won the 2008
CSP solver competition 2. It uses a case-based reasoning and solves a problem
based on the k most similar instances (K-nearest neighbor) from a base. In fact,
CPHydra computes a schedule of the portfolio constituent solvers to be run in
sequence. This schedule of solvers allocates a duration to each solver. Three
main solvers are used in CPHydra: AbsCon, Choco and Mistral.

Sunny-CP attended the MiniZinc Challenge (MZC) [Stuckey et al., 2010]
with respectable results (4th out of 18). Sunny-CP is a CSP/COP portfolio
solver using MiniZinc Language. Using different solvers, features, data-sets and
parameters tuning, Sunny-CP is able to outperform state-of-the-art constraint
solvers. For an input problem, Sunny-CP selects the k closest instances using
the k-Nearest Neighbors (k-NN) algorithm. Based on these instances, Sunny-CP
selects the promising solvers to run.

In [Dasygenis and Stergiou, 2014], the authors proposed a way to build port-
folios for parallel solving by varying the local consistency during search. In fact,
authors use different heuristics for adaptive propagator selection proposed in
[Stergiou, 2008] which switch dynamically between a weak and a strong propa-
gator for each individual constraint during search. A constraint c is made strong
or weak with respect to user predefined thresholds considering different propa-
gation events such as Domain Wipe Out (DWO) and domain deletions. Two
main thresholds are used in this portfolio: ldwo and ldel. A constraint c is made

2http://cpai.ucc.ie/08/
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strong if the number of revisions of c since the last time it caused a DWO (re-
spectively at least one value deletion) is less or equal to ldwo (respectively ldel).
Experiments in this paper use H1(ldwo), H2(ldel) or H4 heuristics, introduced
in [Stergiou, 2008], or a combination of them while varying thresholds for each
solver. Each solver uses MAC. Experimental results demonstrated that this ap-
proach constantly outperforms the sequential solver and competes with the other
portfolio approaches using randomized variable ordering heuristic.
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3.1. INTRODUCTION

3.1 Introduction

In Chapter 2, we introduced the context of compressing table constraints. Several
approaches and data structures are presented. Moreover, for each of them, we
introduced the corresponding filtering algorithm.

In this chapter, we propose two different compression techniques for table
constraints. Each of them presents a different form of compressed table constraint
aiming to reduce time and space complexity.

This chapter is organized as follows:

• In the first Section, we introduce a first work (STRc) [Gharbi et al., 2013]
that was presented at JFPC 2013 and CP 2013 (Doctoral Program);

• The second Section presents a second work (STR-slice)
[Gharbi et al., 2014] presented at CPAIOR 2014 ;

• Finally, we conclude.

3.2 STRc

The first approach, called compressed STR (STRc), consists in combining STR
with a compression algorithm based on “tries”, which is different from the
ones described in [Katsirelos and Walsh, 2007] and [Xia and Yap, 2013] where a
Cartesian Product representation is used for compression. The idea is to identify
the recurrent patterns (sub-tuples) in the tuples of each constraint, and replace
their occurrences by references to a patterns table. The filtering process is an
adaptation of STR in order to take into consideration the patterns appearing at
different positions.

This section is organized as follows. In Section 31, we describe the way
patterns are defined. Then, we give details about the compression process in
Section 3.2.2. Next, we present in Section 3.2.3 the filtering algorithm used for the
“compressed” form of table constraints. Finally, we present some experimental
results in Section 3.2.4.

3.2.1 Patterns Definition

In our context, a pattern is defined as follows:

Definition 31 (pattern) A pattern µ is a sequence of consecutive values (a sub-
tuple) in a tuple τ of a table constraint. We note |µ| the length of a pattern
µ, nbOcc(µ) the number of occurrences of the pattern in the tuples of a given
constraint.
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Example 24 Let µ1 be a pattern such that µ1=(a, a, b) and µ1 appears 4 times
in a table constraint. We say that |µ1| = 3, nbOcc(µ1) = 4.

Since the main idea of this approach is to reduce the spatial complexity of
table constraints through using the most frequent patterns, we defined a pattern
in a way that maximizes its frequency. It is important to note that the patterns
extracted in our approach are independent from their position in the scope of
the table constraint. According to that, a pattern does not correspond neces-
sarily to the assignment of the same values to the same variables, but rather
the same sequence of values. This choice was made to hopefully maximize the
frequency of possible patterns, and, thus, to obtain a better compression. There-
fore, the longer the patterns and the more frequent they are, the smaller the
table constraint representation will be.

Example 25 Figure 3.1 describes the detection of the pattern (c, b, c). This
pattern which appears in four tuples (τ1, τ3, τ4 and τ6), does not involve the
same variables. In tuple τ1 this pattern involves x1, x2 and x3, whereas, in
the case of tuple τ4 the pattern involves x3, x4 and x5. It is evident that if we
consider the same variables when looking for a pattern and that the variables must
be consecutive, we will not have the same patterns neither the same number of
occurrences as the patterns found applying Definition 31. This is shown by colors
in Figure 3.1. The pattern {(x1, c), (x2, b), (x3, c)} appears just one time. The
pattern {(x2, c), (x3, b), (x4, c)} appears two times.

x1 x2 x3 x4 x5

τ1 (c, b, c, a, c)
τ2 (a, a, b, b, a)
τ3 (a, c, b, c, a)
τ4 (b, a, c, b, c)
τ5 (b, a, a, b, b)
τ6 (a, c, b, c, b)
τ7 (a, c, a, c, a)

Figure 3.1: Patterns detection according to positions in the table constraint
Cx1,x2,x3,x4,x5 .

Example 26 Through Tables 3.2(a) and 3.2(b), we illustrate the effect of scope
order on patterns detection. Let us consider, for example, the pattern (c, b, c) in
Table 3.2(a) which appears four times. If we change the scope order arbitrarily in
Table 3.2(b) this pattern does not appear anymore. On the other hand, the pattern
(a, b, b) that appears two times in Table 3.2(a), happens to be more frequent in
Table 3.2(b) (appearing three times).
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x1 x2 x3 x4 x5

τ1 (c, b, c, a, c)
τ2 (a, a, b, b, a)
τ3 (a, c, b, c, a)
τ4 (b, a, c, b, c)
τ5 (b, a, a, b, b)
τ6 (a, c, b, c, b)
τ7 (a, c, a, c, a)

(a) Patterns detection with a
lexicographical-ordered scope.

x2 x4 x1 x3 x5

τ1 (b, a, c, c, c)
τ2 (a, b, a, b, a)
τ3 (c, c, a, b, a)
τ4 (a, b, b, c, c)
τ5 (a, b, b, a, b)
τ6 (c, c, a, b, b)
τ7 (c, c, a, a, a)

(b) Patterns detection with an
arbitrary-ordered scope.

Figure 3.2: Patterns detection according to the scope in the table constraint
Cx2,x4,x1,x3,x5 .

From Example 26, we conclude that the scope order of the constraint can affect
advantageously or not patterns detection: the detected patterns change and also
their number of occurrences. We note that in our first approach (STRc), we
consider that the scope is ordered in a lexicographical order. Whereas, for the
second approach (Section 3.3) we use another patterns definition that depends
only on variables, and so, the scope order doesn’t influence patterns detection.

3.2.2 Compression Method

Collecting patterns In this step, we identify the relevant patterns from the
various tuples of a given table constraint. To do that, we use tries (Section 2.1.1)
as data structures to store all these patterns. We first introduce the different
algorithms for manipulating this data structure.

Algorithms 19, 20 and 21 describes the way that patterns are managed in
the trie data structure. In Algorithm 19, when a new pattern candidate µ is
extracted, we check first if it is already stored into patternsTrie or there exists
a pattern µ

′ ⊂ µ such that µ
′

is already in the trie (Lines 3 - 9). If µ does not
exist in the trie or only a part of µ exists nbOcc counters of the new added nodes
are initially fixed to 1 (Line 11). If µ shares its first value(s) with a path the
trie, the nbOcc counters of the shared nodes are incremented (Line 7) and the
remaining part is inserted at the right place. Algorithm 20 describes the way a
pattern is extracted from the trie. In a ascending way (from a node to the root),
we extract the pattern corresponding to the path going from the root to a fixed
node. Algorithm 21 describes the way that the length of a path is calculated.

In order to collect all possible patterns, we read each tuple in the table con-
straint. For each possible pattern, we first verify if it already exists in the trie.
If it is the case, the corresponding nodes counters are updated (incremented).
If the pattern shares its first values with an existing path in the trie, only the
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Algorithm 19: addPattern(root:Node,µ:Pattern)

1 node← root
2 i← 0
3 while i < µ.length do
4 node← node.getChild(µ[i])
5 if node 6= nil then
6 i← i+ 1
7 node.nbOcc← node.nbOcc+ 1

8 else
9 break

// µ is partially or entirely added

10 while i < µ.length do
11 addChild(node, µ[i]) // nbOcc is initialized to 1

12 node← node.getChild(µ[i])
13 i← i+ 1

Algorithm 20: getPattern(node:Node):pattern

1 pattern←≺�
2 while node 6= root do
3 pattern← label(node.getParent(), node) + pattern
4 node← node.getParent()

5 return pattern

Algorithm 21: getLengthPath(node:Node):Integer

1 length← 0
2 while node 6= root do
3 length← length+ 1
4 node← node.getParent()

5 return length

corresponding nodes counters are updated and the remaining part of the pattern
is added at its right place of the trie. If the pattern does not exist in the trie and
it does not share any first value with the trie prefixes, a new path corresponding
to this pattern is created from the root. A trie contains, thus, all the existing
sequences of values and their number of occurrences.

Example 27 This example shows the different steps of the trie construction for
the first tuple τ1 of the table constraint in Figure 3.1. We detect all possible
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patterns of scope at least equal to 3 and at most 4 (we explain this choice in
the next paragraph). Starting from the first position,(c, b, c) is the first extracted
pattern. Since the trie is empty, it is inserted in the trie creating a first path from
the root (Figure 3.3(a)). The nodes’ counters are initially equal to 1. (c, b, c, a)
is also a pattern candidate of length 4 starting from position 1. (c, b, c, a) is not
included in the trie but it is the continuity of the path (c, b, c). Thus, only the
value a is added at the end of this path (Figure 3.3(b)). The nodes’ counters
are not updated in this case because there are not two different paths sharing
their first values (edges). Starting from position 2, (b, c, a) a pattern of length
3 is inserted in Figure 3.3(c). (b, c, a, c) a pattern of length 4 is added in the
same way as the pattern (c, b, c, a): the value c is put at the end of the path
(3.3(d)). Starting from position 3 the only possible pattern candidate is (c, a, c)
which shares its first value c with the path c → b → c → a. The node’s counter
corresponding to the value c is updated to 2. The path (a, c) is put as a child of
the ending node of edge c.

x1 x2 x3 x4 x5

⇒ τ1 (c, b, c, a, c)
τ2 (a, a, b, b, a)
τ3 (a, c, b, c, a)
τ4 (b, a, c, b, c)
τ5 (b, a, a, b, b)
τ6 (a, c, b, c, b)
τ7 (a, c, a, c, a)

Table 3.1: Table constraint Cx1,x2,x3,x4,x5 .

First experiments show that choosing 1 or 2 as minimal length for patterns,
is not effective to obtain a high ratio of compression. That is why the minimal
length for patterns is fixed to 3 in our approach. The maximal possible length
of a pattern, in our approach, is defined as the constraint arity minus 1.

Algorithm 22 describes the different steps used to build all possible patterns.
Lines 3-6 of the algorithm iterate over all tuples of the table and collect all
candidate patterns of different sizes starting from different positions of the tuple.
The size of patterns is between the minimal length of patterns, which is fixed
in our approach to 3, and the maximal length, which represents the constraint
arity minus 1. All these patterns are stored in patternsTrie. The remaining
steps (Line 8) of Algorithm 22 are introduced in the next paragraph.

Detecting frequent patterns In a second step, it is necessary to identify the
most relevant patterns for the compression process. To do that, we introduce
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(e) the trie obtained after patterns
extraction on τ1.

Figure 3.3: The patterns trie built from τ1 of the constraint given in Table 3.1.

the notion of score of a pattern µ as follows:

score(µ) = |µ| × nbOcc(µ) (3.1)

In fact, the score of each pattern expresses the space occupied by all of its
occurrences in the table constraint. The bigger the score is, the bigger the occu-
pied space is and, thus, the smaller the table constraint will be if we replace each
occurrence of the pattern by a reference towards it. Consequently, this definition
of score allows us to choose the patterns that make the table smaller and then
obtain a better compression. A selection threshold is fixed, and only the pat-
terns having a score greater than this threshold are retained in the compression
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Algorithm 22: buildPatterns(c: Constraint): Queue

1 maxSize ← |scp(c)| - 1
// Collecting all possible patterns in patternsTrie

2 patternsTrie← ∅
3 foreach τi ∈ table(c) do
4 foreach position ∈ [0, |scp(c)| −minSize] do
5 foreach size ∈ [minSize,min(maxSize, |scp(c)| − position)] do

// Adding pattern in patternsTrie
6 µ←≺ τi[position], . . . , τi[position+ size] �

addPattern(root(patternsTrie), µ)

// Maintaining only the frequent patterns

7 FP -Queue← ∅
8 extractBestFrequentPatterns (patternsTrie.root, FP -Queue)
9 return FP -Queue

algorithm and stored in the patterns table. In the experimental section, Figures
3.14 and 3.15 show the impact of the threshold score variation on the number of
used patterns and the compression ratio.

For efficiency reasons, the total number of retained patterns is limited by a
second parameter called nbMaxPatterns in order to control the compression time
and the memory space used to store the different patterns. This parameter is
useful in the case of class of instances having an important number of frequent
patterns.

Both parameters scoreThreshold and nbMaxPatterns enable us to obtain the
most frequent patterns having a score greater than scoreThreshold. Both of them
are important in the compression process.

Algorithm 23 describes the frequent patterns detecting step. In fact, after
collecting all candidate patterns in patternsTrie we calculate for each pattern
its score. Considering the pattern’s score, we decide if we put it in the FP -
Queue, which is a priority queue where patterns are stored in a decreasing order
of their score. This score is calculated as mentioned before. In the case that FP -
Queue is already full (Line 8), meaning that the number of patterns is equal to
nbMaxPatterns, every time we calculate the score of a new pattern we compare it
to the worst pattern which is the pattern having the smallest score meaning that
it is the last element of the queue (Line 9). This comparison (Line 10) allows us
to decide whether we keep the worst pattern in FP -Queue (in case that the new
pattern’s score is less than the worst pattern) or replace it by the new pattern,
otherwise (Lines 11 - 13).
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Algorithm 23: extractBestFrequentPatterns(node: Node, FP -Queue:
Queue)

1 score← 0
2 if level(node) > minSize then
3 score← getLengthPath(node)× node.nbOcc
4 if score > scoreThreshold then
5 if size(FP -Queue) < nbMaxPatterns then

// Extract pattern from patternsTrie: the path from

root to node
6 pattern ← getPattern(node)
7 addPatternQ(pattern, score, FP -Queue)

8 else
9 worstPattern ← getWorstPattern(FP -Queue)

10 if score > score(worstPattern) then
11 delete(worstPattern)
12 pattern ← getPattern(node)
13 addPatternQ(pattern, score, FP -Queue)

14 foreach child ∈ node.getChildren() do
15 extractBestFrequentPatterns(child, FP -Queue);

Compressing table constraints After detecting the most relevant patterns,
iterating over the constraint table is necessary to detect the presence of such
patterns and replacing them with indexes. An illustration of the compressed
data structure is described in Figure 3.4. In fact, once a pattern is found, it
is replaced by a reference towards a patterns table where the frequent patterns
are stored. The reference is encoded by a negative integer (-patternId). In fact,
the tuple will no more contain the values composing the pattern, but rather a
reference that points to the pattern stored in the patterns table.

(a) Tuples.
(b) Compressed tuples with references.

Figure 3.4: Compressing tuples.

Algorithm 24 describes the compression step. First, for each tuple in the table
constraint we look for the best contained pattern in FP -Queue. When searching
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Algorithm 24: compress-STRc(c: Constraint,FP -Queue: Queue)

1 foreach τi ∈ table(c) do
2 repeat

// searching for the best frequent pattern contained in

τi
3 bestPattern ←≺�
4 foreach µi ∈ FP -Queue do
5 if contains(µi,τi) then
6 bestPattern ← µi
7 bestPattern.position ← index(µi,τi)
8 break

9 if bestPattern 6= nil then
// Compressing each tuple τi of c: τ ci is the

prospective compressed tuple which is encoded as

an array of maximal length |scp(c)|. Its length is

denoted lengthc

10 position ← 0
11 lengthc ← 0
12 while position < τi.length do
13 if position=bestPattern.position then
14 τ ci [lengthc] ← -bestPattern.id // a reference

towards the pattern

15 position ← position + bestPattern.length

16 else
17 τ ci [lengthc] ← τi[position]
18 position ← position + 1

19 lengthc ← lengthc + 1

20 until bestPattern = nil
21 if lengthc < τi.length then
22 τi ← τ ci

for the best pattern, we respect a decreasing order of patterns score. If a pattern
is found, we add it to the patterns table and then replace its occurrence in the
tuple by a reference towards it in the patterns table. This process continues
until there is no possible pattern that could be replaced in the tuple. We should
note that when searching for the best pattern contained in a tuple, we take into
consideration the replacement done before. As a consequence, patterns don’t
overlap since we choose to replace always the occurrence of the best one. Once
we have iterated over all values of a tuple we check if we have already replaced at
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least one pattern. If it is the case, the tuple τi of the constraint is removed and
replaced by the compressed one τ ci . It is important to note that our approach does
not take into consideration the dynamic score variation. In other terms, the trie
of frequent pattern is built statically before compression. However, if patterns
share some values and we decide to use one of them in compression, the score
of others will change during compression. Let us take the example of patterns
“cacb” and “acb”. If we suppose that nbOcc(cacb) = 3 and nbOcc(acb) = 4. If
we decide to use the pattern cacb, nbOcc(acb) should be updated to 1 and in this
case it might be less frequent compared to the remaining patterns.

Illustration We give now an illustration of the whole process from patterns
detection to table compression. Table 3.1 represents a positive table constraint
of arity 5, involving variables x1, x2, x3, x4 and x5. We can notice that several
patterns are repeated among tuples such as cbc, aab and abb as patterns of length
3 and aabb, acbc and cbca as patterns of length 4. Through visiting all tuples of
our constraint, we can build the trie illustrated in Figure 3.5, where the number
of occurrences is given in each node. Every node identifies a path µ (going from
the root to the leaf) associated with the nbOcc(µ) counter. In order to make
clearer the frequent patterns detection step, in Figure 3.6, we present the same
trie depicted in Figure 3.5 but by mentioning the score in each node rather than
the nbOcc counter.
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Figure 3.5: The trie of patterns built from the constraint given in Table 3.1:
nbOcc are given in nodes.

The compression algorithm allows us to have a compressed version of the
table constraint; its logical representation is given in Figure 3.7 whereas the
patterns table is given on the right of the table constraint. Tuples τ1, τ3, τ4, τ6

of the compressed table respectively reference the pattern µ1 at positions 1, 2, 3
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Figure 3.6: The trie of patterns built from the constraint given in Table 3.1:
score are given in nodes.

and 2, and tuples τ2, τ5 respectively reference the pattern µ2 at positions 1 and
2.

This mechanism of compression can entail an important reduction of the space
occupied by the table. This is illustrated by the physical view given in Figure
3.8. The compressed tuples reference their corresponding patterns stored in the
patterns table. The table constraint is, thus, composed of tuples of different sizes
since they contain patterns of different sizes.

Figure 3.9 shows the space occupied by the two forms of table constraints:
the classic and the compressed one. The space required to represent a table
constraint is:
Σi length(τi)= number of tuples × length of a tuple = t × |scp(c)|= 7 × 5 = 35
The space required by the compressed form of the table constraint is:
Σi length(τi) + Σi length(µj)= (3+2+3+3+2+3+5) + (3+4)=29

3.2.3 Filtering algorithm

During the filtering of a table constraint, it is necessary to check the validity
of tuples, which implies to verify the validity of the patterns. When a pattern
appears several times in the table at the same position, we wish to test the
validity of the pattern only once, which allows us to speed up the filtering.

To do this, we use a counter currentTime, which is incremented every time
we filter the table constraint, and an array of timestamps stamps[µi, j]. For a
pattern µi, which occurs at a position j, stamps[µi, j] gives the result of the
last test of validity (µi, j) (field valid) as well as the value of the counter time

when this test was made. Every time the validity of (µi, j) must be tested, we
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(a) Detecting patterns and filling the patterns table.

(b) Replacing patterns by their id.

Figure 3.7: Compressed table (logical view).

verify first if the value time of stamps[µi, j] is equal to the current value of
currentTime. If it is the case, the validity was already tested in the current
step of filtering and, thus, the value valid of stamps[µi, j] directly supplies the
answer, which avoids useless calculations. Otherwise, it is necessary to test the
validity of (µi, j) and to store the result in stamps[µi, j].

Figure 3.10 presents an example of the evolution of the structure stamps.
First, all elements are initialized at currentTime=0 and the fields valid remain
unassigned (see Figure 3.10(a)). During the first filtering of the table, the global
counter currentTime is set to 1. To determine whether tuple τ3 (for example)
is valid, it is necessary to ensure that µ1 at position j = 2 is valid. As the value
time of stamps[µ1,2] is not equal to the current value of currentTime, we know
that this test was not already made in the current filtering step. Thus, we verify
whether c, b and c are still present in the domains of x2, x3 and x4 respectively.
We suppose here that the result is positive. Hence, the values 1 and true are
stored respectively in the fields time and valid of stamps[µ1,2]. Later, when we
test the validity of tuple τ6, we notice immediately (our assumption) that the
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(a) Compressing table constraint using references to-
wards the patterns table.

(b) Overview of the compressed space.

Figure 3.8: Compressed table (physical view).

(a) Before compression. (b) Overview of the compressed space.

Figure 3.9: Compressed table (Gained space).

validity of μ1 was tested during the current filtering and it is enough to use the
stored result in the field valid of stamps[μ1,2]. Assuming that μ1 is invalid at
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(a) Initialisation (currentTime=0). (b) At the end of currentTime=1.

Figure 3.10: Evolution of the stamps structure.

position 1 and 3, valid at position 2 and µ2 valid at position 1 and 2, we obtain
at the end of the filtering the result presented in Figure 3.10(b).

For a constraint of arity r and a pattern µ, there is at most r − |µ| + 1
possible pairs of (µ, j) (because 1≤ j≤ r-|µ|+ 1). So, the structure stamps has a
size O(mr) where m is the number of detected patterns.

Algorithm 25 describes the filtering process based on STR. It first goes
through all current (valid) compressed tuples. In fact, current tuples are de-
limited by a pointer called currentLimit. This technique is used in almost
all STR algorithms to separate valid tuples from the invalid ones in the table
constraint (Section 1.3.2). The test of validity of compressed tuples is done by
Algorithm 26, which indicates whether the compressed tuple is still valid from
the last test or not. If the tuple is valid at currentTime, Algorithm 25 updates
the set of values to be supported by the future (unassigned) variables of the con-
straint scope (Lines 8 - 10) as in STR. Otherwise, if the tuple remains not valid,
it is removed from the valid tuples set by updating the currentLimit pointer.
At the end of the algorithm, updating domains is required.

To test the validity of a compressed tuple, we should test every value com-
posing it including the prospective patterns. A value is considered valid if it is
present in the current domain of its variable. If the tuple references a pattern
(Line 7), we verify if the stamps data structure is updated at currentTime. If
it is the case, we benefit from the result of the test of validity stored in the field
valid (Lines 9 - 11), otherwise, we proceed to the test of validity and we store
it for further tests (Lines 13 - 19).

Illustration Figure 3.11 describes the evolution of the stamps data structure
by the call of Algorithm 25 due to the event x3 6= c. In Figure 3.11(a), we test
the validity of τ1. Since τ1 references the pattern µ1 at its first position, we
start by testing the validity of the different values composing µ1. The pattern µ1

involves the literal (x3,c) which implies its invalidity. The result is, thus, stored in
stamps[µ1,1], τ1 is considered invalid (swapping it with the last valid tuple) and
currentLimit is decremented. Figures 3.11(b), 3.11(c), 3.11(d), 3.11(e), 3.11(f)
and 3.11(g) illustrate the different tests of validity done respectively over tuples
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Algorithm 25: STRc(P :constraint network, c: constraint):set of variables

// Initialization of sets gacV alues, as in STR

1 foreach variable x ∈ scp(c) | x /∈ past(P ) do
2 gacValues[x]← ∅
// Iteration over all current compressed tuples of c

3 i← 1
4 while i ≤ currentLimit[c] do
5 index← position[c][i]
6 τ ← table[c][index]
7 if isV alidTuplecomp(c, τ) then
8 foreach variable x ∈ scp(c) | x /∈ past(P ) do
9 if τ [x] 6∈ gacValues[x] then

10 gacValues[x]← gacValues[x] ∪ {τ [x]}

11 i← i+ 1

12 else
13 removeTuple(c, i, |past(P )|) // currentLimit[c] decremented

// domains are now updated and Xevt computed

14 Xevt ← ∅
15 foreach variable x ∈ scp(c) | x /∈ past(P ) do
16 if gacValues[x] ⊂ dom(x) then
17 dom(x)← gacV alues[x]
18 if dom(x) = ∅ then
19 throw INCONSISTENCY

20 Xevt ← Xevt ∪ {x}

21 return Xevt
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Algorithm 26: isV alidTuplecomp(c: Constraint, τ : Tuple): Boolean

1 oldPosition← 0
2 foreach i ∈ [0..|scp(c|] do

// compressed tuples contain values and references to

patterns

3 if isV alue(τ [i]) then
4 if τ [i] 6∈ dom(scp(c)[oldPosition]) then
5 return false

6 oldPosition← oldPosition+ 1

7 else
// The case of a reference towards a pattern

8 µ← patterns(|τ [i]|)
9 if stamps[µ, i].time = currentT ime then

// The pattern was tested at the instant currentTime

and it is not valid

10 if stamps[µ, i].valid = false then
11 return false

12 else
// The pattern is not tested yet at currentT ime

13 stamps[µ, i].time← currentT ime
14 foreach j ∈ [0..|µ|] do
15 if µ[j] 6∈ dom(scp(c)[oldPosition]) then
16 stamps[µ, i].valid← false
17 return false

18 oldPosition← oldPosition+ 1

19 stamps[µ, i].valid← true

20 return true

τ7, τ2, τ3, τ4, τ6 and τ5. We can also observe the evolution of the stamps structure
after each test. In Figure 3.11(f), we test the validity of tuple τ6, which references
pattern µ1 at position 2. Thanks to the result stored previously in stamps[µ1,2]
when testing the validity of τ3, we avoid re-checking the validity of the different
values composing µ1. The final result of validity tests at currentT ime=1 is given
by Figure 3.11(g).

3.2.4 Experimental results

In order to show the practical interest of our approach (STRc), we com-
pared the behavior of STR1 [Ullmann, 2007], STR2 [Lecoutre, 2011], STR3

125



3.2. STRC

(a) τ1 validity test. (b) τ7 validity test. (c) τ2 validity test.

(d) τ3 validity test. (e) τ4 validity test. (f) τ6 validity test.

(g) τ5 validity test.

Figure 3.11: Example of the stamps data structure evolution at currentT ime = 1
(event x3 �= c).
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[Lecoutre et al., 2012] and STRc algorithms when they are integrated into the
search algorithm MAC (which maintains the property of generalized arc con-
sistency during search) on one hand and enforcing GAC using MDD on the
other hand. To validate our approach, we made some tests on instances of four
distinct problems available at http://www.cril.univ-artois.fr/~lecoutre/

benchmarks.html: mdd [Cheng and Yap, 2010], bdd, crosswords, nonograms
[Pesant et al., 2012] and random series. The experimental results on representa-
tive instances are given in Table 3.2; the heuristic dom/ddeg is used to ensure
the same search path and lexico as value ordering heuristic.

We have conducted an experimentation with our solver AbsCon (Section
1.1.4) using a cluster of bi-quad cores Xeon processors at 2.66 GHz node with
16GiB of RAM under Linux. A time-out of 1, 200 seconds was set per instance.

On such instances (given in Table 3.5), STRc allows an important spatial
reduction that may achieve 90 % (the crossword case) compared to the con-
straints used by the other approaches. For STRc we give resolution times, the
compression ratio defined as the size of compressed tables over the size of ini-
tial tables and the time required to build the instance (including compression).
The size of a compressed table is the size of compressed tuples and the patterns
table. When we consider the time of search, it seems that STRc competes with
STR1, but stay, however, supplanted by STR2. Compared to MDD, in the case
where MDD supplants STR approaches, STRc doesn’t give better times (mdd
and nonograms). However, in the other case our approach competes with MDD
and could even give better times (bdd-21-133, crossword).

Figures 3.12 and 3.13 give the number of patterns used per length for two
constraints of two different problems as an example to show the distribution
of used patterns based on their length. Figure 3.12 gives the distribution of
patterns used for a constraint of arity 9 on a crossword-m1-ogd-23-04 instance.
69% of patterns are of length 5 which allows an efficient compression. Figure
3.13 gives the number of patterns used for a bigger constraint of arity 38 on a
nonogram − gp − 108 instance. The most used patterns have lengths between
17 and 21.

Figure 3.14 shows two different curves: the dashed one for the detected fre-
quent patterns using the trie data structure and the continuous one representing
the patterns used in compressing the table constraint. There is a big difference
that reaches the double, between the number of detected patterns and the used
ones in the beginning of the curves. This means that when scoreThreshold is
small there are many patterns detected, but when replacing their occurrences
the algorithm uses only few of them. This could be explained by the decreasing
order of scores used when compressing: the more frequent pattern is replaced
first. Coming to the less frequent pattern, there is no tuples left. It is important
to note that the number of used and detected patterns decreases when the score
starts to be bigger. More and more patterns tends to be infrequent. The patterns
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Instance MDD STR1 STR2 STR3 STRc

a7-v24-d5-ps0.5-psh0.7-9 17.819 879 334 367
780.318

(43.775% – 12.192)

a7-v24-d5-ps0.5-psh0.9-2 5.536 256 145 143
283.828

(43.776% – 11.511)

a7-v24-d5-ps0.5-psh0.9-6 11.397 353 195 324
420.739

(43,776% – 11.628)

bdd-21-2713-15-79-9 77.171 80.2 23.3 60.0
84.608

(82,612% – 1.05)

bdd-21-2713-15-79-11 55.752 78.5 23.5 48.5
74.796

(82,643% – 1.164)

bdd-21-133-18-78-11 47.157 38.4 11,0 250
33.538

(83.975% – 1.751)

crossword-m1-ogd-23-04 104.485 82.7 78.2 103
80.085

(10.688% – 2.919)

crossword-m1c-lex-vg5-7- 86.475 43.5 31.4 36.6
49.393

(20.134% – 0.5)

crossword-m1c-ogd-vg10-13 TO TO 897 765 TO

nonogram-gp-108 55.732 290 78.7 118
319.613

(94.519% – 20.561)

nonogram-gp-116 16.658 102 21.7 21.9
108.098

(95.7% – 7.948)

nonogram-gp-137 8.359 166 45.4 56.8
146.142

(92.967% – 42.072)

rand-6-10-10-60-950-0 67.821 75.1 45.4 34.4
104.554

(34.317% – 21.768)

rand-7-9-9-30-980-0 47.285 26.8 18.5 46.3
50.271

(57.469% – 19.383)

rand-8-20-5-18-800-8 83.815 86.6 45.8 574
111.949

(62,960% – 8.744)

Table 3.2: CPU time (in seconds) on some selected instances solved by MAC.
Compression ratio and CPU time are given for STRc between parentheses.
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length = 3

length = 4

length = 5

length = 6

69%

26%

5%

~0%

Figure 3.12: Pie chart of patterns (totalPatterns=771) used per length for a
constraint of arity 9 (nbTuples=63138) of the instance problem crossword-m1-
ogd-23-04.

number reaches 0 at scoreThreshold=282.
Figures 3.15 illustrates the variation of the compression ratio according to

the scoreThreshold for the instance crossword-lex-vg5-7. Since the number of
used patterns detected is affected by the score rise, the compression ratio is also
concerned by this factor. The compression ratio decreases with the score rise
until there is no frequent patterns detected (at scoreThreshold=282), and thus,
the table constraint cannot be compressed. In fact, when the scoreThreshold
rise that means that either the patterns detected are more and more frequent
or the patterns are longer which implies an important reduction when replacing
their occurrences.

3.3 STR-slice

In the first work, we defined a pattern as a sequence of consecutive values. Al-
though this definition allowed us to obtain an important space complexity re-
duction, the compressed form of the table constraint presents some drawbacks
especially during the filtering process preventing us to use optimized STR tech-
niques. For each test of tuple validity, iterating over all its values is necessary (if
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Figure 3.13: Number of patterns used per length for 4 constraints of arity 32 of
the instance problem nonogram− gp− 108.

we are not in the case of re-using the results previously done and stored in the
specified data structure). These drawbacks are due to the pattern definition: a
pattern could involve different variables depending on the position in which it
occurs.

Aiming to be able to benefit from optimized STR techniques, we proposed in
this second work a new definition of pattern and, thus, a new compressed form
of table constraints by means of data-mining techniques.

This section is organized as follows: after explaining the relaxation of pattern
definition in Section 3.3.1, we present, in Section 3.3.2, a compression process for
table constraints, introducing the algorithm used to obtain the new form of table
constraints (called “sliced” table constraints). Next, we describe, in Section 3.3.3,
an optimized algorithm to enforce GAC on “sliced” table constraints. Finally,
we conclude by giving some experimental results in Section 3.3.4.

3.3.1 Pattern Definition

In this subsection, we introduce the new concepts of pattern and sub-table that
are useful for the compression process.
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Figure 3.14: Number of patterns (detected and used) per score threshold for a
constraint of arity 7 of the instance problem crossword-lex-vg5-7.

Definition 32 A pattern µ of a constraint c is an instantiation I of some
variables of c. We note scp(µ) its scope, which is equal to vars(I), |µ| its
length, which is equal to |scp(µ)|, and nbOcc(µ) its number of occurrences in
rel(c), which is |{τ ∈ rel(c) | µ ⊆ τ}|.

Example 28 Let c be a positive table constraint on variables x1, x2, x3, x4 and
x5 with dom(x1) = dom(x2) = dom(x3) = dom(x4) = dom(x5) = {a, b, c}. Table
3.3 represents a constraint c with 7 allowed tuples.

In Table 3.3, µ1={(x1, a), (x4, c), (x5, a)} and µ2={x1 = b, x2 = a} are pat-
terns of length 3 and 2, with scp(µ1)={x1, x4, x5} and scp(µ2)={x1, x2}. Their
number of occurrences are respectively 3 and 2.

We present above a new definition of pattern different from the one chosen
in the first work (Section 3.2). The pattern depends no more on a consecu-
tive sequence of values, but rather on variables assignments, which are no more
expected to be consecutive.

For our new compressed form, we chose to present in another way the pat-
terns. They are no more gathered in a patterns table, but presented with the
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Figure 3.15: Compression ratio per score threshold for a constraint of arity 7 of
the instance problem crossword-lex-vg5-7.

x1 x2 x3 x4 x5

c b c a c
a a b c a
a c b c a
b a c b c
b a a b b
c c b c a
a c a c a

Table 3.3: Table constraint c on x1, x2, x3, x4, x5.

remaining part of the tuples (“sub-table”) as a unique entity called “entry” com-
posing the final form of the constraint. These two data structures are introduced
in Definitions 33 and 34.

Definition 33 (Sub-table) The sub-table T associated with a pattern µ of a
constraint c is obtained by removing µ from tuples of c that contain µ and ignoring
other tuples.
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T = {τ \ µ | τ ∈ rel(c) ∧ µ ⊆ τ}
The scope of T is scp(T ) = scp(c)− scp(µ).

Example 29 Table 3.4 represents the sub-table associated with the pattern
µ1={x1 = a, x4 = c, x5 = a} of c, presented in Table 3.3.

x2 x3

a b
c b
c a

Table 3.4: The sub-table T1 associated with the pattern µ1 of c.

Definition 34 (entry) An entry for a constraint c is a pair (µ, T ) such that µ
is a pattern of c and T is the sub-table associated with µ.

Since the set of tuples represented by an entry (µ, T ) represents in fact the
Cartesian product of µ by T , we shall also use the notation µ ⊗ T to denote
a constraint entry. Notice that after the compressing (“slicing”) process of a
constraint into a set of entries, the set of tuples, which are not associated with
any pattern can be stored in a so called default entry denoted by (∅, T ).

Example 30 The pattern µ1={(x1, a), (x4, c), (x5, a)} of constraint c, depicted
in Figure 3.16(a), appears in tuples τ2, τ3 and τ7. µ1 and the resulting sub-table
form an entry for c, as shown in Figure 3.16(b).

x1 x2 x3 x4 x5

c b c a c
a a b c a
a c b c a
b a c b c
b a a b b
c c b c a
a c a c a

(a) A constraint c.

x1 x4 x5

a c a

⊗ x2 x3

a b τ2

c b τ3

c a τ7

(b) An entry (µ, T ) of c.

Figure 3.16: Example of a constraint entry.
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Definition 35 (“Sliced” table constraint) A “sliced” table constraint is a com-
pressed form of table constraint composed of a set of entries.

Testing the validity of classical or compressed tuples is an important oper-
ation in filtering algorithms of (compressed) table constraints. For sliced table
constraints, we extend the notion of validity to constraint entries.

Definition 36 (Pattern) A pattern µ, is valid iff {∀x ∈ µ, µ[x] ∈ dom(x)}

A table constraint is valid iff all its current tuples are valid. This validity is
extended to sub-table, since it is considered the same data structure having a
scope included in the scope of the original table constraint.

Definition 37 (Validity of an entry) An entry (µ, T ) is valid iff at least one
tuple of the Cartesian product µ⊗ T is valid. Equivalently, an entry is valid iff
its pattern is valid and its sub-table contains at least one valid sub-tuple.

3.3.2 Compression Method

In order to build the “sliced” table constraint, we apply the FP -Growth algo-
rithm (Section 2.1.2) which is a technique used in data mining. To do this, we
just use the first step of the algorithm (the FP-Tree construction), and then,
extract classically the frequent patterns. In the context of table constraints, a
transaction is a tuple; an item is, in fact, an assignment of value to a variable
and a frequent itemset is a pattern, which is a partial instantiation.

We give now an example of the construction of the FP-Tree in the context
of table compression, using the constraint given in Table 3.3 as an example. In
our example, we shall use minSupport=2 to identify patterns that occur at least
twice.

First step: FP-Tree building In this step, the algorithm goes through all
tuples of a table constraint:

• we calculate for each value its support;

• we order the tuples in decreasing order of values support;

• we remove the infrequent values;

• we put the different tuples one by one in an FP-Tree.

Example 31 We collect the number of occurrences of each value. By abuse of
terminology, we shall call frequency the support of a value (number of occur-
rences). The result on our example is given in Figure 3.17.
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s(xi,ai) x1 x2 x3 x4 x5

a 3 3 2 1 4
b 2 1 3 2 1
c 2 3 2 4 2

Figure 3.17: Frequencies.

We sort each tuple in decreasing order of frequency of values. The result is
given in Figure 3.18 where the frequency of a value is given between parentheses.
Values, which have a frequency below the threshold minSupport are removed from
the tuple (they are identified in bold face) because they cannot appear in a frequent
pattern.

τ1 (2)x1 = c (2)x3 = c (2)x5 = c (1) x2 = b (1) x4 = a
τ2 (4)x4 = c (4)x5 = a (3)x1 = a (3)x2 = a (3)x3 = b
τ3 (4)x4 = c (4)x5 = a (3)x1 = a (3)x2 = c (3)x3 = b
τ4 (3)x2 = a (2)x1 = b (2)x3 = c (2)x4 = b (2)x5 = c
τ5 (3)x2 = a (2)x1 = b (2)x3 = a (2)x4 = b (1) x5 = b
τ6 (4)x4 = c (4)x5 = a (3)x2 = c (3)x3 = b (2)x1 = c
τ7 (4)x4 = c (4)x5 = a (3)x1 = a (3)x2 = c (2)x3 = a

Figure 3.18: Tuples sorted according to decreasing frequencies.

Once a tuple is sorted and possibly reduced, it is inserted in the FP-Tree. We
note that we don’t use the dotted links between values of different paths since
we don’t use the second step of the FP-Growth algorithm to extract the frequent
patterns. Moreover, each edge from a parent to its child is labeled with a value
rather than representing the value in nodes.

Figure 3.19 represents the FP-Tree obtained on our running exam-
ple. The first tuple inserted in the tree is the beginning of τ1, that is
(x1, c), (x3, c), (x5, c). This creates the leftmost branch of the tree. Each
node of this branch is given a frequency of 1. The second tuple inserted is
(x4, c), (x5, a), (x1, a), (x2, a), (x3, b) which creates the third leftmost branch in the
tree (each node having a frequency of 1 at this step). When τ3 is inserted, the
new branch (x4, c), (x5, a), (x1, a), (x2, c), (x3, b) shares its first three edges with
the last branch, hence the frequency of the corresponding nodes is incremented
and becomes 2. The other tuples are inserted in the same way. In the end, nodes
with a frequency below the threshold minSupport are pruned. The remaining tree
is depicted with thick lines and circled by a dashed line in Figure 3.19.
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Figure 3.19: FP-tree built for the table constraint in Table 3.3.

Second step: Frequent patterns detection We now have to identify pat-
terns in the FP-Tree which are relevant for compression. Each node of the
tree corresponds to a frequent pattern µ which, can be read on the path from
the root to the node. The frequency nbOcc(µ) of this pattern is given by
the node itself. We choose to identify patterns based on the obtained sav-
ings while factoring this frequent pattern. In fact, the savings for a pattern
are |µ| × (nbOcc(µ)− 1) values (we can save each occurrence of the pattern but
one). In our example, we can see that the pattern (x4, c), (x5, a) can save six
values, the pattern (x4, c), (x5, a), (x1, a) can also save six values but the pattern
(x4, c), (x5, a), (x1, a), (x2, c) can save only four values. Therefore, we further
prune the tree by removing nodes that save less values than their parents. The
leaves of the tree we obtain represent the frequent pattern used in the compres-
sion: (x4, c), (x5, a), (x1, a) and (x2, a), (x1, b).

To complete the compression, we create an entry for each frequent pattern
we have identified and fill them in a last scan of the table. For each tuple, we use
the FP-Tree to identify if the (sorted) tuple starts with a frequent pattern, in
which case we add the rest of the tuple to the corresponding sub-table. Tuples
which do not start with a frequent pattern are added to the default entry.

Algorithm 27 summarizes the different steps of the compression process. In
a first scan of the table constraint c, we calculate the frequencies of each value.
In a second scan, we sort each tuple by decreasing order of value frequency
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Figure 3.20: Sliced table constraint.

and remove each value having a frequency less than minSupport. Once a tuple
is sorted, the ordered value are inserted into the FP-Tree (using Algorithm 19
but with a tuple rather than a pattern), if a path starting with these values
does not already exist. If a path already exists, the node frequency counters for
these values are updated. After building the whole FP-Tree, we prune all nodes
having frequencies beyond minSupport or also those having less savings than
their parents which means |µi|× (frequency− 1) < (|µi|− 1)× (frequency

′ − 1)
(Algorithm 28). To compress c a last scan is required. For each tuple τ of
constraint c, we look for a pattern µ sharing with it its first values (already
ordered in the second scan) in FP-Tree (Algorithm 29). If there is a pattern
µ found, we look in the “sliced” table constraint if there is an entry having as
pattern µ. If it is the case, we add the sub-tuple (τ \ µ) to the sub-table of the
identified entry, otherwise, we create a new entry having as pattern µ and then
we put the sub-tuple (τ \ µ) to the sub-table (Line 15). If there is no pattern
found in the FP-Tree, we add the tuple τ to the defaultEntry (Line 18).

Figure 3.21 describes the gained space obtained thanks to the compression
process. The gained space, without considering position data structure (Section
1.3.2), is obtained as follows:
Σi [gainedSpace(entry(i))] = Σi [|µi| × (|subTable(i)| − 1)]
For our “sliced” table, the gained space is 3× 2 + 2× 1 = 6
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Algorithm 27: compress-STR-slice(c: Constraint, minSupport: float)

// Initialization of frequencies
1 foreach i ∈ length(frequencies) do
2 frequencies[i]← 0

// First scan:compute the frequency of each value of c
3 foreach τ ∈ table(c) do
4 foreach v ∈ τ do
5 frequencies[v]++

// Second scan:build FP-Tree

6 foreach τ ∈ table(c) do
// sorting τ and removing values less frequent than

minSupport
7 τ ← sortTuple (τ , frequencies, minSupport)

// insert τ into FP-Tree by updating nodes frequency

8 addTuple(root(FP-Tree),τ)

// removing nodes less frequent than minSupport or such that

|µ| × (f − 1) is smaller than for their parents

9 pruneTree(root(FP-Tree),minSupport,0)
// Third scan:compress c

10 foreach τ ∈ table(c) do
11 µ← searchPattern(root(FP-Tree),τ)
12 if µ 6= nil then
13 entry ← getEntry(entries[c],µ)
14 if entry = nil then

// There is no entry for this pattern

15 entry ← addEntry(entries[c],µ)

16 addSubTuple(entry,τ \ µ)

17 else
18 addSubTuple(defaultEntry,τ)

3.3.3 Filtering Sliced Table Constraints

In order to enforce GAC on sliced table constraints, our idea is to adapt STR,
and more specifically the optimized variant STR2, on the compressed form of this
kind of constraint. As a sliced table constraint is composed of several entries,
each one composed of both a pattern and a sub-table, the filtering process we
propose acts at two distinct levels. At a high level, the validity of each entry is
checked, and at a low-level, the validity of each pattern and each sub-tuple is
checked. Remember that an entry is valid iff both its pattern is valid and at least
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Algorithm 28: pruneTree(node: Node,minSupport: Float,parentSavings:
Integer)

1 savings← (node.value− 1)× node.level
2 if node 6= nil then
3 if node.value < minSupport or savings < parentSavings then
4 remove(node)

5 foreach child ∈ node.getChildren() do
6 pruneTree(child,minSupport,savings)

Algorithm 29: searchPattern(root: Node,τ : Tuple): pattern

1 node← root
2 µ←≺�
3 for i ∈ [0..|τ |] do
4 node← node.getChild(τ [i])
5 if node 6= nil then
6 µ← µ+ τ [i]
7 else
8 break

9 return µ

one tuple from its sub-table is valid (see Definition 37). In this section, we first
describe the employed data structures, then we introduce our GAC algorithm,
and finally we give an illustration.

Data structures

A sliced table constraint c is represented by an array entries[c] of p entries.
Managing the set of valid entries, called current1 entries, is performed as follows:

• entriesLimit[c] is the index of the last current entry in entries[c]. The
elements in entries[c] at indexes ranging from 1 to entriesLimit[c] are
the current entries of c.

• removing an entry (that has become invalid) at index i is performed by a
call of the form removeEntry(c, i). Such a call swaps the entries at indexes
i and entriesLimit[c], and then decrements entriesLimit[c]. Note that
the initial order of entries is not preserved.

1Current entries correspond to valid entries at the end of the previous invocation of the
algorithm.
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Figure 3.21: Gained Space after compression.

• restoring a set of entries can be performed by simply changing the value of
entriesLimit[c].

Each entry in entries can be represented as a record composed of a field
pattern and a field subtable. More precisely:

• the field pattern stores a partial instantiation µ, and can be represented
in practice as a record of two arrays: one for the variables, the scope of the
pattern, and the other for the values.

• the field subtable stores a sub-table T , and can be represented in practice
as a record of two arrays: one for the variables, i.e., the scope of the sub-
table T , and the other, a two-dimensional array, for the sub-tuples.

Managing the set of valid sub-tuples, called current sub-tuples, of T , is performed
as follows:

• limit[T ] is the index of the last current sub-tuple in T . The elements in T
at indexes ranging from 1 to limit[T ] are the current sub-tuples of T .

• removing a sub-tuple (that has become invalid) at index i is performed by
a call of the form removeSubtuple(T, i). Such a call swaps the sub-tuples
at indexes i and limit[T ], and then decrements limit[T ]. Note that the
initial order of sub-tuples is not preserved.
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• restoring a set of sub-tuples can be performed by simply changing the value
of limit[T ].

Note that the management of both current entries and current sub-tuples is in
the spirit of STR. Also, as in [Lecoutre, 2011], we introduce two sets of variables,
called Sval and Ssup. The set Sval contains uninstantiated variables (and possibly,
the last assigned variable) whose domains have been reduced since the previous
invocation of the filtering algorithm on c. To set up Sval, we need to record the
domain size of each modified variable x right after the execution of STR-slice on
c: this value is recorded in lastSize[x]. The set Ssup contains uninstantiated
variables (from the scope of constraint c) whose domains contain each at least
one value for which a support must be found. We also use an array gacValues[x]
for each variable x. At any time, gacValues[x] contains all values in dom(x) for
which a support has already been found: hence, values for a variable x without
any proved support are exactly those in dom(x) \ gacValues[x]. Note that the
sets Sval and Ssup are initially defined with respect to the full scope of c. However,
for each sub-table we also shall use local sets Slval and Slsup of Sval and Ssup as
explained later.

Algorithm

Algorithm 30 is a filtering procedure, called STR-slice, that establishes GAC on
a specified sliced table constraint c belonging to a CN N . Lines 1–10, which are
exactly the same as those in Algorithm 5 of [Lecoutre, 2011], allow us to initialize
the sets Sval, Ssup and gacValues. Recall that Sval must contain the last assigned
variable, denoted by lastPast(P ), if it belongs to the scope of c. Lines 11–22
iterate over all current entries of c. To test the validity of an entry, we check first
the validity of the pattern µ (Algorithm 31), and then, only when the pattern
is valid, we check the validity of the sub-table T by scanning it (Algorithm 32).
If an entry is no more valid, it is removed at Line 22. Otherwise, considering
the values that are present in the pattern, we have to update gacValues as
well as Ssup when a first support for a variable is found. Lines 23–30, which
are exactly the same as those in Algorithm 5 of [Lecoutre, 2011], manage the
reduction of domains: unsupported values are removed at line 25 and if the
domain of a variable x becomes empty, an exception is thrown at line 27. Also,
the set of variables Xevt reduced by STR-slice is computed and returned so that
these “events” can be propagated to other constraints.

Algorithm 32 is an important function, called scanSubtable, of STR-slice.
Its role is to iterate over all current (sub)tuples of a given sub-table, in order
to collect supported values and to remove invalid tuples. Note that when this
function is called, we have the guarantee that the pattern associated with the sub-
table is valid (note the “and then” short-circuit operator at Line 14 of Algorithm
30). The first part of the function, lines 1–8, allow us to build the local sets
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Algorithm 30: STR-slice(c: constraint):set of variables

// Initialization of sets Sval and Ssup, as in STR2

1 Sval ← ∅
2 Ssup ← ∅
3 if lastPast(P ) ∈ scp(c) then
4 Sval ← Sval ∪ {lastPast(P )}
5 foreach variable x ∈ scp(c) | x /∈ past(P ) do
6 gacValues[x]← ∅
7 Ssup ← Ssup ∪ {x}
8 if |dom(x)| 6= lastSize[c][x] then
9 Sval ← Sval ∪ {x}

10 lastSize[c][x]← |dom(x)|

// Iteration over all entries of c
11 i← 1
12 while i ≤ entriesLimit[c] do
13 (µ, T )← entries[c][i] // ith current entry of c
14 if isValidPattern(µ) and then scanSubtable(T ) then
15 foreach variable x ∈ scp(µ) | x ∈ Ssup do
16 if µ[x] 6∈ gacValues[x] then
17 gacValues[x]← gacValues[x] ∪ {µ[x]}
18 if |dom(x)| = |gacValues[x]| then
19 Ssup ← Ssup \ {x}

20 i← i+ 1

21 else
22 removeEntry(c, i) // entriesLimit[c] decremented

// domains are now updated and Xevt computed, as in STR2

23 Xevt ← ∅
24 foreach variable x ∈ Ssup do
25 dom(x)← gacV alues[x]
26 if dom(x) = ∅ then
27 throw INCONSISTENCY

28 Xevt ← Xevt ∪ {x}
29 lastSize[c][x]← |dom(x)|
30 return Xevt

Slval and Slsup from Sval and Ssup. Such sets are obtained by intersecting Sval

with scp(T ) and Ssup with scp(T ), respectively. Once the sets Slval and Slsup
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Algorithm 31: isValidPattern(µ: pattern): Boolean

1 foreach variable x ∈ scp(µ) do
2 if µ[x] /∈ dom(x) then
3 return false

4 return true

are initialized, we benefit from optimized operations concerning validity checking
and support seeking, as in STR2. The second part of the function, lines 9–21,
consists in iterating over all current sub-tuples of T . This is a classical STR2-like
traversal of a set of tuples. Finally, Line 22 returns true when there still exists
at least one valid sub-tuple.

It is interesting to note the lazy synchronization performed between the global
unique set Ssup and the specific local sets Slsup (one such set per sub-table). When
a variable x is identified as “fully supported”, it is immediately removed from
Ssup (see Line 19 of Algorithm 30 and Line 18 of Algorithm 32). Consequently,
that means that the next sub-tables (entries) will benefit from such a reduction,
but the information is only transmitted at initialization (lines 6–8 of Algorithm
32). On the other hand, once initialized, the global set Sval is never modified
during the execution of STR-slice.

Backtracking issues: In our implementation, entries and tuples can be re-
stored by modifying the value of the limit pointers (entriesLimit[c] and
limit[T ] for each sub-table T of c), recorded at each search depth. Restora-
tion is then achieved in O(1 + p) (for each constraint) where p is the number of
entries. However, by introducing a simple data structure, it is possible to only
call the restoration procedure when necessary, limiting restoration complexity to
O(1) in certain cases: it suffices to register the limit pointers that need to be
updated when backtracking, and this for each level. When the search algorithm
backtracks, we also have to deal with the array lastSize. As mentioned in
[Lecoutre, 2011], we can record the content of such an array at each depth of
search, so that the original state of the array can be restored upon backtracking.
As STR-slice is a direct extension of STR2, it enforces GAC.

Illustration

Figures 3.22 and 3.23 illustrate the different steps for filtering a sliced table
constraint, when STR-slice is called after an event. In Figure 3.22, consid-
ering that the new event is simply x3 6= a (i.e., the removal of the value a
from dom(x3)), STR-slice starts checking the validity of the current entries
(from 1 to entriesLimit). So, for the first entry, the validity of the pattern
µ={(x1, a), (x4, c), (x5, a)} is first checked. Since µ remains valid (our hypothesis
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Algorithm 32: scanSubtable(T : sub-table): Boolean

// Initialization of local sets Slval and Slsup from Sval and

Ssup

1 Slval ← ∅
2 foreach variable x ∈ Sval do
3 if x ∈ scp(T ) then
4 Slval ← Slval ∪ {x}

5 Slsup ← ∅
6 foreach variable x ∈ Ssup do
7 if x ∈ scp(T ) then
8 Slsup ← Slsup ∪ {x}

// Iteration over all (sub)tuples of T
9 i← 1

10 while i ≤ limit[T ] do
11 τ ← T [i] // ith current sub-tuple of T
12 if isValidSubtuple(Slval, τ) then
13 foreach variable x ∈ Slsup do
14 if τ [x] 6∈ gacValues[x] then
15 gacValues[x]← gacValues[x] ∪ {τ [x]}
16 if |dom(x)| = |gacValues[x]| then
17 Slsup ← Slsup \ {x}
18 Ssup ← Ssup \ {x}

19 i← i+ 1

20 else
21 removeSubtuple(T, i)) // limit[T ] decremented

22 return limit[T ] > 0

Algorithm 33: isValidSubtuple(Slval: variables, τ : tuple): Boolean

1 foreach variable x ∈ Slval do
2 if τ [x] /∈ dom(x) then
3 return false

4 return true

is that the event was only x3 6= a), the sub-table of the first entry is scanned.
Here, only the sub-tuple {(x2, c), (x3, a)} is found invalid, which modifies the
value of limit for the sub-table of this first entry. After the call to STR-slice,
the constraint is as in Figure 3.22(b).
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Figure 3.22: STR-slice called on a slice table constraint after the event x3 �= a.
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(a) After the scan of the first entry.
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Figure 3.23: From Figure 3.22(b), STR-slice called after the event x3 �= b.

In Figure 3.23, considering now that the new event is x3 �= b, we start again
with the first current entry. Figuring out that the pattern is still valid, we check
the validity of the associated sub-tuples. Since the sub-tuple {x2 = a, x3 = b}
is no more valid, it is swapped with {x2 = c, x3 = b}. This latter sub-tuple is
then also found invalid, which sets the value of limit to 0. This is illustrated in
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Instance #ins STR1 STR2 STR3 STR-slice

a7-v24-d5-ps05 11 298.05 147.73 189.14 115.30 (66% – 5.74)

bdd 70 44.53 13.44 99.21 20.35 (86% – 0.59)

crossword-ogd 43 90.05 39.35 25.69 29.59 (75.51% – 0.36)

crossword-uk 43 95.20 45.88 44.33 47.21 (88.69% – 0.18)

renault 46 19.66 14.39 13.37 17.20 (47.15% – 0.67)

Table 3.5: Mean CPU time (in seconds) to solve instances from different se-
ries with MAC. Mean compression ratio and CPU time are given for STR-slice
between parentheses.

Figure 3.23(a). As the sub-table of the first entry is empty, the entry is removed
by swapping its position with that of last current entry. After the call to STR-
slice, the constraint is as in Figure 3.23(b) (note that a second swap of constraint
entries has been performed).

3.3.4 Experimental results

In order to show the practical interest of our approach to represent and filter
sliced table constraints, we have conducted an experimentation in the same con-
dition as the first approach (see Section 3.2.4). Since STR1, STR2 and STR3
belong to the state-of-the-art GAC algorithms for table constraints, we compare
the respective behaviors of STR variants and STR-slice on the different series of
instances used in Section 3.2.4

Table 3.5 shows mean results (CPU time in seconds) per series. For each
series, the number of tested instances is given by #ins; it corresponds to the
number of instances solved by all three variants within 1, 200 seconds. Note
that the mean compression ratios and CPU times (in seconds) are also given for
STR-slice between parentheses. We define the compression ratio as the size of the
sliced tables over the size of the initial tables, where the size of a (sliced) table is
the number of values over all patterns and (sub-)tables. The used minSupport is
equal to 10% of the number of tuples in the table. The results in Table 3.5 show
that STR-slice is competitive with both STR2 and STR3. Surprisingly, although
the compression ratio obtained for the instances of the series renault is rather
encouraging, the CPU time obtained for STR-slice is disappointing. We suspect
that the presence of many constraints with small tables in the renault instances
is penalizing for STR-slice because, in that case, the overhead of managing con-
straint entries is not counterbalanced by the small absolute spatial reduction.
Table 3.6 presents the results obtained on some instances. A general observation
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Instance MDD STR1 STR2 STR3 STR-slice

a7-v24-d5-ps0.5-psh0.7-9 17.819 879 334 367
200

(68.75% – 5.406)

a7-v24-d5-ps0.5-psh0.9-2 5.536 256 145 143
93

(62.5% – 5.957)

a7-v24-d5-ps0.5-psh0.9-6 11.397 353 195 324
174

(62.5% – 5.82)

bdd-21-2713-15-79-9 77.171 80.2 23.3 60.0
35.4

(88.230% – 0.283)

bdd-21-2713-15-79-11 55.752 78.5 23.5 48.5
31.7

(88.05% – 0.28)

bdd-21-133-18-78-11 47.157 38.4 11,0 250
19.0

(86.12% – 0.866)

crossword-m1-ogd-23-04 104.485 82.7 78.2 103
80.1

(73.90% – 1.039)

crossword-m1c-lex-vg5-7- 86.475 43.5 31.4 36.6
34.5

(96.17% – 0.097)

crossword-m1c-ogd-vg10-13 TO TO 897 765
750

(74.84% – 0.801)

nonogram-gp-108 55.732 290 78.7 118
83.6

(74.93% – 2.475)

nonogram-gp-116 16.658 102 21.7 21.9
22.8

(79.99% – 1.455)

nonogram-gp-137 8.359 166 45.4 56.8
29.4

(82.96% – 3.5)

rand-6-10-10-60-950-0 67.821 75.1 45.4 34.4
42.5

(77.77% – 4.950)

rand-7-9-9-30-980-0 47.285 26.8 18.5 46.3
22.9

(75% – 7.489)

rand-8-20-5-18-800-8 83.815 86.6 45.8 574
64.2

(72.36% – 4.787)

Table 3.6: CPU time (in seconds) on some selected instances solved by MAC.
Compression ratio and CPU time are given for STR-slice between parentheses.
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from this experimentation is that STR-slice is a competitor to STR2 and STR3,
but a not a competitor that takes a real advantage compared to MDD.

Comparison with related approaches

In this section we compare both contributions with the approaches presented
in Section 2.1. Table 3.7 compares, in a first time, our two contributions with
ShortSTR2 algorithm (see Section 2.1.2). This table presents both resolution
time (CPU time) and compression ratio as defined before (compressed table /
original table). It is important to note that the resolution time for ShortSTR2
are given considering that the algorithm run on Minion solver [Gent et al., 2006].
We gathered the common benchmarks. Obviously from the given results, Short-
STR2 outperforms our contribution only on bddSmall problem but the other
compression ratios are too small (100% means that the algorithm does not com-
press the table). For the running time, we cannot make any comparison since
two different solvers are used to solve these problems.

Instance STRc STR-slice ShortSTR2

rand-8-20 111.949 62.960% 64.2 72.36% 3,207 99%
bddSmall 64.314 83.076% 28.7 87.46% 521.10 52.63%

crosswordVg 49.393 20.134% 34.5 96.17% 396.25 100%

Table 3.7: STRc and STR-slice compared to ShortSTR2.

Table 3.8 makes also a comparison considering the common benchmarks be-
tween the approaches: STRc, STR-slice and STR2-C (Section 2.1.2). All these
problems run oven AbsCon solver. STR2-C outperforms our contribution espe-
cially on the random problems (MDD0.7 and MDD0.9 ) considering both com-
pression ratio and resolution time.

Instance STRc STR-slice STR2-C

rand-8-20 111.949 62.960% 64.2 72.36% 26.0 60.2%
MDD 0.7 780.318 43.775% 200 68.75% 171.3 5%
MDD 0.9 352.281 43.776% 133.5 62.5% 28.5 1.5%

Table 3.8: STRc and STR-slice compared to STR2-C.

Due to the lack of experiments for data-mining based approaches we could
not make any comparison.
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3.4 Conclusions and discussion

Through the first work (STRc), we combine both techniques of simple tabular
reduction and compression. Identifying recurring patterns in tuples of different
tables, reduces memory space and also the CPU time by avoiding redundant
validity tests. From our tests, the STRc algorithm we propose seems to be com-
petitive with STR1 (in the search step) but supplanted by STR2 and sometimes
STR3.

For the second approach, we combined a new compression technique using
the concept of sliced table constraints and an optimized adaptation of the tabular
reduction (as in STR2) for the filtering process. Our experimentation shows that
STR-slice is a competitor to the state-of-the-art STR2 and STR3 algorithms.

For the first compression technique just one scan of the table is required to
build the trie of frequent patterns which is not the case for the second compression
technique requiring two scans to build the trie. Even if we use the same data
structure (trie) during the compression process for both approaches, but each
trie have a different representation. In the first one we gather all paths starting
with the same value. However, in the second one we gather all paths sharing the
same literal.

Both of the two compression methods enable us to obtain high ratios of total
space reduction. Nevertheless, the second compression technique supplants the
drawback of the first one. In fact, the issue of compressing extensional constraints
has two faces: the first one is to achieve a high reduction ratio of the required
memory space which is the easiest step since there are several proposed compres-
sion approaches aiming to that especially in the data mining field. However, the
most difficult step is how to represent the compressed constraint in a suitable
way avoiding slowing down the filtering process, but also, if it is possible, to
speed it up taking advantages from the several dynamic compression techniques
like STR.

Since our first compression technique defines a pattern as a sequence of values
independently from their positions which implies the independence from the vari-
ables, we were not able to use the STR2 and STR3 techniques which are based
on variables domains changes. That is why the first approach could not compete
with to the state-of-the-art STR2 and STR3 algorithms. This is not the case of
the second approach (“sliced” table constraints) that is based on an optimized
adaptation of the tabular reduction for the filtering process. The experimental
results show that STR-slice algorithm is competitive with STR2 and STR3 even
if it is sometimes sanctioned due to the compression time. Compared to MDD,
the two approaches competes with MDD only in the case where STR variants
supplant it.
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4.1. ARCHITECTURE

Introduction

In Section 2.2, we introduced the main categories of the state-of-the-art of parallel
approaches that have been proposed in order to solve CSP instances within a
parallel architecture. Some approaches distribute the search tree over workers
while others use a portfolio of workers which compete in order to solve an instance
of a problem.

In this chapter, we explore another way of using a parallel architecture in
which a main solver is helped by side workers that partially establish consisten-
cies, which are otherwise two heavy to be maintained by the main solver.

This chapter is organized as follows:

• In Section 4.1, we describe our approach and the used parallel architecture;

• In Section 4.2, we introduce the data structures and algorithms used from
the side of the master;

• In Section 4.3, we explore the workers side and how they interact with each
others and with the master;

• In Section 4.4, we explain how our architecture is supposed to enhance the
search process;

• Finally, we conclude with experimental results in Section 4.5.

4.1 Architecture

Our approach is based on a master/workers architecture where the master is
a sequential CSP solver and the different workers help their master during the
search process. This main solver transmits its current instantiation to its side
workers, which will try to infer relevant information by exploiting different levels
of consistencies. As soon as new facts are discovered, they are transmitted to the
main solver that takes them into account as soon as possible. Our goal is to have
a synchronization between the main solver and the side workers as lightweight as
possible. In our current work, both the main solver and the side workers (threads
running on different cores) run on the same host.

Different consistencies were introduced in Chapter 1 that could be
ranked with respect to their strength. Singleton Arc Consistency (SAC)
[Debruyne and Bessiere, 1997] is a strong consistency that is very expensive to
enforce during search [Lecoutre and Prosser, 2006]. Performing each SAC test
in a sequential solver is too heavy. But in a parallel solver available cores can
perform these SAC tests for free (at least from a wall-clock point of view). The
literals that are discovered SAC-inconsistent are transmitted to the master in
order to avoid them in its future assignments.
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Figure 4.1: Overview of the architecture.

Figure 4.1 describes the architecture of our system. In fact, each master and
worker has its own copy of the problem. The master solves the problem whereas
the workers enforce SAC on some literals of the problem. An Assignments Stack
is associated to each master and worker. The master stores all positive and neg-
ative decisions made in its own Assignments Stack while the workers only copy
them to their stack, each time there are new decisions. This stack describes the
state of the problem of each entity. All workers get literals to test for consistency
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from a Literals Queue which is a shared data structure between all of them. If
enforcing SAC on these literals produces new facts, new messages are put into
the Messages Queue which is a shared data structure between the master and
the workers. The master in his turn extracts messages from the Messages Queue
in order to exploit them in its solving process by avoiding failures.

We detail our approach from both sides: the master’s side in Section 4.2 and
the workers one in Section 4.3.

4.2 Master’s side

In our approach, the master, runs a classical CSP solver using only two additional
data structures: the Messages Queue which is shared with the workers and a Set
of Inferences which is its own data structure. The Assignments Stack is accessible
by the workers in order to get the problem state. All these used data structures
are detailed in this Section from the master’s side.

4.2.1 The Assignments Stack

In our context, a search tree is composed of different levels which represents the
number of variables composing the problem. In the next algorithms, we consider
that each level corresponds to an assignment of a variable. The Assignments
Stack stores all decisions made by the solver. They might be positive (assign-
ment) or negative (refutation) decisions. Each positive decision defines a level to
which corresponds a time-stamp indication at which time this assignment was
taken. This time-stamp is given by a global counter (on 64 bits to avoid any
overflow) which is initialized to 0 and incremented each time a decision is taken.
This information is used to identify the modifications of the Assignments Stack
and is further described from the workers side. In fact, a time-stamp is only
associated with positive decisions (assignments) which is a feature of AbsCon
solver [Lecoutre and Tabary, 2007]. Positive decisions are stored in the stack in
a consecutive order. When a backtrack occurs, the value causing the backtrack
is removed from the domain of its variable and this refutation is added to the
previous level.

Example 32 Figure 4.2 gives an illustration of the Assignments Stack manage-
ment when different decisions are made. Positive decisions are stored in the stack
in a consecutive order. When a backtrack occurs, e.g. x2 6= a in Figure 4.2(c),
the value causing the backtrack is removed from the domain of its variable and
this refutation is added to the previous level. The time-stamp of the last positive
decision before backtrack does not change.
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x1 = a l = 1 ts = 1 x1 = a

(a) x1 = a.
x2 = a

x1 = a
l = 1 ts = 1 x1 = a
l = 2 ts = 2 x2 = a

(b) x2 = a.

x2 6= a

x1 = a

l = 1 ts = 1
x1 = a
x2 6= a

(c) x2 6= a.

x2 = b

x2 6= a

x1 = a

l = 1 ts = 1
x1 = a
x2 6= a

l = 2 ts = 3 x2 = b

(d) x2 = b.

Figure 4.2: Master’s side: managing the Assignments Stack.

4.2.2 The Messages Queue

Before a decision is taken, the master checks if some information has been inferred
by the other workers. This is done by checking the content of the Messages
Queue, which is read by the master and written by the workers. When a message
is extracted from this queue, the master first checks if the inference is still relevant
in the current state of the solver (the message could be outdated because the
master backtracked in between). If the message is not relevant, it is ignored.
Otherwise, the inference is taken into account.

In fact, a message contains two main information:

• literal : the pair (variable,value) to avoid in future assignments;

• (level, timeStamp): the pair level and its time-stamp in which the property
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“the literal is SAC-inconsistent” is still relevant.

Algorithm 34 describes how the master judges the validity of the messages
sent by workers to use them in the inference process. According to the master,
a message is still relevant iff the level of the test is higher (in the search tree)
than the master solver level and the time-stamps are coherent.

Algorithm 34: isValidMessage(msg : Message): Boolean

1 if msg.level ≤ currentLevel and
msg.timeStamp = timeStamp[msg.level] then

2 return true // the message msg is still relevant

3 return false

(a) The search tree. (b) The setOfInferences.

level time-stamp decision
1 1 x3 = a
2 2 x2 = c
3 3 x5 = b

x1 6= a
(c) The Assignment stack.

Figure 4.3: A master’s search tree at level 3.

Once the master figures out that the message is still relevant, it stores it
in its own data structure, called setOfInferences. In fact, setOfInferences is a
table where setOfInferences [i] defines the messages extracted and used at level i.
Thanks to this data-structure, the master can re-use these inferences in higher
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(a) The search tree. (b) The setOfInferences.

level time-stamp decision
1 1 x3 = a
2 2 x2 = c

x5 6= b
x1 6= a

(c) The Assignment stack.

Figure 4.4: The master backtracking to level 2.

levels, when a backtrack occurs. Figure 4.3 describes the use of setOfInferences.
At level 3, the master receives a new message m1={level=2, timeStamp=2, lit-
eral=(x1, a)}. This message is relevant with respect to the master current state
(level ≤ master current level and timeStamp= timeStamp[2]). The master can,
thus, benefit from this message by deleting this value as long as it has not back-
tracked. Value a is then removed from dom(x1) and the message is stored in
setOfInferences. It happens that a backtrack occurs to the level 2 which implies
restoration of the previous state of the problem at level 2: the inference applica-
tion of the message m1 is undone when backtracking. Since m1 remains relevant
after backtracking, the master re-applies it.

Algorithm 35 describes how the master manages the messages received from
the different workers and the inferences already stored in setOfInferences. In
fact, the master checks setOfInferences only when a backtrack occurs (Lines 1
- 7). The parameter hasBacktracked indicates if the master has backtracked or
not since the last decision made. If it is the case, the master re-applies all the
inferences stored starting from its current level after backtracking. If the master
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Algorithm 35: applyMessages(hasBacktracked : Boolean)

1 if hasBacktracked then
2 foreach i ∈ [currentLevel+1,levelBeforeBacktrack] do
3 foreach msg : setOfInferences[i] do
4 if isValidMessage(msg) then
5 remove msg.literal.val from dom(lmsg.iteral.var)
6 add msg to setOfInferences [currentLevel ]

7 clear setOfInferences[i]
// removing the inferences stored at level i

8 foreach msg : msgQueue do
9 if isValidMessage(msg) then

10 remove msg.literal.val from dom(msg.literal.var)
11 add msg to setOfInferences [currentLevel ]

12 remove msg

hasn’t backtracked, it checks the new messages in Messages Queue. It, first,
verifies if the message is relevant. If it is the case, the literal is removed and the
inference is added to setOfInferences at the current level of search (Lines 5 and
6). If the message is no more relevant, it is removed from the Messages Queue
(Line 12).

4.3 Workers’ side

The workers use three main data structures:

4.3.1 The Assignments Stack

The workers obtain initially a copy P ′ of the problem instance P that is handled
by the master (variables, domains, constraints). In order to reach the same search
state as the master, the workers can either copy the new state of the problem or
get only the decision made so far and re-apply them. Since copying the new state
of the problem enables the workers to get only the new domains state and not the
constraints state (involving the handled supports for each constraint), we choose
in our approach to make an incremental copy. In fact, in a loop, they copy
incrementally the Assignments Stack of the master (i.e. the list of decisions
taken by the master), reproduce the filtering made by the master after these
decisions in order to reach the same state as the master and then run their own
(partial) consistency. The incremental copy of the Assignments Stack consists
in, first, identifying the part of the Assignments Stack which is identical in the
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master and in the worker’s copy and then copying every decision taken by the
master after this common part. It is performed in the following way. The worker
first obtains the current stack pointer of the master and then identifies the last
decision which has the same time-stamp in the master and in the worker. Then,
the worker copies each decision of the master after this last common decision.
Since the master may have backtracked in between, the worker then checks that
the last decision that it copied still has the same time-stamp as in the master.
If this is not the case, the master backtracked during the copy and the worker
restarts its copy of the Assignments Stack. In practice, this does not happen
too often (less than 1% of the total copies). Therefore, our approach guarantees
that inconsistent copies are never used because when such a copy is obtained,
the worker simply makes another one.

Figures 4.5 and 4.6 describe two cases of the copying process. In Figure 4.5,
the master continued its solving process and, thus, there are new decisions to be
copied in the worker’s Assignments Stack. The last common positive decision
between the master and the worker is x1 = a. All decisions made after this one
are added to the worker’s stack.

Figure 4.5: Copying process (case 1: the same branch).

In the case of Figure 4.6 the master has backtracked and started new other
decisions. The worker has to remove all decisions until the common one. In
fact, a backtrack on the variable x2 has occurred and, thus, a negative decision
is added to the first positive decision x1 = a (the last positive decision). The
time-stamp of the decision x1 = a does not change when adding the refutation
(x2 �= c). However, the worker has to update its stack in order to cope with these
new facts. First of all, the worker removes the old decisions that are no more
relevant. Then, its checks if there are new negative decisions of the last common
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positive decision (x1 = a in our case). This is done by comparing the number of
negative decisions of the last common positive decision. Finally, the worker adds
incrementally the decisions of the new levels (including refutations).

Figure 4.6: Copying process (case 2: backtracking).

4.3.2 The Messages Queue

Once a worker has a stable copy of the master’s state, it picks a new literal (x, a)
from a global queue of literals (described in Section 4.3.3) and checks if (x, a)
is SAC-consistent, i.e., if no domain wipe-out (global inconsistency) is detected
when taking the decision x = a and running constraint propagation (we assume
that GAC is achieved). If it is not, the worker places in the Messages Queue
the data x �= a together with its current decision level and a time-stamp where
this information could be inferred (as detailed in Section 4.2.2). The master
will extract this information when it is ready to use it. After testing SAC on a
literal (x, a), it is put back to the literals queue, while updating its priority (as
described in Section 4.3.3), in order to test its consistency later.

Algorithm 36 describes the SAC enforcing on the set of literals of the queue.
We just focus, in this section, on the message producing process. When a literal
(variable,value) is SAC-inconsistent (the SAC test returns false), it means that
removing this literal enables the master to avoid some useless search sub-tree and,
thus, speeds up the solving process. The worker transmits this information to
its master (Line 14). A message is then composed indicating the literal to avoid,
on which level the SAC test is still relevant and the time-stamps to identify the
last positive decision related to this test.
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Algorithm 36: enforceConsistencyOnLiterals(Pi: Constraint Network of
slave i ,LiteralsQueue: Queue of literals)

1 valueFound← false
2 while ¬valueFound do
3 literal← getLiteral(literalsQueue)
4 if ¬assigned(literal.var) and |dom(literal.var)| > 1 then
5 valueFound← true
6 else
7 literal.countdown - -
8 insert literal to literalsQueue

// while the problem is not solved, there is always a value to

test

9 assign literal.val to literal.var
10 consistent← GAC(P, literal.var)
11 backtrack()

// going back to the previous level in order to test more

pairs

12 if ¬consistent then
13 literal.priority++
14 putMessage(currentLevel, timeStamp[level], literal)

// Putting the inferred result in the queue of messages

15 literal.countdown - -
16 insert literal to literalsQueue

4.3.3 The Literals Queue

In order to perform the SAC tests, the literals of the problem are put together
in a Literals Queue. The different workers cooperate to examine each possible
literal as often as possible. Since some literals are more likely to become SAC-
inconsistent, we use priorities in order to test these literals more often than the
other ones. Therefore, each literal in the Literals Queue is assigned a priority,
which is incremented when the literal is identified as SAC-inconsistent (Algo-
rithm 36 Line 13).

To manage this priority, we use the approach of the Completely Fair Schedul-
ing (CFS) algorithm [Li et al., 2009] used in Linux. The CFS scheduler ensures
executing the process that has used the least amount of time at the first place
and, thus, the processes are ordered according to the execution time spent. The
CFS uses a red–black tree data structure that is a balanced binary search tree
whose key is based on the value of the running time. According to red–black
tree property, tasks that have been given less processing time are on the left
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side, whereas tasks that have been given more processing time are on the right
side. In Figure 4.7, node N7 has the smallest value of running time and N10 has
the largest value. CFS scheduler accords the highest priority to the node that
has the smallest running time value, and thus, left tasks are runned the first.
After picking a process, the CFS scheduler removes it from the tree, executes it
and updates its global execution time counter and then returns it back to the
tree taking into account its new execution time counter. One advantage of this
algorithm is that each value is tested as many times as its priority.

Figure 4.7: A red-black tree.

In our approach a literal has two main properties:

• countdown counter: it indicates the number of times a literal could be
tested. Each time we test a literal, we decrease its countdown counter
(Line 15 in the Algorithm 36) to ensure a balanced test between all the
literals of the queue. When all the literals are tested, the countdown is
automatically reset for all the literals. Each time we reset the Literals
Queue, the value countdown of each literal takes the value of its priority ;

• priority counter: it indicates how interesting a literal is. If a SAC test
proves the inconsistency of a literal, its priority counter is increased (Line
13 in the Algorithm 36) because such a literal is important to be tested in
other branchs of the search tree and may infer important information to
be exploited by the master. The priority counter is initialized to 1 when
the workers start their jobs: the literals have the same importance at the
root of the search tree.

Since the Literals Queue is managed according to the CFS algorithm, in order
to perform the SAC tests we first get a literal and remove it from the queue.
Then, we check if the variable is already assigned or is a singleton variable. If it
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is the case, it is useless to enforce SAC on this literal and we put back the literal
in the end of the queue (by updating its priority). Otherwise, we perform the
test.

4.4 Enhancing the search process

Algorithm 37 describes the search algorithm used by the master. In fact, we
use the classic MAC search algorithm. Added to that, we include extracting
messages step (Line 4): a call to Algorithm 35 is made in order to benefit from
the facts discovered by workers. In this way, the SAC-inconsistent values are
removed from their respective domains which enables to avoid them (Line 6).

Algorithm 37: solveProblem(P : Constraint network)

1 finished← false
2 hasBacktracked← false
3 while ¬finished do

// infer all not used messages

4 applyMessages(hasBacktracked)
// select new pair (variable,value) to assign

5 var ← getNextVariable(variableOrderingHeuristic)
6 val← getNextValue(valueOrderingHeuristic, var)
7 assign var to val
8 levelBeforeBacktrack ← |past(P )|
9 consistent← checkConsistencyAfterAssignment(P )

10 if consistent and |past(P )| = n then
11 display solution
12 finished← true

13 else
14 while ¬consistent do
15 backtrack()
16 hasBacktracked← true
17 remove val from dom(var)
18 consistent← checkConsistencyAfterRefutation(P )

Using the introduced data structures, Figure 4.8 illustrates our architecture.
On this example, the master has taken three decisions so far. The first decision
x = a has time-stamp 1. Then, the master tried y = c at time-stamp 2, but
immediately obtained an inconsistency. Therefore, it removes this decision and
adds the negative decision y 6= c to the previous positive decision. The latest
decision is y = a at time-stamp 3. Worker1 has copied the master’s stack at
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Figure 4.8: Illustration of the architecture.

163



4.5. EXPERIMENTAL RESULTS

this point, while Worker2 has copied the stack at an earlier point where the
decision y = c was taken. Each worker picks a literal from a global list of literals
that should be tested. Worker2 picks the literal (w, c) and detects that is SAC-
inconsistent. A message m1 indicating that w 6= c can be inferred at decision
level 2 (with time-stamp 2) is posted. Worker1 tests (z, a) and proves that it
is inconsistent with the previous assignments. Therefore, it posts a message m2

indicating than z 6= a can be inferred at decision level 2 (with time-stamp 3).
The master finds out, when extracting messages, that m1 is outdated since it

has backtracked since Worker2 has copied the Assignments Stack. The message
m1 is then removed. The message m2 is relevant with respect to the problem
state of the master. This latter can benefit from this information until it changes
its decision at level 2.

4.5 Experimental results

In order to test the practical interest of the approach we propose, we have con-
ducted a preliminary experimentation (with our solver AbsCon) using a clus-
ter of bi-quad cores Xeon processors at 2.66 GHz node with 16GiB of RAM
under Linux. We have used the search algorithm MAC (which maintains the
property of generalized arc consistency during search), equipped with dom/ddeg
[Bessiere and Régin, 1996] and dom/wdeg [Boussemart et al., 2004] as variable
ordering heuristic and lexico as value ordering heuristic, to solve instances of
different problems 1.

We have compared the wall-clock time (wck) in second(s), CPU time (cpu)
in second(s) and the number of nodes (#nodes) for both classical sequential
approaches and the parallel ones. For the sequential approaches, we have used
MAC, SAC+MAC where SAC is enforced only at preprocessing, and MSAC
that enforces SAC during the search (at each node). For the parallel approach,
we have used 1, 3 and 7 workers (and of course, one master). The number of
total messages (#tMsgs) and useful ones (#uMsgs) sent from the workers to the
master is displayed. The speed-up ratio of resolution time compared to MAC is
also calculated as follows:

MAC wck time

parallel wck time
(4.1)

A time-out of 1, 800 seconds was set per instance ; when the instance cannot be
solved within this limit, TO is indicated in the table. In our tests, we suppose
that CPU resources are available (for free). Under this assumption, we just
focused on wck time rather than CPU time

Table 4.1 describes the results obtained when using the heuristic dom/wdeg
on some selected instances. Obviously, our approach does not overweight the

1available at http://www.cril.univ-artois.fr/∼lecoutre/benchmarks.html
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classical MAC solver, but it gives better resolution times (in wall-clock) than the
other sequential approaches (SAC+MAC, MSAC).

Instance #nodes wck time cpu time #tMsgs #uMsgs Speedup
ratio

cc-10-10-2

MAC 3,411 1.188 1.375
SAC+MAC 3,411 1.211 1.414
MSAC 367 2.997 3.199
Par(7) 3138 4.913 18.559 4,123 332 0.28
Par(3) 3129 2.510 10.226 2,854 92 0.50
Par(1) 3730 1.448 4.18 920 24 0.82

cw-ogd-vg12-15

MAC 5,309 81.047 80.943
SAC+MAC 3,723 446.735 445.572
MSAC TO
Par(7) 5,824 346.884 2255.207 11,956 2,092 0.23
Par(3) 5,072 162.165 746.163 6,264 850 0.50
Par(1) 5,008 134.122 247.401 1,878 90 0.60

langford-3-13

MAC 891,850 30.449 30.353
SAC+MAC 891,850 31.181 31.339
MSAC TO
Par(7) 864,631 57.564 231.143 1,102,392 36,544 0.53
Par(3) 884,835 34.483 140.035 84,7136 16,079 0.88
Par(1) 880,091 32.523 68.443 356,678 5,071 0.94

queen-12-12-14

MAC 660,504 17.753 17.825
SAC+MAC 660,504 18.334 18.25
MSAC 18,651 200.428 199.81
Par(7) 664,789 41.884 123.137 574,521 41,555 0.42
Par(3) 693,670 23.371 77.039 420,752 16,996 0.76
Par(1) 742,988 18.748 39.429 224,975 6,723 0.70

qK-12-5-mul

MAC 5,573 0.993 0.944
SAC+MAC 0 0.426 0.633
MSAC 0 0.418 0.639
Par(7) 10,594 3.821 12.026 31,455 2,917 0.72
Par(3) 6,299 1.410 5.309 30,601 2,886 1.11
Par(1) 7,938 3.856 2.959 5,818 5,015 0.44

Table 4.1: Results for the sequential and parallel approaches for solving a few
selected instances with dom/wdeg.

Table 4.2 describes the average wall-clock time for several series of instances.
Times are mentioned for a classical MAC solver, MSAC, SAC+MAC and also
our parallel approach using 7 workers. The wck-time of instances that reach
time-out is penalized by 1, 800 ∗ 3 seconds. On the 8 series of instances, our
approach has the best average wall-clock time on only 2 series. The classical
MAC solver is the best solver when using dom/wdeg heuristic compared to our
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parallel approach.

Series #inst MAC MSAC SAC+MAC Par(7)

langford 17 90.55 905.32 391.14 408.16

queen 7 785.85 4143 2382 235.42

quennsKnight 22 1473 162.39 165.97 1264

rand-8-20-5-18-800 10 45.91 517.68 1124 93.20

fapp25-2230 12 46.95 620.83 48.80 41.93

ewddr2-10-by-5 10 1.545 6.589 2.336 3.026

cc 13 2.772 19.62 2.837 13.46

BlackHole-4-4-e 10 0.458 7.858 0.485 1.110

Table 4.2: The average wall clock time for series of instances with dom/wdeg.

Disappointed by these results, we used dom/ddeg to compare our parallel
approach with the sequential ones. This variable ordering heuristic guarantees
that the different approaches have the same search path, which could by the
reason behind the failure of our approach using dom/wdeg. Results are given in
Table 4.3.

Compared with a classical solver using MAC, the interest of using a parallel
approach is visible on these five instances:

• For some instances (cw-ogd-vg12-15, langford-3-13 and qk-12-5-mul), the
number of visited nodes is highly decreased;

• For some instances (cc-10-10-2 and qk-12-5-mul), the wall clock time is
decreased.

One interest of our approach is that SAC tests are interleaved with search,
which means that we do not have to wait for the completion of the preprocessing
to start the actual search, and still, we benefit from the discovery of inconsistent
literals. In a sense, we use a kind of anytime version of SAC.

We investigate the efficiency of used messages on the speed-up obtained when
using our parallel approach compared to the classical MAC solver. For the
Crossword instance (cw-ogd-vg12-15), the inferences made by the workers are
too limited for being useful compared with a MAC solver. Even though, using a
parallel approach remains interesting compared to SAC+MAC or MSAC in term
of wall clock time. On this instance, it appears that, for SAC+MAC, the most of
CPU time (404 seconds) is spent at preprocessing. This explains why MSAC is
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Instance #nodes wck time cpu time #tMsgs #uMsgs Speedup
ratio

cc-10-10-2

MAC 542,776 47.90 47.479
SAC+MAC 542,776 48.23 47.946
MSAC 4960 49.10 48.73
Par(7) 73,684 114.889 456.136 46,111 23,979 2.3
Par(3) 139,351 19.49 154.4 160.77 22,240 2.46
Par(1) 315,035 33.77 81.087 268,379 16,512 1.42

cw-ogd-
vg12-15

MAC 4,224 70.71 70.528
SAC+MAC 4,648 545.48 543.951
MSAC TO
Par(7) 4116 231.988 1590.632 6,469 412 0.292
Par(3) 4241 125.783 616.308 3,361 158 0.536
Par(1) 4216 94.94 180.118 1,352 71 0.745

langford-3-
13

MAC 764,944 29.14 29.148
SAC+MAC 764,944 28.53 28.689
MSAC TO
Par(7) 750,105 47.01 195.52 10,617,44 33,987 0.620
Par(3) 759,166 30.46 116.039 822,626 15,073 0.957
Par(1) 763,373 28.80 60.192 300,048 4,994 1.019

queen-12-12-
14

MAC 2,211,140 64.12 64.123
SAC+MAC 2,211,140 65.650 65.427
MSAC 61,179 170.87 468.701
Par(7) 2,000,032 97.09 512.836 2,297,683 164,826 0.660
Par(3) 2,083,863 68.49 265.991 1,739,529 110,223 0.936
Par(1) 2,173,009 70.39 133.688 886,580 44,101 0.910

qK-12-5-mul

MAC 2,017,288 44.88 44.937
SAC+MAC 0 0.438 0.629
MSAC 0 0.401 0.629
Par(7) 1,647,766 87.391 533.816 10,505,678 1,778,671 0.513
Par(3) 1,838,425 70.161 272.171 5,535,294 857,197 0.640
Par(1) 1,928,055 59.009 115.684 1,880,410 365,341 0.760

Table 4.3: Results for the sequential and parallel approaches for solving a few
selected instances with dom/ddeg.

not able to solve the problem in 1, 800 seconds. For the Chessboard Coloration
instance (cc-10-10-2), the parallel approach achieves the best wall clock time with
an average of messages number around 20, 000. For the Langford and Queen
instances, the number of messages is greater than the Chessboard Coloration
instance. However, this does not imply in anyway that the parallel approach is
quicker. To conclude, analyzing these results shows clearly that the speed-up
obtained is not correlated with to the number of used messages when using our
parallel approach compared to the classical MAC solver. Instances can use an
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important number of messages but not reduce their search tree and, contrary
to that, other instances could benefit from a few number of messages to reduce
significantly their search tree.

Series #inst MAC MSAC SAC+MAC Par(7)

langford 17 77.828 830,090 76.995 397.311

queen 7 845.799 4,659.207 24,443.690 319.756

queensKnight 22 3,446.051 160.044 166.904 1,475.197

rand-8-20-5-18-800 10 20.221 204.801 22.192 34.837

fapp25-2230 12 46.246 619.829 49.241 43.191

ewddr2-10-by-5 10 1.518 6.888 2.362 3.046

cc 10 53.004 67.663 54.017 13.422

BlackHole-4-4-e 10 0.493 11.354 0.498 1.156

Table 4.4: The average wall clock time for series of instances with dom/ddeg.

Table 4.4 describes the average wall-clock time for several series of instances.
Times are mentioned for a classical MAC solver, MSAC, SAC+MAC and also our
parallel approach using 7 workers. The wck-time of instances that reach time-out
is penalized by 1, 800 ∗ 3 seconds. Our parallel approach has the best solving
wall-clock time on 3 series out of 8 which outweigh the results obtained with
MSAC and SAC+MAC. However, we have been disappointed in not reducing
significantly the solving time compared to a MAC solver. In fact, using such a
strong consistency is supposed to infer important information that can be used
by a classical solver to reduce its search tree.

In order to understand the reasons behind the fruitless results (compared to
MAC) of our approach, we decide to make more experiments. On the one hand,
we used an oracle of inferences: we wanted to know what we would get if the
SAC tests were costless (costlessMSAC ). To do that, we stored the inferences
made when maintaining classical SAC during search (MSAC). We then use the
previous stored inferences (oracle of inferences) while maintaining arc consistency
(MAC). We get, thus, the best case times of maintaining SAC during search. On
the other hand, we compared costlessMSAC with a classical MAC solver and
estimated the speed-up ratio as follows:

MAC wck time

costlessMSAC wck time
(4.2)

Figure 4.9 describes the distribution of 876 instances of several problems
according to the speed-up ratio. In fact, only 3% of the instances of the conducted
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experimentation have a speed-up ratio greater than 10. Whereas, the other 94%
of the instances have a speed-up ratio less than 2. In this case, it is difficult to
overweight the costs of maintaining SAC in parallel. This leads us to assume
that maintaining SAC during search is not as effective as supposed in reducing
the search tree.

nstances have a speed-up ratio less than 2. In this case, it is diffi
ght the costs of maintaining SAC in parallel. This leads us to
aintaining SAC during search is not as effective as supposed in r
rch tree.

ratio > 10

2 < ratio < 10

ratio < 2

93%
3%
3%

Figure 4.9: Pie chart of instances according to the speed-up ratio.

Table 4.5 describes the results of some selected instances of the previous
experimentation: comparing MAC to costlessMSAC. These instances are pre-
sented in an increasing order of their speed-up. Obviously, the difficulty of in-
stance resolution does not affect the obtained speed-up ratio. For example, the
langford-3-14 instance is more difficult than val10-43, whereas the speedup ratio
for langford-3-14 is significantally less than val10-43.

Figure 4.10(a) describes the number of effective SAC tests per level that
contribute to the reduction of the search tree and, thus, helping the solver dur-
ing its solving process. These results are more detailed in Table 4.6. In fact,
we chose instances composed of the same number of variables (100 variables)
and all variables have the same domain size of 46. However, these instances
have different speed-up. Obviously, the primes-15-60-2-7 instance which has
the greatest speed-up ratio, has also the greatest number of effective SAC tests
during the 32 first levels. This number reaches 2740 tests for the level 32. For
the other instances, the greatest number of effective SAC tests are mostly during
pre-processing whereas the remaining SAC tests are distributed during the search
in few amounts. Obviously, some instances for which maintaining costlessSAC
is efficient use a large number of SAC tests in order to reduce the search space.
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(a) The effective SAC tests per level.

(b) The effective SAC tests per level.

Figure 4.10: Comparison between costlessMSAC and MAC for some selected
instances of the primes problem using dom/ddeg.
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Instance costlessMSAC MAC speed-up ratio

2-fullins-5-4 11.44 13.683 1.196

langford-3-14 93.257 229.071 2.456

crossword-m1c-lex-vg6-7 16.527 51.253 3.101

bdd-21-133-18-78-11 2.427 12.224 5.037

rand-8-20-5-18-800-13 3.857 51.407 13.328

cc-10-10-2 3.088 75.784 24.541

half-n25-d5-e56-r7-1 4.703 198.238 42.151

primes-10-20-2-5 1.202 51.973 43.239

val10-43 0.772 43.983 56.973

Table 4.5: The wall clock time (in seconds) for some selected instances with
costlessMSAC and MAC (dom/ddeg).

Figure 4.11(a) describes two instances with different speed-up ratio (wck-
time and speed-up are detailed in 4.11(b)). These results show, clearly, that the
previous assumption is not always true. In fact, haystacks-06 instance benefits
from the greatest number of SAC tests during search reaching almost 45000 tests
in its 13th level but does not reach an important speed-up compared to MAC.
However, val10-43 instance reaches a speed-up of almost 57 compared to MAC
benefiting from a few amount of SAC tests at pre-processing and its first level.

Furthermore, using a high number of SAC tests at the first level of the search
tree does not guarantee a high speed-up which the case for primes-15-20-2-3 and
primes-15-20-3-1 instances (Figure 4.10(a)) compared to val10-43 instance.

Instance costlessMSAC MAC Speed-up ratio

primes-15-60-2-7 1.194 37.384 31.310
primes-15-20-3-5 0.875 15.833 18.095
primes-15-20-2-3 0.756 1.254 1.659
primes-15-20-3-1 0.596 0.903 1.515

Table 4.6: Comparison between costlessMSAC and MAC for some selected in-
stances of the primes problem dom/ddeg: the wall clock time (in seconds) and
the speed-up ratio.
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(a) The effective SAC tests per level.

Instance costlessMSAC MAC speed-up ratio

haystacks-06 0.88 1.43 1,625

val10-43 0.772 43.983 56.973

(b) The wall-clock time and the speed-up ratio.

Figure 4.11: Comparison between costlessMSAC and MAC for two instances of
different speed-up ratio.

We have been disappointed by the inability of our approach, and in particular
the singleton arc consistency, to reduce significantly the search tree for most
of the experimented instances. This is why we tried to maintain a stronger
consistency: weak-k-SAC. We conducted an experimentation over more than
360 different instances. Unfortunately, weak-k-SAC failed to prune an important
search space during search, and thus, maintaining it during search does not seem
to be effective in the resolution of the different instances. Table 4.7 describes
the results obtained for some selected instances when establishing weak-k-SAC
(presented in a decreasing order of speed-up ratio)
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Instance (#nbVar, #nbVal) #costlessMWeak-1-SAC MAC speed-up ratio

val7-12 (20, 960) 0.133 294.59 2215

val16-27 (53, 4,558) 0.318 422.25 1328

val45-50 (128, 16,384) 0.412 57.63 139.88

val46-50 (128, 16,384) 0.473 46.65 98.63

val47-50 (128, 16,384) 1.504 46.82 31.13

val7-27 (20, 1,720) 0.127 2.831 22.29

val24-41 (75, 9,600) 0.331 5.676 17.15

val44-50 (128, 16,384) 4.783 55.24 11.55

E-12 (270, 81,000) 25.80 181.17 7.02

val18-39 (64, 7,744) 1.919 9.819 5.12

val12-29 (48, 4,800) 0.319 0.959 3

val35-43 (120, 15,360) 0.614 1.319 2.15

lei450-15c-05 (450, 2,250) 1.444 1.769 1.22

ash958GPIA-3 (1,916 , 5,748) 1.684 1.565 0.929

F-10 (270, 81,000) 13.144 2.654 0.201

Table 4.7: The wall clock time (in seconds) for some selected instances with
costlessMWeak-1-SAC and MAC (dom/ddeg) establishing weak-1-SAC.

Conclusion

In this chapter, we introduced a new approach using a parallel architecture in
order to enhance the classical solving process. Several workers establish a partial
consistency (SAC/ weak-k-SAC) and send the discovered facts to the master in
order to avoid useless search space. Contrary to our expectations, our approach
seems to be less effective than MAC (the most used search algorithm). This could
be due to the fact that the discovered SAC-inconsistent values are, in fact, easily
removed by the master by propagation. This implies that the sent information
is not as strong as expected to speed-up the master search. The choice of the
variable ordering heuristic could be also the reason behind the failure of our
approach.
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Chapter 5

Conclusions and Future Work

The work presented can be divided into two main parts:

Compressing Table Constraints In the first part, we deal with the most
used kind of constraints which are table constraints. Since table constraints
offer expressiveness to non-expert users, its use is widespread in the industrial
world. Over time, the represented data keeps growing which implies the use of
compact data-structures to store them, in a first place, and optimized filtering
algorithms to manage them during the solving process, in a second place. In
the last decades, several techniques proposed compact ways to represent table
constraints while using the minimal storage space, and mostly, not penalizing
their use during the search. We present some techniques of the state-of-the-art
in the first section of Chapter 2. In our turn, we propose two different methods
of compressing table constraints. Both of them are based on frequent patterns
search in order to avoid redundancy. However, the manner of defining pattern,
the patterns-detecting process and the new compact representation differs sig-
nificantly. In fact, in the first method STRc, we use the “trie” data structure
in order to find patterns which are defined as a sequence of values. After de-
tecting the most frequent patterns, we build a patterns table in which the most
frequent patterns are stored. The new form of the table constraint replaces all
occurrences of the patterns by a reference to them in the patterns table. In
this way, we could benefit from avoiding these redundancies at two levels. At
the space complexity level, the use of references enables us to reduce the space
required to represent table constraints avoiding repeating the same sequences of
values. At the time complexity level, using references to patterns enables us to
avoid redundant validity checks. Rather than testing the validity of the same
sequence several times in a pass of the table constraints, the test is done only one
time and simply re-used for every occurrence. In order to manage the new com-
pressed form of table constraint, we use an adapted variant of STR taking into
consideration the use of patterns. The experimental results shows that our ap-
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proach achieves a high compression, but compared to STR variants it competes
only with STR1. The choice of the manner of defining patterns are the reasons
behind the non-competitiveness of our results. In fact, since in our approach
STRc we consider that a pattern is a sequence of values, we are not able to use a
filtering algorithm based on the optimized variants of STR (STR2 and STR3).
We take into account this drawback in our second approach STR-slice, where
we defined patterns in another way (as pairs of a variable and a value). The
frequent patterns detection is done, this time, using a data-mining algorithm.
The new form of table constraint is, in fact, composed of “slices” of sub-tables.
The original constraint table is fragmented based on the frequent patterns. Each
“slice” is, then composed of a frequent pattern and the remaining part of the ta-
ble where the pattern, originally, appears. The experimental results shows, this
time, more competitive results where STR-slice supplants STR2 and, sometimes
STR3 even if it is penalized by the compression process.

Generally speaking, each of the proposed approaches has its specificity and
the experimental results depends mostly on the constraints representation. The
main issue that all the proposed approaches of the-state-of-the-art have to find
an answer is how to find a compromise between achieving a high compression
ratio and filtering as effective as possible the new compact data structure.

Future Work First of all, we think that the tuning of the parameters used for
guiding compression should be automatized (possibly, employing some machine
learning techniques). STRc and STR-slice could then benefit from a better
compression which depends on the nature of class of problem instance. Second,
we believe that, in the rising context of big data, new constraint problems should
emerge rapidly where constraints could be of (very) large arity and involve very
large tables. STR-slice could advantageously handle such “huge” constraints,
especially if we consider that slicing could be conducted recursively on the sub-
tables which is another perspective of this thesis work. Finally, we think that
the concept of sliced table constraints is interesting on its own for modeling, as
certain forms of conditionality can be represented in a simple and natural way,
directly with sliced table constraints.

Using Singleton Arc Consistency in parallel to improve search The
second part is dedicated to another way to optimize CSP solving which is the use
of a parallel architecture. The advancements of the parallel computing field has
encouraged the CSP community, among others, to benefit from the computers
power in order to solver larger problems. Several approaches are proposed in
which the problem is distributed over workers or a copy of the problem is used
for each of them. Some methods of the state-of-the-art of parallel computing
and also parallel CSP solving are introduced in the second section of Chapter 2.
All these methods tried to speed-up the solving time. We propose a method in

175



Chapter 4 where we use a parallel architecture in order to enhance the solving
process by establishing parallel consistencies. In fact, different workers sent to
their master the result of establishing partial consistencies as new discovered
facts. The master, in its turns tries to benefit from them by removing the values
leading to a failure. Contrary to our expectation, the work made by the workers
does not imply a significant improvement of the solving process. In fact, an in-
depth analysis shows that even in a sequential resolution enforcing such strong
consistencies for free cannot imply an important reduction in the search space
which makes the results obtained through our approach understandable.

Future Work A natural perspective of our work is to incorporate other forms
of consistencies that could impact larger the neighborhood, and thus, reduce
significantly the search space. We may consider “wise” messages that include
many forms of consistencies which can together form a form of explanation that
avoid a master to use a given path or given sequence of assignments. Moreover,
we could investigate the impact of heuristics on the effectiveness of the received
messages. Choosing a variable of the neighborhood may imply more deductions.
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[Régin, 2011a] Régin, J. (2011a). Global constraints: a survey. In Hybrid Opti-
mization, chapter 2, pages 63–134. Springer.
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