
1

Université de Versailles

Saint Quentin en Yvelines -

France

University of Balamand

Liban

École Doctorale Sciences et Technologies de Versailles
and Faculty of Engineering-Balamand

THÉSE DE DOCTORAT

présentée par :
Rabih Al Nachar

Spécialité : Traitement des images ; Vision par ordinateur

Soutenue le 06/11/2014, devant le jury constitué de :

Président: Patrick Garda Professeur, Université Pierre et Marie Curie.

Directeurs: Patrick Bonnin Professeur, Université de Versailles

 Elie Inaty PhD, University of Balamand

Rapporteurs: Sylvie Lelandais Professeur, Université d'Evry Val d'Essonne

 Edwidge Pissaloux Professeur, Université Pierre et Marie Curie.

Examinateur: Yasser Alayli Professeur, Université de Versailles

TOWARDS AN EFFICIENT FEATURE DETECTOR:

EDGE CORNERS AND ITS APPLICATIONS

2

Table of Contents

1 Résumé Détaillé de la Thèse ... 15

1.1. Détecteur de Coins basé Contours ... 18

1.1.1. Détecteur de Contour avec Adaptation .. 19

1.1.2. Détecteur de Segments de Droite ... 22

1.1.3. Détecteur de Coins de Contour ... 23

1.1.4. Détails de l’algorithme de détection des Segments et des Coins de Contour .. 24

1.1.1.5. Suppression itérative de Coins de Contour .. 25

1.1.6. Contribution .. 27

1.2. Première Application : le Recalage d’Images .. 28

1.2.1. Sélection automatique des Coins Dominants ... 29

1.2.2. Construction des Primitives .. 30

1.2.3. Mise en Correspondance de Primitives .. 30

1.2.4. Estimation du Modèle de Transformation par Transformée de Hough........... 30

1.2.5. Notre Contribution .. 31

1.3. Seconde Application: Reconnaissance de Caractères .. 32

1.3.1. Schéma Proposé : Segmentation et Reconnaissance Simultanées des

Caractères .. 33

1.4. Conclusion ... 42

2 Introduction ... 45

2.1. From feature detectors to applications .. 47

2.2. Suggested feature detector and its applications ... 49

2.3. Thesis outline ... 50

3 Background: ... 52

Interest Point Features .. 52

3.1. Interest point features overview .. 54

3.1.1. Interest points are local image features ... 54

3.1.2. Moravec detector .. 55

3.1.3. Harris detector .. 56

3.1.4. Shi-Tomasi corner detector .. 59

3.1.5. Level curve curvature approach ... 60

3.1.6. SUSAN detector .. 61

3.1.7. Harris-Laplace Detector .. 65

3

3.1.8. Scale Invariant Feature Detector (SIFT) .. 69

3.1.9. PCA-SIFT .. 74

3.1.10. Speeded Up Robust Feature Detector (SURF) .. 75

3.1.11. Gradient Location Orientation Histogram (GLOH) ... 78

3.2. Edge based corner detectors .. 78

3.2.1. The basis of edge corner detectors: edge detectors 79

3.2.2. Edge segmentation: Polygonal Approximation ... 84

3.2.3. Existing edge corner detector: Corner detection using difference chain code as

curvature .. 88

3.3. First application: Image Registration .. 92

3.3.1. Introduction .. 92

3.3.2. Primitive construction: From features to primitives 94

3.3.3. Classification and feature matching ... 95

3.3.4. Model transformation estimation .. 110

3.3.5. Geometric transformation model: Affine transformation and its invariants

[44] .. 114

3.4. Our contribution .. 116

4 A robust Edge Based Corner Detector (EBCD): Straight Edges, Edge Corners and Dominant

Corners ... 119

4.1. EBCD block diagram ... 120

4.2. Edge detector with suggested updates ... 121

4.2.1. First grouping: gradient vector calculation, thresholding and edge thinning 122

4.2.2. Second grouping: edge linking and closing ... 125

4.3. Straight edges .. 129

4.3.1. Perfect straight edges .. 129

4.3.2. Algorithm explanation and real straight edges ... 131

4.4. Corner detection .. 135

4.5. Image matching using corners: a 2D shape recognition application 137

4.6. Detecting dominant corners from edge corners: Polygonal Approximation 141

4.6.1. The corner strength measure ... 142

4.6.2. Iterative corner suppression ... 143

4.6.3. Towards an automatic stopping criterion ... 147

5 Experimental Results on Corners and Dominant Corners .. 149

5.1. Experimental results on edge corners .. 150

5.1.1. First experiment: synthetic images ... 150

4

5.1.2. Second experiment: newly introduced simple real images database 153

5.1.3. Third experiment: real images .. 158

5.2. Experimental results on dominant corners: Polygonal Approximation 162

6 First Application Using Corners: Image Registration .. 165

6.1. Introduction: Method Outlines ... 166

6.2. Automatic selection of dominant corners ... 168

6.2.1. The algorithm .. 169

6.2.2. Shape recognition using the automatic selection of DCs 170

6.3. Primitive Construction ... 171

6.4. Primitive matching and model estimation .. 173

6.4.1. Two invariant parameters for primitive matching .. 173

6.4.2. Model estimation using Hough transform .. 174

6.5. Experimental results .. 176

6.5.1. First synthetic images set ... 176

6.5.2. Second synthetic images set ... 180

6.5.3. Third synthetic images set .. 180

6.5.4. NOAA AVHRR real image .. 182

6.5.5. Real images set .. 184

7 Second Application Using Corners: Character Recognition .. 188

7.1. Character recognition overview ... 189

7.1.1. Introduction: What is CAPTCHA? .. 189

7.1.2. Yahoo Scheme .. 190

7.1.3. Fuzzy logic .. 192

7.1.4. Our contribution .. 200

7.2. Edge corners "ECs" classification .. 201

7.2.1. ECs Detection: Update to the EBCD .. 201

7.2.2. Why ECs? .. 203

7.3. Proposed scheme: Simultaneous Segmentation-Recognition 205

7.3.1. Segmentation .. 209

7.3.2. Recognition .. 215

7.3.2.1. EC properties used for recognition .. 215

7.4. Experimental results .. 227

7.4.1. First experiment: Recognition under warping ... 227

7.4.2. Second experiment: Segmentation/Recognition of connected characters 230

5

7.4.3. Third experiment: Breaking Yahoo CAPTCHA scheme 231

8 Conclusion and Future Works ... 233

Bibliography ... 238

6

List of Figures

Fig.1.1. Norme du Gradient en un angle droit avec l’opérateur de Kirsh. >?

Fig.1.2. Norme du Gradient en un angle aigu avec l’opérateur de Kirsh >?

Fig.1.3. (a) C1 et C2 sont deux DCs. (b) C est un Coin “réel”. .. >?

Fig.1.4. (a) Image d’une Tasse. (b) Image des Contours. (c) Ancienne procédure aux points A

et B. (d) Nouvelle Procédure : Introduction d’un double point. .. >>

Fig.1.5. Nouvelle Procédure lors d’une Fourche. .. >>

Fig.1.6. 5 Segments de Contour Idéaux SCI1 à SCI5. ... >C

Fig.1.7. (a) Image Réelle de Contour. (b) Image Réelle et Coins Détectés. (c) Cinq cas où des

pixels de bruits apparaissent en (a). .. >C

Fig.1.8. Détection de Segments de Contour. .. >F

Fig.1.9. Algorithme de détection des segments de contour. .. >G

Fig.1.10. Elimination d’un Coin de Contour. ... >G

Fig.1.11. (a) Construction de Primitives sur la feuille. (b) Les deux aires triangulaires

construites à partir de la Primitive, et la première mesure invariante R. CI

Fig.1.12. CCs sur l’image du caractère Z. .. CC

Fig.1.13. Recherche de la meilleure Ligne constituent la Frontière Droite, segmentant 2

caractères déformés et connectés. (a) image déformée et ses CCs. (b) différentes

segmentations et les reconnaissances correspondantes avec leur taux. CC

Fig.1.14. Segmentation Optimale utilisant une ligne brisée comme frontière droite.

(a) Trois différentes tentatives de segmentation utilisant une frontière sous forme de ligne

brisée, et leur taux de reconnaissance. (b) La partie restante à reconnaître par la procédure.

 ... CF

Fig.1.15. L'algorithme proposé. ... CM

Fig.1.16. Ensemble de M segment au Coin CC(32,35) pour M=5. ... CG

Fig.1.17. Meilleure Frontière de Droite pour le Caractère G. .. CG

Fig.1.18. Trois Frontières Droites à partir du CC de coordonnées (29,30). CO

Fig.1.19. (a) Image Segmentée. (b) Image du Caractère Correspondant de la base de test. .. 58

Fig.1.20. Trois lignes droites dessinées à partir de CC(11, 31) pour trouver le nombre de

contours traversés. ... CP

Fig.1.21. Schéma Bloc du Système à Base de Logique Floue. .. CP

Fig.1.22. VectAngDiff entre les vecteurs correspondants de deux CCs Equivalents (11,23) et

(21,13). ... FI

Fig.1.23. “Corner Angle Difference” en un CC. ... FI

Fig.1.24. Fonctions Membres. ... F?

Fig. 1.25. Calcul des Pourcentages “Like” et “Alike” à partir des fonctions inverses. F>

Fig.3.1. Original and shifted windows around the tested pixel C. (a) Original window. (b)

Windows shifted horizontally and vertically. (c) Windows shifted diagonally [99]. 55

Fig.3.2. Performance degradation of Harris detector due to scale change [100]................... 58

Fig.3.3. Corner points detected by Shi-Tomasi detector [101]. ... 59

Fig.3.4. Circular masks applied in different nucleus positions in an image of a dark rectangle

lying in a white background [103]. ... 61

7

Fig.3.5. Corresponding USANs shown as white parts within the masks [103]. 61

Fig.3.6. Center of gravities of USANs at different nucleuses in a portion of an image [103]. . 64

Fig.3.7. SUSAN corner finder applied to a video captured image with t = 25 [103]. 65

Fig.3.8. Characteristic scale in scale space [105]. ... 66

Fig.3.9. Points detected on different smoothing levels [105]. .. 67

Fig.3.10. Repeatability over scale as performance evaluation. ... 68

Fig.3.11 Points detected in two images with different viewpoint and scale change of 2.7

[105]. .. 68

Fig.3.12. Points detected with their characteristic scales in two images with viewpoint

change of 30
o
 and scale change of 1.8 [106]. ... 69

Fig.3.13. DoG calculation [63]. ... 71

Fig.3.14. Detecting an extremum by comparing it to its 26 neighbors [63]. 71

Fig.3.15. A simple 2 x 2 SIFT descriptor [63]. .. 73

Fig.3.16. Kepoints detection [63]. .. 73

Fig.3.17. Object recognition using SIFT keypoints [63]. .. 74

Fig.3.18. Partial second order derivatives of Gaussian filters and Box filters. First 2 images

represent the Gaussian filters in the y and xy direction. The last 2 represent their

approximated box filters [87]. ... 76

Fig.3.19. SURF Interest points. (a) represents the detected interest points-center of the

surrounding circles with radius equal to the corresponding scale. (b) Haar wavelets. (c)

Descriptor windows centered at the interest points and rotated according to the dominant

vector in it [87]. ... 77

Fig.3.20. Edge detection steps [11]. ... 80

Fig.3.21. Gradient direction is normal to edge direction. ... 80

Fig.3.22. Peaks of the gradient norm corresponds to the edge. ... 81

Fig.3.23. (a) Original image. (b), (c) and (d) Corresponding edge images. 81

Fig.3.24. Gradient magnitude images of various operators. ... 83

Fig.3.25. Edge detection on a noisy image. (a) original image with noise. (b) output of Sobel

operator. (c) output of Robert operator. (d) output of Canny operator [175]. 84

Fig.3.26. Approximating a polygon. ... 84

Fig.3.27. Polygonal Approximation. ... 86

Fig.3.28. Segment division according to maximal distance. .. 86

Fig.3.29. Masood break points... 87

Fig. 3.30. AEV calculation at a vertex Pk. .. 88

Fig.3.31. (a) Various erroneous stray pixels cases. (b) Results after smoothing [107]. 89

Fig. 3.32. True and False corners detection on an edge. ... 90

Fig.3.33. Test image with regular curvature change [107]. ... 90

Fig.3.34. Corners extracted on noisy images [107]. .. 91

Fig.3.35. Transformation invariance of the corner detector. (a) Original (b) rotated 270
o
 (c)

scaled 50% (d) scaled 50% and rotated 90
o
. ... 91

Fig.3.36. Convex hull of a scatter of feature data [134]. ... 104

Fig.3.37. Image scenes with objects added or disappearing [134]. 105

Fig.3.38. Corresponding convex hulls of the images in Figure 3.37 [134]. 105

Fig.3.39. Affine invariants in Convex hulls [134]. .. 105

Fig.3.40. Primitive shapes for an affine transformation. (a) Z-shape. (b) Y-shape. 106

8

Fig.3.41. Primitive shape for a projective transformation [135]. .. 107

Fig.3.42. Scaling directions in an affine transformation. ... 115

Fig.4.1. The corner detection functions. .. 121

Fig.4.2. Gradient norm on an edge using Kish operator. .. 122

Fig.4.3. More than one pixel can exist in the normal direction to the edge. 123

Fig.4.4. Thinning algorithm. ... 124

Fig.4.5. Gradient norm on a right angle using Kish operator... 124

Fig.4.6. Gradient norm on an acute angle using Kish operator. .. 124

Fig.4.7. Linking algorithm at an unlinked edge pixel. .. 125

Fig.4.8. The 3 selected pixels for closing. ... 126

Fig.4.9. Closing algorithm at an unlinked edge pixel. .. 126

Fig.4.10. Automatic Linking/Closing algorithm. .. 127

Fig.4.11. The problem in the linking phase of the existing edge detector: (a) original image.

(b) edge image. (c) updated linking phase with double points. (d) old linking phase. 129

Fig.4.12. Straight Edges with unique code. .. 130

Fig.4.13. Straight edges with double Freeman codes. .. 130

Fig.4.14. (a) image of edges, (b) detected corners, (c) noisy pixels. 131

Fig.4.15. Condition to initiate the straight edge detector. .. 132

Fig.4.16. The current and previous directions at an edge pixel A. 132

Fig.4.17. Straight edge detector... 134

Fig.4.18. Two straight edges. ... 134

Fig.4.19. (a) edge image of a leaf shape with CCs in orange and HCs in pink. (b) The CCs and

HCs of the top right circled part. (c) HCs combination results. ... 135

Fig.4.20. (a) Original image. (b) Edge image and HCs.. 136

Fig.4.21. HCs combination algorithm. .. 137

Fig.4.22. Edge corner characteristics: Angle and LR.. 137

Fig.4.23. Repeatability of corners under scale variation. .. 138

Fig.4.24. Training Image. ... 139

Fig.4.25: (a) Test image. (b) Corresponding image of contours with corners shown on the

matched one. .. 140

Fig.4.26. The corners descriptors. .. 140

Fig.4.27. Matching a test contour to a training contour using their corners descriptors. 141

Fig.4.28. Detected corners for a chromosome shape: (a) Chromosome shape, (b) Linked edge

image. ... 142

Fig.4.29. Illustration for LISE measure. ... 143

Fig.4.30. LISEV calculation. .. 143

Fig.4.31. Polygonal approximation at various nc. ... 144

Fig.4.32. Iterative corner suppression algorithm. ... 145

Fig.4.33. Corner suppression. .. 145

Fig.4.34. Corner reselection. .. 146

Fig.5.1. SUSAN's test image [151]. ... 150

Fig.5.2. Output of tested detectors: (a) EBCD, (b) SUSAN, (c) Harris, (d) Harris-Laplace, (e)

FAST, and (f) SIFT... 152

Fig.5.3. Main image database of simple real images. ... 153

9

Fig.5.4. Rotation results. Row 1: original images. Row 2: Proposed detector outputs. Row 3:

SUSAN outputs. Row 4: Harris outputs. Row 5: Harris-Laplace outputs. Row 6: FAST outputs.

Row 7: SIFT outputs... 154

Fig.5.5. Scale variation results. Row 1: original images. Row 2: Proposed detector outputs.

Row 3: SUSAN outputs. Row 4: Harris outputs. Row 5: Harris-Laplace outputs. Row 6: FAST

outputs. Row 7: SIFT outputs. .. 155

Fig.5.6. Viewpoint change results. Row 1: original images. Row 2: Proposed detector outputs.

Row 3: SUSAN outputs. Row 4: Harris outputs. Row 5: Harris-Laplace outputs. Row 6: FAST

outputs. Row 7: SIFT outputs. .. 156

Fig.5.7. The five corners studied versus scale variation. ... 157

Fig.5.8. Original real images [153].. 158

Fig.5.9. Detected corners by our proposed EBCD. .. 159

Fig.5.10. Detected corners by SUSAN detector. ... 159

Fig.5.11. Detected corners by Harris detector. ... 159

Fig.5.12. Detected corners by Harris-Laplace detector. .. 160

Fig.5.13. Detected corners by FAST detector. .. 160

Fig.5.14. Detected corners by SIFT detector... 160

Fig.5.15: Tested shapes and their polygonal approximations at a particular nc. 163

Fig.6.1. General Overview of the suggested algoritm. .. 168

Fig.6.2. Iterative corner suppression algorithm. ... 170

Fig.6.3. DCs on a chromosome shape using both stopping criteria. 171

Fig. 6.4. Grouping four consecutive DCs into one primitive. ... 173

Fig.6.5. Matching algorithm. .. 174

Fig.6.6. Image registration algorithm. .. 176

Fig.6.7. Polygonal approximation and DCs: (a) Source image, (b) Target image. 177

Fig.6.8. Repeatability of corners versus scaling factor λ1/λ2 (Ω = 10
o
, φ = 15

o
 and λ2 = 1). .. 178

Fig.6.9. Repeatability of corners versus scaling angle φ (Ω = 10
o
, λ1 =1.3 and λ2 = 0.8). 179

Fig.6.10. Repeatability of corners versus rotation angle Ω (φ = 10
o
, λ1 =1.3 and λ2 = 0.8). .. 179

Fig.6.11. Synthetic images [135]. (a) Source image. (b) Target image. 180

Fig.6.12. (a) Source shape. (b) Transformed shape... 182

Fig.6.13. Level line segments endpoints... 182

Fig.6.14. DCs on both images. .. 182

Fig.6.15. A NOAA AVHRR image. (a) CPs of Lou et al. [137]. (b) DCs as CPs. 183

Fig.6.16. Two tested real images of a common scene. ... 184

Fig.6.17. Two matched primitives circled in yellow in the two real images. 186

Fig.6.18. (a) Second scene image. (b) First scene transformed image by the calculated model.

(c) Image of difference between them... 187

Fig.7.1. The current Yahoo CAPTCHA [144]. ... 191

Fig.7.2. (a) Membership associated to the input variable. (b) Membership associated to the

output variable [206]. ... 195

Fig.7.3. Fuzzy laws [206]. ... 195

Fig.7.4. (a) Multi-stroke geometric shapes. (b) Uni-stroke shapes [167]. 196

Fig.7.5. Polygons used to estimate features [167]. ... 197

Fig.7.6. Percentiles for the ratio Alt/Alq [167]. ... 197

Fig.7.7. Percentiles for the ratios Ach/Aer and Alq/Aer [167]. .. 198

10

Fig.7.8. Fuzzy sets [167]. .. 198

Fig.7.9. Proposed character recognizer [168]. .. 199

Fig.7.10. Character 'A' [168]. ... 199

Fig.7.11. Membership functions for each pattern in each cell [168]. 200

Fig.7.12. Corner detection algorithm. .. 202

Fig.7.13. Edge image of the z character and its ECs. ... 203

Fig.7.14. (a) Connection corners on the deformed characters contours. (b) Strong corners on

the original characters contours. ... 205

Fig.7.15. Search for the best straight line right border segmenting 2 deformed connected

characters. (a) deformed image and its ECs. (b) various segmented parts and its

corresponding recognized character with the matching percentage. 207

Fig.7.16. Optimal segmentation using multi line right borders. (a) Three different

segmentation trials using three multi line right borders with the corresponding matching

percentage. (b) The remaining part to recognize by the same procedure. 207

Fig.7.17. The overall algorithm. ... 208

Fig.7.18. Segmenting and recognizing the first character of a part of the deformed GLC4GZ

word image. .. 208

Fig.7.19. The segmentation of the "G" character of Figure 7.18. (a) selected straight line right

border. (b) optimal multi-line right border. ... 209

Fig. 7.20. The MBS (M=5) drawn in grey at EC (32,35). ... 211

Fig. 7.21. Corner coordinates of G-L characters. .. 213

Fig. 7.22. Three borders, from the CBS, drawn to split the G-L characters. 213

Fig.7.23. ECs based segmentation algorithm. ... 214

Fig. 7.24. Segmented part from the test image with the three lines drawn at EC(11,31). ... 216

Fig.7.25. (a) Segmented part from the test image with quadrants (b) Training edge image

relative to the G character with quadrants. ... 216

Fig.7.26. Vector angle difference of two matched ECs. .. 219

Fig. 7.27. Adjacent SEs directions of two matched ECs. .. 220

Fig. 7.28. Proposed fuzzy system. .. 220

Fig.7.29. The three membership functions: (a) for VectAngDiff, (b) for CorAngDiff and (c) for

MatchingScore. ... 224

Fig. 7.30. Calculating the LikePerc and AlikePerc by inverse member functions.................. 224

Fig.7.31. Recognition algorithm. .. 227

Fig.7.32. (a) Original image, (b) deformed image: Sigma=3 and Alpha=1, (c) deformed image:

Sigma=3 and Alpha=20. ... 228

Fig.7.33. (a) Original image, (b) deformed image: Sigma=5 and Alpha=35, (c) deformed

image: Sigma=7 and Alpha=75... 228

Fig.7.34. Recognition percentage versus Alpha and for different values of Sigma. 229

Fig.7.35. Deformation levels at different values of Sigma. ... 229

Fig.7.36. Recognition percentage at different values of dist. .. 230

Fig.7.37. (a) Two connected characters. (b) Segmentation using connection corners (CCs). 231

Fig.7.38. (a) A CAPTCHA sample word image. (b) Segmentation/Recognition steps. 232

11

List of Tables

Table 1.1: Lois de Flou. .. FI

Table 3.1: Experimental results of various interest points detectors [105]. 66

Table 4.1. Length ratio and angle of some corners at different scale. 138

Table 5.1. Quantitative results on SUSAN's test image. .. 151

Table 5.2. Quantitative results on the image rotated by 60
o
: third column of Fig.5.4. 157

Table 5.3. Quantitative results on the image scaled by half: second column of Fig.5.5. 157

Table 5.4. Quantitative results on the image taken at second viewpoint: second column of

Fig.5.6. .. 158

Table 5.5. Computation time of various detectors. .. 158

Table 5.6. Quantitative results on the rectangles image. ... 161

Table 5.7. Quantitative results on the house image. .. 161

Table 5.8: Comparative Results for the Chromosome, Leaf and semicircle shapes. 162

Table 6.1. Repeatability performance using consecutive or non consecutive DCs. 172

Table 6.2. Estimated affine models. ... 180

Table 7.1. Corners Information of the z character. ... 203

Table 7.2. Matching percentage of various segmented image parts. 209

Table 7.3. Fuzzy laws. .. 223

Table 7.4. Matched couples for the images shown in Figure 7.15. 226

12

Abstract

In this thesis, a new feature detector is proposed. The new features are edge
corners located on the contours of a studied image. These points are edge points
where a deviation in the edge direction occurs. In addition, they are repeatable versus
similarity, affine transformations and also robust to noise at the boundaries of the
object's image. Due to their repeatability, these corners are used in a shape recognition
application. Also, a smaller set of corners called "Dominant Corners" or "DCs" is
extracted form the original set of corners using a new proposed polygonal
approximation algorithm. These DCs form the vertices of a polygon that best
approximate their contour. Two applications using the edge corners are also
developed. The first one is an image registration application that forms invariant
primitives using the DCs. The second application is a word recognition application
where the edge corners located on the characters contours are used in a simultaneous
segmentation/recognition process to recognize the characters in a deformed word
image.

Keywords: Edge corners, DCs, polygonal approximation, image registration, word
recognition, affine transformation, invariant primitives, simultaneous
segmentation/recognition.

13

Résumé

Nous proposons dans cette thèse un nouveau détecteur de « Coins » de contour
dans une image. Ces coins sont les sommets de la ligne polygonale approximant le
contour. Ils peuvent appartenir ou non au contour. Ils correspondent à une déviation
importante de la direction de ce contour. Aussi, ils sont répétables en présence de
transformations affines ou similitudes et sont robustes au bruit présent aux frontières
d'une image. Grâce à cette répétabilité, les coins sont utilisés dans une application de
reconnaissance de la forme.

Les coins peuvent être classés selon leur force. Ainsi sous ensemble de ces coins,
appelé "Coins Dominants", peuvent être extraits formant les sommets du polygone
« minimal » qui représente le contour, pour un nombre de segments donné.

Deux applications, basées sur les Coins/Coins Dominants du contour ont été
réalisées :

 La première est une application de recalage d’images où de nouvelles
primitives invariantes constituées de quatre "Coins Dominants" du contour
ont été proposées.

 La seconde application est la reconnaissance des caractères dans une
image déformée où les coins du contour des caractères ont été utilisés dans
un processus de segmentation / reconnaissance simultané.

Mots-clés: Point d’Intérêts, Coins et Coins Dominants du contour, approximation
polygonale, recalage d’ images, reconnaissance des caractères, transformation affine,
primitives invariantes, segmentation et reconnaissance simultané.

14

Acknowledgments

First of all, I would like to express my deep sense of respect and gratitude

towards my PhD directors: Prof. Patrick Bonnin and Dr. Elie Inaty who have guiding

me throughout this work. I am especially grateful to their remarks and supports. I

have learned from them a lot: how to evaluate a work, how to express my ideas, how

to drive them among others ideas … I would also to express my deep gratitude

towards my PhD reviewers: Prof. Sylvie Lelandais and Prof. Edwige Pissaloux who

have made a deep review of this thesis and due to their valuable comments I was able

to improve the quality of the work.

Next, I would like to thank my family: parents and wife for their support, love

and sacrifice. Without them, I could not achieve this work.

15

 1

Résumé Détaillé de la Thèse

16

Nous proposons dans cette thèse un nouveau détecteur de « Coins » de contour

dans une image. Ces « Coins » correspondent à une déviation importante de la

direction de ce contour. Ils sont obtenus à partir d’un détecteur d’une autre primitive

basée contour : les « Segments » de contour. Ils constituent les sommets de la ligne

polygonale approximant le contour. Les Segments, et par conséquent les Coins de

Contours sont des primitives images très importantes, car elles sont nombreuses dans

les images de scènes d’environnements faits par l’homme : d’intérieur ou d’extérieur

urbain [13-16].

Bien qu’un « Coin » puisse très bien être considéré comme un « Point d’Intérêt »

en tant que point particulier du contour, il faut différencier ces deux primitives. En

effet, les points d’intérêt sont obtenus localement, sans l’extraction des contours au

préalable. Ils ne font pas nécessairement partie d’un contour, ou n’en sont pas

nécessairement à proximité. Les Coins de Contour appartiennent aux contours, où en

sont très proches (dans le cas de la fusion de deux Demi-Coins).

Les coins peuvent être classés selon leur force. Ainsi un sous ensemble de ces

coins, appelé "Coins Dominants", peut être extrait formant les sommets du polygone

« minimal » qui représente le contour, pour un nombre minimal de segments donné.

Les Coins, comme les Coins Dominants sont répétables en présence de

transformations affines ou similitudes et sont robustes au bruit présent sur les

frontières des objets de l’image. Grâce à cette répétabilité, les Coins sont utilisés dans

une application de reconnaissance de la forme.

Deux applications, basées sur les Coins Dominants du contour ont été réalisées :

La première est une application de recalage d’images où une nouvelle primitive

invariante constituée de quatre "Coins Dominants" successifs du contour a été

proposée.

La seconde application est la reconnaissance de caractères dans une image

déformée où les coins du contour des caractères ont été utilisés dans un processus de

segmentation/reconnaissance simultané.

Le Recalage d’Image détermine la modélisation de la transformation géométrique

qui permet d’aligner les mêmes points de deux images d’une même scène prise à

17

différents points de vue, sous différents angles, éventuellement à différents instants et

avec des caméras de différentes caractéristiques.

Définition: La « Répétabilité » d’une grandeur physique, i.e. les Coins

Dominants extraits d’une image, est la mesure de leur stabilité lorsque l’image subit

des transformations.

En fait, la répétabilité des Coins Dominants a été étudiée en présence de

déformations affines de l’image et les résultats obtenus sont très bons. Ainsi, les

Coins Dominants peuvent être utilisés pour une application de Recalage d’Images où

le temps entre les deux prises de vue est relativement court, telle que la période entre

les deux images d’une séquence vidéo. Sous cette contrainte, la déformation réelle

entre deux images est petite, et peut correctement être modélisée par une

transformation affine [44]. Ainsi, nous suggérons d’utiliser cette technique dans une

application de robotique mobile et autonome : la surveillance de routes ou

d’autoroutes à l’aide de drones aériens. En effet, le recalage permet de Compenser le

mouvement global du fond lié au déplacement de la caméra montée sur le drone, ce

qui permet la détection du mouvement différentiel de petites cibles, telles que les

automobiles sur les routes.

Les quatre principales étapes du Recalage d’Images sont :

 la détection de Points de Contrôle (PC) : Ces points doivent être stables ou

répétables malgré les transformations de l’image,

 la Mise en Correspondance de Points de Contrôle : les PC des différentes

images sont associés en utilisant des grandeurs invariantes,

 l’Estimation de la Transformation : à partir de l’association précédente des

points de contrôle,

Ré échantillonnage de l’Image : en appliquant la transformation de l’étape

précédente, la première image est synthétisée avec le point de vue de la seconde..

Dans ce travail, les Coins Dominants sont utilisés comme Point de Contrôle, car

ils sont stables par transformation, et un nouvel algorithme, très efficace, de mise en

correspondance de ces points a été proposé.

18

La seconde application concerne la Reconnaissance de Caractères. Nous avons

cherché à reconnaître des caractères déformés et connectés. Aussi, nous avons

proposé une méthode permettant simultanément la segmentation et la reconnaissance

de chaque caractère dans un mot d’une image. Cette méthode a été testée sur des mots

dont les lettres ont été déformées, comme par le système CAPTCHA, pour la sécurité

sur internet.

Notre rôle n’est pas de jouer un « hacker » essayant de pirater l’accès d’une

application internet. Au contraire, l’utilisation du détail de notre application

permettra d’améliorer la sécurité des applications existantes. Notre principal objectif

est la conception et la réalisation d’une application de robotique, notamment

d’interaction homme – robot. Le robot doit reconnaître les commandes ou les

informations écrites à la main produites par un opérateur humain : les caractères

manuscrits étant déformés et potentiellement connectés.

1.1. Détecteur de Coins basé Contours

Les principales étapes sont les suivantes :

(i) Détection des Contours: calcul du Gradient par la méthode de Kirsch [17, 18],

seuillage sur la norme, affinage, prolongation et chaînage. Le chaînage a été

modifié pour détecter « proprement » les coins du contour. La sortie du

détecteur de contour est une image des étiquettes contours, associée à une base

de données. Les contours forment les bords des objets de la scène, où se

situent les coins que nous recherchons.

(ii) Détection des Segments de Contours [28, 198]: les segments de contour sont

des parties du contour en forme de segments de droite. Ils sont également des

Primitives Image. Le but d’utiliser un détecteur de segments de contour est de

diviser le contour en une séquence de segments de droites de différentes

longueurs. Les segments de droite sont obtenus à partir des codes de Freeman

des points de contour. La robustesse du détecteur de segment de droite est son

aptitude à détecter proprement un segment même si le contour est corrompu

par des pixels bruités. Par définition, un pixel bruité est un point de contour

dont la direction est différente de la direction principale du segment. Ce

détecteur doit détecter de manière adéquate ces points de bruit et les éliminer,

19

afin que le détecteur de « Coins » de l’étape suivante ne les confonde pas avec

de vrais Coins. En effet, Points Bruités et Vrais Coins correspondent à des

déviations du contour.

(iii)Détection de Coins [28, 198]: un coin est définit comme le point d’intersection

de deux lignes droites non co-linéaires de longueur appropriée (lors des

expérimentations du chapitre 5, paragraphe 5.1, le seuillage sur la longueur

minimale des segments est pris égal à 10).

(iv) Détection de Coins Dominants [53]: parmi l’ensemble des coins de contour,

un sous ensemble appelés Coins Dominants CDs est sélectionné en éliminant

itérativement les Coins « moins marqués ». Ces CDs ont une grande

répétabilité sous différentes transformations d’images.

1.1.1. Détecteur de Contour avec Adaptation

Le Détecteur de Contour est constitué de deux regroupements, fonctionnant

séquentiellement, des principales étapes d’une Détection classique de Contours. Ce

nombre minimal de deux regroupements des étapes, mais également des calculs

locaux en chaque pixel de l’image garantit la rapidité de la détection [17].

Le Détecteur de Contour programmé pour le projet CLEOPATRE [17] a pour

objectif d’extraire les longues lignes droites de l’image. Or nous cherchons à l’utiliser

pour détecter des Coins de Contour, problématique différente, d’où la nécessité de

l’adapter.

1.1.1.1. Premier Regroupement

Ce premier regroupement commence par le calcul du vecteur gradient, en norme

et en argument, en chaque pixel de l’image par l’opérateur de Kirsch [18]. Les étapes

de Seuillage sur la Norme du gradient et d’Affinage des Contours regroupées

permettent d’obtenir une image binaire des (points de) contours affinés, c’est-à-dire

d’un pixel d’épaisseur.

Un problème survient au niveau de la phase du gradient. C’est le problème

d’Arrondi des Angles, présenté Figure 1.1 sur un angle droit, et Figure 1.2 sur un

angle aigu. Les deux figures présentent l’image originale et de la norme du gradient.

Comme le « Coin de Contour » est l’intersection de deux « Segments de Contour »

non colinéaires, d’une longueur minimale, il risque de ne pas être correctement

détecté à cause de ce problème.

20

La solution que nous mettons en œuvre après la Détection de Segments de

Contour est d’introduire les « Demi – Coins » (DCs). Un Demi Coin est une

intersection de deux Segments de Contour non colinéaires, dont l’un d’entre eux n’a

pas une longueur suffisante, comme les deux points C1 et C2 de la Figure 1.3 (a).

Ainsi, si deux « Demi Coins » sont proches (distance inférieure à 3 pixels), le

« Coin » réel est obtenu par intersection des deux segments de contour de longueur

appropriée, si celle-ci est suffisamment proche des deux demi coins. La Figure 1.3 (b)

présente les deux demi coins C1 et C2, ainsi que le coin réel C correspondant. Le

Coin C n’appartient pas au contour dans ce cas, mais en est proche.

Fig.1.1. Norme du Gradient en un angle droit avec l’opérateur de Kirsh.

Fig.1.2. Norme du Gradient en un angle aigu avec l’opérateur de Kirsh .

Fig.1.3. (a) C1 et C2 sont deux DCs. (b) C est un Coin “réel”.

1.1.1.2. Second Regroupement

 Le second regroupement est constitué des étapes de prolongation et de

chaînage des contours, mais séquencées de manière inhabituelle [17]. En effet, la

prolongation intervient comme procédure de l’étape de chaînage si le pixel courant est

une extrémité de contour. Prolongation et Chaînage fonctionnent en parallèle : un

pixel est prolongé puis chaîné, ceci pixel par pixel.

21

 Les étapes de Prolongation / Chaînage ont été conçues pour extraire les

longues lignes droites [17]. Ainsi à une intersection le chaînage du pixel en ligne

« droite » est privilégié, et l’intersection n’est pas « relevée ». Notre problématique est

tout autre : la détection de Coin de contours. Elle nécessite donc une adaptation.

En effet, notre problème est le suivant. Considérons l’image de la tasse Figure 1.4

(a), et l’image des Points de Contour correspondant Figure 1.4 (b), où les Points A et

B sont représentatifs du problème. La procédure initiale suit la « ligne droite » (cf

Figure n° 1.4 (c)). L’adaptation permet de considérer les différentes possibilités de

chaînage (cf Figure n° 1.4 (d)), qui sont maintenant considérés comme des points

doubles. De cette manière, les points A et B pourront être détectés comme des Coins

de Contour (cf Figure 1.5).

Fig.1.4. (a) Image d’une Tasse. (b) Image des Contours. (c) Ancienne procédure aux points A et

B. (d) Nouvelle Procédure : Introduction d’un double point.

Figure 1.5. Nouvelle Procédure lors d’une Fourche.

22

1.1.2. Détecteur de Segments de Droite

On doit être capable de distinguer un Segment de Contour Idéal (SCI) d’un

Segment de Contour Réel (SCR). Un Segment de Contour Idéal comporte des points

de contour dont les codes de Freeman (permettant de passer du point courant au point

suivant) comportent une ou deux directions au maximum. Par exemple la Figure 1.6

présente 5 segments de contours idéaux SCI1 à SCI5. SCI1 et SCI5 sont constitués de

points de contour comportant une seule direction (ou code de Freeman) :

respectivement 0 et 1.Les trois autres segments de contours idéaux : SCI2 à SCI4 sont

constitués de points de contours de deux directions principales ; ils diffèrent par leur

fréquence d’occurrence de ces deux directions. Pour SCI2, la fréquence d’occurrence

de code « 0 » est double de celle de code « 1 ». Ainsi le code « 0 » est la direction

principale « pdir » et le code « 1 » la direction secondaire « sdir ».

Fig.1.6. 5 Segments de Contour Idéaux SCI1 à SCI5.

Dans des situations réelles, les Segments de Contour Idéaux n’existent que très

peu, à cause du bruit sur les contours. Ainsi, des pixels de bruit figurent dans les

contours, comme le montrent les points cerclés de la Figure 1.7 (a).Ainsi, un

algorithme intelligent doit être capable de détecter ces pixels de bruit, et de les

éliminer de manière à trouver la bonne direction du segment de contour.

23

Fig.1.7. (a) Image Réelle de Contour. (b) Image Réelle et Coins Détectés. (c) Cinq cas où des

pixels de bruits apparaissent en (a).

1.1.3. Détecteur de Coins de Contour

Les Coins de Contour sont définis comme étant les intersections de deux

segments de contours consécutifs non co-linéaires, avec une longueur minimale. Dans

nos expérimentations, la taille minimale des segments de contours a été fixée à 10. La

Figure 1.7 (b) présente les coins détectés sur une image réelle.

Un Coin de Contour est caractérisé par deux paramètres. Le premier est son

angle entre les deux segments de contours. Le second est le rapport des longueurs de

ces deux segments. Au chapitre 5, nous avons étudié la répétabilité de ces deux

paramètres face à la variation d’échelle. Il est apparu qu’ils sont quasiment invariants.

Ainsi, nous avons suggéré une application robotique : une application de

Reconnaissance de Forme 2D utilisant les Coins de Contour. L’idée est d’embarquer

notre algorithme sur un robot mobile et autonome. Dans la phase d’apprentissage, un

opérateur humain présente au robot la forme 2D à rechercher. L’algorithme extrait les

Coins de Contour qui sont caractérisés par l’angle et le rapport des longueurs des

Segments de Contours le constituant. Dans la phase opérationnelle, le robot recherche

la forme 2D apprise. L’algorithme détecte les Coins de Contour de chaque contour, et

les met en correspondance en utilisant leurs angles et rapports de longueur des

segments.

24

1.1.4. Détails de l’algorithme de détection des Segments et des Coins de Contour

Les Détections des Segments puis des Coins de Contour sont réalisées sur les

contours extraits. 6 paramètres caractérisent chaque Segment de Contour :

 La direction primaire pdir et sa fréquence pcount.

 La direction secondaire sdir et sa fréquence scount.

 Autres directions odir et leur frequence ocount.

Pour illustrer l’algorithme, prenons un contour composé de deux segments de

contour non colinéaires, respectivement en noir et en vert sur la Figure 1.8.

Fig.1.8. Détection de Segments de Contour.

 L’algorithme démarre du point A. La direction courante (ou code de Freeman)

est « 0 » : il est enregistré comme pdir et sa fréquence pcount est incrémenté de A à

B. En B, le contour est dévié et la direction courante vaut « 1 », enregistré en tant que

sdir. Sa fréquence scount et aussi pcount sont incrémentés jusqu’en C. En C et D, la

direction courante est « 7 » est enregistré en odir et sa fréquence ocount est égal à

deux au point D. Entre D et E la direction courante est « 0 », soit pdir ainsi pcount est

incrémenté et ocount est « effacé ». Cependant, à partir de E sur la portion en vert la

direction courante n’est pas pdir, ainsi ocount ne sera pas effacé et va dépasser le seuil

prédéfini, égal à deux dans nos expérimentations. L’algorithme prend le point E

comme fin du premier segment de contour et début du second. Ensuite, E sera détecté

comme Coin de Contour.

Les variables utilisées dans l'algorithme sont:

- cdir: direction du point de contour courant.

- pdir: direction du point de contour précédent.

- adir: direction d'avance.

25

- fdir: direction finale du segment de contour.

- mdir: direction principale du segment de contour.

- sdir: direction secondaire du segment de contour.

- Acc1: accumulateur de la direction principale.

- Acc2: accumulateur de la direction secondaire.

- Accn: accumulateur d'autre direction.

- L: longueur courante du segment de contour.

- hn: seuil maximal sur le nombre des points bruits permis.

- hl: seuil minimal sur la longueur du segment de contour.

- EndofStraightEdge: variable logique pour déclarer la fin du segment de droite.

L'algorithme de détection du segment de contour et de sa direction finale est

présenté dans Figure 1.9.

1.1.1.5. Suppression itérative de Coins de Contour

La suppression peut être initialisée à partir d’un nombre quelconque de coins

sur un contour donné. Le but est d’éliminer itérativement les coins. Le coin éliminé à

chaque itération correspond à l’erreur minimale d’approximation. L’élimination

itérative s’arrête lorsqu’un critère d’arrêt est atteint. Le critère d’arrêt est le taux de

compression CR. �� � � ��� (1.1)

où n est le nombre de points de contour, et nc le nombre de Coins de Contour à

trouver.

L’objectif est de minimiser la fonction « Global Integral Square Error » ou

(GISE). L’ensemble de Coins de Contour restants formera l’ensemble de Coins

Dominants (Dominant Corner DC).

L’algorithme utilise deux grandeurs : la “ Local Integral Square Error” (LISE) d’un

segment et la “Local Integral Square Error Variation” (LISEV) due à la suppression

d’un Coin de Contour. Pour illustrer ces notions, considérons le contour en noir,

approximé par la ligne polygonale Cor1, Cor2, Cor3 et Cor4 de la Figure 1.10.

26

Fig.1.9. Algorithme de détection des segments de contour.

Fig.1.10. Elimination d’un Coin de Contour.

27

A l’itération i, la portion de contour comprise entre Cor1et Cor2 est approximée

par le segment [Cor1Cor2]. L’erreur locale correspondante LISE est la somme des

carrés des distances entre le contour approximé, et le segment de contour

l’approximant, ce qui est égal à l’Aire A. L’erreur globale du contour complet

compris entre Cor1 et Cor4 GISE à cette itération est la somme de toutes les LISE,

soit : A+B+C.

A l’itération i+1, l’algorithme a le choix de supprimer les Coins Cor2 ou Cor3. Si

le Coin Cor3 est supprimé la variation d’aire associée LISEV3 est égale à la nouvelle

D moins l’ancienne (B+C) (cf équation Eq (1.2)). La nouvelle aire globale GISE soit

(GISEi+1) est égale à l’ancienne (GISEi) plus la nouvelle variation (LISEV3). Il faut

effectuer un calcul similaire pour supprimer le Coin Cor2 (cf Eq (1.3)). Finalement,

l’algorithme élimine le Coin (Cor2 ou Cor3) qui correspond à l’aire minimale GISE.

� �� � 	
 � �� (1.2)

�� � � 	
 �
� (1.3)

1.1.6. Contribution

La principale faiblesse des détecteurs existants de Points d’Intérêt ou de Coins est

la qualité de leur détection avec des images réelles où le bruit notamment sur les

frontières des objets est relativement important. De plus les détecteurs de points

d’intérêt sont basés sur l’intensité des pixels de l’image. Par conséquent leur détection

est dépendante d’un ou de plusieurs seuils sur l’intensité, généralement constant, ce

qui la rend très sensible aux bruits.

Nous avons présentés deux nouveaux détecteurs de primitive image : les Coins de

contour, et les Coins Dominants de contour. Les Coins de contour sont « très

répétables » ce qui les rend applicables dans de nombreuses applications comme

l’approximation polygonale, le recalage d’images, la reconnaissance de caractères

etc... De plus, comme les coins sont regroupés grâce à leur appartenance à un

contour, nous n’avons pas besoin d’utiliser une méthode de mise en correspondance

coûteuse en temps de calculs comme la méthode RANSAC pour mettre en

correspondance les coins provenant de deux images, ou d’un modèle et d’une image.

28

Comme les contours sont l’une des primitives les plus importantes car répétable

lors de différentes transformations d’images [3], nous les avons utilisé pour détecter

nos coins qui leur appartiennent. Ainsi, notre but est de détecter des primitives images

de type « Point » qui sont à la fois correctement localisées et répétables malgré des

déformations de l’image. Par conséquent, ils peuvent être utilisés comme Points

d’Intérêt sur le contour d’un objet, où le descripteur est calculé localement à chaque

point, en fonction du point et de son environnement.

Les « Coins Dominants » sont des primitives image de type Point « très

répétables » sous des transformations affines, et sont utilisés comme sommets de la

ligne polygonale qui approxime au mieux le contour. Les différences entre les travaux

existants et nos travaux sont la nature et la stabilité des points sélectionnés.

Les points sélectionnés par Masood [127] sont les points qui correspondent à une

déviation dans la direction du contour. Les points que nous sélectionnons sont des

coins de contour qui sont des intersections de deux segments de droite approximant le

contour. Ainsi nous ne détectons pas un coin à chaque changement de direction du

contour correspondant à un bruit sur le contour. En plus, Masood élimine

itérativement les coins en utilisant une mesure de l’erreur appelée « Associated Error

Value » ou (AEV). L’AEV à un point dominant est le carré de la distance de ce point

à la ligne joignant les points dominants précédent et suivant.

 L’erreur que nous utilisons la « Global Integral Square Error » ou (GISE) est

proportionnelle à la surface entre la portion de contour et le segment l’approximant.

Elle est similaire au critère utilisé par Wall and Danielson [118], alors que l’AEV est

une distance maximale, comme utilisé par Pavlidis [117].

1.2. Première Application : le Recalage d’Images

Cette application est basée sur les Coins Dominants extraits par l’algorithme de

Suppression Itérative de Coins présenté paragraphe 1.1.

Considérons deux images appelées images courante et de référence prise d’une

même scène, mais à deux différents instants, avec un intervalle temporel relativement

faible. La première étape consiste en la sélection des Coins Dominants pour chaque

contour dans chaque image. Puis, une primitive est formée pour chaque quadruplet de

29

Coins Dominants consécutifs du même contour. Ainsi, une primitive est un ensemble

de points d’intérêt ou de Coins Dominants formant une quantité invariante par

transformation d’images. Ensuite, les primitives sont associées entre images, en

utilisant cet invariant. Finalement, chaque association de primitives vote pour un

modèle de transformation affine. Le modèle ayant obtenu le plus grand nombre de

votes est celui retenu pour le recalage.

Notre méthode de Recalage d’Image utilise un modèle de transformation affine,

simple et adéquat lorsque l’intervalle de temps entre les prises de vue est relativement

faible. Nous avons montré la grande répétabilité des Coins Dominants en présence

d’une Transformation Affine au Chapitre 6, paragraphe 6.5, c’est la raison pour

laquelle nous les avons utilisés. Une application de notre méthode pourrait être la

surveillance de trafic routier à l’aide d’un drone aérien, où la difficulté est d’extraire

le mouvement de petites cibles : les véhicules, à partir d’une caméra elle-même en

mouvement. Le recalage permet la compensation du mouvement « global » de la

caméra.

1.2.1. Sélection automatique des Coins Dominants

Le taux de compression CR n’est pas un critère d’arrêt optimal pour cette

application, car un nombre différent de Coins Dominants est obtenu pour les images

courante et de référence. En revanche, le ratio r entre les aires GISE initiale et finale

l’est.

� ��
(1.4)

 La GISE est une aire globale, somme des aires locales LISE. Le rapport entre

les aires est un paramètre invariant par transformation affine, donc reste un invariant

par transformation affine. De plus, la variation d’aire due à la suppression d’un Coin

LISEV est également préservée par transformation affine. Ainsi l’élimination itérative

des Coins, basée sur la variation d’aire permettant d’obtenir la plus petite valeur

permet de garder des Coins Dominants qui se correspondent dans les deux images.

30

1.2.2. Construction des Primitives

Chaque quadruplet de Coins Dominants successifs constitue une primitive

comme présenté sur l’image de la feuille de la Figure 1.11 (a). Le rapport R des deux

triangles présenté Figure 1.11 (b) forme la première mesure invariante de la primitive.

Fig.1.11. (a) Construction de Primitives sur la feuille. (b) Les deux aires triangulaires construites à

partir de la Primitive, et la première mesure invariante R.

 Les angles entre les Coins Dominants constituent la seconde mesure invariante

issue du quadruplet de Coins Dominants de la primitive. Par l’expérience, nous avons

apprécié la répétabilité des angles sous différentes transformations affines.

1.2.3. Mise en Correspondance de Primitives

Une primitive de l’image courante est associée à une primitive de l’image de

référence, si et seulement si :

 Les deux primitives ont le même rapport d’Aires : R.

 Les Coins Dominants se correspondant ont les mêmes angles.

1.2.4. Estimation du Modèle de Transformation par Transformée de Hough

La relation entre les Points correspondante à une transformation Affine est:

� ���� ��� � �
(1.5)

31

où (x',y',1) et (x,y,1) sont les coordonnées homogènes des deux Coins Dominants

relies par la transformation. aij sont les 4 paramètres de la transformation linéaire

associée, tx,ty sont les deux paramètres de translation.

Comme la transformation comporte 6 paramètres, l’espace de Hough utilisé est de

dimension 6. Les paramètres de la transformation linéaire aij s’étendent sur l’intervalle

[-2;2] par pas de 0.01, ce qui représente 400 divisions par paramètre. Les paramètres

de translation s’étendent sur l’intervalle [-200;200] par pas de 5, ce qui représente 80

divisions par paramètre. Deux modèles de transformation affine sont identiques si les

6 paramètres appartiennent à la même division.

Supposons DC1(x1,y1), DC2(x2,y2), DC3(x3,y3) et DC4(x4,y4) les 4 Coins

Dominants successifs constituant la primitive de l’image de référence, et DC'1(x'1,y'1),

DC'2(x'2,y'2), DC'3(x'3,y'3) et DC'4(x'4,y'4) de l’image courante. Le modèle de

transformation affine de l’équation Eq. (1.5) peut être ré-écrit de la manière suivante:

Eq 1.6 et Eq 1.7.

� � � � � ����� �� � �� �

(1.6)

� � � � � � �� �� � �� �

(1.7)

où les vecteurs h and h' contiennent les paramètres de la transformation affine et

peuvent être estimés par les équations Eq 1.8 et Eq 1.9 :

� � ���� �� (1.8)

�� � ���� �� (1.9)

Finalement, le modèle de la transformation, contenu dans h et h', est celui qui

obtiendra le plus grand nombre de vote dans l’espace de Hough précédemment décrit.

1.2.5. Notre Contribution

Nos deux principales contributions dans cette application sont:

 la construction d’une nouvelle primitive à partir d’un quadruplet de Coins

Dominants consécutifs. L’importante répétabilité des coins dominants

32

implique une importante répétabilité de cette nouvelle primitive. Ceci permet

d’augmenter la robustesse par rapport à d’autres primitives.

 la Mise en Correspondance de primitives, basée sur des paramètres invariants :

rapport d’aire et angles entre Coins Dominants.

1.3. Seconde Application: Reconnaissance de Caractères

Notre algorithme a été conçu pour « attaquer »le système CAPTCHA dans le but

de segmenter et de reconnaître les caractères d’une image. Nous ne sommes pas des

« hackers » cherchant à pirater des accès d’applications internet utilisant le système

CAPTCHA comme outil de sécurité. Au contraire, notre but est de trouver des

faiblesses du système existant de manière à le sécuriser et à le rendre plus robuste.

Notre algorithme pourra ensuite être employé dans une autre application de robotique

interactive. L’opérateur présentera l’information à donner au robot (commande ou

autre) sous forme d’écriture manuscrite.

L’algorithme est basé sur les Coins de Contour (CCs). Chaque Coin de Contour

est caractérisé par son angle “Ang” et les longueurs « L1, L2 »des deux segments

adjacents.Selon ces caractéristiques, nous avons défini trois types de CCs :

 CCsForts: Ang > 90o et L1,L2>10 pixels. Par exemple, les points A et D sont

des Forts CCs sur le« Z » de la Figure 1.12

 CCs Faibles: Ang> 90o et soit L1 < 10 soit L2 < 10. Par exemple, les points B

et E sont des Faibles CCs sur la Figure 1.12

 Coins de Liaison qui apparaissent entre deux caractères connectés.

Fig.1.12. CCs sur l’image du caractère Z.

33

1.3.1. Schéma Proposé : Segmentation et Reconnaissance Simultanées des

Caractères

Les Figures 1.13 et 1.14 présentent la reconnaissance d’une image déformée

composée de deux caractères : G et 3.

Fig.1.13. Recherche de la meilleure Ligne constituent la Frontière Droite, segmentant 2 caractères

déformés et connectés. (a) image déformée et ses CCs. (b) différentes segmentations et les

reconnaissances correspondantes avec leur taux.

Fig.1.14. Segmentation Optimale utilisant une ligne brisée comme frontière droite.

(a) Trois différentes tentatives de segmentation utilisant une frontière sous forme de ligne brisée,

et leur taux de reconnaissance. (b) La partie restante à reconnaître par la procédure.

La reconnaissance est compose de quatre phases:

34

 La frontière gauche (en rouge) est initialisée sous forme de ligne brisée. La

frontière droite (en bleu), également sous forme de ligne brisée passant par les

CCs, est recherchée par un déplacement sur la droite. Chaque essai est appelé

“Tentative de Segmentation”.

 Pour chaque Tentative de Segmentation, la partie de l’image comprise entre

les frontières gauche et droite est associée à tous les caractères ou symboles de

test. La sortie de cette tentative est un taux de reconnaissance. Cinq tentatives

de segmentation sont présentés Figure 1.13 (b). L’algorithme retient la

Tentative de Segmentation ayant le taux de reconnaissance le plus élevé, et la

frontière droite correspondante, sous forme de ligne brisée passant par les

CCs.

 Les CCs de la frontière droite retenue, ainsi que tous les CCs voisins sont

présentés Figure 1.14 (a). La frontière est la séquence de segments passant par

les CCs. Trois différentes frontières possibles sont présentées Figure 1.14 (a),

avec leur taux de reconnaissance. La frontière optimale, avec un taux de

reconnaissance de 56% est associée au caractère « G ».

 La frontière droite optimale du caractère courant devient frontière gauche du

caractère suivant, cf Figure 1.14 (b).

L’algorithme détaillé est présenté Figure 1.15.

Fig.1.15. L'algorithme proposé.

35

1.3.1.1. Segmentation

Le but de la segmentation est de trouver les frontières gauche (FG) et droite (FD)

de chaque caractère. La première FG est la ligne verticale passant par la plupart CCs à

gauche. La frontière de droite est une ligne brisée qui sélectionne à chaque Coin de

Contour, un segment parmi un ensemble de M-Segments comportant un segment

vertical et M-1segments dont les variations d’angles sont comprises entre -

45<∆θ<+45. La Figure 1.16 représente l’ensemble de M segments à partir du coin CC

de coordonnées (32,35) avec M = 5.

Fig.1.16. Ensemble de M segment au Coin CC(32,35) pour M=5.

Le meilleur segment de la frontière de droite, extrait de l’ensemble de M-

Segments, permettant le taux de reconnaissance le plus important, est de sorte que la

ligne brisée comporte un maximum de Coins de Contour. Pour cela les coins voisins

dont la différence d’abscisse est inférieure à 10 sont pris en compte. La Figure 1.17

illustre ce principe. Le meilleur segment de la frontière droite est présenté en gris et le

Coin de Contour correspondant CC(29,30).

Fig.1.17. Meilleure Frontière de Droite pour le Caractère G.

36

Fig.1.18. Trois Frontières Droites à partir du CC de coordonnées (29,30).

La Figure 1.18 présente trois frontières droites potentielles sous forme de lignes

brisées, ainsi que leur taux de reconnaissance. Pour la frontière grise, le caractère

reconnu est un « C » et le taux de reconnaissance est de 33%. Pour la frontière bleue,

le caractère reconnu est également « C » avec un taux de 35%. Pour la frontière rouge,

le caractère reconnu est « G » avec un taux de reconnaissance de 38%. Ainsi, la

frontière droite optimale est la frontière rouge. Elle devient la nouvelle frontière droite

pour le prochain caractère à segmenter.

1.3.1.2. Reconnaissance

Après chaque tentative de segmentation, une image segmentée est obtenue cf

Figure 1.19 (a). Elle sera associée à chaque caractère de la base de test. La Figure 1.19

(b) présente l’image test du caractère (caractère G) correspondant à l’image

segmentée de la Figure 1.19 (a).

Fig.1.19. (a) Image Segmentée. (b) Image du Caractère Correspondant de la base de test.

37

Trois paramètres sont utilisés pour mettre en correspondances les CCs :

 Leurs angles.

 Le nombre de contour traversés de chaque côté de l’angle d’un CC. Pour

illustrer la méthode, considérons le CC (11, 31) de la Figure 1.20. On dessine

3 lignes droites avec une déviation de pente de 45o et on enregistre le nombre

de contours traversés par chaque ligne droite de chaque côté de l’angle. Par

exemple, pour la ligne droite « 2 » le nombre de contours traversés sont 1 de

côté gauche et 2 de côté.Ce paramètre est utilisé pour éliminer un certain

nombre d’associations erronées. Sans lui, les CCs (5,28) et (11,31) ne peuvent

pas être différenciés en utilisant seulement leurs angles.

 L’index binaire ou l’index de quadrant. Le caractère segmenté comme le

caractère test sont divisés en quatre quadrants, cf Figure 1.19. Chaque CC

appartient à l’un d’entre eux.

Fig.1.20. Trois lignes droites dessinées à partir de CC(11, 31) pour trouver le nombre de contours

traversés.

Deux CCs, l’un de l’image de caractère de la base de test et l’autre de l’image

segmentée, sont -soit Coins Trés Probablement Equivalents (CTPE), -soit Coins

Equivalents ou bien Coins non Equivalents.

1.3.1.2.1. CTPEs
Les conditions sont:

 Les deux CCs et leurs CCs directement chainés ont le même angle.

 Ils ont le même nombre de contours traversés.

38

 Ils appartiennent au même quadrant.

CCs (5,28)-(6,31) et (32,46)-(50,69) sont marqués en jaune respectivement dans

les deux images dans la Figure 1.19 sont CTPEs.

1.3.1.2.2. CC Mis en Correspondance
Les conditions sont:

 Ils appartiennent au même quadrant avec une certaine déviation t du quadrant

correspondant.

– A cause de la déformation globale, certains CCs peuvent être déplacés

d’un quadrant à un quadrant voisin. Dans la Figure 1.19, CCs (6,36) et

(27,73) sont Equivalents. Mais, CC (6,36) est déplacé du quadrant 3 au

quadrant 1.

 Ils doivent avoir les mêmes nombres de contours traversés sauf pour ceux qui

traversent les frontières gauche ou droite.

– A cause de la fusion de deux caractères successifs, quelques segments

de contour, localisés aux frontières du caractère, peuvent avoir

disparus. Dans la Figure 1.19 (a), les segments disparus sont entourés.

C’est pour cela on ne peut pas considérer le nombre de contours

traversés par une ligne qui à son tour traverse les frontières.

Un CC de l’image de base peut être Equivalent à plusieurs CCs de l’image

segmentée.

1.3.1.2.3. Système basé sur la Logique Floue
Un Système basé sur la Logique Floue est proposé pour évaluer le taux de

correspondance entre le caractère à reconnaitre et les caractères de la base de test. La

Logique Floue est utilisée compte tenu de la déformation aléatoire des caractères à

reconnaître. Le schéma bloc de l’algorithme est proposé dans la Figure 1.21.

Fig.1.21. Schéma Bloc du Système à Base de Logique Floue.

39

Le caractère à reconnaitre et le caractère de la base de test sont fournis sous forme

de Coins associés. La sortie de la première étape est constituée de deux paramètres :

« Vector Angle Difference » "VectAngDiff" et« Corner Angle Difference »

"CorAngDiff". Ces paramètres sont les entrées du “Fuzzy System” qui calcule le taux

de correspondance.

VectAngDiff est illustré Figure 1.22. Considérons deux Coins de Contour

associés (11,23) et (21,13). Dans chaque image, dessinons le vecteur reliant le

CoinauxCTPEs. Deux vecteurs, un dans chaque image, sont dits correspondants si

leurCTPEs sont correspondants. Les CTPEs correspondants sont colorés Figure 1.22

et sont nommés (V1,V'1) et (V2,V'2). VectAngDiff est la moyenne des “vectors

angles differences”.

CorAngDiff est illustré dans la Figure 1.23, en utilisant la même paire de Coins.

La direction moyenne “ASE” de deux segments de contour successifs est enregistrée.

On a deux “ASE” correspondant aux deux coté de l’angle. La différence entre ces

deux ASE est enregistrée comme CorAngDiff.

Fig.1.22. VectAngDiff entre les vecteurs correspondants

de deux CCs Equivalents (11,23) et (21,13).

Fig.1.23. “Corner Angle Difference” en un CC.

40

Le système, présente Figure 1.21, a deux entrées: “VectAngDiff” et “CorAngDiff”

et une sortie “Matching Percentage”. Alors, la “Fuzzification” commence par la

sélection d’une fonction de membre pour chacun comme présenté Figure 1.24.

Nous avons choisi ces formes particulières parce qu’elles mènent

expérimentalement aux taux d’association les plus élevés.

Fig.1.24. Fonctions Membres.

Les lois de flou sont résumées Table 1.1. Les utilisant, le taux d’association en

sortie sera “Like” ou “Alike” avec un pourcentage entre 0 et 1.

Table 1.1. Lois de Flou.

 VectAngDiff

 L M H

CorA

ngDiff

L Like Like Alike

M Alike Alike Alike

H Alike Alike Alike

41

Pour ce taux d’association, on trouve les pourcentages associés à “Like” et

“Alike” en utilisant les inverses des fonctions gaussiennes cf Figure 1.25.

Fig. 1.25. Calcul des Pourcentages “Like” et “Alike” à partir des fonctions inverses.

Finalement, le pourcentage d’association peut être calculé:

� ������� ��� ��� � ��� � ����� � �
 ��� �
 ����� ���� �
����
(1.10)

Les Coins associés, des caractères à reconnaître et de la base de tests, ayant le

plus haut score d’association sont marqués. Après chaque association de tous les

Coins, l’étape de Vérification est une étape très importante pour la reconnaissance.

Nous vérifions l’ordre des liaisons entre les Coins marqués des caractères à

reconnaître et de la base de test. S’ils sont reliés correctement, le calcul du

pourcentage d’association global continue. Sinon, les caractères ne se correspondent

pas.

Pour le pourcentage d’association global, on accumule pour chaque CC de base

marqué le pourcentage du nombre des points de contour équivalents. Cela est fait par

la multiplication du “MatchingPercentage” par les longueurs des segments de contour

adjacents.

nbptsM += MatchingPercentage*adjacent SEs lengths (1.11)

On calcule également le nombre total des points de contour “nptsT” du caractère

de base. Ainsi, La pourcentage d’équivalence totale “OveralMP” est égale à :

42

OveralMP = nbptsM*100/nbptsT (1.12)

Finalement, l’image segmentée est reconnue comme l’image du caractère de base

correspondant à la valeur maximale de OveralMP.

1.4. Conclusion

Dans cette thèse nous avons introduit un nouveau détecteur de Coins, basé sur les

contours de l’image. Il obtient de meilleures performances que les détecteurs de

points d’intérêt de la littérature, notamment en termes de répétabilité. La première

étape est la détection des contours. Puis un détecteur de segments de droite examine

tous les contours pour détecter les parties pouvant être approximées par des segments

de droite. L’intersection de deux segments de contours successifs d’une longueur

minimale, non colinéaires forme un Coin.

 Les Coins obtenus sont robustes vis-à-vis des déformations entre images,

notamment en cas de transformation affine, ainsi qu’en cas de variation d’échelle,

sans incorporer dans leur détection un invariant vis-à-vis de la variation d’échelle. Les

résultats expérimentaux prouvent que notre « Edge Based Corner Detector » (EBCD)

est très intéressant, comparé aux détecteurs existants. Nous avons proposé une

application de Reconnaissance de Forme 2D l’utilisant. La reconnaissance est

correcte, même en présence de plusieurs formes.

 Basée sur les Coins de Contour, une nouvelle technique d’Approximation

Polygonale est également proposée. En fixant comme critère d’arrêt le taux de

Compression CR ou la valeur de l’erreur sur la surface, l’algorithme supprime un par

un les coins de contour de manière à garantir une erreur minimale en surface. Les

coins restants lors de l’arrêt, appelés Coins Dominants sont les sommets de

l’Approximation polygonale, approximant de manière optimale le contour. Les

résultats expérimentaux sont bons, comparés aux méthodes de la littérature.

 Compte tenu de la répétabilité des Coins Dominant lors des Transformations

Affines, observée lors de nos expérimentations, nous les avons utilisés lors d’une

première application au Recalage d’Images. Ainsi nous avons proposé une nouvelle

primitive formée d’un quadruplet de Coins Dominants successifs. Le rapport entre les

aires des deux triangles formés ainsi que les angles entre Coins Dominants sont des

43

invariants par Transformation Affine, utilisé pour la mise en correspondances de

primitives entre l’image courante et l’image de référence.

Finalement, un algorithme de Segmentation – Reconnaissance simultanée de

caractères a été proposé pour reconnaître les mots du système CAPTCHA de Yahoo.

L’objectif en reconnaissant ces mots n’est pas de devenir un « hacker », mais de

mettre en évidence les faiblesses du système. L’algorithme proposé classifie les Coins

de Contour en Forts, Faibles et Coins de Connexion entre caractères. Pour segmenter

les caractères, la notion de frontières gauche et droites est introduite. Ces frontières

passent au minimum par un Coin de Connexion.

 Ces frontières passent nécessairement par au moins un point de connexion et

la partie d’image entre les frontières est la partie à segmenter. Cette partie est à

l’entrée de la phase de Reconnaissance. Si elle est reconnue comme un caractère de la

base de tests, l’algorithme continue avec la reconnaissance du caractère suivant de

l’image. Pour pallier le problème de la déformation aléatoire de chaque caractère,

nous avons utilisé un système de Logique Floue permettant de reconnaitre les

caractères à partir de leurs Coins de Contour. Les résultats de nos expérimentations

ont montré la flexibilité de notre système face à la déformation et à la connexion des

caractères. Le détail de nos algorithmes sera utile pour améliorer les manières de

déformer et de connecter les caractères des systèmes comme MSN ou Google

CAPTCHA, de manière à être plus robuste contre les « hackers ».

Plusieurs applications robotiques peuvent être développées. La première est la

reconnaissance de formes basée sur les Coins de Contour que nous avons développée

pour des applications plus complexes telles que la reconnaissance d’objets où plus

d’un contour existent. Dans cette application, la mise en correspondance des coins de

manière individuelle n’est pas suffisante, car elle génère un nombre important de

fausses associations. Par conséquent, une nouvelle stratégie de mise en

correspondance a été proposée, basée sur la mise en correspondance d’ensemble de

coins de contour. Chaque contour de l’image test est associé à un contour de l’image

courante en utilisant une distribution de contours associés où des coins de contours

faible peuvent apparaître ou disparaître.

La seconde est la surveillance de route à partir de drones. La compensation du

mouvement global important de la caméra permet l’estimation du mouvement local

44

des cibles de petite taille en mouvement. Elle peut être réalisée grâce à notre

procédure de recalage d’images.

La troisième est la communication entre l’être humain et le robot, par écriture

manuscrite. L’homme écrit l’information à transmettre au robot, et le robot la

reconnait.

45

 2

Introduction

46

Computer vision is a field responsible for analyzing and processing the acquired

image to extract numerical and symbolic information from images [1, 2] in order to

output the appropriate result. This field has many applications ranging from tasks

such as machine vision systems to research into artificial intelligence and computers

or robots. Machine vision usually refers to a process of combining computer vision

methods and technologies to provide automated inspection and robot guidance in

industrial applications. For example, a mobile robot typically uses computer vision for

navigation, for producing a map of its environment (SLAM) and for detecting and

avoiding obstacles. In addition, simple low level algorithms have been introduced so

far for a better visualization of the image.

As stated before, the starting point in all computer vision techniques is to extract

information from images that must be robust to different variations in real world

applications concerning illumination, translation, rotation and scaling and also to

noise like cluttered scene due to background. Here, the notion of "interest local

features" becomes relevant. Local features have been shown to be well suited to

matching and recognition as well as too many other applications as they are robust to

occlusion, background clutter and other content changes. They are well defined

information extracted from an image and that are spatially localized at specific

locations in that image in the form of isolated points, continuous curves or connected

regions.

Feature detection is usually performed as the first operation on an image; it

examines every pixel to see if there is a feature present at that pixel. For real time

applications, the features neighboring regions can be the only image parts used to

extract the needed information. In this way, the required processing time and the

storage amount can be minimized.

There are a lot of feature detectors that resemble on searching on informative

features in an image but vary widely in the kinds of features detected, the

computational complexity and the repeatability. Here, repeatability is an important

measure to classify a feature detector, it is the stability of the feature in the same

location in an image even after applying to it different transformations especially

rotation and scaling and after adding to it some noise. The feature matching comes

after the feature detection problem and forms a central process to any intelligent

47

activity. The success of the matching relies on the quality of the features and their

description but also on the quality of the matching procedure. First, the extracted

features have to be stable enough against temporal changes due either to motion,

viewpoint, lighting variations or blurring. Therefore, the features have to be salient

and accurately characterized in order to avoid any matching ambiguities. Second, the

matching procedure has to rely on a similarity measure that correctly distinguishes the

features in order to avoid false pairing.

2.1. From feature detectors to applications

Computer vision is a very important field of research with a huge set of

applications. According to the nature of the application, a feature detector tries to find

and explore some image parts [9,10,11]. Any detector developed to extract this

information in real scenes should have several properties. In application like object

recognition, it should be able to form a specific representation of the existing objects

like object's descriptors [12] or object's model that could identify an object from

others. On the other hand it should be robust to noise and to various image

transformations and changes like viewpoint, rotation, illumination, translation and

scaling. In addition, it should be fast enough especially when used for real time

applications.

A very large number of feature detectors have been developed so far. They differ

in the nature, the number and the repeatability of features detected and in the

computational complexity.

Some detectors use a smoothing step before start searching for the image features.

The smoothing concept is introduced in the scale space theory [3,4,5] and the

smoothing level introduced to an image is represented as a scale level in this theory.

Thus, the smoothing degree can reveal the size of objects within an image. While

increasing the smoothing degree, objects vanish from the image. Small objects vanish

first and larger objects later. The smoothing level at which an object vanishes

basically reflects the size of this object. For this reason the smoothing parameter is

also called “scale”. It is used for two main reasons either to smooth the transition

between image regions of different contrast or to study the repeatability of image

features over scale.

48

There is a variety of feature detectors that differ by the technique used to extract

these features. Some detectors can be applied directly on the image intensities to

extract their features. Whereas other detectors are applied indirectly on image

intensities since they are based on the features detected by other detectors. For

example, a corner detector can detect corner points that are edge points. So an edge

detector should be applied prior the corner detection. In general, the feature detectors

can be divided into four groups: edges, corners, blobs and ridges.

In practice, edges are one of the most important features. They are usually defined

as sets of points in the image which have a strong gradient norm. This means that an

edge is the boundary between two regions of different contrast. In addition, image

corners are also very used features. Earlier, corners were points on the edge where a

rapid change in direction occurs. Corners detectors were applied on edges and the

detected points are called edge corners. Later on, the search of corners starts including

all image parts not only image edges. Therefore, corners become image points

corresponding to a high level of curvature in the image gradient. These points are

frequently known as interest points. In the other hand, blobs are groups of pixels in

the image that preserve some common property across it like intensity values, as

opposed to corners that are more point-like. Therefore, blobs are image parts in the

image space constructed by pixels of similar contrast. They can be used to form

models or descriptors for objects that can be recognized by their color distribution.

Finally, a ridge has been proposed as a useful feature for image analysis [6,7] and has

been successfully applied to image segmentation [8]. Nevertheless, ridge descriptors

are frequently used for road extraction in aerial images and for extracting blood

vessels in medical images. Its goal is to capture the interior of elongated objects in the

image domain.

Interest point is an important image feature, presented in a lot of works in image

processing domain, detected directly using the image intensities in its local

neighborhood. Many applications are based on interest points in general like stereo

matching, object modeling and recognition [13,14], image registration [15], video

tracking, pose estimation and SLAM [16]. Using stereovision technique in a mobile

robot, a 3D model of a 3D polyhedral object can be formed from the distribution of its

3D interest points. Therefore, for an autonomous moving robot, these interest points

49

are used to localize the robot and build a map of its surrounding environment

(SLAM).

2.2. Suggested feature detector and its applications

We have proposed a feature detector, called Edge Based Corner Detector

(EBCD), whose aim is to provide features points that can be more robust to noise and

less time consuming for some image processing applications.

The purpose is to segment the image first into feature segments, called "Straight

Edges", than into feature points, called "Edge Corners" or simply "ECs", than select

among the ECs a smaller set called "Dominant Corners" or simply "DCs". The

Straight Edges are edge parts that are linked in the form of nearly straight lines.

Therefore, a contour can be seen as a sequence of Straight Edges. Their detection is

very robust to the normally introduced noise on the image edges. Than the ECs are

edge points that correspond to the intersections of every non collinear Straight Edges.

Finally, DCs are only the ECs having a strong repeatability under the affine

transformation. Therefore, a classification method is developed to eliminate week ECs

to obtain those strong ones (DCs). This classification is known as polygonal

approximation.

The obtained DCs are characterized by their repeatability under affine

transformation. Therefore, we have suggested some robotic applications to benefit

from this important characteristic. The first one is an image registration application

where the goal is to determine the geometric model or transformation that aligns the

image points in the two studied images, called source and sensed images. The

deformation relating these two images should be very small in order to be well

estimated by an affine model. Practically, this can be obtained when these images are

acquired sequentially for the same scene with a small time interval. This registration

method can be used to model the global motion of a drone's camera, monitoring a

certain road, in the purpose to estimate the real motion of small moving targets, e.g.

cars, on the road. The second application is a character recognition application

designed for autonomous robots in a human-robot interaction. A human presents to

the robot some written commands as words containing one or more characters that

can be connected or not. The robot acquires the commands as images and should

50

recognize the characters and identifies the order. This application is simulated and

tested in this thesis as a CAPTCHA breaker. The CAPTCHA is a computer program

that generates randomly deformed words containing one or more characters. The

random deformation introduced to each character simulates the real deformation in

handwriting. In addition, the ECs have shown a strong repeatability under these

deformations and so they are used as landmarks in this application. However, we are

not seeking to play the role of a hacker and steal an access to log on to certain internet

application. Due to our study and success to break these CAPTCHA schemes, one can

improve these schemes to be more robust.

Our proposed detector is based on ECs rather than interest points. The search of

ECs is restricted only on edges rather than all the image space. It is defined as an edge

point where a change in the edge direction occurs. It is more robust than an interest

point since it is characterized by its angle and the length ratio of its two adjacent

segments. Therefore, the choice is on ECs since the edges are very fast to extract and

are less sensitive to noise.

2.3. Thesis outline

Chapter 3 presents the Interest point/Corner features background, edge detectors

background and an image registration background.

Chapter 4 presents our segmentation work starting by edge segments, to edge

corners (ECs), than dominant corners (DCs) with their invariant parameters.

Chapter 5 shows the experimental results on ECs and DCs. The ECs results are

compared to various existing interest point detectors. The DCs extraction which is the

result of a polygonal approximation method is compared to other polygonal

approximation techniques in the literature.

Chapter 6 presents our first application on image registration by showing the

repeatability of the dominant corners versus affine transformations, the primitive

construction, the primitive invariant parameters and the proposed voting scheme.

Chapter 7 presents our second application on character recognition by presenting

first overview on existing techniques, than explaining the suggested system used to

51

recognize the characters in a deformed word image, and finally presenting the

experimental results.

Chapter 8 presents the conclusion and future works.

52

 3

Background:

Interest Point Features

53

Interest points have been used in many computer vision tasks, such as image

registration [52], image matching [91], object recognition [92, 93] and motion

analysis [94]. Broadly speaking, there are two different interest point detection

strategies adopted in literature. The first [61, 62, 99-104] is based on the analysis of

pre-segmented contours and classified as edge corners detectors, while the second

[28, 107, 108] is based on the differential analysis of the raw gray-scale image and

classified as interest point detectors. Therefore, an interest point is a well defined

point in the image space and it is easy to detect and represents certain variation in

their local neighborhood.

Interest points in gray-scale images are characterized by using the first and

second derivatives of the image luminance function. Although this method does not

require pre-segmented image contours, it is sensitive to the noise amplification effects

of the second-derivative operators. An interest point detector can be classified as a

Template-based detector [97]. Template-based detector detects the similarity between

a given oriented template image and each image sub-window. The points that

correspond to maximum similarity are classified as interest points. Because multiple

orientation templates are used, the technique is computationally expensive.

So our features classification can be as follows:

 Intensity based interest point features or simply interest points.

 Edge based corners and Edge Dominant Corners (DCs).

Our contribution is on the second class of features. The major strength of our new

proposed features is in their robustness to noise and scale variation. They are based on

edges that are less sensitive to noise and don't require a large computation time.

However, existing interest point detectors are intensity based or region based. This

will make them more sensitive to the noise existing normally in real images.

Intensity based interest point features are compared to the newly suggested edge

based corner features so Section 3.1 provides a survey on various interest point

features overview. Section 3.2 presents first various edge corner detectors including a

survey on various edge detectors that form the basis of the suggested corner detector.

This section also presents various edge segmentation techniques based on polygonal

approximation that are compared to our polygonal approximation technique using the

edge dominant corners. Section 3.3 presents a survey on image registration techniques

54

that are compared to our image registration application using the edge dominant

corners. Section 3.4 presents our contribution.

3.1. Interest point features overview

3.1.1. Interest points are local image features

In general, a feature is considered as a "piece of information" extracted from an

image. The level of interest differ form one application to another. Extracted features

form an image form the starting point for high level algorithms such as recognition,

tracking … An important property of a good feature is its repeatability: it reflects the

ability of a feature extracted from an image to be extracted again in the same image

but under deformation like adding noise, affine transformations, illumination

variations and occlusion. A very large number of feature detectors have been

developed so far. These vary widely in the kinds of interest points detected, the

computational complexity and the repeatability.

Some algorithms search for global features, named "global features detectors",

that try to represent the whole image such shape contexts [63, 64] while others seek

for local features that represent interest features located in specific regions in the

image and they are named "local features detectors" or "interest point detectors".

Many techniques are classified under this category and each searches for different

features in the image. All of these interest point detectors are based on three different

bases: some are distribution based [65-73], others are differential based [74] and

others are spatial frequency like the ones that use gabor filters and wavelets [75-77].

The most famous distribution based techniques are appearance-based or model-based

local feature detectors. As an example, face recognition algorithms [203, 204, 205]

rely on special features in the human face that distinguishes it from other objects. So,

they try to extract eyes, mouth [78, 79] and nose [80] from an image or rely on skin

color [81].

Features are classified into three classes: Line features, region features and point

features. Edges [39, 135], contours [41] and level lines [33] form the line features

used to represent object contours, roads, coastal line, etc. Straight lines are very

important image features used in remote sensing applications to register city or roads

networks images. Regions [42, 201, 202] form the region features used to segment an

55

image into high contrast closed boundary regions that may represent particular

objects: Forests [129], lakes [130] and buildings [131] are formed. Interest points [43]

form the point features. These point features are image corners [28], line intersections,

centroids of regions, curvature extremes, and others.

Next, we will present various interest point detectors.

3.1.2. Moravec detector

Moravec corner detector [99] is one of the earliest corner detectors. To check the

presence of a corner at a given pixel C, a 3 x 3 window is placed at C and its four

direct neighbors: horizontal, vertical and two diagonals as shown in Figure 3.1.

Fig.3.1. Original and shifted windows around the tested pixel C. (a) Original window. (b) Windows

shifted horizontally and vertically. (c) Windows shifted diagonally [99].

The differences of the pixel intensities in the corresponding positions between the

original window and the four neighboring ones are calculated. For each neighbor, the

difference function is given by:

	� !� �"#	� $�� 	%	� � �& $ � !� � %	� $�� ' (3.1)

Where W(i,j) is one of four windows, f(x,y) is the image function and (u,v) are the

coordinates of the corresponding shift. Their values are:

56

 (1;0): for the horizontal shift.

 (0;1): for the vertical shift.

 (1;1): for the diagonal shift up-right.

 (-1;1): for the diagonal shift up-left.

A corner is detected at pixel C if the minimum of the four values of E(u,v) is

above a threshold value.

The major problem in Moravec detector is in the false detection of edge points as

interest points. Sometimes when the edge changes its direction, it will be chosen as

interest point. This weakness makes the Moravec detector not suitable for our robotic

applications where the stability of the detected corners is very essential.

3.1.3. Harris detector

Moravec corner detector constructs the starting point for Harris corner detector

[100]. Harris has entered several improvements to the Moravec detector to achieve

better performance in detection and better robustness to noise.

The first drawback in Moravec detector is its anisotropic response since a discrete

set of shifts at every 45o is considered (only four discrete shifts are considered at every

pixel). To overcome this fact, the shifts are considered in all directions as small shifts

in continuous form. The shifts u and v in the x and y directions are approximated by a

Taylor expansion up to O(x2;y2) as follows:

%	� � �& $ � !� (%	�& $� � % 	�& $�� � % 	�& $�� (3.2)

Where fx and fy are the partial derivatives of the image function f.

The difference function E becomes:

	 � ("#	� $�� 	% 	�& $�� � % 	�& $�� � ' (3.3)

In matrix form:

	 � (� �
) (3.4)

Where:

57

�"#	� $�� ' * % % %% % %
(3.5)

A is called the Harris matrix.

The second drawback in Moravec detector is its noisy response due to the usage

of a hard shaped rectangular window. The Euclidean distances from the center pixel

of the window to the edge pixels vary for different directions. This is easily resolved

by using a circular window. Being binary puts equal emphasis on all intensity

variation measures regardless of their distance from the center of the window.

Intuitively, more weight should be put on measurements made closer to the center of

the window like a Gaussian window:

#	� $� � ��	 ' �+
(3.6)

The third drawback of Moravec detector is its response to edges so an incorrect

detection of corners. In fact, any imperfections in an edge due to noise, pixilation, or

intensity quantization may lead to a local minimum intensity variation over all shift

directions that may lead to incorrect corner detection. Harris detector presents a way

to distinguish between edge response and corner response. The eigenvalues of the 2 x

2 matrix A in Eq. (3.5) reflect the presence of a corner or an edge point because they

represent the curvature at the tested point C.

 If the two eigenvalues are small, point C lies in a homogeneous region in

intensity.

 If one of them is small and the other is large, point C lies on an edge. Moving

along an edge has small intensity variation (small eigenvalue) while moving

across it the variation will be considerable (large eigenvalue).

 If both eigenvalues are large, the point C represents a corner point. High

curvature is present at this point.

Harris and Stephens have found a very big computation load while calculating the

eigenvalues of the matrix A. So, they replace this calculation by the function R:

� � �� 	
� � �, ���	
� (3.7)

58

Where k is a tunable parameter. R is positive on corner points, negative on edge

points and very small in flat region.

The Harris detector, discussed so far, is partially invariant to affine intensity

change and invariant to image rotation. However, it is not invariant to scale change.

Figure 3.2 shows the decreasing in the repeatability of the Harris corner points due to

the scale variation.

Therefore, the multi-scale Harris detector is introduced. Two Gaussian filters are

used. The first one of scale t, named local scale, is used as a first step of the detection

process to blur the image f and reduce the noise effect as shown in Eq. (3.8). The

other of scale s, named integration scale, is used to smooth the image at different

values of s in order to extract the corners at multi-scale space. L(x,y,t) is also called

the smoothed image of f(x,y).

	 � � %	 � � �	 � (3.8)

Where G(x,y,t) is 2D gaussian filter given by,

�	 � � ��- �� (3.9)

Fig.3.2. Performance degradation of Harris detector due to scale change [100].

The matrix A after integrated smoothing becomes the multi-scaled second

moment matrix μ:

59

	 /� � * � �	 /� (3.10)

� 0 0 * 	 � �& � 1& � 	 ��& � 1& � 	 � �& � 1& �	 � �& � 1& � 	 � �& � 1& � 	 � �& � 1& � � �	� 1 /�2�21��

Where Lx and Ly are the first order partial derivatives of the smoothed image L(x,y,t).

The same Harris function R, named now as multi scale Harris corner measure Mc, can

be used here in multi scale to judge the presence of a corner:

	 /� � �� - 	 /� � �� ���- 	 /� (3.11)

The Harris detector presents an important improvement for Moravec detector but

it is not very robust to noise considering real images that are used in our robotic

applications. Comparative results are presented in Chapter 5.

3.1.4. Shi-Tomasi corner detector

The concept of this method [101, 102] is similar to Harris detector. Harris method

relies on the matrix A that represents a local autocorrelation function while Shi-

Tomasi or Tomasi-Kanade method relies on the inverse of matrix A.

�� � % � % � % % * % � % %� % % %
(3.12)

At the tested point, if the minimum of the two eigenvalues of A-1 is above a

threshold value than a corner is detected. Figure 3.3 shows the detected corners by

Shi-Tomasi detector on a given image.

Fig.3.3. Corner points detected by Shi-Tomasi detector [101].

60

This detector is based on the Harris detector. However, it presents one slight

variation in the selection criteria. It works quite well where even the Harris corner

detector fails. However, it still suffers when it is applied to real images.

3.1.5. Level curve curvature approach

The Level curve curvature [61,62] is an approach to detect corner points where the

curvature of level curves on the edge is very high. The rescaled level curve curvature 	 � is a product between the gradient magnitude operator raised to the power three

and the level curvature operator,

	 � � � � � (3.13)

Where Lxy, Lxx and Lyy are the second order partial derivatives of the smoothed image

L(x,y,t).

In scale space, while moving from finer to coarse level which means from low to

large smooth levels, the maxima of any function detected in the image space will

decrease but remains maxima and also for the minima they will increase but

remaining minima [4, 5]. Due to this fact, the corner detection depends on the selected

scale and also is very sensitive to noise. A good solution is to normalize the function

K using γ-normalization, 	3 4� � 4 _	35 366 � 36 355 � 3536356� (3.14)

	 & & � � � �7� � ���	 �	 	 �� (3.15)

Where γ = 7/8.

So extrema 	 & & � of the obtained operator, shown in Eq. (3.15), are points

having high gradient norms and also high curvature of level curves. These points 	 & � are corner points that can be used as descriptors locations.

This detector introduces a third dimension "scale space" for selection the interest

points. Therefore, the detected points will be nearly invariant over scale but their

detection is very time consuming especially in robotic applications where a fast

decision is required.

61

3.1.6. SUSAN detector

SUSAN stands for "Smallest Univalue Segment Assimilating Nucleus" [103]. The

essential use of this detector is as a corner detector but it also can be used as an edge

detector. The idea is to use the pixel brightness at a tested point and compare it to

neighboring pixels to detect the interest point. To achieve that, a circular mask is

placed at the tested point called "nucleus" and all the points within the mask are the

neighboring points. The area of the neighboring points that have brightness similar to

the one of the nucleus is the area of importance. This area is known as USAN. In

addition, an important achievement in this approach is that it doesn't require any

derivative calculation on the image function which reduces the noise effect and also it

does not require prior noise reduction.

Fig.3.4. Circular masks applied in different nucleus positions in an image of a dark rectangle lying in a

white background [103].

Fig.3.5. Corresponding USANs shown as white parts within the masks [103].

62

Figures 3.4 and 3.5 give a general explanation of this method. In the first figure,

five different masks are taken in different regions of the figure. In the second one, the

USAN area is represented by the white part inside the mask. It is clear that the USAN

area is at a maximum if the nucleus of the mask lies on a homogenous region in

brightness, while it falls to the half on an edge nucleus and also it falls more on a

corner nucleus. As a result, when the nucleus of the mask moves from a flat region in

brightness to an edge region, USAN attains a minimum value while it falls more when

it attains a corner point. Thus, the notation smallest USAN (SUSAN) arises.

The used circular mask has a radius of 37 pixels. This mask is placed at every

pixel (nucleus) in an input image and the brightness in all pixels in the mask is

compared to the one in the nucleus as stated before. To give a similarity decision, a

comparison function C is used,

�	 � � 8 �%�99%	 � � %	 �:99 ; �%�99%	 � � %	 �99 <
(3.16)

Where � represents the position of any pixel in the mask ��2� represents the

position of the nucleus and t is a threshold on the difference of brightness. The

performance of this detector is independent on any fine-tuning on the value of the

parameter t.

The comparison values taken at all neighboring pixels are summed to form a

decision represented by function n,

�	 � � "�	 � (3.17)

Actually n represents the number of neighboring pixels that have brightness similar to

the nucleus's brightness.

The SUSAN can be used as an edge finder and the decision is taken by comparing

n to another threshold g, named geometric threshold, set to be equal 3/4 the number of

pixels in the mask. In addition, an edge response function R is formed,

�	 � � 8� � �	 � �%��	 � = �� �������������������� �� �/�
(3.18)

63

Note that R attains a maximum if n has a minimum value which leads to conclude that

the nucleus corresponding to is an edge point.

Instead of using the comparison function C shown in Eq. (3.16) that leads to

sharp results (0 or 1), a more stable function can be used,

�	 � � ��	>	 ��>	 ��

(3.19)

The SUSAN can be used also as a corner finder which is very similar to the

SUSAN edge finder. The tuning of the parameters t and g is more important. The

choice of a value of g affects the quality of the corners detected and also affects their

number. For example, a low value of g will lead to sharper detected corners therefore

a small number of them. However, this threshold value can be fixed in the algorithm

and won't need any further tuning. In other hand, the value of the threshold t won't

affect the quality of the outputs rather than their number since t reflects the allowed

amount in change of brightness in the mask. If a value of t used is increased, the

USAN areas will increase in the masks so the number of detected corners will

decrease. Therefore, the value of this parameter can be used to control the quantity of

the outputs rather than their quality.

The corner finder algorithm can be summarized as follows:

1. Place a circular mask at all the points in an input image.

2. Calculate the comparison value at every pixel in the mask using Eq. (3.19).

3. Calculate the number of those pixels that are very similar in brightness to the

nucleus using Eq. (3.17).

4. Use Eq. (3.18) with smaller value of g than the value used in edge finder case

to detect maxima that correspond to corners.

5. Eliminate the false positive detected corners by finding the center of gravity of

the USAN area in the mask and measuring the distance between it and the

nucleus. When the distance is very small, the detected corner is false reported

and should be rejected. Next, this statement is clarified.

The center of gravity of the USAN region in the mask is shown as follows:

64

� ? ��	 �? �	 �
(3.20)

Consider next Figure 3.6 that shows a simple portion of an image and three tested

points (a), (b) and (c) in it. The first two points are on the edge and lie on one side or

another of the edge, the third point (c) is also on the edge but lie in a region of

brightness half a way between the 2 main regions that form the edge. USANs and

their center of gravity of the three cases are shown to the right using a small 3 x 3

mask. Notice that for the case (c) the center of gravity and the nucleus are

confounded. This case can report a corner presence since the number of pixels similar

in brightness to it is small. So, this false detection can be corrected by taking the

distance between the center of gravity and the nucleus. If it is large enough, the

detected corner is a true corner else the detected corner is false and should be rejected.

Results of the SUSAN corner finder applied to a real image are shown in

Figure 3.7.

Fig.3.6. Center of gravities of USANs at different nucleuses in a portion of an image [103].

65

Fig.3.7. SUSAN corner finder applied to a video captured image with t = 25 [103].

This detector is very fast and can be well used in real time robotic applications.

However, it is related to a threshold value used to classify an image pixel as a corner

or an edge point. Therefore, its efficiency will decrease when it is applied to real

images as it is shown in chapter 5.

3.1.7. Harris-Laplace Detector

This method [104, 105] represents first the image in scale space by convolving it

with a Gaussian filter with variable scale t. It uses different functions based on the

first and second derivatives of the smoothed image like laplacian or gradient or

difference of Gaussian … and search for local extrema over image space and scale

space. These extrema represent the interest points locations in space and scale. The

characteristic scale at an interest point is the scale for which the extrema is detected

over scale. This is a very important parameter in matching two images because it

reveals the scale factor between two images. Consider two images one is a scaled

version of the other by a scale t, if the characteristic scale of an interest point in the

original image is a and the one of the corresponding interest point in the scaled image

is b then (. Figure 3.8 explains this fact using two images; one is a scaled

version of the other by a scale factor of 2.5. It is shown that the corresponding

66

characteristic scales 10.1 and 3.89 using a function F used to build the scale space

have a ratio very close to 2.5.

Fig.3.8. Characteristic scale in scale space [105].

Existing feature detecting discussed so far rely on one operator applied to the

image f(x,y) in order to detect interest points. These points correspond to the extrema

over image spatial and scale domains. This operator could be the Laplacian of

Gaussian, Difference of Gaussian, gradient, Harris, etc. Harris-Laplacian technique

uses the combination of two operators to detect these points: Harris and Laplacian of

Gaussian operators.

Harris operator imposes itself one of the most powerful corner detectors.

Table 3.1: Experimental results of various interest points detectors [105].

Experimental results in Table 3.1 show the success of the Laplacian operator over

other operators in detecting interest points taking as parameter the correctness of the

detected in the same image over scales. Row 2 shows the percentage of detected

points over scales with a characteristic scale. Row 3 shows the correct detected points;

a point is detected correctly if the ratio between its characteristic scale at the current

67

scale si and its one at previous scale sj is equal to ratio of these scales si and sj as

discussed previously. Row4 shows the total correct percentage. Therefore, the idea

arises to use first Harris corner detector to find interest points over image domain that

correspond to the maxima of the multi-scale Harris corner measure 	 /�,
	 @ � � � �7� � ���	 � 	 /� (3.21)

Then the scale normalized Laplacian operator A is used to detect among these

interest points those who correspond to maxima in scale domain. The characteristic

scale is given by:

� � �7� 7�� A 	 @ � (3.22)

The descriptors are Gaussian derivatives which are computed at the characteristic

scale using up to 4th order derivatives. Invariance to rotation is obtained by “steering”

the derivatives in the direction of the gradient. To obtain a stable estimation of the

gradient direction, the peak in a histogram of local gradient orientations is used.

Invariance to the affine intensity changes is obtained by dividing the derivatives by

the steered first derivative.

Matching interest points in two images is done by comparing their descriptors

using Mahalanobis distance [106]. Figure 3.9 shows the corresponding interest points

in two images one of them is a scaled image of the other by a scale of 1.92. Thus, the

correspondence is found at corresponding smoothing scale s.

Fig.3.9. Points detected on different smoothing levels [105].

68

Figure 3.10 shows the repeatability of the Harris-Laplacian detector compared to

other detectors.

Fig.3.10. Repeatability over scale as performance evaluation.

Results provided here show the quality of this technique. The repeatability is very

high not only over scale change but also with respect to change in viewpoint as shown

in Figures 3.11 and 3.12. In Figure 3.11, there are 180 and 176 detected points

detected in the left and right images. The number of initial matches is 23 and there are

14 inliers. In Figure 3.12, there are 34 inliers using scale and affine regions.

Fig.3.11 Points detected in two images with different viewpoint and scale change of 2.7 [105].

69

Fig.3.12. Points detected with their characteristic scales in two images with viewpoint change of

30o and scale change of 1.8 [106].

This detector introduces the scale space representation of an image which makes

him very slow for robotic applications as shown in chapter 5.

3.1.8. Scale Invariant Feature Detector (SIFT)

The SIFT feature points, introduced by D. Lowe [82], and their descriptors are

shown to be repeatable versus image scaling, rotation and partially invariant to change

in illumination [82] and 3D camera viewpoint [83]. In addition, they are well

localized in both the spatial and frequency domains, reducing the probability of

disruption by occlusion [63], clutter, or noise. Also, these features are highly

distinctive, which allows a single feature to be correctly matched with high

probability against a large database of features, providing a basis for object and scene

recognition.

The output of the SIFT algorithm is taken by a cascade filtering approach. This

cascade is constructed form four essential steps [63]: scale space ectrema detection,

keypoint localization, orientation assignment and keypoint description.

SIFT searches for features that are in variant especially to scale. In order to

achieve that, the image function is taken into various scales and the search is

restricted on features that are stable. In scale space, the two dimensional image

function is convolved with Gaussian smoothing filter with different smoothing level.

Extrema of the image, that can be used as interest points, can be detected using the

laplacian of Gaussian (�	 �) operator [57, 58].

70

�	 � � � 	 � � � 	 � � � �� � �� ��
� � �

(3.23)

Where Gxx(x,y,t) and Gyy(x,y,t) are the second order partial derivative of the Gaussian

filter G(x,y,t).

However, Lowe has introduced the difference of Gaussian (DoG) operator as an

approximation of the LoG operator as derived in Eqs. (3.24) and (3.25).

�	 � � 	 � � � 	 � (3.24)

�	 � � %	 � � �	 � � � %	 � � �	 �
� %	 � � 	�	 � � � �	 ��

(3.25)

Where L(x,y,t) is the smoothed image with level B and D(x,y,t) is the difference of

two smoothed images: one of them with level B� and the other with level B .

The derivation of the DoG from LoG is extracted from the diffusion equation,

A � � C�C (�	 � � � �	 �� �
(3.26)

�	 � � � �	 � (� � �A � (3.27)

Since t2 is the scale normalization required for the scale invariant laplacian and

(k-1) is a constant factor over all scales, the DoG is approximated to LoG. The

practical calculation of DoG is shown in Figure 3.13. The scales are grouped per

octave (each octave is a semi-open interval of scales from the starting scale to its

double). Then, the difference between two successive smoothed images is taken.

71

Fig.3.13. DoG calculation [63].

The goal of any feature detector is to select special features over scale. The SIFT

features are the points in the image space that correspond to an extrema of the DOG

over scales. Lowe detects an extremum by comparing current pixel intensity to its 8

neighbors in the same scale and then comparing it to the nine corresponding

neighbors in the previous and next DOG image as illustrated in Figure 3.14.

Fig.3.14. Detecting an extremum by comparing it to its 26 neighbors [63].

Two major problems appear for extrema detection. The first one is the sampling

frequency in scale domain which mean the optimal number of scales selected per

octave. It was shown experimentally [63] that three samples per octave is the optimal

solution. The second one is the sampling frequency in the image domain. Here, the

72

first scaled image in the octave is pre-smoothed by a scale t=1.6. It is shown [63] that

this smoothing level offers experimentally maximum repeatability of the points in the

image after some transformations. Then the pre-smoothed image can be expanded in

size using linear interpolation to make full use of the input image and to discard high

frequency components relative usually to noise.

After detecting the DOG extrema, accurate localization is initiated. This is done

by using taylor expansion up to quadtratic terms on the scale space DOG function

D(x, y, t). In addition, this step tests the stability of the detected extrema. A point is

judged as stable if it has a strong contrast in its region that means it will be more

robust to noise than other points. Thus, many extrema that are unstable are removed

and won't be considered as interest points. Also, edge extrema are discarded since

they are also vulnerable to noise.

At every detected interest point in the smoothed image L(x,y,t), the gradient

vector is calculated at the scale level as follows:

9A 	 �9 � D	 	 � � � 	 � �� � 	 	 � � � 	 � �� (3.28)

AE	 � � ����	 	 � � � 	 � �	 � � � 	 � �� (3.29)

A descriptor vector is formed at every interest point. It is highly distinctive and

partially invariant to the variations such as illumination, 3D viewpoint, etc. In order to

achieve orientation invariance, the coordinates of the descriptor and the gradient

orientations are rotated relative to the keypoint orientation. To form this vector, first a

set of orientation histograms are created on 4x4 pixel neighborhoods with 8 bins each.

These histograms are computed from magnitude and orientation values of samples in

a 16 x 16 region around the keypoint such that each histogram contains samples from

a 4 x 4 subregion of the original neighborhood region. The magnitudes are further

weighted by a Gaussian function with σ equal to one half the width of the descriptor

window. The descriptor then becomes a vector of all the values of these histograms.

Since there are 4 x 4 = 16 histograms each with 8 bins, the vector has 128 elements.

This vector is then normalized to unit length in order to enhance invariance to affine

changes in illumination. To reduce the effects of non-linear illumination, a threshold

of 0.2 is applied and the vector is again normalized. Figure 3.15 gives a simple

example on the calculation of the descriptor vector. Instead of 16 x 16 region, an 8 x 8

73

region is used. So, the descriptor will be 2 x 2 and its size will be 2x2x8=32 as shown

in the right figure.

Fig.3.15. A simple 2 x 2 SIFT descriptor [63].

Figure 3.16 shows the extraction of SIFT points on four different object images.

The two left columns images contains two different viewpoint of the object while the

right column images show the extracted feature points.

Fig.3.16. Kepoints detection [63].

A practical example for object recognition using SIFT operator is shown in

Figure 3.17. The top image is the input image where the desired objects to detect are

the four objects represented in Figure 3.16.

74

Fig.3.17. Object recognition using SIFT keypoints [63].

This SIFT points as presented are invariant over scale. However, they are not very

robust to noise existing in real images as shown in chapter 5.

3.1.9. PCA-SIFT

This technique [84] is inspired by the SIFT operator and its main goal is to

minimize the dimensionality of the SIFT keypoint features vector. It runs the first

three steps of the SIFT on an input image (scale space extrema detection, keypoint

localization and orientation assignment). Then it places a 41 x 41 patch centered at the

keypoint to form the feature descriptor vector. The group of the high dimensional

features vectors extracted from the patches of the input image form the input to the

PCA (Principle Component Analysis [85]) algorithm. PCA outputs low dimensional

75

vectors approximately orthogonal that construct a basis to represent the high

dimensional feature vectors. These feature vectors are projected onto the basis. Then

their coordinated are extracted and used as descriptors for matching. PCA extracts this

low dimensional basis by calculating the eigenvectors and eigenvalues of the

covariance matrix constructed by the high dimensional vectors. The eigenvectors that

represent 90%, for example, of the total energy are only selected to form the basis.

Hence, the reduction in dimensionality is achieved sine the number of these

eigenvectors is less than the number of initial features vectors. Thus, the time

reduction of PCA-SIFT with respect to SIFT is due to the reduction in the size of the

feature descriptor vector after projection onto the PCA basis. So, matching process

time is reduced due to this reduction in dimensionality. Another important

achievement in PCA-SIFT is that the eigenvectors are quasi orthogonal and this will

force the features vectors (used by SIFT) to be more distinctive after projection onto

the basis of eigenvectors (used by PCA-SIFT) and this fact will lead to a better

performance in matching these vectors.

This detector presents a way to reduce the computation time of SIFT descriptors

and also makes them more distinctive. However, the problem of the false detection in

real images due to noise is still the same.

3.1.10. Speeded Up Robust Feature Detector (SURF)

The SURF operator [62, 87] is based on the Hessian matrix. It is partly inspired by

the SIFT descriptor but it is several times faster and also, as claimed by the authors,

more robust against different image transformations than SIFT.

Hessian matrix is a square matrix of the second order partial derivative of a

smoothed image function L(x,y,t) [59],

	 � � * 	 � 	 �	 � 	 �
(3.30)

It is used as a measure of curvature of L where its responses at specific points

reflect the presence of local extrema or saddle points. In addition, the Determinant of

Hessian operator "DoH" can be used as an affine covariant blob detector that responds

to saddles at its maxima and minima [3]. The scale normalized determinant of

hessian, referred also as Monge-Ampere operator [60], is given by:

76

2� � 	 � � (3.31)

	 & & � � � �7� � ���	 �	2� 	 �� (3.32)

The points 	 & � are the feature points detected by the Determinant of Hessian

(DoH). These points correspond to a high curvature of the image intensities and are

nearly invariant to affine transformations [3]. In terms of scale selection, blobs

defined from scale-space extrema of the determinant of the Hessian (DoH) also have

slightly better scale selection properties under non-Euclidean affine transformations

than the more commonly used Laplacian operator [3].

SURF relies on the determinant of the Hessian matrix but uses an approximation

of its Laplacian partial derivatives since their Gaussian filters are not ideal in any

case. Thus, second derivative Gaussian filters are approximated by box filters and are

evaluated very fast using integral images. Also, the performance using these box

filters is comparable to the methods that use cropped Gaussian filters.

Fig.3.18. Partial second order derivatives of Gaussian filters and Box filters. First 2 images represent

the Gaussian filters in the y and xy direction. The last 2 represent their approximated box filters [87].

Figure 3.18 represents the second derivative Gaussian filters Lyy and Lxy and their

approximates 9 x 9 box filters Dyy and Dxy. As a result the determinant of Hessian

matrix can be approximated as follows:

FG4�	 � � - (� � – 	 �H� � (3.33)

The maxima of the determinant of Hessian reveal the locations of keypoints that

are invariant in scale space. This process starts by smoothing the image using

Gaussian kernel at different scale and when moving from a scale level to another the

image is sub-sampled. In SURF, instead of sub-sampling the image, the box filters

mask is up-scaled in size in the new scale level and the image size is unchanged. The

following filter masks are used: 9 x 9, 15 x 15, 21 x 21 and 27 x 27. At larger scales,

the change in the mask size should be doubled when going from an octave to another

77

in scale. So, the change in size rate will increase from 6 to 12 to 24 … Then the

maxima locations are interpolated using the same method discussed in SIFT [89]. The

need for this interpolation is due to the fact that the difference in scale between the

first layers in every octave is relatively large.

To form the SURF descriptors, Haar-wavelets [90] responses are calculated in x

and y direction in a circular neighborhood of radius 6t around the interest point where

t the scale at which the interest point was detected. In fact, the size of the wavelet

depends on the scale t and its length is 4t. Therefore for large scales the size of the

wavelets filters is big. Only six operations are needed to compute the response in x or

y direction at any scale. After calculating the wavelet response, the region centered at

the interest point is weighted with a Gaussian (circle with a radius 2.5t) to reduce the

effect of abrupt changes in pixel values. In this region, the responses at various pixels

are represented by 2D vectors with horizontal and vertical components and these

vectors are summed within a sliding orientation window covering an angle of 60o.

Dominant vector, which corresponds to the greatest magnitude, are the only one

considered and the others are rejected. The size of the sliding window is a parameter

derived experimentally. Figure 3.19 shows the SURF interest points on an image,

Haar wavelets and the descriptors windows.

Fig.3.19. SURF Interest points. (a) represents the detected interest points-center of the surrounding

circles with radius equal to the corresponding scale. (b) Haar wavelets. (c) Descriptor windows

centered at the interest points and rotated according to the dominant vector in it [87].

The first step in the descriptor's construction is constructing a square region

centered around the interest point, oriented along the dominant vector and having a

size of 20t. This square window is divided into square sub-regions of 4 x 4 in size

with 5 x 5 regularly spaced sample points inside. Then, the Haar wavelet responses

78

are calculated horizontally dx and vertically dy at each pixel taken with respect to the

dominant vector orientation in the square window. The responses are summed in

algebraic and absolute values ?2 �? 2 ? 92 9 �? 92 9 in the corresponding

locations in the 4 x 4 sub-regions to form a feature vector of 4x4x4=64 dimensions.

The absolute values are taken into consideration to extract the information about the

polarity of the intensity changes. In addition, to make the descriptor invariant to

contrast, the vector is normalized to a unit length vector.

Compared to SIFT, SURF is much faster (approximately by 3 times) but it is not

robust to illumination variation and viewpoint change as well as SIFT. Therefore, it is

also not very robust to noise in real images.

3.1.11. Gradient Location Orientation Histogram (GLOH)

Gradient location-orientation histogram (GLOH) [86] is an extension of the SIFT

descriptor. It extracts more detailed information about the SIFT descriptor to increase

its robustness and distinctiveness. A log-polar histogram centered at the descriptor

keypoint is formed and corresponding gradient vectors vote for their bins. It is

composed from three bins in radial direction (the radius is set to 6, 11, and 15) and

eight in angular direction. The gradient orientations are quantized in 16 bins. This

gives a 272 bin histogram. The size of this descriptor is reduced with PCA. The

covariance matrix for PCA is estimated and the 128 largest eigenvectors are used for

description similar to PCA-SIFT.

3.2. Edge based corner detectors

In contrast to intensity based interest points, edge corners are edge points that

correspond to a deviation in the edge direction. Firstly, the image is pre-segmented

into contours: contours in the image are extracted and chain coded. Then, algorithms

are developed to detect corners along these contours. According to the contour-based

approach, corners are defined as the intersection points or junction points between

straight edge segments. The chain codes can be used in corner detection [95, 96].

However, the main difficulty in contour based corners is the ability to extract reliable

image segmentation in the edge detector.

Gradient-based detector [61, 98] is an example of edge corner detector. It relies

on measuring the curvature of an edge that passes through a neighborhood. The

79

strength of the corner response depends on both the edge strength and the rate of

change of edge direction.

3.2.1. The basis of edge corner detectors: edge detectors

Most edge detections are performed in four steps shown in Figure 3.20:

 Gradient computation, in norm (magnitude of the edge) and direction (at π

/ 2 of the edge direction) using classical operators [20-22,25,110-113].

 Threshold on gradient norm to extract initial edge points. Every image

pixel having a gradient vector norm greater than a given threshold is

classified as an edge pixel.

 Thinning the edge is the process of making the edges of thickness equal to

one pixel width [17, 182, 183]: a pixel is classified as an edge point if its

gradient norm is superior to the gradient norm of its two neighboring

pixels in the direction of the gradient [11].

 Linking the edge points to form the image contours [17, 184]. After

detecting all edge pixels, every edge pixel is linked to its neighboring one

if it exists. If it does not exist, prolongation/closing starts and tries to link

the edge pixel to its nearest one.

A lot of effort was done in [11] to gather the edge detection steps to reduce the

number of image scans which are very time consuming. It is possible to gather the

gradient vector computation step with the thresholding step because this last step

requires only the knowledge of the current pixel. With slight modification to the

thinning procedure, the thinning step can be also gathered with them. The new

principle is the following: a pixel is kept as an edge point if its gradient norm is

superior to the gradient norm of its past neighboring pixel in the direction of the

gradient. The second gathering gathers the linking and closing steps. The principle is

as follows: at an edge pixel, if an unlinked neighboring edge pixel exists than the

linking procedure is initialized otherwise the closing step is initialized.

3.2.1.1. Gradient computation

Most edge detectors are based in some way on measuring the intensity gradient at a

point in the image. The gradient operator [56] is characterized by its norm and its

direction. At a tested pixel, the gradient norm gives the amount of intensity difference

80

between the current pixel and its direct neighboring ones. Therefore, this difference

reflects the strength of the edge (greater difference implies stronger edge). In other

hand, the gradient direction gives the direction of the greatest change which is normal

to the edge direction as shown in Figure 3.21.

Fig.3.20. Edge detection steps [11].

Fig.3.21. Gradient direction is normal to edge direction.

As an example on the gradient magnitude, Figure 3.22 shows the horizontal

gradient, as the first derivative, peaks that correspond to the edge between two regions

of intensities in the top row image. Figure 3.23 shows three edge images,

81

corresponding to three different values of th, of a face image. Figure 3.23 (b)

corresponds to a low threshold, Figure 3.23 (c) corresponds to a medium threshold

and Figure 3.23 (d) corresponds to a high threshold. Here, we should note that the

choice of the threshold is very important. A very low threshold can introduce a lot of

unwanted edges whereas a big threshold will keep only very strong edges so it can

neglect some informative edges.

Fig.3.22. Peaks of the gradient norm corresponds to the edge.

Fig.3.23. (a) Original image. (b), (c) and (d) Corresponding edge images.

82

Mathematically, the image can be seen as a function f(x,y) of two variables x and

y, and the local gradient A at every point in the image is given by,

A% � I%% � JKK
LM%MM%M

(3.34)

The magnitude and the argument of this vector represent respectively the

amplitude and orientation of the contour in the image,

� �2-%	 � � NM%	 �M � M%	 �M

 �	� �2-%	 � � ����	M%	 �MM%	 �M �

(3.35)

In image processing, due to large computation time required for calculating the

gradient magnitude and argument, the continuous gradient function is approximated

by discrete masks. The search for edge points starts by placing this mask at every

pixel and calculates the intensity difference in more than one direction. Every pixel

having a gradient norm greater than a given threshold th is classified as an edge pixel.

Many operators have been suggested so far for gradient vector computation.

Robert operator [110] was introduced first in 1965. It uses a 2x2 mask. The results are

very sensitive to noise and not suitable for our case. Prewitt [112] (1970), Kirsch [18]

(1971) and Sobel [20,111] (1978) operators have used 3x3 masks (filters with finite

impulse responses). The results are correct and fast enough for robotic applications.

Therefore, these operators are our target operators. Then we have Canny [113] (1986),

Deriche [21, 195] (1987) and Shen-Castan [22] (1992) operators using recursive

filters with infinite impulse responses. The results are much better than the previous

ones but they require huge computation time relative to our suggested applications.

3.2.1.2. Comparative results

Each of the presented edge operators has its own characteristics. The selection of

an operator depends on the desired application. Some applications like medical

imaging requires excellent edge detection which is time consuming whereas other

applications like mobile robot requires real time vision algorithms and don't require

83

perfect edge detection. Therefore, we can classify the presented edge detectors into

two classes:

 Classical operators: Roberts, Kirsch, Prewitt and Sobel operators.

 Gaussian operators: Canny, Deriche and Shen-Castan.

For the classical operators desired in our application, the edge detection is simple,

very fast and the edges are detected with their orientations. However, these operators

are very sensitive to noise. For the Gaussian operators, they are more complex, more

time consuming. However, they are more robust to noise and provide better, accurate,

and well localized edges.

Figure 3.24 shows Gradient norm images of the Robert, Sobel and Prewitt

operators.

Fig.3.24. Gradient magnitude images of various operators.

Figure 3.25 shows the difference in accuracy in the presence of noise between the

outputs of two classical operators (Robert and Sobel in Figures 3.25 (b) and (c)

respectively) and the output of a Gaussian operator (Canny in Figure 3.25 (d)).

84

Fig.3.25. Edge detection on a noisy image. (a) original image with noise. (b) output of Sobel

operator. (c) output of Robert operator. (d) output of Canny operator [175].

3.2.2. Edge segmentation: Polygonal Approximation

After edge detection, edge segmentation is a crucial step to detect edge corners.

An edge corner can be defined as an intersection of two non collinear edge segments.

In addition on a given contour, some edge corners that have greatest interest are

selected to form the vertices of a polygon approximating the contour. This is known

as polygonal approximation. Therefore, a survey of various polygonal approximation

methods using corners (a survey can be found in [116]) is provided in this section.

The polygonal approximation problem is defined by Kolesnikov [24, 121-123] as

follows: an open N-vertex polygonal curve P in 2-dimensional space is represented as

the ordered set P of vertices. The output coarser curve Q consists of M vertices that

from a subset of P and M<N. The end points of Q are the end points of P.

In Figure 3.26, Assume that we try to approximate a polygon's part starting at

point Pi(xi,yi) and ending at point Pj(xj,yj) by a straight segment [PiPj].

Fig.3.26. Approximating a polygon.

85

The distance dk between a vertex Pk and the approximation segment can be expressed

as follows:

2O � O � � ' O � 1 'D � � '
(3.36)

Where the coefficient aij and bij are the coefficients of the straight line (PiPj):

� ' � ' �' �

1 ' � � �

(3.37)

According to this distance, two approximation errors are introduced. The first one is

the sum of all distances between the polygon vertices and the approximating line

(PiPj):

�� � " 2O'��
O �

(3.38)

The second one is the maximal distance between the vertices and the approximating

line:

� � PQR	2O� � = � = $ (3.39)

After extracting the image corners based on straight edges of a shape, we have

developed the "polygonal approximation" technique that consists of selecting a

number of well chosen corners to construct the polygon that best approximates the

contour of that shape. Polygonal approximation is widely used in object recognition

[29] because it smoothes the contour of the objects in the images without loss of

critical information.

Pavlidis in [117] presents an algorithm, known as split and merge technique. It

divides an edge into a set of segments that has each one a maximal distance to the

edge less than a given threshold d as shown in Figure 3.27.

86

Fig.3.27. Polygonal Approximation.

The parameter used in this technique is the maximal distance dmax between the

segment and the edge as described in Figure 3.28. If dmax is greater than the threshold

d, the segment [AB] is divided into two segments; [AM] and [MB] where M is the

edge point corresponding to dmax.

Fig.3.28. Segment division according to maximal distance.

Wall and Danielsson in [118] presented another algorithm that tries to find the

segment [AB] shown in Figure 3.28 by moving its endpoint B starting from the edge

point A along the edge until a certain criterion is no longer verified. The criterion used

here is the maximal area per unit of length of the deviation between the edge and the

corresponding approximated segment that should be less than a given threshold.

Pavilidis and Wall-Danielsson techniques use two different mathematical

approximation errors to select the endpoints of the segments approximating the edge.

However, our corner detector tests directly the edge to select the edge corners. The

major improvement is in the good selection of these corners and especially in the

detection of Complete Corners located sometimes outside the edge as shown in

Chapter 4.

Another technique for obtaining a polygonal approximation of an object's contour

based on an updated Hough Transform is presented in [119]. On the other hand, the

87

method in [120] is dedicated for the polyline representation of a scanned text or

graphic objects.

Pinheiro in [124] searched for edge points, called curvature extremes, that

correspond to a change in the direction of the curve (edge) using a curvature function

which form the polygon vertices. These extremes are selected at different scale level

of the smoothed image since when the scale level increases, the edge details become

smoother and the number of extremes will be reduced.

Parverz and Mahmoud in [125] searched for cut-points on the contour of the

studied shape. These points correspond to a deviation in the contour direction. Then

the algorithm tries to minimize the number of detected cut-points until a terminating

condition is satisfied. The final approximated polygon will have these cut points as

extremes.

In [126], the authors presented a technique based on detecting dominant points on

the contour and then iteratively suppressing the redundant ones in order to obtain the

best approximated polygon with the minimal number of segments.

The algorithm of Masood in [127] also detects first dominant points called break

points. Given the contour presented by linked edge points, every edge point

presenting a deviation in the edge direction is classified as a break point as shown in

Figure 3.29.

Fig.3.29. Masood break points.

The edge directions are coded using Freeman codes [96]. For every sequence of

three break points Pk-1(xk-1, yk-1), Pk(xk, yk) and Pk+1(xk+1, yk+1), draw the perpendicular

line from Pk to the line (Pk-1Pk+1). This perpendicular squared distance shown in Eq

88

(3.40) and drawn in Figure 3.30, called Associated Error Value (AEV), is the measure

used to reflect the strength of a break point.

		 O � O���	 O � � O��� � 	 O � O���	 O � � O����	 O�� � O �� � 	 O�� � O ��
(3.40)

Fig. 3.30. AEV calculation at a vertex Pk.

The algorithm compares the AEV sequence and identifies the least AEV's breakpoint

to be deleted. This is an iteration process that eliminates some break points until a

compression ratio or a maximal error is reached. The resulting Integral Square Error

(ISE) is the sum of the remaining AEVs. In addition, after eliminating a dominant

corner, a stabilization algorithm is initiated. It compares the current ISE to its

predecessor and successor values and relocates the break point to obtain smaller ISE.

Finally, Marji and Siy in [128] presented a very similar technique to Masood's

technique but it differs by the measure of error of each dominant point. Here, a

dominant point is characterized especially by its strength that means its non

collinearity with respect to its direct neighbors.

Masood and Marji-Siy methods are the two methods from the state of the art that

are very close to our polygonal approximation technique based on DCs. The

comparative results are shown in Chapter 5. Two essential points make our technique

very competitive compared to existing ones. The first one is the reselection of already

suppressed points (DCs). The second is the detection of Complete Corners outside the

edges as explained in Chapter 4.

3.2.3. Existing edge corner detector: Corner detection using difference chain

code as curvature

This corner detector [107] detects corners located on edge corners. By definition,

an edge corner is an edge point where the curvature is high.

89

The corner detection algorithm is composed from several steps:

 Edge thinning: the authors have developed their own thinning algorithm

applied on the image edges to obtain compact edges of thickness equal to

one pixel. They have used mathematical morphology for this purpose.

 Coding the edge slope at every edge point: the chain code of an edge can

have a value from 0, 1, 2, 3, 4, 5, 6, 7 in anti-clockwise direction (Freeman

codes [96]), where 0 means moving one unit in x direction making angle

0o with the x axis, code 1 represents 45o from the x axis and so on.

Therefore, the chain code thus codes the slope of the curve.

 Boundary smoothing: this step aligns the stray edge pixels along the

dominant slope of the line and removes all spurious codes on that line.

Figure 3.31 shows the result of the smoothing step.

Fig.3.31. (a) Various erroneous stray pixels cases. (b) Results after smoothing [107].

 Avoiding false corners and detecting true corners: a corner is an edge

point where a change in the edge direction occurs. Not all changes in the

edge direction correspond to true corners. Thus, a true corner is an

intersection of two lines of an appropriate length. If the length of one of

these two lines is below a threshold, a corner is classified as a false corner

as shown in Figure 3.32.

90

Fig. 3.32. True and False corners detection on an edge.

Figure 3.33 shows the comparative results with Harris detector [100] and He-

Yang detector [109].

Fig.3.33. Test image with regular curvature change [107].

The detector is also tested on the same image in the presence of noise like

Gaussian, Poisson, Speckle and Salt-Pepper. It is also compared to the same previous

detectors as shown in Figure 3.34. It has a good performance in the presence of noise.

91

Fig.3.34. Corners extracted on noisy images [107].

It also has good immunity versus affine transformation. Figure 3.35 shows the

detected corners on the original image and the transformed versions using affine

transformations.

Fig.3.35. Transformation invariance of the corner detector. (a) Original (b) rotated 270o (c) scaled

50% (d) scaled 50% and rotated 90o.

92

This detector is edge based as our detector. It has good results when applied to

synthetic images. However in robotic applications where we have real images, the

proposed corner detector may fail especially when we have noisy edge pixels. We

have proposed in our detector a solution to eliminate these noisy pixels as explained

in Chapter 4.

3.3. First application: Image Registration

3.3.1. Introduction

Image registration [38] is one of the fundamental tasks in image processing. In

recent years, many image registration approaches have been developed, leading to a

great evolution in this domain [38]. Image registration is frequently used in remote

sensing [30] for a wide variety of tasks such as change detection, image fusion, and

image overlay. It is also used in image matching [33, 133], stereovision [34], image

mosaicking and animation [36, 35], motion analysis [15], motion compensation to

compensate the global motion of a camera in order to track the local motion of small

targets in the acquired images sequence. Finally one of the most developed image

registration applications are on medical imaging [37]. Most of the image registration

techniques aim is to detect specific points, called control points (CPs), in the source

and sensed images. These CPs are then used to estimate the transformation model that

aligns the two images. Some of traditional techniques required the manual selection of

the CPs at significant landmarks of the images. The primary drawback to this

approach is that a trained expert is needed to manually select each individual CP in

the remotely sensed images. This is very time consuming, especially when dealing

with the large volumes of remote sensing data available today. Therefore, an

automatic method of aligning such images is highly desired. Thus, the development of

an intelligent algorithm that can automatically explore the CPs and then match them is

very important.

Image registration is the process of transforming different images spaces into one

coordinate system. These images may be taken by different cameras or by the same

cameras but at different times or from different viewpoints. Usually the inputs of a

registration process are two images, one called source image and the other called

sensed image, related by a real deformation model. In fact, the whole process starts by

detecting image features in both images. These features should have some invariant

93

measures under the estimated deformation. Then, features in the source image are

matched with those of the sensed image using their invariance measures. Thus, the

real deformation model is estimated by a mathematical transformation model

determined by the corresponding features in both images. By applying the obtained

transformation model to the sensed image (image resampling), the two images can be

compared, aligned or analyzed.

Image registration techniques can be classified as follows:

 Spatial domain techniques. They are applied directly on image intensities or

on image features like edges [15,39], contours [40, 41], regions [42], interest

points [43] and lines [33].

 Frequency domain techniques. A common frequency-domain technique is

phase correlation [31], which is based on the Fourier Shift Theorem. The

Fourier coefficients of first image are divided by the Fourier coefficients of the

second image, and the inverse of the result is an image with a single peak.

This peak indicates the translation between the two images. This technique has

also been extended to account for rotation and scaling [32].

In real experiments, the deformations produced in images of a real scene in

motion or acquired by a moving camera are better estimated using a projective

(elastic) or affine transformations rather than similarity or Euclidian transformations

[44]. On the other hand, when the time interval between successively acquired images

is large, the projective transformation describes better the deformation occurring in

the image than the affinity. However, if the time interval is relatively small, affine

model is a very good approximation of the real deformation [44]. In fact, the main

difference between affine and projective transformations is that the deformation

produced by projectivity for a given line does not depend only on its orientation, like

in the case of affinity, but also on its position relative to the camera. Thus, if the time

interval between two successive scenes is relatively small, the position of the

elements in a scene will remain nearly the same and thus the transformation can be

modeled by an affinity.

The majority of these registration techniques can be decomposed into four steps.

94

 Feature detection: Salient and distinctive objects (closed-boundary regions,

edges, contours, corners, etc) in both source and sensed images are detected.

An overview on feature detectors has been presented in Sections 3.1 and 3.2.

These features can be represented by their point representatives called control

points (CPs). However Section 3.3.2 presents various primitive construction

schemes, based on grouping on or more CPs, in the literature.

 Feature matching and classification: The correspondence between the features

in both images is established. Various matching approaches are proposed.

Some feature matching methods use feature descriptors to match features in

the studied source and sensed images. Other matching methods use the spatial

information of the features as keys for matching. The cross correlation method

could be the famous method used to match features or their descriptors. The

matching methods are classified in section 3.3.3.

 Model estimation: the image transformation parameters, that align the two

images, are estimated. Theses parameters are computed using different

techniques like Hough transform, RANSAC, least square estimation

technique, etc as explained in section 3.3.4.

 Image resampling and transformation: The sensed image is transformed by

means of the estimated model. An overview of various geometric

transformation models is provided in section 3.3.5

The new image registration technique presented in this thesis is targeting mainly

for motion analysis where the deformation between the source image and the target

one can be well modeled by an affine transformation. The reason is that the detected

DCs have shown very good repeatability under affine transformations as shown in

Chapter 6. Thus, the suggested robotic application is surveillance of a road by a

drone's camera. The drone's camera is in motion and the acquired images have a small

time interval. The goal is to estimate the global motion of the camera in order to

determine the local motion of small targets, e.g. cars, moving on the road. This

application is to be build as a future work.

3.3.2. Primitive construction: From features to primitives

Primitives can be formed by one feature, for example an interest point like Harris

corner [136, 137], or by a group of features like grouping intersecting level lines to

95

form a particular shape [135]. The way of grouping features into primitives depends

on the estimated transformation relating the two images to register. For example, a

similarity transformation preserves angles so three non collinear corner points can be

grouped into one primitive in a triangular form. The three obtained angles are three

primitive invariant measures in this case. An invariant measure is a quantity that

remains constant for all viewpoints of the scene. According to the registration

application constraints, the real deformation between two acquired images can be

modeled by a similarity, affinity or projective models. For example, when acquiring

images by a moving camera with small acquisition time interval, the deformation can

be well modeled by an affine model [44]. Each kind of these transformations has its

own invariant measures. For example, the ratio of areas is an invariant measure under

an affine transformation but it is variable under a projective transformation.

Our primitive is formed by four consecutive DCs located on the same contour.

The DCs are more stable than Harris corners versus affine deformations as shown in

Chapter 6.

3.3.3. Classification and feature matching

The classification of registration methods based on Maintz et al [176] survey is

designed for medical image registrations. They have introduced nine basic criteria

each of which is again subdivided into one or two levels. Wyawahare et al [178] and

Chapnich et al [177] have cited various approaches to image registration. In addition,

Zitova et al [38] have presented a survey on image registration methods where they

have classified the image matching techniques into two categories: Area based and

Feature based.

This classification is suitable also for our robotic image registration application.

3.3.3.1. Classification of registration methods

Registration methods are classified in several classes. The targeted application, its

constraints, the quality of registration and the time interval between the registered

images play the essential role in the selection of a class. In each class, the application

constraints are specified.

96

3.3.3.1.1. Dimensionality
We should distinguish between "spatial registration methods" where all the

dimensions are spatial dimensions and "registration of time series methods" where the

time dimension is added.

For spatial registration methods, they are categorized by the number of

dimensions used. It could be 2D-2D, 2D-3D or 3D-3D. Note that the method

computation time is related to the number of dimensions used. They can be addressed

in many registration applications that can be achieved by off line registration. In these

applications, speed issue is not very important rather than the quality of the

registration obtained.

For registration of time series methods, more than two images with spatial

dimensions taken at short or long time intervals are studied for several reasons, such

as monitoring the bone growth in children (long time interval) or monitoring of

healing (short time interval), or evaluation of drug effects (various time interval), etc.

3.3.3.1.2. Source of features
The source of features is divided into three classes: Extrinsic, Intrinsic and Non-

image based.

Extrinsic methods rely on artificial objects attached to the patient for medical

applications, objects which are designed to be well visible and accurately detectable.

As such, the registration of the acquired images is comparatively easy, fast, can

usually be automated, and, since the registration parameters can often be computed

explicitly, has no need for complex optimization algorithms.

Intrinsic methods rely only on patient generated image content so they don't rely

on artificial objects attached to the body. In these methods, salient points or

landmarks are identified on the patient body and used in the registration process.

Non-image based methods are used to register multimodal images if the imaging

coordinate systems of the two scanners involved are somehow calibrated to each other

and also the patient remains motionless during images acquisition. Therefore, in these

methods there is no need for external attached objects to body neither for landmarks

to be detected on the body since the two studied images are on the same coordinate

system.

97

3.3.3.1.3. Nature of transformation
Various mathematical transformations [44] are introduced to model the real

deformation between the studied images. A transformation is called rigid, when only

translations and rotations are allowed. If scaling factor is also allowed, it becomes

affine transformation and maps parallel lines onto parallel lines. If it does not

conserve collinearity but still maps lines onto lines, it is called projective. Finally, if it

maps lines onto curves, it is called curved or elastic. Section 3.3.5 provides a detailed

explanation of some of these transformations.

3.3.3.1.4. Domain of transformation
A transformation is called "Global" if it applies to the entire image space or in

other terms all image parts can be modeled by the same transformation. It is called

"Local" if is applied to subsections of the image since each has its own transformation

model.

3.3.3.1.5. Interaction
Many users prefer fully automatic methods (no human interaction). However, the

argument is that many current methods have a trade off between minimal interaction

and speed, accuracy or robustness.

The interaction level of registration methods can de divided into three levels

referring to the control exerted by a human operator over the registration algorithm. It

is called "Interactive" when the user does the registration himself, assisted by

software supplying a visual or numerical impression of the current transformation,

and possibly an initial transformation guess. Semiautomatic when the user interacts

only to initialize the algorithm. For example, segmentation based methods are semi

automatic intrinsic methods that need user initialization. Automatic when the user

only supplies the algorithm with the image data and possibly information on the

image acquisition. Extrinsic methods are usually easily automated since the marker

objects are designed to be well visible and detectable in the studied images.

3.3.3.1.6. Method of parameter determination
The transformation's parameters can be calculated directly for the available data

or calculated by searching for the optimal solution (set of parameters) of some

functions defined on the parameter space. This class is detailed in section 3.3.4.

98

3.3.3.1.7. Modalities involved
Registration methods are grouped into four classes based on the involved

modalities: "Monomdal", "Multimodal", "Modality to model" and "Patient to

modality".

In Monomodal applications, the images to be registered belong to the same

modality. For example, two images of the same modality are taken of the patient

under two different positions for diagnostic purposes.

As opposite to Monomodal class, in Multimodal registration tasks the images to

be registered are taken from two different modalities.

In modality-to-model, only one image is involved and the other is a model. The

task here is to register an image referred to a mathematical model. For example, the

registration of an MR brain image to a mathematically defined model of gross brain

structures.

In patient-to-modality, only one image is also involved but the other is the patient

himself. For example, in some treatments, the patient can be positioned with the aid of

an X ray simulator to a pre treatment image. Thus, the registration task is performed

using only the acquired patient images so it is classified as patient to modality.

3.3.3.1.8. Object
Registration methods are also classified based on the particular region of anatomy

to be registered: head, thorax, abdomen, etc.

3.3.3.1.9. Subject of registration
There classes of subjects are introduced: Intrasubject, Intersubject and Atlas.

When all the studied images are acquired for a single patient, the registration is

called Intrasubject. If the two studied images do not belong to the same patient but to

different patients, e.g. patient and model, the registration is called Intersubject. If one

of the images belongs to a single patient and the other is constructed from an image

information database obtained using imaging, the registration is called Atlas.

3.3.3.2. Feature matching methods

Feature matching [38] is divided into two classes: Area based and Feature based.

Our matching strategy can be classified as Feature based method. The template

matching in section 3.3.3.2.2.8) and Matching using level lines primitives in section

99

3.3.3.2.2.7 are the two matching schemes that can be compared to our method as

shown in Chapter 6.

3.3.3.2.1. Area based methods
There are two different approaches. The first one is the correlation like methods.

The normalized cross correlation [185] function is one of the most important methods

to measure the similarity between windows pairs from the source and sensed images.

It is given by,

��S � ? 	 	 � � �	T	 � � T�SU? 	 	 � � �S U? 	T	 � � T�S

(3.41)

Where W is the window placed in the two images, I(x,y) and J(x,y) are the intensities

of the pixel (x,y) in the source and sensed images and T are their respective means in

W. The windows pairs for which the maximum cross correlation is achieved are set as

corresponding pairs. The cross correlation can be used to align two translated images

only or when slight rotation or scaling are also present. Another method [186] similar

to cross correlation and uses simpler distance measure is the sequential similarity

detection algorithm. It accumulates the sum of squared differences of the intensities of

the pixels lying into the windows pairs. If the obtained value is below a preset

threshold than the two windows pairs are set as corresponding.

The second approach in area based method is the Frequency methods. They are

preferred rather than the correlation in some cases especially for computational speed.

The studied images are first represented in frequency domain. Then the phase

correlation method, based on Fourier Shift Theorem [187], is applied to register

translated with slight scaling images. Peak in the phase correlation function reveals

the transformation relating the two images.

3.3.3.2.2. Feature based methods
Various methods have been introduced so far trying to give a similarity measure

between image features in the two studied images using their spatial relations or using

some feature descriptors.

3.3.3.2.2.1. Graph matching

Graph matching [188] is one of the feature based matching algorithms that

gathers global information on the whole scene. The similarity measure used is the

100

number of feature points in the sensed image that, after a particular transformation,

are mapped within a given range next to feature points in the source image. The

transformation parameters corresponding to the highest similarity measure are

selected to form the transformation relating the two images.

3.3.3.2.2.2. Clustering

Clustering technique [189] is another feature based method. For every pair of

feature points from both images, the parameters of the transformation that maps the

one onto the other is calculated and a point is added in the space of the transformation

parameters. In this space, the points of parameters that closely map the highest

number of feature points tend to form a cluster while mismatches fill the parameter

space randomly. For the cluster of the highest number of points, its centroid

represents the set of parameters of the desired transformation.

3.3.3.2.2.3. Chamfer matching

Chamfer matching [190, 191] is a technique for finding the best fit of edge points

(or any other image feature) from the two studied images, by minimizing a

generalized distance between them. The chamfer distance between two shapes can be

efficiently computed using a distance transform (DT). This transformation takes a

binary feature image as input, and assigns to each pixel in the image the distance to its

nearest feature. The distance between a template and an edge map can then be

computed as the mean of the DT values at the template point coordinates. The

matching can be made more robust by using the mean of the thresholded distance,

2 >V � �"PQR�	PWXYZ[\- � � !' ��]^[_
(3.42)

Where ui is a feature point in the source image I, vj is its closest feature point in the

sensed image J and th is a preset threshold to reduce the effect of outliers.

3.3.3.2.2.4. Cross-Ratio projective invariant measure

Suk and Flusser [132] have developed invariant features under projective

transformation which is the cross-ratio of five points. Their features are point based

for recognition of projectively deformed polygon. They have used this cross ratio as a

description of five feature points to match candidates in the two studied images.

101

In general, when the distance between the camera and the object is not much

greater than the size of the object, the introduced distortion is well approximated by a

projective model [132]. Therefore, projective invariant features are needed to be

developed.

Consider three non collinear points (xi,yi), (xj,yj) and (xk,yk) and their transformed

points (xi',yi'), (xj',yj') and (xk',yk'). Their projective coordinates are (xi,yi,1), (xj,yj,1),

(xk,yk,1) and (x'i,y'i,1), (x'j,y'j,1) and (x'k,y'k,1) related by a projective transformation

given by the matrix H:

� �� �� �1 1� 1� ��
(3.43)

The relation between the coordinates of a point (x,y) and those of its transform (x',y')

can be described by,

� � � �� � �� � �� �

� 1 � 1� � 1� � �� �

(3.44)

(3.45)

The areas A and A' [132] of the triangles whose vertices are (xi,yi), (xj,yj), (xk,yk) and

(xi',yi'), (xj',yj'), (xk',yk') respectively are given by,

 � ' 'O O
 � ' 'O O

(3.46)

Combining Eqs (3.4), (3.5) and (3.6) give the relation between A and A',

 �
UT	 �T	 ' '�T	 O O�`

(3.47)

Where J(x,y) is the Jacobian of the projective transform at point (x,y),

T � a� �� �1 1� 1� �� a
	 � � � �� �

(3.48)

The relation given in Eq. (3.49) is so called relative invariant projective transform and

it is utilized to derive the absolute projective invariant which is the cross-ratio of five

points,

102

� 	 b�	 c d�	 c�	 b d� (3.49)

3.3.3.2.2.5 Matching using a contour based method

Li, Manjunath and Mitra [40] have proposed an image registration technique

based on region boundaries and strong edges as primitives. They have detected open

and closed contours and have used different matching criterion for each class.

The contour extraction forms the first step in their operator. For this purpose, they

have used a Laplacian-of-Gaussian (LoG) operator and the edges are located at zero

crossing points. At every edge point (x,y), a strength measure is introduced. It is

proportional to the slopes of the LoG along the x and y directions. Then a contour is

retained if:

 The edge strength at each point along it is greater than T1.

 At least one point on the contour has strength greater than T2.

Where T1 and T2 are two preset thresholds (T1< T2).

Each contour is coded using the chain codes of its edge points using Freeman

codes [96]. The primitive matching or primitive/primitive correspondence is based on

a correlation measure between every two contours A and B: A from the source image

and B from target image. This correlation function is based on the chain codes of the

contours, reflects the similarity between them and the shift that must be introduced to

one of them in order to best fit the other. The contour matching process begins with

the matching of closed contours. For every closed contour, five shape attributes are

computed: the perimeter, the longest and shortest distances from boundary to the

centroid, and the first and second invariant moments. These moments were defined

originally for 2D images. For the case of 2D contours, the first and second moments

can be defined as:

�� � � "e	 � � � 	 � ��
(3.50)

� � �f"e	 � � � 	 � � ��
c�f"e	 � �	 � ��

(3.51)

103

Where xi and yi are the coordinates of each point along the contour. xc and yc are the

coordinates of the centroids of the contour. n is the length of the contour.

 Two closed contours, one from each image, are accepted as candidate matches

if the differences between their five attributes are below some preset thresholds. Then

two candidate contours are matched if they have the same chain codes taking into

consideration the possible shift in one of the.

For open contours, corner points that correspond to a deviation in the contour

chain code are detected first. The contour segments surrounding the corner points are

then used as 1D template in finding the corresponding matches in the two images.

The matched contours enter in the estimation of the transformation model. The

transformation is assumed to be an affine transformation. For two matched edge

points, (x,y) and (x',y'), on two matched contours in the two images, the 2D affine

relationship can be expressed as follows:

� /) � /g /��g�/��g � /g) �)
(3.52)

Where s represents the scaling level, θ represents the rotation angle and tx, ty

represent the translation along the two orthogonal directions respectively. These four

transformation unknowns are found using least squares sense based on all matched

points.

3.3.3.2.2.6. Affine invariants in convex hulls

Yang and Cohen [134] have proposed a registration method for scene recognition

under affine distortion. Their affine invariants are the areas of triangles whose vertices

are three vertices among four consecutive ones of a convex hull.

For a set of feature points in the plane, the convex hull is the smallest convex

object containing all the points. These feature points can be corner points, inflexion

points, fiducial or marking points etc. the authors have used the algorithm developed

by Bykat [181] to find the convex hull of a set of points. The convex hull bounds the

set of these points from the outside, as illustrated in Figure 3.36. Thus, the convex

hull is suitable in a shape representation or shape matching applications.

104

Fig.3.36. Convex hull of a scatter of feature data [134].

Barbar et al. [192] have explained the Bykat convex hull algorithm, called

"QuickHull". It can be broken down to the following steps:

1. Find the two points with minimum and maximum abscissas; those are bound

to be part of the convex hull.

2. Use the line formed by these two points to divide the set in two subsets of

points, which will be processed recursively.

3. Determine the point, on one side of the line, with the maximum distance from

the line. The two points found before along with this one form a triangle.

4. The points lying inside of that triangle cannot be part of the convex hull and

can therefore be ignored in the next steps.

5. Repeat the previous two steps on the two lines formed by the triangle (not the

initial line).

6. Keep on doing so on until no more points are left, the recursion has come to an

end and the points selected constitute the convex hull.

In a test scene image, which has undergone an affine distortion or occlusion, a

part of the convex hull may change or the number of its vertices may increase,

decrease or remain unchanged. In Figure 3.37, three images are taken for the same

scene where some objects are added or disappeared. The corresponding convex hulls

are drawn in Figure 3.38. It is clear that the vertices 7 and 8 in Figure 3.38 (b) have no

corresponding in Figure 3.38 (a). Also, vertex 8 in Figure 3.38 (c) corresponds to

vertex 9 in Figure 3.38 (b). For this reason, the authors have suggested first an

algorithm to detect corresponding vertices in two convex hulls related by an affine

transformation.

105

Fig.3.37. Image scenes with objects added or disappearing [134].

Fig.3.38. Corresponding convex hulls of the images in Figure 3.37 [134].

After detecting the corresponding vertices on two convex hulls related by an

affine transformation, groups of four consecutive vertices are formed on each convex

hull. The ratio of areas of the two triangles per group is the invariant affine measure

used to detect matched groups as shown in Figure 3.39.

Fig.3.39. Affine invariants in Convex hulls [134].

The four points in every group with the corresponding points in the matched group

enter in the calculation of the six unknowns of the affine model described in section

3.3.5.

106

3.3.3.2.2.7 Matching using level lines primitives

Almehio, Bouchafa and Zavidovique [135] have recently presented their work on

image registration. It is based on level lines that form the boundaries of the image

level sets. A level set is a set of image pixels with intensities greater than or equal to a

given threshold. One can extract all the level sets in an image by using a series of

thresholds. The obtained level sets are included one in another. Therefore, the level

lines could be locally juxtaposed but never cross.

The estimated transformation model that relates the two images to register is

either an affine or projective. For affine transformation, the authors have formed,

using intersecting level lines, two primitives in the form of "Y" and "Z" shapes shown

in Figure 3.40. So three intersecting level lines (four non collinear points) are needed

to complete these two forms. For the Y-shape, the four non collinear points P0, P1, P2

and P3 define barycentric coordinates in considering P0 with respect to the other

points. These barycentric coordinates {a1, a2, a3} are affine invariants and are

formulated as follows:

8���� � � � � � � � ��� � � � � �
(3.53)

Fig.3.40. Primitive shapes for an affine transformation. (a) Z-shape. (b) Y-shape.

For the Z-shape, the ratio of the lengths of two collinear segments is set as the

invariant measure. Thus, the two ratios r1 and r2 derived in Eq. (3.54) are used as

invariant measures.

107

� � 99� �9999� �99 ���2� � 99� �9999���99 (3.54)

Where X is the intersecting point as shown in Figure 3.41 (a).

For two matched primitives in the two images, the four points {P0(x0,y0), P1(x1,y1),

P2(x2,y2) and P3(x3,y3)} of the first primitive and the corresponding ones {Q0(x'0,y'0),

Q1(x'1,y'1), Q2(x'2,y'2) and Q3(x'3,y'3)}enter in the calculation of the affine model. To

do so, the affine model in Eq. (3.53) can be expended into,

h
i �

fj
k � l � �

f f
����� h

i �

fj
k � l � �

f f
� ��

(3.55)

A least square estimation technique is used to solve this system.

For projective transformation, the W-shape is formed as shown in Figure 3.41.

Fig.3.41. Primitive shape for a projective transformation [135].

In this case, four intersecting level lines are needed which is equivalent to five non

collinear points. The cross ratio is an invariant measure under a projective

transformation [44]. Therefore, the authors have used this property to derive the W-

shape invariant measure,

� //	m� m m mf� � 9m�m 99m mf99m�m 99m mf9 (3.56)

Where q1, q2, q3 and q4 are the four collinear projections the four points P1, P2, P3 and

P4.

In this method, the repeatability of level lines is not considered in the primitive

construction phase. Thus, many constructed primitives in the source image will not

have corresponding primitives in the sensed image. Some of them will be matched

incorrectly and this can hamper the solution. This is illustrated in Chapter 6 section

6.5.3.

108

3.3.3.2.2.8. Template matching

Bentoutou et al. [136] have proposed a registration technique for multitemporal or

multisensor images in the area of remote sensing and Lou et al. [137] have presented

their approach for an automatic registration of NOAA AVHRR satellite images. The

two techniques are very similar. They have used the canny edge detector to detect first

the required edges [25]. The edge points are selected by setting a threshold on the

gradient magnitude. The threshold value is assigned as the average gradient

magnitude [147].

They have used the normalized cross correlation as a similarity measure between

the two regions lying inside two windows centered at the tested CPs in both images. If

this correlation corresponds to a local maxima, than the tested CPs are set to be

corresponding. They have claimed that some of these corresponding CPs are wrong.

However, they have proposed a solution that can eliminate some of these false

matches.

In the reference image, Harris corner detector [100] is used to detect the corners

that form the CPs of the suggested registration applications. A correspondence

mechanism between image regions around these points must be established to match

the reference and the sensed images. This correspondence mechanism is called

template matching. It finds the regions in the sensed image that are similar to those

surrounding the CPs in the reference image. From every matched region, a CP

position is extracted. The most important aspect of template matching is the similarity

measure that is used to determine the degree of resemblance of windows in two

images. They have defined first the central moment mpq of a window W inside an

image f(i,j). It is given by,

7no � " 	� � �n	$ � �o%	� $�	 '�[S (3.57)

Where p+q is the order of the moment and (xc,yc) are the coordinates of the centre of

gravity of the window W. Their similarity measure is the normalized central moment

nmpq, given in Eq.(3.57), that is invariant under translation, rotation and scaling [136].

�7no � 7no 7	n o �+ (3.58)

109

Every three matched CPs pairs from the reference and sensed images enter in the

calculation of transformation model relating the two images. The same model, derived

in Eq. (3.55), is obtained and solved also using least square estimation technique.

This method tries to match two primitives (Harris corners), one from each image,

using the similarity (cross correlation) of their surrounding regions. The fact that the

primitive is formed by one interest point rather than a group of them and also the

introduced similarity measure lead to a large number of false matches as shown in

Chapter 6 section 6.5.4.

3.3.3.2.2.9. Elastic matching

Elastic matching [193] has been employed in many image pattern matching

problems such as face recognition, motion analysis, medical image analysis and

computer vision. It is defined as an optimization problem with respect to a linear or

nonlinear pixel to pixel mapping of two images I and J. Consider I and J as two sets of

feature points ui,j and vx,y respectively where (i,j) and (x,y) are their coordinates in I

and J respectively. Let F denote a 2D-2D mapping from I to J. Thus, the elastic

matching is the minimization problem of the following objective function T with

respect to F:

,_ p	q� � �	 q	T�� (3.59)

Where D(.,.) is an Euclidian or absolute distance between the two image patterns and

F(J) is the image obtained by fitting J to I using F. Therefore, F is the transformation

that minimizes the objective function T. The distance D obtained is deformation

invariant distance due to the minimization problem.

3.3.3.2.2.10. Relaxation

The relaxation [194] is a recursive parallel algorithm. Initially, a set of possible

matching criteria is selected when matching every primitive from the first image with

every primitive in the second image. For example, the angles of corners and the

segment lengths are two matching criteria when the primitive is an image corner. This

set is organized as a collection of nodes corresponding each to a primitive in the first

image. For each node (primitive in the first image), a vector representing the

primitive's geometric information and the set of labels representing the possible

matching criteria is formed. A special label called "Null Character" signifies that the

current primitive has no corresponding primitive in the second image. For each label

110

l, we associate the number pi(l) that is interpreted as the probability that l is

effectively the matching criterion corresponding to the current primitive in the first

image. Thus, we have 	��re & and ? 	�� � . These probabilities will be

updated by considering the coherence of the neighborhood. If relatively a lot of

primitives in the neighborhood are compatible with the matching criterion l, than pi(l)

will increase otherwise it will decrease. The essential task in this technique is the rule

used to update the probabilities.

3.3.4. Model transformation estimation

A lot of techniques have been proposed so far to estimate the transformation that

maps the set of features of the sensed image into the corresponding set in the source

image.

We have used the Hough transform (section 3.3.4.1) to estimate our affine model

since it has lead experimentally to correct estimation.

3.3.4.1. Classical Least square technique

This estimation technique is used by some previously explained feature matching

techniques (Li et al. in section 3.3.3.2.2.5, Almehio et al. in section 3.3.3.2.2.7 and

Bentoutou et al. in section 3.3.3.2.2.8). To illustrate, let us take a simple example:

Given a set of N two dimentional points {(x1,y1), …, (xN,yN)), we try to find the

straight line y = ax+b that best fine the set of points. The associated error can be:

	� 1� �"	 � 	� � 1���
(3.60)

The Least square technique consists of finding the optimal values of a and b that

minimizes the error E by solving these two equations:

CC� � ���2� CC1 �
(3.61)

By finding the derivative of E(a,b) with respect to a and b, we will obtain:

CC� � �" 	� � 	� � 1�	� � �
(3.62)

CC1 ��" 	� � 	� � 1�� �

111

Eq. (3.62) can be rewritten as

"� � � "� 1 �"�
(3.63)

"� � � "� 1 �"�

In matrix form,

h
ssi
"� "�
"� "� j

ttk)�1 �
h
ssi
"�
"� j

ttk

(3.64)

Or

)�1 �
h
ssi
"� "�
"� "� j

ttk
��

h
ssi
"�
"� j

ttk

(3.65)

In image registration application and for a given transformation relating two

images (source and sensed images), the least squares problem becomes finding the

optimal transformation parameters that maps correctly the matched points in the two

studied images. For example, Almehio et al [135] and Bentoutou et al [136] have used

the least squares method to estimate their affine model. In Eq. (3.65) denote by X', Y'

the vectors of coordinates of the points in the sensed image, h and k the vectors of

affine parameters and by M the 3x3 matrix. So, it can be rewritten as,

� � � � � � � (3.66)

 The least squares task is to find the matrices h and k that minimizes the norms ||X'-

M.h|| and ||Y'-M.K||. So by following the same solution method from Eq. (3.61) to

Eq. (3.66), we can find solutions as follows,

� � 	 ��� � (3.67)

112

� � 	 ��� �

Where X, Y the vectors of coordinates of the points in the source image.

The classical least square method can lead often to incorrect solutions due to the

existence of more than one solution. However, the iterative least square estimation is

a suggested solution to eliminate iteratively incorrect solutions and keep finally the

correct one. The other two presented methods "RANSAC" and "Hough Transform"

lead to correct solutions with noticeable difference with incorrect ones.

3.3.4.2. RANSAC

The RANdom SAmple Consensus (RANSAC) algorithm proposed by Fischler

and Bolles [23] is a general parameter estimation approach designed to cope with a

large proportion of outliers in the input data. Unlike many of the common robust

estimation techniques such as M-estimators and least-median squares that have been

adopted by the computer vision community from the statistics literature, RANSAC

was developed from within the computer vision community. RANSAC is a

resampling technique that generates candidate solutions by using the minimum

number observations (data points) required to estimate the underlying model

parameters. As pointed out by Fischler and Bolles [23], unlike conventional sampling

techniques that use as much of the data as possible to obtain an initial solution and

then proceed to prune outliers, RANSAC uses the smallest set possible and proceeds

to enlarge this set with consistent data points.

The algorithm for image registration can be summarized as follows:

1. Select randomly the minimum number of points from the source and sensed

images required to determine the model parameters.

2. Solve the system of parameters of the target transformation model relating the

two images.

3. Determine how many points from the both images fit with a predefined

tolerance.

4. If the fraction of the number of inliers over the total number of points exceeds

a predefined threshold, re-estimate the model parameters using all the

identified inliers and terminate.

5. Otherwise, repeat steps 1 through 4.

113

3.3.4.3. Hough transform

The concept of the Hough transform is to accumulate, in the interior of a space of

representative parameters, the information confirming the presence of some particular

forms or some particular transformations [119, 149].

Each image transformation has its own number of parameters called degrees of

freedom (section 3.3.5). For example, an affine transformation has six parameters. To

estimate these parameters, we need three points from the source image and their three

matched points from the sensed image to solve the system. For this reason in Almehio

et al. registration method [135], an affine primitive is a set of three non collinear level

lines or four points. Note that the coordinates of the fourth point can be used only for

verification. In this case, the Hough space has six dimensions (one dimension per

parameter). Every matched couple of primitives gives its vote to a point of six

coordinates in this space. The voting scheme accumulates the votes for the same point

in the space. Finally, the coordinates of the point having the highest accumulated vote

form the parameters of the target affine model.

One of the most important Hough transform feature is the selection of the

parameter space. A high dimensional parameter space is not only slow but it can

easily overrun the available memory. Finding lines in polar coordinates (ρ,θ) that are

two dimensional requires a two dimensional Hough space corresponding to ρ and θ.

Finding planes (y = ux + vy + w) requires a three dimensional Hough space

corresponding to u, v and w. To illustrate the importance of the discretization of the

parameter space to minimize the required memory space, consider for example the

task of finding circles in a 400x200 image. A circle is defined by its center C(x,y) and

its radius R. Therefore, the required Hough space is three dimensional space

corresponding to x, y and R. Allowing the center C to be anywhere in the image, adds

the constraint 0<x<400, 0<y<200 and 0<R<200. The used three dimensional array

accumulator has a size of 400x200x200 = 16 million values. Therefore, one must add

other restricted constraints on the three dimensions to lower the accumulator size.

This is called discretization of the space: It may be assumed that the radius of the

searched circle does not exceed a certain value much less than 200. It may also be

assumed that the centers of neighboring circles are at a minimal distance d from each

other. Thus, the discretization of x and y (and even R) dimensions can be decreased to

a lower number of values leading to a great minimization in the accumulator size.

114

3.3.5. Geometric transformation model: Affine transformation and its

invariants [44]

Transformations are classified starting by the most particular one, the isometric

transformation, than similarity transformation until reaching the more generalized

affine transformation used in our application. Each transformation has its own number

of degrees of freedom increasing form the isometric to the affine transformation.

Therefore, the choice of the transformation model that could best estimate the image

deformation is very important since additional degrees of freedom may imply a wider

transformation space. Thus, it is better to select first which kind of transformations is

more suitable for a studied application then construct the primitives and their invariant

measures based on the selected transformation. We have restricted our study on affine

transformation since it is the transformation used in our application.

An affine transformation is a non singular linear transformation followed by a

translation. The matrix form of the affine transformation relating two points M(x,y)

and N(x',y') in the two images is given by:

� ���� ��� � �
(3.68)

The parameters a11, a12, a21 and a22 form the elements of the 2x2 matrix A, called

affine matrix, given in Eq. (3.68). (tx, ty) form the translation vector coordinates. The

affine transformation is a decomposition of two fundamental transformations, namely

rotations and non isotropic scalings. A can be written in terms of the parameters Ω, φ,

λ1 and λ2 as shown in Eq. (3.69),

 � u��� ��� � � (3.69)

 � �	v�� �	� �� �� �	 � (3.70)

where Ω is the rotation angle, φ is the scaling angle both of them with respect to the

horizontal axis, λ1 is the scaling factor across direction of scaling (set by φ), λ2 is the

scaling factor across the normal direction to the direction of scaling. R(Ω) and R(φ)

are rotation matrices and D is a diagonal matrix given by,

w � Ix� x y	z� � I � /z /��z�/��z {|}z
(3.71)

115

Using Equations (3.69), (3.70) and (3.71), the affine parameters aij can be

rewritten as follows,

h
i ��� � x�� / {|}	 � ~� � x /�� }WX�	 � ~��� � x�/�� {|}	 � ~� � x � / }WX�	 � ~�� � � x�� / {|}	 � ~� � x /�� {|}�	 � ~�� � �x�/�� }WX	 � ~� � x � / {|}�	 � ~�j

k

(3.72)

To illustrate the role of matrix A, consider the image point M shown in Figure

3.42. The scaling axes x' and y' are also drawn with respect to the original image axes

x and y. The scaling factor of M, derived in Eq. (3.73), is relative to its angle α with

respect to scaling axis x'.

Fig.3.42. Scaling directions in an affine transformation.

/ � Ux� � / 	�� � x /�� 	�� (3.73)

The affine invariants are the following as stated in [44]:

 Parallel lines: Consider two parallel lines. These intersect at a point at infinity.

Under an affine transformation this point is mapped to another point at

infinity. Consequently, the parallel lines are mapped to lines which still

intersect at infinity, and so are parallel after the transformation.

 Ratio of lengths of parallel line segments: The length scaling of a line segment

depends only on the angle between the line direction and scaling directions.

Suppose the line is at angle α to the x axis of the orthogonal scaling direction,

then the scaling magnitude is Ux� � / � � x /�� �. This scaling is common to

all lines with the same direction, and so cancels out in a ratio of parallel

segment lengths.

 Ratio of areas: This invariance can be deduced directly from the

decomposition Eq. (3.73). Rotations and translations do not affect area, so

116

only the scalings byλ1 andλ2 matter here. The effect is that area is scaled by λ1

λ2 which is equal to det(A). Thus the area of any shape is scaled by det(A),

and so the scaling cancels out for a ratio of areas. It will be seen that this does

not hold for a projective transformation.

3.4. Our contribution

The major weakness of existing interest points and edge corner detectors is in the

correct detection in real images where the noise at the included objects boundaries is

relatively high. In addition, interest point detectors are based on image intensities.

Therefore, the detection of their interest points is highly dependent on threshold on

intensities which is not automatic and very sensitive to noise.

Our contribution is to detect our first features, "repeatable edge corner points" on

an object contour that are very accurate, automatic and less sensitive to noise. They

can be used in many computer vision applications like image registration [52],

polygonal approximation [53], object recognition, etc. In fact, we have used the

corners angles and lengths ratios of its two adjacent segments as matching keys. Thus,

two objects are matched if their contours have matched corners in angle and length

ratio. In addition, since corners are grouped together according to their contour, we

don't need to use an existing grouping method like RANSAC [23].

We have focused on corners located on edges since edges are one of the most

important image features that are repeatable versus various image transformations [3].

Our goal is to detect feature points that are also well localized and repeatable against

many image deformations. Therefore, they can be used as interest points on an

object's contour where a descriptor can be formed at every interest point using its

local information from its surrounding pixels.

Using the detected edge corners, we have proposed an approach for detecting our

second features, "Dominant Corners", inspired by that presented by Masood [127].

We have searched for dominant corners that best approximate a given shape by a

polygon having these corners as vertices. The differences between our work and the

existing works are in the nature and stability of the selected points and in the method

used to select them among others. The selected points of Masood [127] are points that

117

correspond to a deviation in the edge direction. Our selected points are edge corners

that are intersections of two straight edges. For us, not every deviation in the edge

direction corresponds to an edge corner. It may correspond to a noisy edge direction.

In addition, Masood iteratively eliminates unwanted corners using a measure called

associated error value (AEV). The AEV at a dominant point is the perpendicular

squared distance of this point to the straight line joining its previous and next

dominant points. However, the error measure associated to our DC is the Integral

square error which is proportional to the area bounded by the DC straight edges and

their approximating polygon's segment. So, it is similar to the criterion used by Wall

and Danielson [118] that relies on the area of the region included between the edge

part and its approximated segment rather than only relying on the maximal distance

like in the method of Pavlidis [117].

The most important matter in image registration is the repeatability of the CPs for

a side and the correct CPs matching. Since unrepeatable and false matched CPs

hamper the solution in a lot of existing techniques like Lou et al. [137], Bentoutou et

al. [136] and Almehio et al. [135] techniques. In our technique, we have built and

matched image primitives composed by a group four consecutive edge corners called

"Dominant Corners". This grouping gives to the primitive more efficiency in terms of

uniqueness and dissimilarity. In addition, we have suggested an efficient matching

algorithm to reduce the number of false matches.

The DCs repeatability can be compared to that of the Harris corners introduced by

Bentoutou et al. [136] and Lou et al. [137]. In this work, the introduced iterative

suppression technique leads to high repeatable DCs (CPs). High repeatable primitives

are formed by a group of four DCs. In addition, two primitives are matched if their

four DCs are corresponding. This will lead to a smaller set of repeatable voters

(primitives) and also more accurate transformation estimation compared to the voters

introduced by Harris corners in [136, 137].

Using the detected dominant corners on an image contour, our primitive is formed

by grouping four consecutive DCs. So our technique can be classified as feature based

technique since it is based on DCs that are feature points in the image domain. Its

invariant measure is the ratio of the areas of two triangles whose vertices are three

118

DCs among the four. This invariant measure is similar to that used by Yang and

Cohen [134]. However, our DCs are more repeatable than their convex hull vertices.

The matched primitives from both images enter as voters to estimate the affine

model of six parameters. Therefore, we have relied on the Hough technique based on

a Hough space of six dimensions and apply a voting scheme to accumulate the votes

of every set of six parameters. The set that gets the highest votes constructs our target

affine model.

Two main goals are achieved in this research. The first one is the detection of

new CPs (DCs) that are very repeatable versus affine deformations. The second one is

a new matching scheme proposed for proper transformation estimation.

119

4

A robust Edge Based Corner

Detector (EBCD): Straight

Edges, Edge Corners and

Dominant Corners

120

An edge corner is an edge point that corresponds to a deviation in the edge

direction. Or in other terms, it is the intersection point between two non collinear

straight edges where a straight edge is an edge segment linked nearly in the form of a

straight line.

4.1. EBCD block diagram

The main steps of this detector can be summarized as follows:

(v) Edge detection with updates in the linking phase: we have used the Kirsch

edge detector with updates, described in section 4.2, for proper detection of

edge corners. The output of an edge detector is a binary image of edges. These

edges form the contour of the objects in the image that are our candidates to

test the presence of corners.

(vi) Straight edges detector: the straight edges are parts of a contour linked in the

form of straight lines. They can be called "Edge Segments" and described in

section 4.3. The goal of applying a straight edge detector is to divide a contour

into a sequence of straight edge segments of different lengths using the edge

point chain codes. The robustness of the straight edge detector is its ability to

properly detect a straight edge even if it is corrupted with some noisy pixels.

By definition, a noisy pixel is an edge pixel whose direction is different from

the main straight edge direction. This detector should detect adequately these

noisy pixels and eliminate them in order for the corner detector to extract the

true corners and not mix them with noisy pixels since both noisy and corner

points correspond by definition to an edge deviation. We published this

detector in [28, 198].

(vii) Corner Detector: a corner is defined as the intersection point of two

non collinear straight edges of appropriate lengths (In Chapter 5 experiments

in section 5.1: the length threshold is set to be equal 10 pixels). This is

described in section 4.4. In addition, a pattern recognition application using

corners is developed in section 4.5. We published this detector in [28, 198].

(viii) Dominant corners detector: among the set of edge corners, a smaller

set called "Dominant Corners" or "DCs" is selected iteratively. These DCs

have a great repeatability under various image transformations as described in

section 4.6. We published this detector in [53].

121

The algorithm block diagram is shown in Figure 4.1.

Fig.4.1. The corner detection functions.

4.2. Edge detector with suggested updates

We have used the existing edge detector based on Kirsch algorithm composed of

the five classical steps of edge detection (see chapter 3). These steps are grouped into

two functions for a temporal optimization. This grouping is a part of the open source

CLEOPATRE project [17] but used with updates to meet our requirements. The first

grouping performs gradient vector calculation, thresholding on the gradient norm, and

edge thinning. The second one operates on edge linking and closing.

122

4.2.1. First grouping: gradient vector calculation, thresholding and edge

thinning

4.2.1.1. Gradient vector computation

We have used Kirsch operator that offers a very good compromise for our mobile

and autonomous robotic applications between the quality of results and the low

processing time.

At every image pixel, the gradient vector is calculated by placing the Kirsch four

masks (chapter 3). The norm and the direction of this vector are calculated using Eqs.

(3.47) and (3.48). Therefore, the gradient norm reflects the strength of the edge while

the direction is normal to the edge direction. Figure 4.2 (a) provides an example

where the image intensity (8 bit character) is shown at every pixel. The gradient norm,

based on Kirsch, is calculated at every pixel in Figure 4.2 (b).

0 255 255 255 255 255100000

0 255 255 255 255 255100000

0 255 255 255 255 255100000

0 255 255 255 255 255100000

0 255 255 255 255 255100000

0 255 255 255 255 255100000

0 255 255 255 255 255100000

0 255 255 255 255 255100000

0 255 255 255 255 255100000

0 255 255 255 255 255100000

0 0 0 0 0 0 0 0

0 0 0 100 255 155 0 0 0 0

0 0 0 100 255 155 0 0 0 0

0 0 0 100 255 155 0 0 0 0

0 0 0 100 255 155 0 0 0 0

0 0 0 100 255 155 0 0 0 0

0 0 0 100 255 155 0 0 0 0

0 0 0 100 255 155 0 0 0 0

0 0 0 100 255 155 0 0 0 0

0 0 0 0 0 0 0

0 0

0 0 0

Fig.4.2. Gradient norm on an edge using Kish operator.

4.2.1.2. Thresholding

Thresholding is the process that enables to extract the edge points. This is

achieved by presetting a threshold on the gradient norm called "thH". If an image

pixel has a gradient norm greater than thH, it will be classified as an edge pixel. For

example in Figure 4.2 (b), the corresponding edge points are grey colored and form

the edge in this figure.

4.2.1.3. Thinning

Usually, the thresholding phase can produce more than one pixel in the normal

direction to the edge. For example in Figure 4.2, if the threshold is equal to 80, the

123

edge width, shown in Figure 4.2 (b), will have a width of 3 pixels in the normal

direction to the edge. In addition, this problem of thick edges is well illustrated in

Figure 4.3. It is shown that an edge can be of thickness more than one pixel in the

normal direction to the edge.

Fig.4.3. More than one pixel can exist in the normal direction to the edge.

For this reason, the thinning step is introduced. Its goal is to obtain an edge of

thickness equal to one pixel at maximum. To explain the algorithm, one must know

these definitions:

g Current pixel: the pixel currently tested.

g Past pixels: pixels in the 3x3 neighborhood of the Current pixel and that are

already tested as edge pixels.

The thinning algorithm is shown in Figure 4.4.

124

Fig.4.4. Thinning algorithm.

4.2.1.4. First problem: rounding angle problem

The three already discussed steps are grouped together into one function. Thus,

for a single image processing (video mode) and at every pixel, the gradient vector is

calculated then thresholding on the gradient norm is applied then thinning step is

initiated. This grouping output a binary image of the edge points called "edge image".

However, a problem arises since the gradient computations will round the angle.

Figure 4.5 and Figure 4.6 show the result on right and acute angles respectively. Note

that the detected angles are rounded. To solve this problem, we will introduce the

notion of “half corner” in the corner detection phase explained in section 4.4.

Fig.4.5. Gradient norm on a right angle using Kish operator.

Fig.4.6. Gradient norm on an acute angle using Kish operator.

125

4.2.2. Second grouping: edge linking and closing

4.2.2.1. Automatic Edge linking

The edge linking processes all the pixels in the generated binary edge image. The

idea is to link the neighboring edge pixels together in the attempt to form the contours

in a given image. A contour is a sequence of edge pixels linked together. It is

characterized by a Head pixel, a Tail pixel and by the transition codes (directions of

the edge coded using Freeman codes) at every belonging edge pixel from the Head to

the Tail.

At any unlinked Current edge pixel, the automatic linking algorithm is shown in

Figure 4.7.

Fig.4.7. Linking algorithm at an unlinked edge pixel.

4.2.2.2. Automatic Closing

The closing phase is initiated when trying to link an edge pixel and no unlinked

neighboring edge pixel exists as shown in Figure 4.8 (a) or in other terms when

linking ends. The closing first introduces a second threshold less than that used in the

thresholding phase called "thL". It starts by examining the unlinked pixels in three

directions that form a cone of 45o at vertex as shown in Figure 4.8 (b). The closing

algorithm at an unlinked edge pixel is shown in Figure 4.9. The variables used in the

algorithm are:

- AllNeighLinked: a flag signaling that the three tested neighbors are already

linked.

126

- AllNeighWeek: a flag signaling that all the three test neighbors have a gradient

norm below thL.

- EdgeFound: a flag signaling that one of the three tested neighbors is an unlinked

edge pixel.

Fig.4.8. The 3 selected pixels for closing.

Fig.4.9. Closing algorithm at an unlinked edge pixel.

4.2.2.3. Grouping

The linking and closing procedures can be linked easily in one automatic

algorithm that requires one examination of the pixels in the edge image in video

mode. The algorithm is explained in Figure 4.10 where the only variable used is:

127

- dmax: the maximal allowed prolongation distance.

Fig.4.10. Automatic Linking/Closing algorithm.

4.2.2.4. Second problem: Linking in straight direction

The explained linking step was designed to follow “strong edges in straight

direction” in an image, in order to extract structures of the 3D scene. When a fork

between edges is encountered, it follows the strongest edge with the greatest

magnitude. Our problem with this strategy is the ignorance of the other possible edges

due to their smaller gradient magnitudes. This can lead to an elimination of real

corners when we have an intersection of two edges in the form of T. This problem is

an inappropriate edge linking because the existing edge detector focuses on detecting

straight edges. Figure 4.11 (a) presents a colored image of two rectangles with

different colors and Figure 4.11 (b) shows the corresponding edge image. Two edges

are formed and each one is represented by a different color. Consider the points A and

B where real corners exist. Each of the edge pixels at A and B has two neighboring

edge pixels where one of them is in a straight direction and the other in the normal

direction. Using the existing linking strategy, the algorithm chooses and links only the

one who has the greatest gradient norm which is, in this case, the straight neighbor

128

that does not correspond to a change in the edge direction. So, no corners will be

reported at A and B at the end of our corner detector.

4.2.2.5. Our Suggested Update to solve the problem

Therefore, the linking phase at these points should be updated as follows:

 If an edge point has more than one neighboring edge points, mark these points

as double points, like points A and B in Figure 4.11. (b).

 At the double points:

 The straight edge detector, detailed in §4.3, is launched and two straight edge

segments, starting from the double point, should be detected.

 If the detected edge segments are not collinear with appropriate lengths

(greater than a preset threshold), than the double point corresponds to an edge

corner.

Usually, our algorithm is initiated to check a corner presence at only edge pixels

having deviations in the edge direction. Therefore, we mark the double points in the

linking phase to force the algorithm to test them for corner presence besides those

who correspond to an edge deviation. Since the double points do not correspond

usually to an edge deviation.

In Figure 4.11 (b), we have shown two edge pixels A and B among many that

correspond to an intersection of two edges in the "T" form. The existing edge linking,

Figure 4.11 (d), from top to bottom at A has followed the straight direction which is

direction 6 in Freeman code without considering the second intersecting green edge.

Also the edge linking from left to right at B has followed the straight direction which

is direction 1 in Freeman code without considering the second intersecting blue edge.

Thus, in both situations, the existing linking algorithm will not take any action

according the intersection between the two edges. So, when searching for corners, a

corner will not be detected at edge points A and B since they do not correspond to an

edge deviation. To overcome this problem, we use our updated linking phase, shown

in Figure 4.11 (c), which marks the points A and B as double points. In the straight

edge detector (next stage), at these double points we will obtain two non collinear

straight edges: at A, the navy and green edges. At B, the navy and blue edges. In the

corner detector, these two points will be then reported as corners.

129

Fig.4.11. The problem in the linking phase of the existing edge detector: (a) original image. (b) edge

image. (c) updated linking phase with double points. (d) old linking phase.

4.3. Straight edges

Our objective is to detect edge segments that can be considered straight using

only their chain codes. However, we must distinguish first between two kinds of

straight edges: Perfect and real straight edges.

4.3.1. Perfect straight edges

We notice that a corner can be defined as an intersection of two non collinear

straight edges. So our idea is to classify a given edge as a sequence of non collinear

straight edges. A perfect straight edge is an edge whose chain code is composed of

one code or two codes at maximum. There are eight different straight edges

corresponding to a unique code among the eight Freeman codes. For example, a

perfect horizontal straight edge has a chain code of only 0 or 4 and a perfect straight

edge along the first diagonal has a chain code of 1 or 5 as shown in Figure 4.12.

In addition to these eight cases, a perfect straight edge has a chain code composed

of two codes: one primary and the other secondary with a difference equal to one

between them. The classification of these two codes is done according to their

130

frequency of occurrence in the edge's chain code. This is illustrated in Figure 4.13. In

Figure 4.13, five edges are considered starting from one origin O. Edges1 and edge5

are those that have a unique code 0 and 1 respectively, and their slope are 0o and 45o.

Edge3 is the one that have double codes 0 and 1 of the same frequency of occurrence

so its slope is 22.5o and it is the bisector of the angle formed by edge1 and edge5.

Edge2 is near to edge1 and has also double codes 0 and 1 but with different frequency

of occurrence. Code 0 is primary and code 1 is secondary. Same result can be seen in

edge4 that has code 1 as a primary and code 0 as secondary.

Fig.4.12. Straight Edges with unique code.

As a conclusion, we can say that the perfect straight edges that have double codes

are of two kinds. The first kind of edges has double codes of same frequency (edge3).

It is equidistant between two straight edges of unique code (edge1 and edge5). The

second kind of edges also has double codes but of different frequency (edges2 and4)

and it is also between two straight edges of unique code corresponding to the primary

or secondary code. Here, the nearest one's code forms the primary code. In Figure

4.13, Edge1 is the nearest to Edge2, so the primary code for Edge2 is 0.

Fig.4.13. Straight edges with double Freeman codes.

131

4.3.2. Algorithm explanation and real straight edges

In real images, the chain code of a straight edge that should be composed of one

or two successive codes has usually more than two codes. Our goal is to identify

which of them are the primary and secondary codes and reject the remaining codes.

This problem is due to natural noise at the object borders.

Real straight edges are shown in Figure 4.14 (a) where some perturbations,

circled in the image of edges Figure 4.14 (c), are encountered along these edges. The

challenge is to build an intelligent algorithm that can identify these perturbations and

detect real straight edges that meet at corner points as shown with their angles in

Figure 4.14 (b).

Fig.4.14. (a) image of edges, (b) detected corners, (c) noisy pixels.

While moving across the edges in a given image, our straight edge algorithm can

be initiated at the current edge point in one of two cases:

 If it is a double point.

 If it corresponds to a deviation in the edge direction.

The initiation of the algorithm is shown in Figure 4.15 where the variables used are:

- ppdir: pixel previous edge direction as shown in Figure 4.16 at a corner point A

located on an edge.

- cdir: pixel current edge direction.

- diff: direction difference.

132

- FlagInit: flag to signal the initialization.

Fig.4.15. Condition to initiate the straight edge detector.

Fig.4.16. The current and previous directions at an edge pixel A.

The purpose is to test the existence of a real straight edge with successive infected

pixels less than m and of a length greater than a threshold d (In the experiments in

Chapter 5 section 5.1 on detecting the straight edges and corners, d is et to be 10

pixels and m to be 2 pixels). The idea behind the algorithm is to start testing an image

edge starting from its head to its tail. Consider the first encountered edge direction as

primary direction and the next encountered edge direction as secondary edge

direction. While moving the current pixel to the tail, increment the frequency of

primary or secondary directions when the current pixel's direction corresponds to

primary or secondary directions, respectively. Or increment the frequency of infected

pixels, if the current pixel's direction differs from them. If the number of infected

pixels exceeds a given threshold m, the edge test stops at the current pixel. If the edge

length is greater than another threshold d, the edge traversed so far is considered as a

straight edge.

Let us define the variables used in the algorithm:

133

- pdir: edge primary direction.

- pdirfreq: frequency of pdir.

- sdir: edge secondary direction.

- sdirfreq: frequency of sdir.

- InfectedCount: number of infected pixels encountered so far.

- el: edge length.

- SecondaryFound: a flag that is set when a secondary direction is found.

- diff: absolute difference between cdir and pdir

The algorithm details are shown in Figure 4.17.

An infected pixel is an edge pixel, located on a real straight edge, whose edge

direction is different than those of the corresponding perfect edge. Therefore, the

variable diff is introduced. The search is for the edge direction, if exists, that differs by

one from the primary direction pdir knowing that a perfect straight edge can have a

chain code composed at maximum of two codes with difference equal to one. The

variable InfectedCount is incremented each time an infected pixel in encountered and

it is cleared only if the current edge pixel direction cdir is equal to pdir. On the other

hand, if cdir is equal to sdir, the variable InfectedCount should not be cleared. In

Figure 4.18 (a), consider the example of a straight edge whose pixels are in black. It is

linked with pdir = 1 and sdir = 2. At point A, the cdir is 3 so InfectedCount is

incremented. Next at point B, the cdir is 2 and it is clear that the remaining edge in

gray forms a different straight edge. If we reset InfectedCount at B when cdir = sdir =

2, the algorithm will not stop and will consider both edges, in black and in gray, as

one straight edge which is incorrect. A final point should be discussed which is the

need to update pdir and sdir. The logical reason for this case is that a straight edge

primary direction is not necessary the first encountered cdir as shown on the straight

edge in Figure 4.18 (b). Initially pdir = 4 and sdir = 5. But after traversing the

remaining edge pixels, it is clear that pdir should be 5 and sdir should be 4.

134

Fig.4.17. Straight edge detector.

The robustness of the straight edge detector against noise due to shadowing effect

is due to the usage of the parameter Accn. Normally, the shadowing effect will

introduce some noisy edge pixels having their directions different from the two main

straight edge directions.

Fig.4.18. Two straight edges.

135

4.4. Corner detection

By definition, a corner is the intersection of two non collinear straight edges with

appropriate lengths which means greater than a preset threshold. We should

distinguish between two situations: the first one is when the two non collinear straight

edges intersect at an edge point and the second one is when they intersect outside the

edge.

Fig.4.19. (a) edge image of a leaf shape with CCs in orange and HCs in pink. (b) The CCs and

HCs of the top right circled part. (c) HCs combination results.

In the first situation, the corner point is called "Complete Corner" or "CC". They

are shown as orange points on the contour of a leaf shape of Figure 4.19. In the

second situation, sometimes due to the fact that the edge detector rounds the angle

described in section 4.2.1.4, the intersection point of two non collinear straight edges

is located outside the edge. To overcome this error, we mark the endpoints of the two

straight edges as "Half Corners" (HCs). These HCs are shown as white points in

Figure 4.19. By definition, a HC is an endpoint of a straight edge. It corresponds to an

intersection point between a straight edge and a very small edge part (not classified as

a straight edge due to its small length) like the points C1 and C2 shown in Figure

136

4.20. If the distance between two HCs is very small (less than three pixels), we extend

their straight edges. If they intersect at a very small distance from the two HCs than a

true corner is reported.

In Figure 4.20, C1 is a HC since a change in direction occurs from 7 to 5 and one

of its intersecting edges DC1 is a straight edge with considerable length while the

other edge C1C2 is not due to its small length. C2 is also a HC for the same reason.

Thus, these two HCs can form a true corner by extending the corresponding straight

edges along the directions of the corresponding segments. If they intersect at a point

very near to the original HCs with a considerable gradient norm, this intersection is

considered as a true corner point. In Figure 4.20, the straight edge DC1 is a straight

edge passing through C1 and having a direction (slope) 7. EC2 is also a straight edge

passing through C2 and having a direction 0. They will intersect at point C. The

summary of the algorithm for HCs combination is shown in Figure 4.21.

Fig.4.20. (a) Original image. (b) Edge image and HCs.

Figure 4.19 (a) shows the edge CCs in orange and HCs in white located on the

contour of a leaf shape. After the application of the HCs combination algorithm, every

two neighboring HCs satisfying the combination conditions will be combined into one

CC located outside the contour. The three pairs of HCs in the image part shown in

Figure 4.19 (b) are combined into three CCs in Figure 4.19 (c).

137

Fig.4.21. HCs combination algorithm.

Each CC is characterized by its angle, which is the difference between the

directions of the two intersecting straight edges, and its adjacent segments lengths

ratio. These corners are compared in chapter 5 with other interest point detectors in

the literature (SUSAN, SIFT, FAST, Harris and Harris-Laplace) already explained in

the bibliography chapter 3 (§3.1).

4.5. Image matching using corners: a 2D shape recognition

application

In this section, we have developed a 2D shape recognition application using the

edge corners. The goal is to recognize a target shape even when it is rotated,

translated and essentially scaled. Mathematically, this deformation is well modeled by

a similarity transformation (see chapter 3). Theoretically, this transformation

conserves angle and lengths ratio. Therefore, two characteristics are selected for our

edge corners (as shown in Figure 4.22):

 Angle: it is the difference between the two adjacent straight edges directions.

 Length Ratio (LR): it is the ratio of the lengths of the two adjacent straight

edges.

Fig.4.22. Edge corner characteristics: Angle and LR.

138

Practically, we have studied the stability of these two characteristics under scale

variation. For this purpose, we have selected five corners (A, B, C, D and E) on the

contours of an image at scale S shown in Figure 4.23 (a). Also, we have taken three

other figures shown in Figure 4.23 (b), (c) and (d) at different scales S/2, S/3 and S/4

respectively. Table 4.1 show the repeatability of corners characterized by their angles

and length ratios (LR). It is clear that the angle and the LR remain approximately

constant against scale variation. Thus, these two parameters can be chosen as

invariant corner's parameters under image similarity transformation.

Fig.4.23. Repeatability of corners under scale variation.

Table 4.1. Length ratio and angle of some corners at different scale.

S

S1 S1/2 S1/3 S1/4

L.R Angle L.R Angle L.R Angle L.R Angle

A 1.64 <6,7> 1.62 <6,7> 1.65 <6,7> 1.68 <6,7>

B 2.37 <0,2> 2.33 <0,2> 2.26 <0,2> 2.28 <0,2>

C 2.51 <2,4> 2.66 <2,4> 2.6 <1,4> 3.12 <2,4>

D 2.69 <2,4> 2.61 <2,4> 2.57 <2,4> 1.42 <2,4>

E 1.55 <4,4> 1.01 <4,4> 1.1 <4,4> 1.17 <4,4>

We have developed an algorithm using the corner's angle and LR as invariant

parameters to detect a 2D shape in a given image. The idea is to embed the suggested

algorithm in an autonomous robot whose target is to detect a desired shape and tries to

bring it.

The contour is one of the most important image features that are repeatable versus

a lot of image transformations except for occlusion. Therefore, we can rely on this

feature to detect our corners that are also repeatable as shown before. These corners

are grouped according to their contour. This is also an efficient property that relates

the corners on the same contour. Without this property, we must use another

technique to group the corners like RANSAC [23] or other. Since the target 2D

139

object/shape can be composed from several contours, the matching between two

object's images is based on matching of the corresponding contours.

The algorithm training phase consists of presenting to the robot a real image that

contains clearly the target shape/object to detect as shown for the star shape in Figure

4.24. The straight edges are extracted and then the corners are reported. Thus, a

descriptor called "Training Descriptor" is formed. It is a vector of the ordered

contour's corners defined by their angles and LRs.

Fig.4.24. Training Image.

After the construction of the Training Descriptor, the robot starts searching for the

object. So, it enters the test phase. In each acquired test image, it will detect the

corners of every contour presented in the image. A test descriptor is formed per

contour. Then, the matching process starts. It will match each test descriptor with the

training one. Two descriptors are matched if their ordered corners are matched in

Angle and LR. Figure 4.25 (a) shows a test image, Figure 25 (b) shows the different

contours in the test image and their edge corners and Figure 4.25 (c) shows the

corners of the matched contour only. So, the matched shape is the star shape even

with the big scale change between the star shapes in the training and test images. The

overall matching algorithm is shown in Figure 4.26.

140

Fig.4.25: (a) Test image. (b) Corresponding image of contours with corners shown on the matched one.

Fig.4.26. The corners descriptors.

141

Fig.4.27. Matching a test contour to a training contour using their corners descriptors.

In the algorithm shown in Figure 4.26, the extraction of corners descriptors

(length ratio of adjacent segments and angle) is explained. The algorithm shown in

Figure 4.27 explains how we can match two contour, training and test, by matching

their corners following their linking order. The ratios of the lengths of two corners are

considered equal if their ratio is between 0.9 and 1.1. In addition, their angles are

considered equal if their absolute difference is less than 0.3.

4.6. Detecting dominant corners from edge corners: Polygonal

Approximation

The corners, reported by the suggested corner detector, are characterized by the

lengths of its two sides (straight edges) and by its angle between its two sides. The

corners for the chromosome shape in Figure 4.28 (a) are shown in the linked edge

image in Figure 4.28 (b) with their angle directions.

The main goal of this function is to introduce an operator that is able to extract a

polygon that best approximate an object's contour. The vertices of this polygon are

selected among the set of edge corners detected so far. The best approximation is

obtained by selecting only strong corners called "Dominant Corners". For this

142

purpose, we have introduced first a corner strength measure and then developed a

technique to remove iteratively the corners with weakest strength measures. This is

described by a function called "Iterative Corner Suppression".

Fig.4.28. Detected corners for a chromosome shape: (a) Chromosome shape, (b) Linked edge image.

4.6.1. The corner strength measure

Some parameters should be defined to illustrate the corner strength measure:

 LISE: is the Local Integral Square Error between a polygon's segment and its

approximated edge part. The LISE relative to a polygon's segment is given by,

� "2OO �
(4.1)

Where n is the total number of edge points on the approximated edge part and

d is the distance between an edge point and the polygon's segment. Figure 4.29

shows an edge part in black approximated by a polygonal segment in grey.

The LISE is the sum of squared distances dk of edge point Pk (moving from P1

to Pn) relative to the polygon's segment.

143

Fig.4.29. Illustration for LISE measure.

This measure is proportional to the area of the region bounded by the edge

part and the approximating segment.

 GISE: is the Global ISE and it is equal to the sum of LISEs of polygon's

segments. Since the LISE of a segment is proportional to the local area limited

by the corresponding segment and edge part, the GISE is also proportional to

the global area which is the sum of all local areas.

 LISEV: Local ISE Variation due to the removal of a corner from the list of

polygon's vertices. This measure reflects the corner strength. Consider the

contour shown in Figure 4.30 and its three corners P, Q and R. A, B and C are

the areas of the regions bounded by edge parts and corresponding polygon's

segments. The LISEV due to the removal of corner Q is proportional to the

difference between the new area C (after removal) and the sum of the two

areas A and B (before removal). The strength of a corner is proportional to this

measure.

Fig.4.30. LISEV calculation.

4.6.2. Iterative corner suppression

Starting from the original set of detected edge corners on a contour, the goal of

the iterative corner suppression technique is to obtain a smaller set of corners, called

144

"Dominant Corners" or "DCs" that form the vertices of a polygon that best

approximates the contour.

The algorithm efficiency is compared in chapter 5 to other existing polygonal

approximation algorithms detailed in chapter 3. They have eliminated their corners

until a given compression ratio CR is met:

�� � � ��� (4.2)

where n is the number of shape's edge points and nc is the number of selected corners

that form the polygon vertices. In order to compare, we have followed in this chapter

the same stopping criterion.

At a given CR, the objective function is to minimize the global integral square

error (GISE). For a particular shape as in Figure 4.31, since n is constant CR becomes

a function of nc only. Therefore, the problem is limited to obtain the minimal possible

ISE for a given number of dominant corners nc. In general, the entry of the algorithm

is the parameter CR, nc will be calculated automatically for every contour.

Figure 4.31 shows the approximated polygon of the chromosome shape used in

Figure 4.28 at various nc. The global ISE decreases while nc increases.

The ICS algorithm is shown in Figure 4.32.

Fig.4.31. Polygonal approximation at various nc.

145

Fig.4.32. Iterative corner suppression algorithm.

Fig.4.33. Corner suppression.

146

Starting by considering all the corners as polygon's vertices, the idea behind the

ICS algorithm is to decrease the number of vertices iteratively of the approximated

polygon. Here, the suppressed corner (vertex) is the one that its suppression will cause

the minimal increase to the current global ISE and this will ensure the selection of the

optimal polygon at every iteration (at every value of nc). Consider the case presented

in Figure 4.33. We have four selected corners at iteration i so there are three polygon's

segments with their corresponding LISE represented by the areas A, B and C. The

idea is to calculate the LISEV caused by the removal of one of the two corners Cor2

or Cor3, for example, at iteration i+1. D is the area that represents the LISE of Cor3

and E is the one that represents the ISE of Cor2. The removal of Cor3 will add a new

polygon's segment [Cor2Cor4] and eliminate two others [Cor2Cor3] and [Cor3Cor4].

Therefore, we can write

�3���� � �� � 	� � �� (4.3)

Same procedure will apply for calculating the LISEV caused by the removal of Cor2

with:

3���� �� �� � 	� � �� (4.4)

If LISEV3 is smaller than LISEV2 than Cor2 will be removed otherwise Cor3 will be

removed.

Fig.4.34. Corner reselection.

147

While the corners are suppressed one after the other, the LISEV of a corner that

depends on the current corner "Corc" and the directly selected neighboring corners

(previous one "Corp" and next one "Corn"), may change since "Corp" or "Corn" may

also change. So we should always update and then check the LISEV of even the

suppressed corners to ensure the optimality of the suppression at each iteration. This

can be illustrated using the list of corners shown in Figure 4.34 where all the five

corners are selected initially. This is a tested case by the algorithm where C4 (Figure

4.34 (a)), C5 (Figure 4.34 (b)) then C3 (Figure 4.34 (c)) are suppressed iteratively first

and the remaining polygon has only C1, C2 and C6 as vertices. Now if we calculate

the LISEV of removing C2 and that of removing C3, C4 and C5 taking C1 as "Corp"

and C6 as "Corn", we find that the LISEV of removing C3 is the greatest one. So we

should suppress C2 and reselect C3 (Figure 4.34 (d)). Then, the LISEV resulting from

adding [C1C6] is that of removing C3 and it will be compared with the LISEV of

removing the remaining selected corners existing on the whole contour to deselect

the corner with the minimal one.

4.6.3. Towards an automatic stopping criterion

Using the CR as a stopping criterion works well to compare the efficiency of our

proposed polygonal approximation algorithm with others algorithms on the same

shape. However, when we intend to use this stopping criterion to generate the DCs on

the same shape but at different resolutions, this will generate different number of DCs

for each resolution. Therefore, to generate the same number at any resolution, one

should adjust the CR each time which is not feasible. Therefore, an automatic

stopping criterion that can generate nearly the same number of DCs at any resolution

is needed.

 In chapter 6, we present our work on an image registration application using the

DCs. However as discussed before, using the CR as a stopping criterion will not give

the same number of DCs on corresponding contours in the two images to register. So,

we have suggested a new automatic stopping criterion to select the same number of

DCs. In addition, we present a shape recognition application to recognize shapes at

different resolutions using the DCs. In this application, we see the benefit of the

automatic selection of DCs as a stopping criterion compared with the CR.

148

Another possibility to benefit from DCs is a shape recognition application to

recognize shapes at different resolutions (at different scales) by using the number of

DCs as a stopping criterion. If we have two images of the same shape but at different

resolutions (at different scales), the number Nd of DCs on the low resolution shape's

contour (smaller shape) is smaller than that on the high resolution shape's contour.

Due to the repeatability of the DCs over scale, if we choose Nd as a stopping criterion

for DCs selection on the high resolution shape's contour, the obtained Nd DCs will be

corresponding to the Nd DCs on the low resolution shape.

149

5

Experimental Results on

Corners and Dominant

Corners

150

This chapter shows the experimental results on the two new proposed image

features: edge corners and dominant corners. Section 5.1 shows the corners

experimental results and Section 5.2 shows those of the dominant corners.

5.1. Experimental results on edge corners

Experimental results are presented in three parts using three sets of images. The

first experiment uses a synthetic image, the second one uses a newly introduced

simple real images database used in our robotic application and the third one uses a

set of existing real images. In addition, the results of 2D object recognition are also

shown.

5.1.1. First experiment: synthetic images

The first experiment using the newly proposed detector is on the test synthetic

image used by SUSAN [151] and it is shown in Figure 5.1.

Figure 5.2 (a) shows the results of our newly proposed EBCD detector, which

indicate the corners and their angles on the edges of the test image. They are

compared to the results of the five existing operators: SUSAN, Harris, Harris-Laplace,

FAST and SIFT as revealed in Figure 5.2 (b), (c), (d), (e) and (f), respectively. These

operators are simulated using their MATLAB codes provided in the website [152].

The results show the ability of the proposed EBCD to identify corners even with small

acute or large obtuse angles which are normally very difficult to detect.

Fig.5.1. SUSAN's test image [151].

151

By definition, a False Positive corner is a real corner not detected and a False

Negative corner is an ordinary point detected as a corner. It is shown clearly that the

numbers of False Positive and False Negative corners reported by the EBCD are the

smallest among all as revealed in Table 5.1.

The comparative results shown in Table 5.1 and also in Tables 5.2, 5.3, 5.4 are

derived manually. From the original image, one can count the number of true corners.

From the output image with detected corners, one can count the number of false and

true detected corners. Note that "NA" stands for Not Applicable. This term is used for

the False Negative results of the SIFT operator. Since SIFT is not introduced to detect

edge corners, SIFT points that are not edge corners and that are classified as False

Negative Corners will be detected in all image space. So to be fair with this detector,

we have put "NA" instead of its number of False Negative Corners.

Table 5.1. Quantitative results on SUSAN's test image.

Corner Detector #Real
Corners

#False Positive
Corners

#False Negative
Corners

#True Detected
Corners

EBCD 61 0 1 61

SUSAN 61 19 1 42

Harris 61 37 3 24

Harris-Laplace 61 45 0 16

FAST 61 58 0 3

SIFT 61 20 NA 41

152

Fig.5.2. Output of tested detectors: (a) EBCD, (b) SUSAN, (c) Harris, (d) Harris-Laplace, (e) FAST,

and (f) SIFT.

153

5.1.2. Second experiment: newly introduced simple real images database

The second experiment shows the robustness of our detector against scale,

rotation variation and viewpoint change in comparison to the other operators. The test

image is a real image shown in Figure 5.3 contains four different shapes with different

corner angles. This image is taken manually by a webcam. The first set contains also

four images that correspond to a rotation of the camera by 30o for each image with

respect to the camera central axis normal to the image plane as shown in the first row

of Figure 5.4. The second set contains four images that correspond to four different

scale levels formed by changing the distance between the camera and the image plane

as presented in the first row of Figure 5.5. For each image, the distance is doubled

adequately to obtain a scale reduction by two. The first row of Figure 5.6 shows the

third experimental set which contains also four images of the main database taken at

different viewpoint position.

Fig.5.3. Main image database of simple real images.

154

Fig.5.4. Rotation results. Row 1: original images. Row 2: Proposed detector outputs. Row 3: SUSAN

outputs. Row 4: Harris outputs. Row 5: Harris-Laplace outputs. Row 6: FAST outputs. Row 7: SIFT

outputs.

155

Fig.5.5. Scale variation results. Row 1: original images. Row 2: Proposed detector outputs. Row 3:

SUSAN outputs. Row 4: Harris outputs. Row 5: Harris-Laplace outputs. Row 6: FAST outputs. Row 7:

SIFT outputs.

156

Fig.5.6. Viewpoint change results. Row 1: original images. Row 2: Proposed detector outputs. Row 3:

SUSAN outputs. Row 4: Harris outputs. Row 5: Harris-Laplace outputs. Row 6: FAST outputs. Row 7:

SIFT outputs.

Figure 5.4, Figure 5.5 and Figure 5.6 show the results of applying our proposed

EBCD and the existing operators on the three sets. Tables 5.2, 5.3 and 5.4 contain the

157

quantitative results of the EBCD and the existing operators on the three sets. In Table

5.2 we show results on the image rotated by 60o. On the other hand, Table 5.3

presents results on the image scaled by half from the original one. While in Table 5.4,

we discuss results on the image taken on the second viewpoint position. We can see

the competitive results of our EBCD compared to others. The repeatability of the

detected corners by EBCD, shown in Tables 5.2, 5.3 and 5.4, versus various image

transformations makes them more practical to use in many image processing

applications, especially those relying on repeatable points, than interest points.

Fig.5.7. The five corners studied versus scale variation.

Table 5.2. Quantitative results on the image rotated by 60o: third column of Fig.5.4.

Corner
Detector

#Real
Corners

#False Positive
Corners

#False Negative
Corners

#True Detected
Corners

EBCD 26 2 6 24
SUSAN 26 2 132 24
Harris 26 3 7 23

Harris-Laplace 26 24 6 2
FAST 26 4 0 22
SIFT 26 7 NA 19

Table 5.3. Quantitative results on the image scaled by half: second column of Fig.5.5.

Corner
Detector

#Real
Corners

False Positive
Corners

False Negative
Corners

True Detected
Corners

EBCD 26 3 4 23
SUSAN 26 6 77 20
Harris 26 11 7 15

Harris-Laplace 26 25 4 1
FAST 26 4 20 22
SIFT 26 15 NA 11

158

Table 5.4. Quantitative results on the image taken at second viewpoint: second column of Fig.5.6.

Corner
Detector

#Real
Corners

#False Positive
Corners

#False Negative
Corners

#True Detected
Corners

EBCD 26 2 8 24
SUSAN 26 5 154 21
Harris 26 13 9 13

Harris-Laplace 26 22 4 4
FAST 26 1 20 25
SIFT 26 20 NA 16

Finally, the computation times of all the algorithms are investigated. The EBCD

is implemented and executed using C++ compiler and other detectors are executed

using MATLAB. The machine used has 1.7 Ghz processor with 512 MB RAM. In

addition, we have coded one program written in C++ and MATLAB and we have

found that the execution time ratio between MATLAB and C++ is nearly 70.4. The

main image, shown in Figure 5.3, of size 320x240 pixels is used to explore the

computation time of all detectors. Table 5.5 shows the normalized computation time

results of the tested operators using MATLAB. It is shown that the EDBC requires

more computation time than most other detectors.

Table 5.5. Computation time of various detectors.

Operator EBCD SUSAN Harris Harris Laplace FAST SIFT

Time in seconds 7.1315 0.047 3.297 47.391 1.016 1.344

5.1.3. Third experiment: real images

Our third test is conducted on three real images taken from the literature [153] as

shown in Figure 5.8. In Figure 5.9 we present the corners detected by our proposed

EBCD. Figures 5.10, 5.11, 5.12, 5.13 and 5.14 show the results of other detectors. The

numbers of true detected corners, False Positive corners and False Negative corners

for the rectangles and house images (Figure 5.8) are shown in Table 5.6 and Table 5.7

respectively.

Fig.5.8. Original real images [153].

159

Fig.5.9. Detected corners by our proposed EBCD.

Fig.5.10. Detected corners by SUSAN detector.

Fig.5.11. Detected corners by Harris detector.

160

Fig.5.12. Detected corners by Harris-Laplace detector.

Fig.5.13. Detected corners by FAST detector.

Fig.5.14. Detected corners by SIFT detector.

161

Table 5.6. Quantitative results on the rectangles image.

Corner
Detector

#Real
Corners

#False
Positive
Corners

#False
Negative
Corners

#True
Detected
Corners

EBCD 61 9 31 52
SUSAN 61 11 32 50
Harris 61 46 6 15

Harris-Laplace 61 52 9 9
FAST 61 25 5 36
SIFT 61 17 NA 44

Table 5.7. Quantitative results on the house image.

Corner
Detector

#Real
Corners

#False
Positive
Corners

#False
Negative
Corners

#True
Detected
Corners

EBCD 35 7 20 28
SUSAN 35 8 24 27
Harris 35 26 6 9

Harris-Laplace 35 28 8 7
FAST 35 9 69 24
SIFT 35 10 NA 25

From these quantitative results, we can deduce the following observations. First,

the number of false corners reported by the EBCD is very small compared to that of

the true ones. The numbers of true and false detected corners are derived visually

from the figures. Second, the corner detection is nearly independent of the contrast of

the regions surrounding the corner. Corners are detected on edges between white-

black regions, black-grey regions, grey light-grey dark regions and even between

regions of very low contrast. Third, corners of various angles from very acute to

obtuse ones are detected. Fourth, the detected corners are of variety of angles starting

from small acute angles to big obtuse ones and also they are of various sides lengths.

Finally, the number of False Negative corners, especially with SIFT detector, does not

reflect the true efficiency of the detector. SIFT detector is not built to detect specially

edge corner points. It detects all scale invariant points. Therefore, this number is not

applicable for all experiments.

162

5.2. Experimental results on dominant corners: Polygonal

Approximation

Our proposed algorithm is tested on three different shapes shown in Figure 5.15:

(a) Chromosome, (b) Leaf and (c) semicircles [154]. The results obtained are

compared to those presented in various papers [125-128].

Other than the ISE, a new parameter is introduced for the comparison: the

weighted sum of square error WE given by

� ��� (5.1)

Since our algorithm requires a colored or grey image as an input not only a digital

image or edge image while the others are tested directly on a digital image, we need a

unique platform for comparison. From here, we have selected manually on the edge

image derived by our algorithm the vertices of the polygon reported by each method

in [125-128], then calculate the corresponding ISE and show the results in Table 5.8.

Table 5.8: Comparative Results for the Chromosome, Leaf and semicircle shapes.

Contour Method nc CR ISE WE

Chromosome Marji and Siy [128] 10 29.6 546.2 54.6
(n=296) Carmona-Poyato et al. [126] 12 24.6 439.9 36.6
 Masood [127] 12 24.6 302.5 25.2
 Parvez and Mahmoud [125] 11 26.9 586.9 53.3
 Our Method 10 29.6 429.5 42.9
 11 26.9 370.9 33.7
 12 24.6 302.5 25.2
Leaf (n=840) Marji and Siy 17 49.4 2124.4 124.9
 Carmona-Poyato et al. 21 40 1396.2 66.5
 Masood 23 36.5 1203.1 52.3
 Parvez and Mahmoud 23 36.5 1264.9 55.0
 Our Method 17 49.4 2089.9 122.9
 21 40 1250.2 59.5
 23 36.5 1192.3 51.8
Semicircles Marji and Siy 15 30.7 789.5 52.6
(n=461) Carmona-Poyato et al. 21 21.9 490.1 23.3
 Masood 26 17.7 334.1 12.8
 Parvez and Mahmoud 14 32.9 957.2 68.4
 Our Method 14 30.7 574.5 41.0
 21 21.9 347.3 16.5
 26 17.7 270.0 10.4

From Table 5.8, it can be seen clearly that our algorithm has better ISE and WE

compared to others. This is due to three main reasons. The first one is the excellent

location of the corners due to the efficient straight edge detector. So, the optimal

polygon is the one whose vertices are selected among these corners. The second one

163

is the efficient technique to select the best corners as polygon vertices that will lead to

the minimal error (ISE) at a specific nc. The third one is the update of the LISE, at

each iteration, even for previously suppressed corners. This feedback will ensure that,

when eliminating a corner or selecting a new segment, the maximal LISE is set for

this segment. This fact will show the real LISEV caused by selecting this segment and

as a result will ensure the selection of the segment with the real minimal LISEV.

Fig.5.15: Tested shapes and their polygonal approximations at a particular nc.

For a real image that contains more than one shape or contour, nc cannot be fixed

and considered as an input for the algorithm since existing contours maybe best

approximated by polygons of different number of vertices. In other words, nc cannot

be fixed for all contours. Here, CR or WE plays the big role and must be used both or

at least one of them as inputs. By specifying a threshold for the WE parameter used as

an input, the role of a polygonal approximation algorithm becomes to find the greatest

164

nc per contour that corresponds to the greatest WE less than the specified threshold.

Here the CR is an output. On the other hand, by specifying a threshold for CR used as

an input, the goal still to find the greatest nc per contour, that corresponds to the

minimal CR greater than the threshold. In this case, WE is an output. So the choice of

selecting which parameter or maybe both depends on the specific application.

Finally, Figure 5.15 shows the polygons approximating the tested shapes at a

given nc. It can be seen clearly that the results are very precise.

165

6

First Application Using

Corners: Image Registration

166

6.1. Introduction: Method Outlines

This chapter will discuss our first application using the edge corners and

especially the DCs. This application is an image registration application where the

aim is to model the transformation that related the source and sensed images to

register. Therefore, the suggested registration technique is targeted mainly to register

images where the deformation between them is well approximated by an affine

model. To meet this constraint, the acquisition time interval between the two studied

images should be small. A suggested application is to estimate the motion of a camera

(e.g. drone's camera) acquiring a video sequence of images to monitor the traffic on a

road. The goal is to estimate the motion of moving small targets, e.g. cars, on the

road. We have published our image registration application in [52, 199].

Some precise definitions are required in this chapter:

1. Primitive: it is a set of image features like interest points, level lines, edge

corners, etc that form a specific shape providing some invariant measures

relative to the studied transformation model.

2. Invariant measure: An invariant measure is a quantity, resulting form the

evaluation of an algebraic expression, derived form the primitive and keeping

invariant under the studied transformation.

3. Transformation model: it is the affine transformation that maps the sensed

image to the source image correctly.

Our goal in this chapter is to define new primitives that have invariant parameters

under affine transformation. We need first very repeatable image interest points. Our

DCs meet this constraint as shown in §6.5. In addition, this transformation has more

than one invariant measure, as detailed in chapter 3, which should be followed to form

a primitive. One of these measures is the ratio of areas (Figure 6.4). For this reason,

our primitive is a set of four non collinear DCs located on the same contour. The

primitive invariant measure is the ratio of two triangles areas drawn by these four

DCs. Note that the illumination invariant condition is not required, since the image

features used here are the edges that have normally a strong immunity against

illumination variation.

167

After the construction of the primitives in both source and sensed images, each

primitive in the source image searches for its best match in the sensed image. The

detected couple will vote for the affine model that relates them. After the voting

process, the model that gets the highest vote is selected as the target model

approximating the motion between the two images.

Our main contribution is in the nature of the detected primitives from one side

and the efficiency of the detected points (DCs) used in the primitive construction.

Most registration techniques, based on primitives, form their primitives in both

images focusing mainly on specific shapes that have some invariant properties

without taking into consideration the repeatability of these primitives [33]. Therefore,

a large number of unrepeatable primitives will be introduced in both images. This in

turn will introduce a lot of wasted time in the primitive construction and voting

phases. In addition, unrepeatable voters (primitives) can hamper the solution and can

even lead to an incorrect one especially when they are incorrectly matched together in

both images. Our image registration results are compared in §6.5 with those of

existing techniques in the literature explained in chapter 3.

The main steps of the method can be summarized as follows:

(i) Automatic selection of DCs: On a given contour, the DCs are selected among

the original set of edge corners. It is not efficient to use the CR, explained in

chapter 5, as a stopping criterion due to two reasons. The first one is that it

will lead to a lot of non corresponding DCs on two corresponding contours.

The second one is the need for an automatic criterion to select DCs. Therefore,

we have suggested and used our automatic selection described in section 6.2.

(ii) Primitive construction: A primitive is a group of four consecutive Dominant

DCs located on the same contour. Since the ratio of areas is one of the

invariant parameters against affine transformation, we have taken the ratio of

areas of two triangles formed by two selected triplets of DCs in one primitive

as an invariant measure. This is described in section 6.3.

(iii)Primitive matching and model estimation: When matching two primitives, one

from the source image and the other from the sensed one, two parameters are

taken into consideration. The first one is the ratio of areas while the second

168

one is the corner's angle directions difference. These two parameters are

shown invariant under affine transformation. This is described in section 6.4.

One can add a fourth step which is image resampling to align the source image

and the transformed sensed image. The stages of the algorithm are shown in Figure

6.1. The image registration experimental results are provided in section 6.5.

Fig.6.1. General Overview of the suggested algoritm.

6.2. Automatic selection of dominant corners

In Chapter 5, we have explained the function "Iterative Corner Suppression" that

detects the DCs on a given contour given a certain compression ration CR. In real

169

images, experimental results have lead to bad selection of corresponding corners

using the CR factor or in other terms different numbers of DCs are generated on

corresponding contours in the source and sensed images to register (as shown in

section 6.2.2). To illustrate this point, assume that two images of the same scene are

taken but at different viewpoints. Non corresponding edges could appear. Even

corresponding edges in the two images may have different number of corners.

Therefore, we cannot rely on a compression factor CR as a stopping criterion because

it will lead to a lot of non corresponding corners. On the other hand, even

corresponding corners may have different ISE values if the scaling factor relating the

two images is relatively high. Thus, we need another stopping criterion that solves

this issue.

From chapter 5, the basic measure according to it a corner could be removed is

the LISEV (reflecting the corner strength) that is added iteratively to the GISE. The

affine transformation has the ratio of areas an invariant parameter [44]. So we can

state that any two LISEVs (LISEV1 > LISEV2) corresponding to two corners on the

same contour, will remain in the same order under an affine transformation. Thus,

their order is invariant with respect to an affine transformation. We expect that only

corners with corresponding LISEVs will show up in an image and its transformed one

since the elimination of a corner is based on its LISEV value compared to others

LISEVs. On the other hand, taking the ratio r of the current GISE with respect to the

initial one GISE0 is a good measure that can be used as a stopping criterion.

� ��
(6.1)

While eliminating the corners one after the other, GISE will increase. Thus, we

can stop the elimination automatically when this ratio exceeds a fixed threshold. This

way, even when the scaling parameter between the two images is considerable, we

can still obtain only the corresponding DCs in both images.

6.2.1. The algorithm

The algorithm of iterative corner suppression already presented in Figure 4.32 is

updated to the one presented in Figure 6.2.

170

Fig.6.2. Iterative corner suppression algorithm.

6.2.2. Shape recognition using the automatic selection of DCs

In this section, we study the number of DCs on the contours of two shapes related

by an affine transformation using the two stopping criteria: CR and r.

Figure 6.3 shows two images of the chromosome shapes related by an affine

transformation where a scale variation by a factor near to two occurs in the horizontal

direction. In Figure 6.3 (a), the number of edge points is 487. We set a CR = 3% that

leads to 14 DCs. The GISEs ratio r is in this case equal to 1.3. In Figure 6.3 (b), we

use first the CR = 3% as a stopping criterion and we obtain 11 DCs shown on the edge

image in the middle. Note that 10 DCs are corresponding to the original set of DCs.

Then, we use r = 1.3 as a stopping criterion and we obtain 13 DCs shown on the edge

image to the right. 12 DCs are corresponding to the original set of DCs. It is shown

that using r as a stopping criteria leads practically to better results.

171

Fig.6.3. DCs on a chromosome shape using both stopping criteria.

Since our algorithm can select nearly corresponding DCs on both original and

deformed shapes, we can suggest a shape recognition application based on DCs in the

attempt to recognize shapes at different resolutions.

6.3. Primitive Construction

We present two options for primitive construction from nc DCs located on the

same contour. The first option is to group every four consecutive DCs. So the total

number of primitives is nc. The second option is to take four DCs out of nc. Than the

total number of primitives is the combination of four DCs out of nc �f . For a given

contour of nc DCs, assume that x is the number of unrepeatable DCs. The number N1

of repeatable primitives using first option is given by:

� � �� � � b ��G�G� = � � b (6.2)

Whereas the number N2 of repeatable primitives using second option is given by:

172

� � � �f ��G�G� = � � b (6.3)

In Equations (6.2) and (6.3), if x is greater than or equal to nc-3 than the number

of repeatable primitives N1 and N2 will be negative which means that no

corresponding primitives exist.

Table 6.1 provides a theoretical study of the repeatability of primitives using both

options. A contour with eight DCs is introduced. The repeatability of the primitives is

shown for various values of x. It is shown that the repeatability of the first option

primitives is higher than that of the second option with smaller number of primitives.

Therefore, if we construct the primitives based on the first option, we can ensure the

best repeatability with less number of primitives in turn reduce the voting time. In the

last row in Table 6.1, we assume that e is the number of unrepeatable DCs. By

replacing x by e and nc by eight in Eqs. (6.2) and (6.3), we can find the number of

unrepeatable primitives in the two options.

Table 6.1. Repeatability performance using consecutive or non consecutive DCs.

 Consecutive DCs (option 1) Non Consecutive DCs (option 2)

unrepeatable

DCs: x

#Primitives

nc

#Repeatable

Primitives N1

Repeatability

%

#Primitives ��f

Repeatable

Primitives N2

Repeatability

%

1 8 4 50 70 35 50

2 8 3 37.5 70 15 21.42

3 8 2 25 70 5 7.1

e<5 8 5-e d � �� � 70 ���Vf ���Vf� �

The strength of a DC is proportional to its LISEV value. The LISEV is the

variation introduced to the GISE due to the removal of a corner from the list of

polygon's vertices. It is proportional to the area limited by the corresponding segment

and edge part. Figure 6.4 (c) explains the LISEV3 corresponding to DC3. The average

of the four corners LISEVs is set as the primitive LISEV. Primitives are classified

according to their LISEV. The strongest are those who have the highest LISEVs. The

vote of each primitive will be biased by its LISEV since strong primitives are formed

by DCs of high LISEVs. This means that the corners are of high repeatability or high

probability of occurrence in both images.

To illustrate the method, a polygon of ten DCs as vertices approximating the

contour of a leaf image is shown in Figure 6.4 (a). The four windowed DCs are

173

grouped into one primitive as presented in Figure 6.4 (b). Two triangles, �� �� ��b�

and �� ��b��c� , are considered. The ratio of their areas R is the invariant parameter

and will be used for matching with other primitives in the second transformed image.

Fig. 6.4. Grouping four consecutive DCs into one primitive.

6.4. Primitive matching and model estimation

After the construction of the primitives in the source and sensed images, these

primitives are compared together for matching and only the ones matched enter in the

model estimation.

6.4.1. Two invariant parameters for primitive matching

Using only the ratio R to match two primitives will lead to a lot of false positive

matches. This means that two non corresponding primitives that have similar ratio of

areas are considered by the algorithm as corresponding. To minimize these false

positives, we propose to add another parameter: the corners directions.

These directions are the directions of the two meeting straight edges coded in

Freeman code (0,4 for horizontal right-left, 2,6 for vertical up-down, 1,5 for first

diagonal and 3,7 for second diagonal) [96]. In section 6.5.1, we can show

experimentally that the detected corners are very repeatable against affine

transformation. More details on this experiment, how we can set an affine model and

how we can setup the affine deformation can be found in section 6.5.1.

174

Definition1: The repeatability of a physical quantity derived from an image, e.g.

corner angle, is the stability of this quantity (conserving its value) when deformation,

e.g. affine deformation, is introduced to the image.

Figure 6.5 shows the matching algorithm of two primitives: one from the source

image and the other from the sensed image.

Fig.6.5. Matching algorithm.

6.4.2. Model estimation using Hough transform

Consider now two images related by an affinity. We adopt a group voting scheme

based on Hough transform [149] for the six unknown parameters of the affine

transformation. The idea behind the Hough transform (see chapter 3) is to accumulate,

in a space of representative parameters, the information that insures the presence of a

certain shape or model. In our case, the desired model to be found is an affine model

that has six unknowns. So, the used Hough space has six parameters and each

matched couple of primitives from the two images will increase by one the

accumulator of the corresponding point in this space.

In fact, the division of the four axes corresponding to the affine parameters aij,

shown in Eq. (3.69), is equal to 0.01 and the range is between [-2;2] (we have 400

175

division/parameter). Whereas the one used for the two translations axes is equal to

five and the range is between [-200;200] (we have 80 division/parameter). Thus, two

primitives are matched or said to be very close in the algorithm shown in Figure 6.6 if

their six parameters are equal (belong to the same division). For two matched

primitives, three corresponding DCs from each one are enough to calculate these

parameters and give their vote for the set of the six obtained parameters. Finally, the

set that gets the highest votes will be selected as the target affine model.

Let DC1(x1,y1), DC2(x2,y2), DC3(x3,y3) and DC4(x4,y4) be the DCs constructing a

training primitive in the source image. In addition, let DC'1(x'1,y'1), DC'2(x'2,y'2),

DC'3(x'3,y'3) and DC'4(x'4,y'4) to be the DCs constructing the corresponding test

primitive in the sensed image. Since the affine matrix has six degrees of freedom,

three DCs, {DC1, DC2, DC3} from the training primitive with their three matched

ones, {DC'1, DC'2, DC'3}, from the matched test primitive will be used to form the

model. Thus, the affine transformation [44] in Eq. (3.68) can be rewritten as,

� � � � � ����� �� � �� �

(6.4)

� � � � � � �� �� � �� �
(6.5)

The affine parameters presented in vectors h and h' are calculated in Eq. (6.6) and Eq.

(6.7), respectively:

� � ���� �� (6.6) �� � ���� �� (6.7)

The overall algorithm is fully presented in Figure 6.6. In this algorithm, we use

the four points from each primitive in the parameters calculation. For each primitive,

we form four sets of three DCs each by a combination three DCs out of four. Then,

we let the four sets from the first primitive form four affine models with the

corresponding sets from the second primitive. If two primitives are really

corresponding, their DCs should have same angle directions difference. In addition,

the four formed models should have nearly the same affine parameters. In this case,

the two matched primitives give their vote to their average affine model. At the end of

the voting process, if the difference between the number of votes of the elected model

176

and other models is not relatively high, we can form an additional set of primitives

and thus an additional number of voters. In this set of primitives, a corner is grouped

with its three nearest neighboring DCs to form a primitive. This way of grouping is

also invariant under affine transformations.

Fig.6.6. Image registration algorithm.

6.5. Experimental results

The results are shown using synthetic and real images.

6.5.1. First synthetic images set

The goal from this set is to show the repeatability of the detected DCs versus

various affine transformations. This set is composed of two images: a source leaf

177

image and a target leaf image as shown in Figure 6.7 (a) and (b) respectively. The

target image is generated from the source image using an affine model with the

following values: a11 = 0.8800, a12 = 0.1907, a21 = -0.1008, a22 = 0.7728

(corresponding to Ω = 10o, φ = 15o, λ1 = 1.1 and λ2 = 1.3), tx = -150 and ty = 15.

Due to the introduced affine deformation, some DCs in the source image will not

have corresponding DCs in the target image. However, the number of non

corresponding DCs is small relative to the number of corresponding ones. These two

numbers in the source and target images are derived manually since the remaining

number of these DCs is small. Therefore, their repeatability is calculated manually.

We set the threshold r (ratio of current GISE and initial GISE used as a stopping

criterion) to be r = 5. The number of DCs extracted in the source image shown in

Figure 6.7 (a) is 16 out of 98 corners while their number in the target image shown in

Figure 6.7 (b) is 17 out of 122 among them 15 DCs are corresponding ones.

Fig.6.7. Polygonal approximation and DCs: (a) Source image, (b) Target image.

Next, we will show the repeatability of DCs under various deformations between

the source and target images caused by affine transformation. The source image is the

leaf image shown in Figure 6.7 (a). In each experiment we fix three out of the four

178

affine parameters (Ω, φ, λ1 and λ2) and vary the remaining one. So for each

experiment we have an affine model. Than we generate the target image by applying

the resulting affine model to the source image (as it is shown in Figure 6.7). The DCs

are automatically detected on both contours (source and target) using the same value

of stopping criterion r. Finally, we count manually the number of corresponding DCs

on both contours. Thus, the repeatability is the number of corresponding DCs over the

total number of DCs on the source contour. For example, in Figure 6.8, the

repeatability of DCs and Harris corners used in [136, 137] versus the scaling factor

λ1/λ2 is evaluated. The minimal value of the DCs repeatability is 70% at scale ratio of

four which is considered high when dealing with the suggested application of video

image sequence with small interval of time. Figure 6.9 shows the repeatability of DCs

and Harris corners versus scaling angle φ. It is clear that the worst DCs repeatability

is 75% which will lead to a high repeatability of the formed primitives. Figure 6.10

presents the repeatability versus the rotation angle Ω between the source and the

target images. The worst DC repeatability is 85% which means that the rotation angle

Ω has a small influence on the repeatability value. In these results, we have selected

the stopping criterion as the remaining number nc of DCs which is 20 DCs.

Fig.6.8. Repeatability of corners versus scaling factor λ1/λ2 (Ω = 10o, φ = 15o and λ2 = 1).

179

Fig.6.9. Repeatability of corners versus scaling angle φ (Ω = 10o, λ1 =1.3 and λ2 = 0.8).

Fig.6.10. Repeatability of corners versus rotation angle Ω (φ = 10o, λ1 =1.3 and λ2 = 0.8).

We can even obtain higher DCs repeatability if we select for example 80% of

these DCs that correspond to the highest ISEs. In Figure 6.10, it is shown that for the

given values of the affine parameters (φ = 10o, λ1 =1.3, λ2 = 0.8 and Ω = 90o), the

repeatability of DCs is 85% (17 corresponding DCs out of 20). If we select only 80%

of these DCs, the repeatability becomes 93.75% (15 corresponding DCs out of 16).

It is shown clearly that the suggested DCs detector leads to more repeatable CPs

(DCs) in comparison with the Harris detector used in [136, 137]. The high

repeatability of the DCs leads to a highly repeatable primitives. This is an important

primitive property that is necessary in order to use the primitives for voting for the

affine model relating the target and source images.

180

6.5.2. Second synthetic images set

We used the synthetic image used by Almehio [135]. This image is shown in

Figure 6.11 where we present both the source image (a) and the target image (b). The

target image is generated from the source image using a known affine model. The

goal is to estimate the model using our technique and than compare it with the real

and Almehio models as shown in Table 6.2.

Fig.6.11. Synthetic images [135]. (a) Source image. (b) Target image.

According to the models shown in Table 6.2, we can say that the two methods

give nearly similar affine parameters.

Table 6.2. Estimated affine models.

 a11 a12 a21 a22 tx ty

Real Model 0.9 0 0.05 0.85 0 0
Our Model 0.91 -0.04 -0.04 0.81 2 4

Almehio
Model [135]

0.88 0.008 0.05 0.85 -0.1 -7.7

6.5.3. Third synthetic images set

The goal from this experiment is to show the repeatability of the obtained

primitives and the automatic reduction of their number compared to others primitives.

In addition, we will discuss the time reduction and efficiency of the proposed voting

scheme.

The construction of primitives using the straight edges without any constraints

leads to a major problem. The problem is in the generation of a lot of non

corresponding primitives in both source and target images. It can also lead to an

incorrect solution. Non corresponding primitives in one image could hamper the

181

solution due to their possible incorrect matches (False Positive matches) to other

primitives in the second image. To illustrate this, consider the two images show in

Figure 6.12. Figure 6.12 (a) shows the original shape and Figure 6.12 (b) is the result

of an affine transformation on the original image with the following values: a11 =

0.5187, a12 = -0.0114, a21 = -0.3876, a22 = 1.6150 (corresponding to Ω = 10o, φ = 5o,

λ1 = 2 and λ2 = 0.6), tx = -150 and ty = -70. Visually, the two images are very different.

The second image is very deformed.

Figure 6.13 shows the image straight edges and their corners of the two images

presented in Figure 6.13. In Figure 6.14 (a) and (b), the DCs are shown as solid points

by setting the threshold r given in Eq. (6.1) to be equal to four for the source image

and the transformed one, respectively. The corresponding number of DCs is equal to

eight in both images.

182

Fig.6.12. (a) Source shape. (b) Transformed shape.

Fig.6.13. Level line segments endpoints.

Fig.6.14. DCs on both images.

The primitives are formed using the eight DCs in both images shown in Figure

6.14 (a) and (b). Since all the eight DCs are repeatable, all formed primitives are also

repeatable. In the primitive construction phase, primitives are constructed by only

DCs. Therefore, week corners like the unrepeatable corners of Figure 6.13 are filtered

out from the beginning and will not enter in the primitive construction phase. This

way, since the CPs are equivalent to DCs only, their reduced number compared to the

total number of corners leads to a reduced set of highly repeatable primitives. In

addition, the voting scheme will be accurate due to the high repeatability of the

primitives and also less time consuming since the number of introduced primitives is

smaller and can be controlled through the input parameter r.

6.5.4. NOAA AVHRR real image

The goal from this experiment is to show the enhancement, in terms of CP

construction and matching, that can be done to the work of Lou et al. [137] using the

DCs primitives. Using the algorithm presented in Figure 6.6, two primitives, from the

183

source and sensed images are considered corresponding if their corresponding DCs

have:

 same directions difference.

 similar ratio of areas R.

 similar affine models formed by the voting of every triplet from the target

primitive with the corresponding triplet from the sensed primitive.

In the work of Lou [137], two CPs from the source and sensed images are

considered corresponding if they have similar regions lying inside windows with

proper size centered at these CPs. The similarity measure is a normalized cross

correlation that reflects the degree of resemblance between the two regions.

Fig.6.15. A NOAA AVHRR image. (a) CPs of Lou et al. [137]. (b) DCs as CPs.

The CPs detected by Lou are shown in Figure 6.15 (a). Consider the five CPs

lying inside the yellow rectangle. If we place five windows with the same size

centered at these CPs, we can notice that all the regions lying inside the windows are

very similar. This is the main reason for the wrong correspondence reported by Lou et

al. [137]. In Figure 6.15 (b), our proposed CPs (DCs) are presented located on the

image edges. For every image contour, the DCs are selected from the set of edge

corners by setting the threshold r to be equal to two. Consider the four DCs to the

right joined by yellow segments. These DCs belong to the same edge and form one

primitive. Using the three corresponding conditions for primitives matching makes

this primitive very dissimilar to any other primitive. Experimentally, no other

primitive from Figure 6.15 (b) have the same characteristic.

184

6.5.5. Real images set

For real applications, it is instructive to test the proposed image registration

technique using real images. In the real interior and exterior urban scenes, there are a

lot of straight edges and corners. These corners are nearly stable from one image to

another. This observation makes the corners very important CPs that can be used for

image registration.

Our algorithm relies on DCs extracted by approximating their contour by a

polygon. Therefore, the repeatability of the DCs is based on linking the same contour

in both studied images. In colored real images, some image parts containing two

neighboring regions of a small contrast are encountered. The edge between these two

regions is not always the same in the source and target images even if the deformation

between them is relatively small. Non corresponding primitives will be generated in

this case. However, still in colored real images, a lot of neighboring regions will have

a high contrast enough to generate repeatable contours and thus repeatable primitives.

Fig.6.16. Two tested real images of a common scene.

Figure 6.16 shows two real images taken for a desk in a classical indoor scene

with a camera in motion. Two matched primitives are shown in Figure 6.17 and the

image of difference between the target and the resampled source image using the

obtained affine model is revealed in Figure 6.18. Figure 6.18 (a) shows the second

scene image (Figure 6.16 (b)), Figure 6.18 (b) shows the transformed image of the

first scene image (Figure 6.16 (a)) and Figure 6.18 (c) shows the image difference

between them. In Figure 6.18 (c), Each pixel's intensity is obtained by taking the

absolute difference of corresponding pixels intensities in both images. Thus darker

185

pixels represent higher difference between the compared intensities. Also, the

alignment between the two images is shown. In addition, it is shown that the

transformed image is correctly registered and the difference between the two images

(dark pixels) comes from the registration's interpolation.

For the voting process, the division of the four axes corresponding to the affine

parameters aij is equal to 0.01. Whereas the one used for the two translations axes is

equal to five. Let us concentrate on the primitives, composed of four yellow points,

circled in both source and target images as revealed in Figure 6.19. Each of the two

primitives in the source image is matched to the corresponding one in the target

image. They vote for the same model with the following values: a11 = 0.9682, a12 = -

0.0158, a21 = 0.0106, a22 = 1.0053, tx = 5 and ty = 15. These primitives are repeatable

because they belong to two closed rectangular contours (computer screen contour and

computer window contour) with strong contrast with their background. Therefore, the

more we have shapes with strong contrast with its environment the more likely to

have more repeatable primitives. In addition, many other primitives vote for the same

model. They don’t necessary belong to polygonal contours. The majority belongs to

contours with high gradient vector norm. These contours are located between two

highly contrast regions. Figure 6.18 (a) shown the target image of the scene and

Figure 6.18 (b) shows the transformed image of the source image using the obtained

model. In Figure 6.18 (c), the image of difference is presented. The level of brightness

of a pixel is proportional to the absolute difference of the corresponding target and

transformed pixels. Therefore, the darker the pixel means the greater is the difference.

In real images, the number of corresponding DCs, thus the number of matched

primitives, is less than those in synthetic images due to the complexity of these real

images. Also, the numbers of false positive and true negative matches increase.

However, using group primitive voting or the sum of all votes leads in most cases to

the true model with a good difference with the nearest false one.

186

Fig.6.17. Two matched primitives circled in yellow in the two real images.

187

Fig.6.18. (a) Second scene image. (b) First scene transformed image by the calculated model. (c)

Image of difference between them.

188

7

Second Application Using

Corners: Character

Recognition

189

In this chapter, we provide first in Section 7.1 a background on our suggested

application based on edge corners: character recognition. Section 7.2 explains how to

use ECs for character recognition. Section 7.3 presents the proposed scheme. Section

7.4 shows the experimental results.

7.1. Character recognition overview

This section starts by providing the problem definition in section 7.1.1. Than by

presenting the Yahoo scheme, in section 7.1.2, that is based on connected characters

strategy and that forms also the basis of our work. Section 7.1.3 is an overview on

fuzzy logic that is introduced in the proposed scheme. Section 7.1.4 provides the

contribution from this application.

7.1.1. Introduction: What is CAPTCHA?

Our goal from working on word recognition is not to be hackers to steal access to

some internet application using deformed word images as entry points. However, it is

rather a warning that the introduced schemes, even based on connected characters

strategy, are not very robust and can be attacked. From the explanation of our

technique, one can conclude with a number of improvements that can be made to the

design of the CAPTCHA schemes. In addition, this application is a prior work for our

main robotic application. This application is classified as a Human-robot interaction

where the goal is to communicate with images containing written commands or

information. This application known as Handwritten application is a future work

application that should be developed.

Ahn et. al [138] have proposed several novel designs for CAPTCHA to obtain

more complicated schemes and make them more difficult to recognize for computer

programs. In [139], a survey on the CAPTCHA's earlier works can be found. Yan and

El Ahmad [47] have reported a low cost segmentation attack on the MSN

CAPTCHA's scheme with a success rate of about 60%. They have also developed

another work [140] based on pattern recognition algorithms to break visual

CAPTCHA schemes generated by a web service. Mori and Malik [141] have

developed a shape context matching method that can identify the EZ-Gimpy image

with a success rate of 92% and the Gimpy image with a success rate of 33%.

Chellapilla and Simard [50] have studied various Human Interaction Proofs (HIPs)

190

and have developed a machine learning algorithm with a good success rate. Moy, et.

al [142] have developed a correlation algorithm that estimates the distortion in a text

image. They have achieved a success rate in identifying the word in EZ-Gimpy of

99% and in Gimpy-r of 78%. An attack on a simple CAPTCHA scheme using Neural

Network with a success rate of 66% is reported in [143]. Gao et. al [144] have

combined the segmentation and recognition to attack Yahoo HIPs and have achieved

a success rate of 78%. Their pattern recognition technique is designed especially to

divide and conquer the characters in a word image composed of connected characters.

It starts by a preprocessing step to remove noisy pixels around the characters contours

and then fix the broken characters. Then a guide line principle is introduced and

according to it they can classify the characters into three groups that can help the next

recognition step. Finally, the extraction of each character takes place. It starts by

recognizing the top left character by using its feature of projection only. Then, the

recognized character is removed from the image and the extraction restarts.

We have proposed a fuzzy logic scheme for this problem. There are two

important reasons on the application of fuzzy techniques for character recognition.

The reasons as stated in [146] are:

 Fuzzy techniques are powerful tools for knowledge representation and

processing.

 Fuzzy techniques can manage the vagueness and ambiguity efficiently.

The vagueness in CAPTCHA is due to warping ambiguity, geometrical

deformations and uncertain knowledge.

7.1.2. Yahoo Scheme

Our algorithm can be tested on any CAPTCHA's scheme that follows the same

Yahoo's design characteristics. We will present the experimental results on a database

generated according to the Yahoo characteristics [144] and also compare with other

works using the same Yahoo scheme.

The new Yahoo scheme used for security purposes is based on the connected

characters principles [144]. It consists of merging the characters horizontally after

distorting them as shown in Figure 7.1. The obtained text image can still be easier for

a human to guess but it will be harder for a computer attack.

191

In order to define the Yahoo scheme, we have used the study in [144]. The

authors have collected from Yahoo's website 100 random samples. By analyzing these

samples, they have reported the following characteristics:

 Six to eight characters are used in each sample.

 The background is white and the foreground is dark gray.

 Only 10 upper cases, 12 lower cases and 7 digits are used in the challenges. In

order to guarantee the usability, the other 33 alphanumeric characters are not

used. For example, it is not easy to identify I with 1 clearly for a human being.

 Warping is used for character distortion.

 Characters mostly connect with its neighbors.

 Scattered points are located around the challenge text.

 The whole text of some CAPTCHAs is cosine distorted. From left to right in

horizontal direction, the previous character is upper than the next character in

first quarter and last quarter parts. But in the middle part the previous

character is lower than the next character. And other CAPTCHAs are flat.

 Characters are placed in accordance with their location at the guide lines.

Fig.7.1. The current Yahoo CAPTCHA [144].

Starting from these characteristics, our algorithm is based on the following

observations:

 Knowing the number of characters in advance (between six and eight) helps in

the segmentation.

 The strong foreground and background contrast makes the detection of the

characters contour possible, accurate and even repeatable for deformed

characters.

 The linking phase in the edge detection eliminates easily the scattered points.

 Most of the characters connections correspond to ECs. Therefore, ECs can be

used as keypoints for characters segmentation.

192

7.1.3. Fuzzy logic

In this section, we present first an introduction to fuzzy logic and then an

overview on different fuzzy logic techniques applied in image processing.

7.1.3.1. Introduction: What is fuzzy logic?

Fuzzy Logic [145] is built around the concept of reasoning in degrees, rather than

in boolean (yes/no) expressions like computers do. A fuzzy system is composed of

input and output variables, called linguistic variables, defined in terms of fuzzy sets.

Decision rules are specified by logically combining fuzzy sets. The combination of

fuzzy sets defined for input and output variables, together with a set of fuzzy rules

that relate one or more input fuzzy sets to an output fuzzy set, built a fuzzy system.

Different block diagrams have been introduced for a fuzzy logic system.

However, the most commonly used [208] is composed from three main functions:

 Fuzzification: The input/output deterministic variables are transformed to

linguistic variables defined as fuzzy sets. A membership function (Triangular,

Trapezoidal or Gaussian) is selected to represent each fuzzy set.

 Fuzzy Laws: The fuzzy laws are applied on the input linguistic variables to

calculate the output linguistic variable.

 Defuzzification: The output deterministic variable is estimated from the output

linguistic variable using the inverse of the output membership function.

In image processing, fuzzy logic is widely used for clustering (known as fuzzy

clustering detailed in section 7.1.3.2.1) or segmenting an image. It is also used in

image feature detection (e.g. edge detection explained in section 7.1.3.2.2) and for

shape/character recognition (detailed in sections 7.1.3.2.3 and 7.1.3.2.4).

7.1.3.2. Fuzzy logic overview

7.1.3.2.1. Fuzzy clustering
Fuzzy-C-Means (FCM) [155] is one of the most famous unsupervised fuzzy

clustering techniques that are applied with success in image segmentation [156-166].

Although the original FCM algorithm yields good results for segmenting noise free

images, it fails to segment images corrupted by noise or containing inaccuracy edges.

This sensitivity is essentially due to the absence of utilization of the information on

the spatial position of pixels to be classified.

193

The idea [179] is to partition a finite collection of n elements into a collection of

C fuzzy clusters. FCM clustering [157] can be described as follows: Let X={x1, x2, …,

xn} denoted a set of n objects to be partitioned into C clusters, where each xj has d

features. The FCM algorithm minimizes the objective function J defined as follows:

T �""-� ' �	 ' ! �' �
�
�

(7.1)

Where:

 vi represents the ith cluster center.

 uij represents the membership degree of the jth object to the ith cluster.

 D represents a distance metric (e.g. Euclidean distance) that measures the

similarity between an object and cluster center.

 m≥1 is the degree of fuzzification.

The membership degree uij of xj to the ith cluster is determined by calculating the

gradient of the objective function J with respect to uij. It is given by:

� ' � 	"	�	 ' ! �+�	 O ! �� ����
O � ���

(7.2)

The cluster centers vi (1 ≤ i ≤ C) are determined by calculating the gradient of J with

respect to vi:

!' � 	"-� ' '�+' � 	"-� ' �' �
(7.3)

The FCM algorithm can be summarized in the following steps:

 Step 1: Fix the cluster number. Initialize the centers by random points from

data set.

 Step 2: Update the membership degrees by using Eq. (7.2).

 Step 3: Update centers using Eq. (7.3).

 Step 4: Repeat steps 2 and 3 until convergence.

The convergence of this algorithm will be reached when the change in membership

values is less than the threshold.

194

Applied in image processing, the FCM's object xj is an image pixel and the FCM

clusters are the regions of similar contrast. For traditional FCM algorithm, the only

used pixel's feature is the grey level feature which leads to bad classification in the

presence of noise. Kalti et al [157] have tried to minimize this drawback by

introducing additional pixel features like the spatial information of a pixel in its

neighborhood.

7.1.3.2.2. Edge detection in digital images using fuzzy logic
Alshennawi et al [206] have proposed an edge detection technique in digital

images using fuzzy logic. The major improvement is in the detection without

determining a prior threshold value or need training algorithm. Patel and More [209]

have suggested nearly the same edge detection method with the same enhancement

but for Cellular Learning Automata (CLA). Next, we will detail the edge detection

technique proposed by Alshennawi.

The input and output images of the suggested fuzzy system are both 8 bit

quantized. Thus, their grey levels are between 0 and 255. The first step is the

fuzzification where membership functions are selected for the input and output

variables (pixel's grey level) shown in Figure 7.2. The membership functions are

triangular and experimentally it is found that the best result to be achieved at the

range black from zero to 80 gray values and white from 80 to 255. Thus, we have two

fuzzy sets for the input variable: Black and White and three for the output variable:

Black, Edge and White.

The second step, after fuzzification, is the introduction of fuzzy laws to find the

fuzzy output. The proposed approach begins by segmenting the image into regions

using 3x3 matrix. The condition of each pixel (Black, White or Edge) is depending on

the weights of the eight neighbors that are degree of Black and degree of white.

Figure 7.3 shows all the cases where the checked pixel is classified as an edge pixel:

If the levels of the eight neighbors represented in one line are black and the remaining

ones are white (Figure 7.3 (a)) then the checked pixel is an edge pixel. If the levels of

four sequential pixels are black and those of the remaining four neighbors are white

(Figure 7.3 (b)) then the checked pixel is an edge pixel.

195

Fig.7.2. (a) Membership associated to the input variable. (b) Membership associated to the output

variable [206].

Fig.7.3. Fuzzy laws [206].

The third step is the defuzzification. The output image is a binary edge image

where Black/White pixels are set to 0 grey level and Edge pixels are set to 255.

The major drawback of this method, as also claimed in the previous section

7.1.3.2.1, is in the only usage of the pixels grey levels without any usage of their

spatial information. This fact makes the detection of edges fails in the presence of

noise.

7.1.3.2.3. Recognizing hand-drawn geometric shapes using fuzzy logic
Fonseca et al [167] have proposed a fuzzy logic technique to recognize hand-

drawn geometric shapes interactively. Their algorithm recognizes elementary

geometric shapes: triangles, diamonds, rectangles, circles, ellipses, lines and arrows

shown in Figure 7.4 (a) and five gestural commands: delete, undo, wavy-line, move

196

and copy shown in Figure 7.4 (b). Shapes are recognized independently of changes in

rotation, size or number of individual strokes. Commands are shapes drawn using a

single stroke.

Fig.7.4. (a) Multi-stroke geometric shapes. (b) Uni-stroke shapes [167].

A training set is formed by drawing each shape thirty times: ten times using solid

lines, ten times using dashed lines and ten times using bold lines. Next, the convex

hull of these shapes is computed using Graham's algorithm [180]. Then using this

convex hull three special polygons are computed and drawn. Using a simple three-

point algorithm, the largest-area triangle that fits inside the convex hull is identified.

The second polygon is the largest-area inscribed quadrilateral and the third is the

smallest area enclosing rectangle (See Figure 7.5). Finally, the area and perimeter of

each polygon are computed to estimate features and degrees of likelihood for each

shape class.

197

Fig.7.5. Polygons used to estimate features [167].

Each particular shape is characterized by a set containing one or more of these

geometric features. For example, to distinguish Diamonds from other shapes the area

of the largest triangle that fits inside the convex hull (Alt) is divided by the area of the

largest quadrilateral (Alq). The obtained ratio has values between 0.5 and 0.6 for

diamonds and bigger ones for other shapes as shown in Figure 7.6. Another example,

in order to identify Rectangles two ratios are used. One measures the largest

quadrilateral that fits inside the convex hull against the enclosing rectangle. For

rectangular shapes the area of the convex hull will be very close to that of the

enclosing rectangle (Aer) and this one will be very close to the largest quadrilateral.

The Ach/Aer and Alq/Aer ratios will have values near unity for rectangles as shown in

Figure 7.7.

Fig.7.6. Percentiles for the ratio Alt/Alq [167].

The fuzzification starts by selecting a fuzzy set for each shape per geometric

feature. For example, the fuzzy sets for the Diamond and Rectangles shapes versus

the geometric feature Alq/Aer is shown in Figure 7.8. Each fuzzy set boundary is

determined experimentally and can be concluded as well from the bottom row image

in Figure 7.7. "Dom" in Figure 7.8 refers to degree of freedom.

198

Fig.7.7. Percentiles for the ratios Ach/Aer and Alq/Aer [167].

Fig.7.8. Fuzzy sets [167].

Next fuzzy rules are applied to take a decision and recognize the studied shape.

The recognizer calculates the degree of membership for each shape class. This degree

is the result of AND together degrees of membership for the relevant fuzzy sets. As an

example, the fuzzy rule that recognizes a Diamond can be stated as follows:

If Alt/Alq is like Diamond AND

 Alq/Ach is not like Ellipse AND

 Alq/Aer is not like Rectangle

THEN

 Shape is Diamond.

Where Alt/Alq, Alq/Ach and Alq/Aer are geometric features that characterize

Diamond, Ellipse and Rectangle shapes respectively. "AND" denotes the conjunction

of fuzzy predicates dom(f AND g) = min(dom(f),dom(g)) and "NOT" is defined by

dom(NOT f) = 1 – dom(f).

199

This method is very important recognition method since it is based on geometric

features of shapes. In addition, the fuzzification makes it very robust against natural

random deformation introduced to each hand-drawn shape.

7.1.3.2.4. Recognizing handwritten characters using fuzzy logic
Fuzzy logic is also introduced for recognizing handwritten characters [168, 207].

The proposed system is shown in Figure 7.9.

Fig.7.9. Proposed character recognizer [168].

 The input image is a handwritten character image from A to Z. It is partitioned

into 4x4 matrix cells as shown in Figure 7.10.

Fig.7.10. Character 'A' [168].

Each character cell is analyzed for characteristic features according to a specific

pattern. Therefore, a pattern extractor is used for this purpose. Then, the Character

Analyzer and Character Recognition System which constitute the fuzzy processor

200

consists of a number of IF THEN ELSE rules (fuzzy rules). These rules may be

applied to the output from the pattern extractor which will be in the form of a fuzzy

matrix of all the cells constituting a particular character, each cell having the

membership value, and the category name under which it has membership associated

with them. The membership values may be classified into 'Low', 'Medium', and 'High'

with membership values overlapping between them as shown in Figure 7.11. So, three

fuzzy sets are introduced for this application.

Fig.7.11. Membership functions for each pattern in each cell [168].

This method is a pattern recognition method that can lead to wrong recognition

when the deformation introduced to the handwritten character is not small. In

addition, it will not work in an attempt to recognize connected characters since some

parts of a character can be merged with its successive character. In this case, a pattern

recognizer would fail.

7.1.4. Our contribution

The proposed character recognition application is designed to attack and break

CAPTCHA schemes to segment and recognize correctly the included characters. Most

of existing methods have developed pattern recognition or machine learning

algorithms to attack the CAPTCHA schemes but they haven't reported till now

effective attacks on the new Yahoo CAPTHCA scheme based especially on the

connected characters. In addition, they have tried to segment all the characters and

after that try to recognize them.

Our proposed algorithm tries to solve the same problem of these studied ones but

using new features called "Edge Corners (ECs)". These ECs are edge points

corresponding to edge deviations that are repeatable over affine transformation. In

addition, a given contour can be approximated using a polygon whose vertices are

dominant ECs. These points are detected after the construction of the contours of an

image using an edge detector. We have developed a simultaneous segmentation and

201

recognition technique per character similar to that suggested by Gao et.al [144] with a

good success rate. The main difference is in the features used. They have developed

pattern recognition scheme and we have used ECs to develop a fuzzy logic matching

scheme.

In addition, we have developed a very efficient fuzzy logic algorithm for the

character recognition based on the distribution of the ECs on the contour. The

fuzzification idea comes from the introduced random deformation on the characters. It

is shown to give good matching results even with this randomness. The overall

suggested technique is able to solve many segmentation difficulties shown by other

researchers. The idea proposed by Kalti [157] inspires us to develop spatial

information rather than grey level information for robust matching of our image

features (ECs). In addition, in our recognizer, we have followed nearly the same

procedure of Fonseca [167] with also geometric features. However, our geometric

features are very different since our application constraints are different.

We have published our work on ECs in [28, 198] and our work on character

recognition using fuzzy logic in [200].

7.2. Edge corners "ECs" classification

In this application, edge corners "ECs" defined in chapter 4 are used. Each corner

is characterized by:

 its angle which is the absolute difference of the two adjacent straight edges

directions.

 the lengths of its two adjacent segments or straight edges.

Each EC is classified according to its two characteristics into "Strong" or "Week"

corner (detailed in the next section). Therefore, we have made a small update to our

EBCD to detect and classify the ECs according to these two types.

7.2.1. ECs Detection: Update to the EBCD

After detection of all edge pixels, the corner detection is initialized. At each edge

pixel, three variables are used:

- dirc: the current direction of the edge at the current edge point.

202

- dirp: the previous direction of the edge at the previous edge point.

- dirdiff: their absolute difference given by,

2� 2�%% � 92� � � 2� 9 (7.4) �%	2� 2�%%� < c� ����2� 2�%% � � � 2� 2�%% (7.5)

The corner detection algorithm is shown in Figure 7.12.

Fig.7.12. Corner detection algorithm.

Corners that are highly repeatable versus various deformations are those who

have dirdiff above two. Therefore, the edge pixels whose dirdiff is greater or equal to

two are tested first. In both directions of each of these pixels, we test the existence of

two real straight edges SE1 and SE2 of length greater than three pixels for example. If

the test succeeded, the current pixel is classified as a corner. All the pixels belonging

to a detected straight edge are marked and will not be tested as corners. After testing

the pixel with dirdiff larger than two, the edge pixels whose dirdiff is equal to one are

tested next for a corner presence.

A corner is classified as strong corner if it has a dirdiff greater or equal to two and

its two straight edges lengths are long enough (more than 3 percent of the total edge

points on their contour). Otherwise, it is classified as a week corner. Figure 7.13

shows the edge image of the z character and its detected corners as solid points. The

203

total number of edge points is 330 pixels. From Table 7.1, points A, D, F and I are

strong corners and have been tested first and reported as corners since their dirdiff is

equal to two. As shown in Table1, each corner corresponds to two straight edges SE1

and SE2. Each of these SEs is characterized by its length: Length (number of pixels)

and its direction: dir (mean of pixels directions).

Fig.7.13. Edge image of the z character and its ECs.

Table 7.1. Corners Information of the z character.

Corners cdir,pdir,dirdiff Straight Edges Classification

SE1,SE2 Directions

dir1-dir2

Lengths

Length1,le

ngth2

A 7,5,2 AB,AL 0-1.3 71,81 Strong

B 1,0,1 BC,BA 1.3-4 3,71 Week

C 2,1,1 CD,CB 1.9-4.6 20,3 Week

D 5,3,2 DE,DC 5.5-5.8 17,20 Strong

E 4,5,1 ED,EF 1.2-4 17,49 Week

F 1,3,2 FE,FG 0.1-1.3 49,83 Strong

G 3,2,1 GH,GF 4-5.3 63,83 Week

H 6,5,1 HG,HI 7.9-5.9 63,21 Week

I 1,7,2 IJ,IH 1.5-1.9 15,21 Strong

J 1,0,1 JK,JI 0-5.3 39,15 Week

K 6,7,1 KJ,KL 4.1-5.6 39,3 Week

L 5,6,1 LK,LA 2.3-5.3 3,81 Week

7.2.2. Why ECs?

We have focused in our research on detecting edge points that can have a strong

immunity with respect to local and global warping introduced by Yahoo and other

schemes. The Yahoo word image has a size of 290x80 pixels [150]. After applying

204

the corner detection on a set containing 100 random samples collected from Yahoo

scheme, we have concluded with these observations:

Observation 1: Some new week corners can appear (type I).

Observation 2: Some week corners can disappear (type II).

Observation 3: Rarely Strong corners disappear or new ones appear (type III).

Observation 4: Above 95% of the connections between two characters contain at least

one corner: Connection Corner (type IV).

Observation 5: The border that splits two connect characters is not necessarily a

straight line. It corresponds usually to a sequence of non collinear

straight segments.

Observation 6: When there is more than one Connection Corner (CC) on border

between two characters, the maximal absolute difference between their abscissas is

less than ten pixels.

The corners of types I and II are introduced due to the local warping that deforms

the character and also due to the affine deformation applied to it. Type III corners can

disappear only due to the merging of the two characters. It is shown in Figure 7.14

that the strong corners located to the left and to the right of the contour of the digit

four are disappeared due to the connections to its neighboring characters.

Figure 7.14 (a) shows the edge image with the detected ECs, as solid points, of

the Yahoo text shown in Figure 7.1 (b). Figure 7.14 (b) shows the edge images of the

matched characters/digits. We can see also the corners of types I and II when we

compare the corners on the contours of the deformed characters and the original

characters shown in Figure 7.14 (a) and (b) respectively. In Figure 7.14 (b), the strong

corners are shown on the characters/digits contours. On the other hand, Figure 7.14

(a) shows the connection corners (CCs) on the warped word image contour. Notice

that from the first five circled CCs from the left located on the connection between the

characters G and L of the deformed word in Figure 7.14 (a), we can draw the border

that can split them correctly. It is clear that this border is formed by a set of

consecutive straight segments each one of them is composed of two CCs.

205

Fig.7.14. (a) Connection corners on the deformed characters contours. (b) Strong corners on the

original characters contours.

Based on these observations, we have built an intelligent algorithm that can

segment and recognize simultaneously each character of a Yahoo word image using

its detected ECs.

7.3. Proposed scheme: Simultaneous Segmentation-Recognition

The proposed scheme consists of a simultaneous segmentation and recognition of

the characters/digits in a deformed word image. Initially, a training set is formed. It

contains the images of the characters/digits used by the Yahoo scheme to form the

warped word image. The ECs of each training image are detected as shown for the

characters G, L and C and for the digit 4 in Figure 7.14 (b). Then a test image,

containing the deformed word image, is fed to the algorithm in an attempt to

recognize correctly the characters/digits in it.

The segmentation consists of selecting a part from the input word image by

setting a left and right border in an attempt to localize the target character. The

recognition is used to match the segmented part with the characters/digits training set

and outputs a matching percentage.

Figure 7.15 shows the proposed attack on a deformed word image composed of

two characters: G and 3. The attack is characterized by five phases:

 Fix the left border (in red) and move the right border (in blue) across the ECs

from left to right. These borders are straight lines passing through one EC.

This is called "Segmentation trial".

206

 For each segmentation trial, the image part located between the left and right

borders is matched to the training characters/digits. This operation outputs a

matching percentage. Five segmentation trials are shown in Figure 7.15 (b).

 When all segmentation trials are considered or when the right border passes

through the most right EC, we search for the trial having the highest matching

percentage and select its right border for further testing to form the optimal

multi-line (sequence of segments) right border. At any EC, the number of

generated straight line right borders is much less than that of multi-line right

borders. Therefore, to reduce the number of right borders to be tested, we

consider first the straight line right borders formed at every EC in the image

than we select only the one that achieve the highest matching percentage. It

will be used as a foundation base to form the optimal multi line right border.

In Figure 7.15 (b), the fourth trial is considered corresponding to highest

matching percentage. In fact, this line is used to localize the region of

connection between two consecutive characters.

 The EC of the selected straight line right border will localize all neighboring

ECs with abscissas absolute difference less than or equal to ten pixels as

revealed in Figure 7.16 (a) for all ECs located inside the black box. These

located ECs will enter the test to form the optimal multi-line right border.

This border is a sequence of segments passing by the ECs that are considered

as CCs, according to Observation 5. Among all possible borders that pass

through these ECs, the optimal one is the one that corresponds to the highest

matching percentage. In this step, all training characters/digits are taken for

matching. In Figure 7.16 (a), the optimal right border composed of four

consecutive segments is shown and the recognition rate achieved is about 56%

corresponding to the character "G".

 The optimal right border becomes the left border for the segmentation process

of the next character/digit as shown in Figure 7.16 (b). The whole process will

be repeated until each character in the word image will be segmented and

recognized.

The idea of the proposed algorithm is shown in Figure 7.17 and it will be fully

detailed throughout this chapter. The optimal segmentation is the one corresponding

to the highest matching percentage obtained by the recognition stage. Initially, the

207

segmentation starts by taking the input deformed word image. Each segmented part,

like for example the one located between borders LB-RB1 in Figure 7.18, enters the

recognition phase to match the training characters. This phase will output a matching

percentage. Then a new segmented part is generated, like the one located between

borders LB-RB2 in Figure 7.18, and a new matching percentage is generated. The

combined process segmentation/recognition will be repeated until the resulting

segmented part becomes the whole input image. Then, the optimal multi line right

border is formed to segment the optimal segmented part having the highest matching

percentage. This part is then removed from the input word image and the whole

segmentation-recognition process restarts again on the remaining image until all the

characters/digits are recognized.

Fig.7.15. Search for the best straight line right border segmenting 2 deformed connected

characters. (a) deformed image and its ECs. (b) various segmented parts and its corresponding

recognized character with the matching percentage.

Fig.7.16. Optimal segmentation using multi line right borders. (a) Three different segmentation

trials using three multi line right borders with the corresponding matching percentage. (b) The

remaining part to recognize by the same procedure.

208

Fig.7.17. The overall algorithm.

Fig.7.18. Segmenting and recognizing the first character of a part of the deformed GLC4GZ word

image.

Figure 7.18 shows the segmentation and recognition process of the character G of

the deformed word from Figure 7.1 (b). The left border LB is in black to the left. The

other four borders are four straight line right borders RBs selected from hundreds of

right borders. Each LB-RB couple corresponds to a segmentation trial and the

segmented image's part located between them is matched to the characters/digits

training set. RB3 is the selected straight line right border that corresponds to the

highest matching percentage among all straight line right borders as shown in Table

7.2. If the optimal right border is kept as a straight line passing by one EC as shown in

Figure 7.19 (a), the segmented part will not correspond adequately to the G character.

209

Thus, the straight right border adjustment to a multi-line border is needed. It

represents the fourth phase of the proposed attack. The goal is to increase the

matching percentage, to give accurate segmentation of the desired character as it is

shown in Figure 7.19 (b) and to draw the optimal left border of the next letter L. Table

7.2 shows the matching percentage and the matched training character/digit for each

segmented part.

Fig.7.19. The segmentation of the "G" character of Figure 7.18. (a) selected straight line right

border. (b) optimal multi-line right border.

Table 7.2. Matching percentage of various segmented image parts.

Segmented

Part between

Matched

Character

Matching

Percentage

LB-RB1 D 22%

LB-RB2 C 26%

LB-RB3 C 33%

LB-RB4 G 23%

LB-RBopt G 36%

Next we will explain each function of the algorithm alone and how they can

corporate to attack the Yahoo scheme.

7.3.1. Segmentation

Based on Observation 4, above 95% of the connection edge points between two

merged characters are corners called Connection Corners (CCs). Since the objective

of any attacking scheme is to have a success rate above 0.01% [2, 3], we can

speculate that the intermediate border, that splits correctly two connected characters,

passes probably by a CC. In addition, using Observations 5 and 6, we can define a

border as a segment or sequence of segments that passes through one or more CCs.

210

The segmentation's aim is to find the LB and RB that define adequately each

character's borders in conjunction with the character recognition function. The first

character segmentation starts by fixing the LB as a vertical straight line passing by the

most left EC while moving RB through the ECs from the most left to the most right

one. At every EC and for proper segmentation, the RB is set as M straight lines: One

vertical line and M-1 straight lines with slope deviations -45<∆θ<+45. In Figure 7.20,

the corresponding straight lines for the EC(32,35) are shown for M=5. This set is

called "M Borders Set" (MBS). Then, the best straight line RB corresponding to the

segmented part with the highest matching percentage is adjusted to a multi-line RB for

more segmentation precision. For this purpose, a set called "Combination Borders

Set" (CBS) is formed using only the EC of the best straight line RB and its

neighboring ones. The optimal multi-line RB is adjusted to one of the CBS set. At this

level, we should distinguish between:

 Definition1: M borders set (MBS) where each border is a straight line.

 Definition2: Combination borders set (CBS) where each border is a sequence

of segments (multi-line).

7.3.1.1. Character’s borders identification: M-Borders Set (MBS)

When starting the segmentation of the first character, it is intuitive to set the LB to

be a vertical line passing through the first left corner. This is obvious since the ECs of

the first character are all to the right of this LB. The construction of the RB is not that

intuitive since it is located between two possibly connected characters where usually a

border is a sequence of segments passing through one or more ECs. In addition, we

don't know a priori which ECs are the CCs. Therefore, in order to set the adequate RB,

the ECs set is ordered from left to right, then every EC is considered as a CC and the

corresponding MBS is formed. The current EC used in this purpose is called CCor.

For each RB, we try to recognize the character, using its ECs, located between LB and

RB. The straight RB, from one of the MBSs, that corresponds to the best recognized

character with the highest matching percentage is considered. Adjustments must be

performed to obtain the optimal multi-line RBopt. Then for the recognition of the next

character, we set the LB as the RBopt of the previously recognized character. This

process will iterate until the RBopt passes through the last EC to the right of the

image.

211

Due to deformations introduced to each character and especially rotation, some

CCs are translated from their original positions. For example, the two most right

strong corners of the G character shown in Figure 7.14 (b) have almost the same

abscissa. However, their corresponding ones on the deformed word image of Figure

7.14 (a) have not. Therefore, we cannot set the RB only as a line passing by a CC. A

good choice to overcome the variations in the ECs positions is to set RB also as an

oblique straight line with a given slope. Some Yahoo CAPTCHAs are cosine distorted

[18]. According to Observation 6, the maximal absolute difference between the

abscissas of two CCs belonging to the same RB is less than ten pixels. Knowing that

the height of the characters in a Yahoo scheme varies between 15 to 80 pixels [21],

the maximum rotation introduced, corresponding to the ten pixels maximal difference

between two CCs, is g � ����)��� � bb�� . Therefore we take M lines with slope

deviations -45<∆θ<+45 as stated before. As a result and at every EC, a set of M

straight line borders, called "MBS" (M Borders Set), with M different slopes (with

slope deviation ∆θ) is formed. Figure 7.20 shows the MBS corresponding to the point

(32, 35) set as CCor for M = 5 and ∆θ = 22.5o.

However, the straight RB is not adequate because it passes only through one CC

and does not represent a good choice of LB for the upcoming character. Therefore, a

more accurate multiline RB segmentation procedure is used for which the CBS set is

introduced.

Fig. 7.20. The MBS (M=5) drawn in grey at EC (32,35).

 7.3.1.2. RB adjustment: Combination Borders Set (CBS)

After detecting the best straight RB from the MBS set, we form a new set of

borders passing through its corresponding current corner (CCor) and its neighboring

ECs. We must define:

212

 Definition 3: Neighboring corner: an EC is classified as a neighboring corner

to a CCor if it is located below it and the absolute difference between their

abscissas does not exceed ten pixels according to Observation 6.

For the CCor, the borders formed by a combination of all its neighboring corners

are called Combination Borders Set (CBS). Assume that n is the number of

neighboring CCs, ordered by their ordinates, relative to a given CCor. All borders

formed using CCor and its neighboring corners should have CCor as the first top

corner. A border is composed of K corners (1≤K≤n+1). The border passes through

CCor and K-1 of its neighboring corners and it is composed of K+1 segments. The

first segment is a vertical segment starting from top image border and passing through

the first top CCor. The second segment connect CCor to its nearest neighboring

corner. The remaining segments connect the successive neighboring corners from top

to bottom. The last segment is a vertical segment passing through the last neighboring

corner and ending on the bottom image border. Thus, the number of borders,

composed of K corners, is a combination � �� since all the borders must pass through

CCor.

The total number of possible borders nB, in this CBS set, formed by a CCor and its n

neighboring corners is given by

�
 � �"��
(7.6)

The main idea behind introducing the MBS set first is to minimize the number of

candidate borders to test. After detecting the best straight line RB from the MBS set,

the multi-line RBopt search starts by forming the CBS set corresponding only to the

EC in the best vertical line RB. Then, the obtained RB is adjusted to obtain the RBopt

from the CBS corresponding to the highest Matching Percentage. This way, we can

minimize the number of CBSs generated. The RB adjustment is also shown in Figure

7.22.

Figure 7.21 shows the corners coordinates located on the contour of the first two

characters G-L from the Yahoo word image in Figure 7.1 (b).

213

Fig. 7.21. Corner coordinates of G-L characters.

In Figure 7.22, we have drawn through the point CCor (29,30) three borders. The grey

border is a straight border passing through only CCor while the red and blue are

multi-lines borders passing through CCor and its neighboring corners. This CCor has

n=13 neighboring corners. Therefore we obtain nB=8192 total number of possible

borders. The drawn borders are only three possibilities of nB borders that are drawn

starting by CCor. In addition, the matched character and the corresponding

recognition percentage are also shown for each border.

Fig. 7.22. Three borders, from the CBS, drawn to split the G-L characters.

7.3.1.3. The algorithm: ECs based segmentation

The segmentation algorithm is shown in Figure 7.23 using first the FBS. The

variables used are defined as follows:

- IsFirstCharRec: Boolean variable used to check if the first character in the Yahoo

word is recognized.

- LB: array of points (CCs) corresponding to the Left Border.

- SetLB: Boolean variable used to flag when LB should be set.

214

- RB: array of points (CCs) corresponding to the Right Border.

- RBopt: optimal RB.

- CCor: Current Corner.

- SL: Straight Line.

- CShape: array of ECs that form the Current Shape.

- M: input parameter equivalent to the number of straight lines per MBS.

- Δθ: input parameter equivalent to the slope deviation.

- b: temporary border.

Fig.7.23. ECs based segmentation algorithm.

215

Our algorithm result on segmenting the characters in the word image in Figure

7.20 shows that the vertical border (border RB3 in Figure 7.18) from the MBS formed

at EC(32,35) is the best straight RB corresponding to highest recognition percentage.

Then, the CBSs are formed corresponding to this EC. From these CBSs, the multi-line

RBopt will be selected to be the red border shown in Figure 7.22.

7.3.2. Recognition

After setting the LB, the search starts to select the multi-line RBopt that is always

achieved by a recognition process. Therefore, the cooperation between segmentation

and recognition is required and the optimal segmentation is achieved by the best

recognition.

7.3.2.1. EC properties used for recognition

Three parameters are used for recognizing the ECs:

 The directions and the lengths of its two straight edges (SEs).

 The numbers of crossed edges from both sides of the EC's angle.

 The bin index or quadrant index.

7.3.2.1.1. Directions and lengths of the two SEs

 Each EC is an intersection of two non collinear SEs as explained in the algorithm

shown in Figure 7.12. The SE direction is the average of its edge pixels directions. In

addition, the SE length is the number of these pixels. Therefore, an EC is

characterized by the directions and lengths of the two adjacent SEs.

7.3.2.1.2. Number of crossed edges
Knowing the SEs directions at a given EC, we can calculate the EC's angle and

form the bisector line. We can also select two additional lines passing through the EC

and having a slope ±45o with respect to the bisector line. These line are labeled and

drawn at EC(11,31) in Figure 7.24. The number of crossed edges by each line and

from both sides of the angle is recorded. For each segmented part of a test image

limited by a LB and RB, only the crossed edges located between the LB and the RB are

taken into consideration as shown in Figure 7.24. Figure 7.24 shows the segmented

part from the test image shown in Figure 7.21 where the RB is the red one. It is

matched to the training image presented in Figure 7.25 (b). Line 2 is the angle

bisector at EC(11,31). From the acute angle's facing side, the number of crossed edges

216

is equal to two for the three lines. From the opposite side, the number of crossed

edges is equal to one. Note that the numbers of crossed edges from the two sides is

not necessary equal at every EC. Using the number of crossed edges will eliminate a

lot of false matches.

7.3.2.1.3. Bin index
In the segmented part image from the test image and the training image, two

perpendicular lines, drawn in black in Figure 7.25, passing by the image center point

are drawn. They partition each image into four bins or quadrants (Quad) indexed from

one to four. Every EC records the index of the corresponding bin.

Fig. 7.24. Segmented part from the test image with the three lines drawn at EC(11,31).

Fig.7.25. (a) Segmented part from the test image with quadrants (b) Training edge image relative

to the G character with quadrants.

7.3.2.2. Most likely matched ECs "MLMC"

Two ECs, one from the training image and the other from the segmented part

image, are said to be MLMC if:

217

 The two ECs and their two directly linked ones have the same straight edges

directions.

 They have the same numbers of crossed edges.

 They belong to the same bin.

After segmenting an image part from a test image, it will be matched to all

training images. The MLMCs are searched first. The SEs lengths are not considered

due to the difference that can occur due to scaling as shown in Figure 7.25. Also, the

appearance and disappearance of some ECs can modify the SE length of the directly

linked EC. On the other hand, taking the direction average of pixels belonging to the

same SE as its final direction is a good way to overcome the encountered noisy

directions. For example in Figure 7.25 (b), the SE between the two ECs (26,20) and

(24,61) has some noisy directions directly above EC(24,61). However, the final SE

direction is around 1.9 which is the true direction starting form (24,61).

The ECs (5,28)-(6,31) and (32,46)-(50,69) marked in yellow in Figure 7.25 (a)

and (b) are the MLMC that form the base for detecting other matched ECs. Note that

the usage of the numbers of crossed edges has eliminated a lot of false matches. For

example, EC(11,23) could be matched to EC(35,12) or EC(5,28) could be matched to

EC(26,20) without taking into consideration the numbers of crossing edges.

7.3.2.3. Matched ECs

Due to the introduced deformations in each character's image, some ECs can have

a variation in their bin index especially when they are located near the borders

between two bins. To overcome these deformations, two MLMC matching conditions

are followed but with some relaxations. These conditions are called relaxed matching

conditions:

 They belong to the same bin with a certain deviation r from the corresponding

bin is allowed. r represents a percentage of the bin width (0<r<20%).

 They should have the same number of crossed edges except for the lines that

cross the left or right borders.

Due to global warping, some ECs can transfer from a bin to another. Therefore,

any bin of the segmented part image can be extended r% of its size in vertical or

218

horizontal direction. By this relaxation, matched ECs (6, 36) and (27, 73) marked in

light blue in Figure 7.25 (a) and (c), respectively, belong to the same bin.

Due to the merging of successive characters/digits, some edge parts can

disappear. In Figure 7.25 (b) for example, the circled edge parts between ECs (37,39)

and (38,43) and between ECs (39,50) and (34,50) have been disappeared. This fact

can lead to an incorrect number of crossed edges of some ECs. Therefore, we don't

take into consideration the numbers of crossed edges for the lines that cross the left or

right borders.

Every two ECs from both the training image and the segmented part image, that

succeeded to pass the relaxed matching conditions, are subject for further testing. We

have searched for parameters that can distinguish together an EC from another. Two

parameters are introduced for every EC: the SEs directions and the position with

respect to the MLMCs. Those two parameters are influenced by the image

deformations which make the use of a sharp decision technique to match them is very

difficult. Therefore, a fuzzy logic-based scheme is proposed for matching the ECs that

have already pass the relaxed matching conditions.

7.3.2.4. Proposed Fuzzy system

Our proposed fuzzy system will give the matching percentage of the two studied

ECs, one from the training image and the other from the segmented part image.

Therefore, it is important to introduce some parameters that can be used in matching

corresponding ECs and filter out false matches. These parameters cannot be fully

invariant since the deformation made on the image's characters is random. However,

the robustness of these parameters and the introduction of an efficient fuzzy system

can compensate the randomness and make them powerful keys for correct matching.

By experiments, we have observed two ECs properties that are less influenced by

the deformation. The first parameter is the angle difference between corresponding

vectors in the training and segmented part image.

Definition 4: Corresponding Vectors: A vector formed by a training MLMC

and a training EC and another vector formed by a test MLMC and a test EC are said

to be corresponding vectors if their MLMCs and ECs are corresponding.

219

In Figure 7.26, three corresponding vectors out of many are shown: (5,28)-(11,23)

corresponding to (6,31)-(21,13), (5,28)-(6,36) corresponding to (6,31)-(27,73) and

(5,28)-(28,38) corresponding to (6,31)-(43,46). It can be seen clearly that these

vectors have different magnitudes due to deformation and variation in scaling level

but they have nearly the same angles. Therefore, the vector angle difference

"VecAngDiff" between corresponding vectors can be selected as first parameter for

matching ECs. This parameter reflects the amount of deviation of an EC from its

original position due to the deformation introduced to the image.

Fig.7.26. Vector angle difference of two matched ECs.

Using VecAngDiff parameter reduces the searching space for possible matches.

However when used alone, we have observed that some false matches still appear. To

further reduce these false matches, a second parameter is introduced. It is the

difference between corresponding average adjacent SEs directions relative to an EC.

It is called “CorAngDiff”. For example in Figure 7.27, the corresponding adjacent

SEs, from both corner side, of two matched ECs (11,23) and (21,13) are shown. It can

be seen that the corresponding average SEs (ASE) directions are almost the same.

Therefore, "CorAngDiff"is set as the average of the differences between

corresponding ASEs. It reflects the resemblance between the directions of the edges

adjacent to two matched ECs

These two parameters are used by the fuzzy system to output the matching

percentage. The overall process involves two stages as shown in Figure 7.28. The first

one is the preprocessing stage which output the two parameters, the vector angle

difference VecAngDiff and the corner angle difference CorAngDiff relative to the two

ECs under consideration. The second stage represents the fuzzification process which

220

starts by setting membership functions for VecAngDiff and CorAngDiff in order to

obtain the matching percentage.

Fig. 7.27. Adjacent SEs directions of two matched ECs.

Fig. 7.28. Proposed fuzzy system.

7.3.2.4.1. Preprocessing: VecAngDiff and CorAngDiff
This section explains how to obtain the two parameters, VecAngDiff and

CorAngDiff, which are used by the fuzzy system to estimate the matching percentage

of the two ECs under investigation. These parameters can be classified as geometric

features that characterize an EC. The geometric features are more robust to noise than

grey level features (Kalti et al and Fonseca et al in section 7.3).

To illustrate the first parameter, consider two matched ECs one from the training

image and the other from the segmented part of a test image. In each image, we form

the corresponding vectors. For illustration, consider ECs (6,36) and (7,56) shown in

Figure 7.26. Since we have two MLMCs, we obtain two couple of corresponding

vectors: (5,28)-(6,36) and (6,31)-(7,56) which correspond to the first MLMC and

(32,46)-(6,36) and (50,69)-(7,56) which correspond to the second MLMC. The angles

difference in degree of every two corresponding vectors relative to the two matched

ECs is taken. The average of these differences is set as VecAngDiff. This variable

reflects the amount of shifting in position of an EC. However, alone it could not lead

to the correct match especially when the MLMCs are also shifted due to the

deformation. Therefore we have introduced the second parameter the CorAngDiff.

For the second parameter, some definitions must be known first:

221

Definition 5: Test Direction Average: From one side of a test EC, the Test

Direction Average is the average direction of two successive SEs.

Definition 6: Training Direction Average: From one side of a training EC, the

Training Direction Average is the average direction of two or more successive SEs

leading to the smallest difference with respect to the corresponding Test Direction

Average.

Based on the first three observations from Section 4.3, some new corners could

appear and some corners could disappear. In addition, due to the stretching introduced

to the training image, usually some corners disappear in the test image. Therefore,

when calculating the "Training Direction Average", we take the average direction of

an unspecified number of successive SEs that leads to the smallest difference with

respect to the corresponding Test Direction Average.

At an EC of the segmented part image and from the two sides we calculate the

Test Direction Averages. In addition, for the matched EC in the training image and

also from the two sides we calculate the Training Direction Averages. Therefore, the

CorAngDiff is the average of the differences between corresponding Training and

Test Direction Averages. For example in Figure 7.26, the two ECs (11,23) and (21,13)

are matched. We record for each side of the test EC (11,23) the test direction average

of the two successive SEs. Thus, for the right side, we consider the SEs (11,23)-

(27,27) and (27,27)-(32,35) and for the left side we consider the SEs (11,23)-(5,28)

and (5,28)-(5,33). On the other hand for the training EC (21,13), to obtain the nearest

directions to the test direction averages for EC (11,23), we should record:

- For the right side the training average direction of four successive SEs: (21,13)-

(38,8), (38,8)-(61,12), (61,12)-(64,9) and (64,9)-(64,30)

- For the left side, the training average direction of two successive SEs (21,13)-

(6,31), and (6,31)-(7,56).

The edge parts formed by the SEs to the left and to the right of EC (21,13)

correspond actually to those formed by two SEs to the left and to the right of EC

(11,23). Note that ECs (38,8) and (61,12) in the training image have disappeared in

the segmented part image due to warping.

222

7.3.2.4.2. Fuzzification
The fuzzification process starts by setting membership functions for its two inputs

and one output numerical variables (Alshennawi et al and Fonseca et al. in section

7.1.3). A membership function can have different shapes [196, 197]: triangular,

trapezoidal, Gaussian, bell-shaped, etc. The triangular shape should be a start

membership function to any fuzzy problem since it gives one of the best performances

[196] and it can be upgraded to more advanced function when the results are not quite

good. Therefore, three triangular membership functions, shown in Figure 7.29, are

used for the numerical variables VectAngDiff (expressed in degree) and CorAngDiff

(expressed in Freeman code [96]). The corresponding fuzzy sets are "H", "M" and "L"

which stand for high, medium, and low, respectively. Moreover, we have used two

Gaussian membership functions to represent the fuzzy sets "Like" and "Alike"

introduced for the output variable MatchingScore as revealed in Figure 7.30 (c). The

Gaussian function is characterized by its smoothness that is needed to output the

matching score in our case. Note that many triangular membership functions for

VectAngDiff and CorAngDiff have been tested corresponding to different fuzzy sets.

However, the selected fuzzy sets and their member functions shown in Figure 7.30

have achieved one of the best matching performances. These particular fuzzy sets are

selected since the experimental results based on them achieve high matching

percentage.

7.3.2.4.3. Fuzzy Laws
After fuzzification, the input numerical variables VectAngDiff and CorAngDiff are

transformed to linguistic variables. Fuzzy laws are logical operations that set the

linguistic output variable MatchingScore according to the values of the input

linguistic variables. MatchingScore has two memberships "Like" and "Alike". The

fuzzy laws are as follows:

 if VectAngDiff is "L" and CorAngDiff is also "L" than MatchingScore will be

"Like".

 if VectAngDiff is "M" and CorAngDiff is "L" than MatchingScore will be

"Like".

 Otherwise MatchingScore will be "Alike".

Table 7.3 summarizes the fuzzy laws.

223

Table 7.3. Fuzzy laws.

 VectAngDiff

 L M H

CorAngDiff

L Like Like Alike

M Alike Alike Alike

H Alike Alike Alike

7.3.2.4.4. Defuzzification
Defuzzification is the process that evaluates numerically the linguistic output variable

(Alshennawi et al. in section 7.1.3). After applying the fuzzy laws, the linguistic

output variable MatchingScore has two partial memberships between zero and one to

the sets "Like" and "Alike". For exam ple, a MatchingScore could have 0.65 for

"Like" and 0.4 for "Alike" as shown in Figure 7.30. Then, the inverse of the two

Gaussian member functions for "Like" and "Alike" respectively, are used to get the

Like percentage "LikePerc" and the Alike percentage "AlikePerc" as numerical

values.

Therefore, the system's numerical output, called MatchingPercentage, can be derived

as expressed in Eq (7.7),

� ������� ��� ��� � ��� � ����� � �
 ��� �
 ����� ���� �
����
(7.7)

After Defuzzification, each EC from the segmented part image will have matching

percentages with their matched ECs from the training image. The matched training

EC that corresponds to the highest matching percentage is selected. Thus, couples of

matched ECs are formed. Table 7.4 presents the matched couples and their matching

percentage for the images shown in Figure 7.25. Note that the MLMC are given a

100% matching percentage.

224

Fig.7.29. The three membership functions: (a) for VectAngDiff, (b) for CorAngDiff and (c) for

MatchingScore.

Fig. 7.30. Calculating the LikePerc and AlikePerc by inverse member functions.

225

7.3.2.5. Verification

Verification step is very important for a correct recognition of a segmented part

image. After constructing the couples of matched ECs including the MLMC, the idea

is to check the correctness of their edge linking order taking into consideration the

probability of appearance or disappearance of some corners.

Starting by any couple from the MLMC set in each image, the two ECs from any

matched couple should have the same linking order taking into consideration the order

of matched ECs only. For example for Figure 7.25, one MLMC couple is (5,28)-

(6,31). In Figure 7.25 (a), the EC (5,33) is the first linked EC with respect to EC(5,28)

in the direction 6. Also in Figure 7.26 (b), the EC (7,56) is the first linked EC with

respect to EC(6,31) in the direction 6. Therefore, the matched couple (5,33)-(7,56) is

verified. One can easily verify all the remaining matched couples presented in Table

7.4. Note that the ECs (38,8) and (61,12) and others don't enter in the order

calculation since these ECs have no match. These ECs are considered as Type I or

Type II that are introduced due to the image deformation.

7.3.2.6. Overall matching percentage

The fuzzy system outputs the matching percentage of every matched ECs couple

from the training and segmented part images. The issue is to calculate the overall

matching percentage between the two images. Usually while recognizing a training

character/digit image, the recognition of an EC having large SEs lengths gives more

percentage than the recognition of an EC having small SEs lengths. Therefore in the

training image, each matched EC is weighted by the sum of the lengths of its two

adjacent SEs. The unmatched ECs have a zero matching percentage. Thus, the

training character/digit contour can be seen as a set of weighted ECs where the sum of

their SEs length corresponds to its total number of edge points. Thus, the overall

matching percentage is the weighted average of the ECs matching percentages. This

measure reflects the recognition percentage between a segmented part image and one

of the training images. Finally, the training character image that corresponds to the

highest matching percentage is the recognized character/digit for the segmented part

from the test image.

226

Table 7.4. Matched couples for the images shown in Figure 7.25.

Test ECs Training ECs Matching Percentage Matching Type

(5,28) (6,31) 100% MLMC

(5,33) (7,56) 83% Matched ECs

(6,36) (27,73) 24% Matched ECs

(11,23) (21,13) 48% Matched ECs

(13,38) (24,61) 59% Matched ECs

(14,27) (35,12) 26% Matched ECs

(19,27) (62,24) 55% Matched ECs

(27,27) (64,9) 24% Matched ECs

(28,38) (43,46) 87% Matched ECs

(30,48) (48,71) 71% Matched ECs

(32,46) (50,69) 100% MLMC

(32,44) (50,51) 65% Matched ECs

Figure 7.31 shows the recognition algorithm to generate the overall matching

percentage. The variables used in this algorithm are:

- nbptsM: number of edge points matched in the training image, initially cleared.

- nbptsT: total number of edge points in the training image.

227

Fig.7.31. Recognition algorithm.

7.4. Experimental results

7.4.1. First experiment: Recognition under warping

In this experiment, we have used one deformed character. The studied parameter

is the level of deformation which is the level of warping. To generate a huge database,

we have formed our own program that generates images of one deformed character.

The warping, as mentioned in [49,169], is composed from three main functions. The

first one is the generation of a random displacement at every image's pixel. The

228

second one is convolving the random displacement field with a Gaussian filter (low

pass filter) with standard deviation Sigma. The third one is the generation of the

deformed image by interpolation.

The warping level is controlled by two parameters: the standard deviation Sigma

of the Gaussian filter and the magnitude Alpha of the random displacement field.

Figures 7.32 and 7.33 show the effect of these two parameters on the G character

image.

Fig.7.32. (a) Original image, (b) deformed image: Sigma=3 and Alpha=1, (c) deformed image:

Sigma=3 and Alpha=20.

Fig.7.33. (a) Original image, (b) deformed image: Sigma=5 and Alpha=35, (c) deformed image:

Sigma=7 and Alpha=75.

For low values of Sigma as in Figure 7.32, the warping is called local warping

that produces small ripples, waves and elastic deformations along the pixels of the

character [49]. For high values of Sigma as in Figure 7.33, the warping is global

which produces elastic deformations at the character level. In addition, the

deformation level is proportional to the parameter Alpha since it is the magnitude of

the random displacement field generated at every pixel.

Our original database is composed of 19 characters. We have followed the

observation in [144] that shows that Yahoo scheme uses 10 upper cases, and 12 lower

cases and 7 digits with probability of appearance in 1000 random samples.

229

The recognition percentage shown in Figure 7.34, is obtained using our proposed

fuzzy system based recognition algorithm on a database of 1000 random deformed

characters generated for every pair of Sigma and Alpha.

When Sigma increases, the recognition percentage increases for the same values

of Alpha. The reason for that is when Sigma increases the deformation transfers from

local to global which smoothes the deformation on the characters contours. For

example in Figure 7.35 (b) and (c), two deformed images of character '2'

corresponding to two different values of Sigma are shown. It is clear that for Sigma=3

(local deformation) in Figure 7.35 (b), the contour is highly deformed and a lot of

noisy ECs appear. Whereas for Sigma=7 (global deformation) shown in Figure 7.35

(c), the deformation is relatively small.

Fig.7.34. Recognition percentage versus Alpha and for different values of Sigma.

Fig.7.35. Deformation levels at different values of Sigma.

230

7.4.2. Second experiment: Segmentation/Recognition of connected characters

In this experiment, we try to show the efficiency of the suggested technique to

segment and recognize two deformed and connected characters. Therefore, we have

formed a database which is composed of 1000 samples, each of them contains two

connected characters. For all the images in this database, we have fixed the two

parameters Sigma and Alpha. On the other hand, we have introduced a new parameter

dist that reflects the distance between the two connected characters. For negative

values of dist, the two characters are connected. Thus, in this experiment, we have

fixed the warping level for all images and made the connection level as the only

variable. Figure 7.36 shows the recognition percentage of the algorithm at different

connection levels for different values of dist. It is clear that as the characters become

more connected, thus higher negative values of dist, the ability to correctly recognize

the characters will be smaller as expected.

Fig.7.36. Recognition percentage at different values of dist.

In addition, Figure 7.37 shows the segmentation of the characters in three

different sample images taken from the generated database. The border in blue

between the characters passes at least by one connection corner.

231

Fig.7.37. (a) Two connected characters. (b) Segmentation using connection corners (CCs).

7.4.3. Third experiment: Breaking Yahoo CAPTCHA scheme

In this experiment, a database of 1000 samples is created where each sample is a

composed of six deformed connected characters generated following the Yahoo

scheme explained previously. The obtained recognition percentage is 57.3% which is

higher than 54.7 % recognition percentage obtained in [144] using a Yahoo database

of 1000 samples.

In addition, a step by step Segmentation/Recognition of a Yahoo CAPTCHA

sample image is provided in Figure 7.38.

232

Fig.7.38. (a) A CAPTCHA sample word image. (b) Segmentation/Recognition steps.

233

8

Conclusion and Future Works

234

In this thesis, a novel corner detector is introduced based on image edges. It can

outperform existing interest point detectors especially in repeatability. The edge

detection constructs the starting phase. Then a suggested straight edge detector

examines all the formed contours in the input image and detects the edge parts that

can be considered as straight edges. These straight edges are straight lines that exist

frequently at the borders of various objects in real scenes especially human made

environments like buildings, cars, doors… The importance of detecting these straight

edges remains in their role of detecting edge corner points. The intersection of two

non collinear straight edges of appropriate length (greater than a threshold) is reported

as a corner. The newly proposed detector has good results against some image

transformation especially affine transformation. It detects almost scale invariant

corners without using scale space representation. Thus, selecting only corners located

at edges with high gradient norm and whose adjacent segments are long enough gives

its more immunity against affine transformation especially scale variation. Its novelty

is due to its simplicity using only image edges.

Experimental results show that our proposed EBCD is a very interesting corner

detector compared to other existing algorithms. We have proposed a 2D object

recognition application using these corners and the recognition was fluent even in the

presence of different shapes. On the other hand, several applications can be built

using this detector and the corner points. 3D reconstruction or 3D modeling of

polyhedral objects can be based on exploring its corner points with its geometric

distribution within the object. Localization of an autonomous robot can be specified

by using 3D corners as reference points in a stereovision system and that can lead to a

SLAM application. Polygonal approximation of an object's contour can be addressed

using a number of these corners as vertices of the approximating polygon.

Based on the edge corners, a new polygonal approximation technique is proposed.

By fixing an entry parameter as a stopping criterion, Compression Ratio CR or

weighted sum error WE, the algorithm starts per contour by removing iteratively the

corners that introduce the minimal possible ISEV to the global ISE measure. At the

end, the remained corners, called DCs, form the vertices of the polygon that can best

approximate the current contour. The experimental results have shown good results in

comparison with other existing methods. In our opinion, this is due to the efficient

straight edge detector that explores all the contour corners efficiently and then to the

235

iterative polygonal approximation algorithm that removes, at each iteration, the corner

corresponding to the smallest LISEV and at the same time updates and reexamines the

LISEV of already removed corners. By this way, we can ensure that the remained

corners form the polygon that best fit their contour.

As a first application on DCs, a novel technique for image registration using

dominant corners located on image edge is presented. First, it was shown

experimentally that these DCs have very good repeatability versus affine

transformation. Therefore, the suggested image registration is applicable to images

where the introduced deformation can be modeled by an affine transformation. Then

primitives are formed by grouping every four DCs: consecutive and nearest. The ratio

of the areas of two triangles formed in every primitive construct the first invariant

measure used to match a couple of primitives in a source and target images. In

addition, the angle directions difference of the two adjacent straight edges relative to a

DC form the second invariant measure of this DC. Therefore, two primitives, one

from the source image and the other from the sensed image, are matched using the

three tests:

 matching of the primitive area ratio R.

 matching the four DCs angle directions difference.

 matching of the affine models formed by the four triplets in the first primitive

and the corresponding four triplets in the second primitive.

This scheme eliminates a lot of false matching and makes the difference high between

the number of votes for the correct model and other false ones. The suggested

algorithm can be used in image registration where the time interval between

sequences of images is relatively small.

Finally, a simultaneous segmentation-recognition algorithm for an efficient attack

on a Yahoo CAPTCHA is proposed. The goal from breaking these CAPTCHAs is not

to be hackers but to explore the weaknesses in their design. The suggested algorithm

is based on new proposed kinds of edge corners: week corners, strong corners and

connection corners. For segmenting each character in the image, left and right borders

are introduced. These borders pass necessary by at least one connection corner and the

image part in between is the segmented image part. This part then enters into

236

recognition. If it is recognized as a character/digit from the training database, the

overall algorithm restarts and tries to segment and recognize the following

characters/digits in the image. To come up with the random deformation introduced to

each character in the image, we have introduced a fuzzy system for recognizing the

characters using their edge corners. The experimental results show the flexibility of

this system to recognize connected and deformed characters at different levels. The

obtained success rate on the generated Yahoo database is very good and exceeds the

required 0.01% to classify a successful attack. In addition, the introduced algorithm

can be very useful to do some improvement on schemes using the connection

characters principle like MSN or Google CAPTCHAs in order to be more robust

against attackers.

For future works, the first attempt is to study the repeatability of the detected DCs

by the edge detector (EBCD) versus projective transformation. If the obtained

repeatability is acceptable then we can generalize our image registration application to

more general cases. As an example, our algorithm can be applicable in the case where

the time interval between the two studied images is not small. In this case, the

projective transformation is the best transformation that can model the real

deformation that relates the two images.

More than one robotic application should be developed next:

The first one is the shape recognition application based on the edge corners that

developed for a more complicated application like object recognition where more than

one contour could exist. In this application, matching individual corners is not enough

since it will generate a lot of false matches. Therefore, we will introduce a new

matching strategy based on a group matching per contour. Each contour in a training

image is matched to a contour in a test image using the distribution of the matched

corners taking especially into consideration the possibility of appearance or

disappearance of some week edge corners.

The second one is the road surveillance by a drone's camera to remove the global

motion of the camera and estimate the local moving targets motion. This can be done

by testing and analyzing the suggested image registration application on acquired

images sequence.

237

The third one is the communication in a human-robot interaction using images

containing commands or info. For example, a robot can help in fetching some items

identified by a key number or a key word or maybe a key character. Thus, a person

presents to the robot the handwritten key acquired as an image by the robot that in his

turn should recognize the written characters and fetch the corresponding item.

238

Bibliography

[1] L.G. Shapiro and G.C. Stockman. Computer Vision. Prentice Hall, 2001.
[2] T. Morris. Computer Vision and Image Processing. Palgrave Macmillan. 2004.
[3] T. Lindeberg. Scale-space. In: Encyclopedia of Computer Science and Engineering

(Benjamin Wah, ed), John Wiley and Sons, Volume IV, pages 2495-2504, 2008.
[4] T. Lindeberg. Feature detection with automatic scale selection. International

Journal of Computer Vision, 30(2): 77-116, 1998.
[5] T. Lindeberg. Scale-space theory: A basic tool for analyzing structures at different

scales. J. of Applied Statistics, 21(2): 224-270, 1994.
[6] J. Koenderink and A. van Doorn. Local features of smooth shapes: Ridges and

courses. In SPIE Proc. Geometric Methods in Computer Vision II, volume 2031,
pages 2-13, 1993.

[7] J. Koenderink and A. van Doorn. Two-plus-one-dimensional differential geometry.
Pattern Recognition Letters, 15(5): 439-444, 1994.

[8] L. Griffin, A. Colchester, and G. Robinson. Scale and segmentation of images
using maximum gradient paths. Image and Vision Computing, 10(6):389-402,
1992.

[9] W. Bijsterveld, and J.A. Bolaño. Detection and Classification of Road Signs for
Automatic Inventory Systems using Computer Vision. Integrated Computer-Aided
Engineering, 19(3): 285-298, 2012.

[10] D.T. Lin and D.C. Pan. Integrating a Mixed-Feature Model and Multiclass Support
Vector Machine for Facial Expression Recognition. Integrated Computer-Aided

Engineering, 16(1): 61-74, 2009.
[11] A. De Cabrol, P. Bonnin, V. Hugel, K. Boucheffra and P. Blazevic. Temporally

Optimized Edge Segmentation for Mobile Robotics Application. SPIE Optics

Photonics, Application of Digital Image Processing XXVIII, San Diego California,
USA, August 2005.

[12] J. Hou, Z. Chen, X. Qin, and D. Zhang. Automatic image search based on
improved feature descriptors and decision tree. Integrated Computer-Aided

Engineering, 18(2): 167-180, 2011.
[13] D. Lowe. Local Feature View Clustering for 3D Object Recognition. Proc. of the

IEEE Conference on Computer Vision and Pattern Recognition, Kauai, Hawaii,
2001.

[14] F. Rothganger, S. Lazebnik, C. Schmid and J. Ponce. 3D Object Modeling and
Recognition Using Local Affine-Invariant Image Descriptors and Multi-View
Spatial Constraints.
http://www.cvr.ai.uiuc.edu/ponce_grp/publication/paper/ijcv04d.pdf.

[15] S. Bouchafa and B. Zavidovique. Efficient cumulative matching for image
registration. Image and Vision computing, volume 24, 2006.

[16] S. Se, D.Lowe and J. Little. Vision-based Mobile Robot Localization and Mapping
using Scale-Invariant Features. http://www.cs.ubc.ca/~lowe/papers/icra01.pdf.

[17] P. Bonnin, A. de Cabrol. Projet RNTL Cléopatre COST Vision Robotique. 2006.
[18] R. Kirsch. Computer determination of the constituent structure of biological

images. Computers and Biomedical Research 4, 1971.

239

[19] J.M.S Prewitt. Object enhacement and extraction. Picture processing

&psychopictorics, BS Lipkin&A.Rosenfelded, Academic Press, New York USA,
1979.

[20] I. Sobel. Neighborhood coding of binary images for fast contour following and
general binary array processing. Computer Graphics & Image Processing USA,
volume 8, pages 127-135, 1978.

[21] R. Deriche. Using Canny's criteria to derive a recursively implemented optimal
edge detector. Int. J. Computer Vision, volume 1, pages 167–187, April 1987.

[22] J. Shen and S. Castan. An Optimal Linear Operator for Step Edge Detection.
CVGIP, volume 54, pages 112–133, 1992.

[23] M.A. Fischler, R.C. Bolles. Random Sample Consensus: A Paradigm for Model
Fitting with Applications to Image Analysis and Automated Cartography. Comm.

of the ACM, volume 24, pages 381-395, 1981.
[24] A. Kolesnikov. Efficient Algorithms for Vectorization and Polygonal

approximation. PhD Thesis, 2003
[25] J. Canny. A computational approach to edge detection. IEEE Transactions of

Pattern Analysis and Machine Intelligence, volume PAMI-8, pages 679–698,
1986.

[26] S. Loncaric. A survey of shape analysis techniques. Pattern Recognition, volume
31, 1998.

[27] M. Herman, T. Kanade and S. Kuroe, Incremental Acquisition of a Three-
Dimensional Scene Model from Images. IEEE Transactions on Pattern Analysis

and Machine Intelligence, volume Pami-6, No. 3, 1984.
[28] R.Nachar, E.Inaty, P.Bonnin and Y.alayli. "A robust edge based corner

detector", 17th IEEE Mediterranean Electrotechnical Conference,
Beirut, Lebanon, pp: 242-246, April 13-16, 2014.

[29] N. Ayache and O. Faugeras. A new approach for the recognition and positioning of
two dimensional objects. IEEE Transaction on Pattern Analysis and Machine

Intelligence, volume 8, 1986.
[30] M. Ali and D. Clausi. Automatic registration of SAR and visible band remote

sensing images. In Proc. IEEE Int. Geosci. Remote Sens. Symp, volume 3, pages
1331–1333, 2002.

[31] G. Wolberg and S. Zokai. Robust image registration using log-polar transform.
Proceedings of IEEE International Conference on Image Processing, volume 1,
2000.

[32] B. Reddy and B. Chatterji. An FFT-based technique for translation, rotation and
scale invariant image registration. IEEE Trans. Image Process, 5(8): 1266–1271,
August 1996.

[33] Y. Almehio and S. Bouchafa. Matching image using invariant level-line primitives
under projective transformation. In Canadian Conference on Computer and

Robot Vision (CRV), 2010.
[34] N. Gouiffes, N. Lertchuwongsa and B. Zavidovique. Mixed color/level lines and

their stereo-matching with a modified hausdorff distance. Integrated Computer-

Aided Engieering, 2011.
[35] T. Wong, P. Kovesi and A. Datta. Projective Transformations for Image Transition

Animations. 14th
 International Conference on Image Analysis and Processing

(ICIAP), 2007.
[36] W. Zhi-guo, W. Ming-Jia and W. Yu-qing. Image Mosaic Technique Based on

the Information of Edge. 3
rd

 International Conference on Digital Manufacturing
and Automation (ICDMA), 2012.

240

[37] C.R. Maurer and J.M. Fitzpatrick. A review of medical image registration. In

Interactive Image-Guided Neurosurgery (R. J. Maciunas, ed.), Park Ridge, IL:
American Association of Neurological Surgeons, pages 17–44, 1993.

[38] B. Zitova and J. Flusser. Image registration methods: a survey. Image and Vision

Computing 21, 2003.
[39] S. Wenchang, S. Jianshe, G. Xiaofei and Z. Lin. An improved InSAR image

registration algorithm. 2
nd

 International Conference on Industrial Mechatronics
and Automation (ICIMA), volume 2, 2010.

[40] H. Li, S. Manjunath and S.K. Mitra. A Contour-Based Approach to Multisensor
Image Registration. IEEE Transactions on Image Processing, volume 4, 1995.

[41] S. Kumar, K.V. Arya, V. Rishiwal and P.N. Joglekar. Robust Image Registration
Technique for SAR Images. First International Conference on Industrial and

Information Systems, 2006.
[42] O. Chum and J. Matas. Geometric Hashing with Local Affine Frames. IEEE

Computer Society Conference on Computer Vision and Pattern Recognition,
volume 1, 2006.

[43] H. Lin, P. Du, W. Zhao, L. Zhang and H. Sun. Image registration based on corner
detection and affine transformation. 3

rd
 International Congress on Image and

Signal Processing, volume 5, 2010.
[44] R. Hartley and A. Zisserman. Multiple view geometry in computer vision.

Cambridge university press, 2nd Edition, 2003.
[45] Y. Almehio. A Cumulative Framework for Image Registration using level-line

Primitives. PhD thesis, Universite Paris Sud XI, 2012.
[46] L. von Ahn, M. Blum and J. Langford. Telling Humans and Computer Apart

Automatically, Comm. Of the ACM, 46, Aug. 2003.
[47] J. Yan and A. S. El Ahmad. A Low-cost Attack on a Microsoft CAPTCHA. 15th

ACM Conference on Computer and Communications Security (CCS’08), Virginia,
USA, Oct 27-31, 2008.

[48] K. Chellapilla, K. Larson, P. Simard and M. Czerwinski. Designing human
friendly human interaction proofs, ACM CHI’05, 2005.

[49] K. Chellapilla, K. Larson, P. Simard and M. Czerwinski. Building Segmentation
Based Human-friendly Human Interaction Proofs. 2nd Int’l Workshop on Human

Interaction Proofs, Springer-Verlag, LNCS 3517, 2005.
[50] K. Chellapilla and P. Simard. Using Machine Learning to Break Visual Human

Interaction Proofs. Neural Information Processing Systems (NIPS), MIT Press,
2004.

[51] K. Chellapilla, K. Larson, P. Simard, M. Czerwinski. Computers beat humans at
single character recognition in reading-based Human Interaction Proofs. In 2nd

Conference on Email and Anti-Spam (CEAS’05), 2005.
[52] R.Nachar, E.Inaty, P.Bonnin and Y.alayli. "Image registration based on edge

dominant corners", 9th International Conference on Computer Vision, Theory and
Applications, Lisbon, Portugal, pp: 433-440, January 5-8, 2014.

[53] R.Nachar, E.Inaty, P.Bonnin and Y.alayli. "Polygonal Approximation of an Object
Contour by Detecting Edge Dominant Corners Using Iterative Corner
Suppression", 9th International Conference on Computer Vision, Theory and
Applications, Lisbon, Portugal, pp: 247-256, January 5-8, 2014.

[54] J.J. Koenderink and A.J. van Doorn. Representation of local geometry in the visual
system. Biological Cybernetics 55, pages 367-375, 1987.

[55] J.J. Koenderink and A.J. van Doorn. Generic neighborhood operators. IEEE Trans.

Pattern Anal. Machine Intell. 14(6): 597-605, 1992.

241

[56] L.P. Kuptsov. Gradient. In Hazewinkel, Michiel, Encyclopedia of Mathematics,

Springer, ISBN 978-1-55608-010-4, 2001.
[57] http://en.wikipedia.org/wiki/Laplace_operator.
[58] http://opencv.itseez.com/doc/tutorials/imgproc/imgtrans/laplace_operator/laplace_

operator.html.
[59] http://en.wikipedia.org/wiki/Hessian_matrix.
[60] D. Gilbarg and N.S. Trudinger. Elliptic Partial Differential Equations of Second

Order. Springer-Verlag, ISBN 3-540-41160-7 ISBN 978-3540411604, Berlin,
1983.

[61] L. Kitchen and A. Rosenfeld. Gray-level corner detection. Pattern Recognition

Letters 1(2): 95–102, 1982.
[62] J.J. Koenderink and W. Richards. Two-dimensional curvature operators. Journal of

the Optical Society of America: Series A 5 (7): 1136–1141, 1988.
[63] D. Lowe. Distinctive Image Features from Scale-Invariant Keypoints.

International Journal of Computer Vision, 60(2): 91-110, 2004.
[64] G. Borgefors. Hierarchical Chamfer Matching: A Parametric Edge Matching

Algorithm. IEEE Trans. Pattern Analysis and Machine Intelligence, 10(6), Nov.
1988.

[65] http://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf
[66] http://www.acemedia.org/aceMedia/files/document/wp7/2006/eccv06-inria.pdf
[67] F. Suard, A. Rakotomamonjy, A. Bensrhair, A. Broggi. Pedestrian Detection using

Infrared images and Histograms of Oriented Gradients. Intelligent Vehicles

Symposium, Tokyo, Japan, June 13-15, 2006.
[68] A.E. Johnson and M. Hebert. Recognizing Objects by Matching Oriented Points.

IEEE Computer Society Conference on Computer Vision and Pattern Recognition,

1997.
[69] http://www.cv.tu-berlin.de/fileadmin/fg140/Head_Pose_Estimation.pdf.
[70] http://www.cs.cmu.edu/~rahuls/pub/cvpr2004-keypoint-rahuls.pdf.
[71] http://robotics.caltech.edu/readinggroup/vision/mikolajcICCV2001.pdf.
[72] http://www.vision.ee.ethz.ch/~surf/eccv06.pdf.
[73] R. Zabih and J. Wood_ll. Non-parametric Local Transforms for Computing Visual

Correspondence. In Proceedings of European Conference on Computer Vision,
pages 151-158, Stockholm, Sweden, May 1994.

[74] W.T. Freeman and E.H. Adelson. The Design and Use of Steerable Filters. IEEE

Trans. Pattern Analysis and Machine Intelligence, 13(9), Sep. 1991.
[75] http://www.fit.vutbr.cz/research/view_pub.php?file=%2Fpub%2F9598%2Fprispev

ek.pdf&id=9598.
[76] http://disp.ee.ntu.edu.tw/~pujols/Gabor%20wavelet%20transform%20and%20its%

20application.pdf.
[77] J. Lim, Y. Kim and J. Paik. Comparative Analysis of Wavelet-Based Scale-

Invariant Feature Extraction Using Different Wavelet Bases. International Journal

of Signal Processing, Image Processing and Pattern Recognition, 2(4): 29-38,
December 2009.

[78] G. Chow and X. Li. Towards a system for automatic facial feature detection. In

Pattern recognition, 26(12): 1739-1755, 1993.
[79] P. Seitz and M. Bichsel. The digital doorkeeper: automatic face recognition with

the computer. In IEEE Inter. Carnahan Conf. on security technology, 1991.
[80] G. Yang and T.S. Huang. Human face detection in a complex background. In

Pattern recognition, 27(1): 53-63, 1994.

242

http://www.alab.t.utokyo.ac.jp/~shino/scanned_paper/02/02/Pattern%20Reco
gnitionVol.27NO.1.pdf.

[81] M. Yang and N. Ahuja. Detecting Human Faces In Color Images. Proc. IEEE

Int'1 Conf. Image Processing, pages 127-139, Oct 1998.
[82] D. Lowe. Object recognition from local scale-invariant features. Proceedings of

the International Conference on Computer Vision, volume 2, pages 1150–1157,
1999.

[83] D. Lowe. Fitting parameterized three-dimensional models to images. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 13(5): 441-450, may
1991.

[84] Y. Ke, and R. Sukthankar. PCA-SIFT: A More Distinctive Representation for
Local Image Descriptors. Computer Vision and Pattern Recognition, 2004.

[85] T. Joliffe. Principal Component Analysis. Springer-Verlag, 1986.
[86] K. Mikolajczyk and C. Schmid. A Performance Evaluation of Local Descriptors.

IEEE Trans. Pattern Analysis and Machine Intelligence, 27(10), Oct. 2005.
[87] H. Bay, A. Ess, T. Tuytelaars and L.V. Gool. SURF: Speeded Up Robust

Features. Computer Vision and Image Understanding (CVIU), 110(3): 346--359,
2008.

[88] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple
features. In: CVPR (1), pages 511–518, 2001

[89] http://ece631web.groups.et.byu.net/References/Invariant%20features%20from%2
0interest%20point%20groups.pdf.

[90] https://www.uni-hohenheim.de/~gzim/Publications/haar.pdf.
[91] M. F. Costabile, C. Guerra, and G.G. Pieroni. Matching shapes: a case study in

time varying images. Computer Vision, Graphics and Image Processing, volume
29, pages 296–310, 1985.

[92] H. C. Liu and M. D. Srinath. Partial classification using contour matching in
distance transformation. IEEE Transactions on Pattern Analysis and Machine

Intelligence, volume 12 pages 1072–1079, 1990.
[93] M. H. Han and D. Jang. The use of maximum curvature points for the recognition

of partially occluded objects. Pattern Recognition, volume 23, pages 21–33, 1990.
[94] L. Dreschler and H. Nigel. Volumetric model and 3D trajectory of a moving car

derived from monocular TV-frame sequence of a street scene. Proceedings of
IJCAI, pages 692–697, 1992.

[95] H. L. Beus and S. S. H. Tiu. An improved corner detection algorithm based on
chain-code plane-curves. Pattern Recognition, 20(20):291–296, 1987.

[96] H. Freeman and L. S. Davis. A corner finding algorithm for chain code curves.
IEEE Tran. Compt., volume 26, pages 297–303, 1977.

[97] K. Rangarajan, M. Shah, and D. V. Brackle. Optimal corner detection. Computer

Vision, Graphics and Image Processing, volume 48, pages 230–245, 1989.
[98] A. Singh. Gray level corner detection - A generalization and a robust real-time

implementation. Computer Vision, Graphics and Image Processing, 51(1): 54–69,
1990.

[99] H. Moravec. Obstacle Avoidance and Navigation in the Real World by a Seeing
Robot Rover, Tech Report CMU-RI-TR-3, Carnegie-Mellon University, Robotics

Institute, September 1980.
[100] C. Harris and M. Stephens. A combined corner and edge detector. Proceedings of

the 4th Alvey Vision Conference, pages 147–151, 1988.
[101] J. Shi and C. Tomasi. Good Features to Track. 9th IEEE Conference on Computer

Vision and Pattern Recognition, 1994.

243

[102] C. Tomasi and T. Kanade. Detection and Tracking of Point Features. Pattern

Recognition, volume 37, pages 165–168, 2004.
[103] S. M. Smith and J. M. Brady. SUSAN - a new approach to low level image

processing. International Journal of Computer Vision 23(1): 45–78, May 1997.
[104] K. Mikolajczyk and C. Schmid. Scale and affine invariant interest point detectors.

International Journal of Computer Vision 60(1): 63–86, 2004.
[105] K. Mikolajczyk and C. Schmid. An Affine Invariant Interest Point Detector. In:

ECCV, pages 128–142, 2002.

[106] Mahalanobis, P. Chandra. On the generalised distance in statistics. Proceedings of

the National Institute of Sciences of India 2(1): 49–55. 1936 Retrieved 2012.
[107] N. Nain, V. Laxmi, B. Bhadviya and N. Chand Singh. Corner Detection using

Difference Chain Code as Curvature. Proc. of the International MultiConference

of Engineers and Computer Scientists (IMECS), volume 1, Hong Kong 2008.
[108] S. Pei and C. Lin. The Detection of Dominant Points on Digital Curves By Scale

Space Filtering. Pattern Recognition Society, 25(11), 1992.
[109] X.C. He and N. H. C. Yung. In Curvature Scale Space Corner Detector with

Adaptive Threshold and Dynamic Region of Support. International Conference in

Pattern Recognition, IEEE Computer Society, volume 2, pages 791–794. 2004.
[110] L. G. Roberts. Machine perception of 3-D solids. Optical and Electro Optical

Information Processing. MIT Press, 1965.
[111] V. Torre and T. A. Poggio. On edge detection. IEEE Trans. Pattern Anal.

Machine Intell., 8(2): 163-187, Mar 1986.
[112] Prewitt. Object enhancement and extraction. Picture processing &

psychopictorics, BS Lipkin & A.Rosenfeld ed, Academic Press, New York USA,
1979.

[113] J.F. Canny. Finding Edges and Lines in Images. Technical report "Artificial
Intelligence Laboratory" of Massachussetts, Institute of Technology, number 720,
Juin 1983.

[114] P. Bonnin. Chaînes Algorithmiques Simples de Détection de Contours et de
Régions Polycopié de Cours.

[115] http://www.cse.unr.edu/~bebis/CS791E/Notes/EdgeDetection.pdf.
[116] J. Dunham. Optimum Uniform Piecewise Linear Approximation of Planar Curves.

IEEE Trans on Pattern Analysis and Machine Intelligence, 8(1): 67-75, 1986.
[117] T. Pavlidis. Algorithms for Graphics and Image Processing. Springer Verlag,

1982.
[118] K. Wall and P. Danielsson. A fast sequential method for polygonal approximation

of digitized curves. Computer Vision Graphics and Image Processing, volume 28,
pages 220-227, 1984.

[119] A. Gupta, S. Chaudhury and G. Parthasarathy. A Hough Transform Based
Approach to Polyline Approximation of Object Boundaries. Proceedings. 11th

IAPR International Conference on Pattern Recognition, volume.III. Conference
C: Image, Speech and Signal Analysis, 1992.

[120] A. Mikheev, L. Vincent and V. Faber. High-Quality Polygonal Contour
Approximation Based on Relaxation. Proceedings Sixth International Conference

on Document Analysis and Recognition, 2001.
[121] A. Kolesnikov. Fast Algorithm for ISE-Bounded Polygonal Approximation. 15th

IEEE International Conference on Image Processing, 2008.

244

[122] A. Kolesnikov. Minimum Description Length Approximation of Digital Curves.
16th IEEE International Conference on Image Processing, 2009.

[123] A. Kolesnikov. Nonparametric Polygonal and Multimodel Approximation of
Digital Curves with Rate-Distortion Curve Modeling. 18th IEEE International

Conference on Image Processing, 2011.
[124] A. Pinheiro. Piecewise Approximation of Contours Through Scale-Space

Selection of Dominant Points. IEEE Transaction on Image Processing, 19(6),
2010.

[125] M.T. Parvez and S.A. Mahmoud. Polygonal Approximation Of Planar Curves
Using Triangular Suppression. 10th International Conference on Information

Science, Signal Processing and their Applications, 2010.
[126] A. Carmona-Poyato, F.I. Madrid-Cuevas, R. MedinaCarnicer and R. Munoz-

Salinas. Polygonal approximation of digital planar curves through break point
suppression. Pattern Recognition, 43(1): 14-25, 2010.

[127] A. Masood. Optimized polygonal approximation by dominant point deletion.
Pattern Recognition 4(1): 227- 239, 2008.

[128] M. Marji and P. Siy. Polygonal representation of digital planar curves through
dominant point detection – a nonparametric algorithm. Pattern Recognition 37,
pages 2113- 2130, 2004.

[129] M. Sester, H. Hild and D. Fritsch. Definition of ground control features for image
registration using GIS data. Proceedings of the Symposium on Object Recognition

and Scene Classification from Multispectral and Multisensor Pixels, CD-ROM,
Columbus, Ohio, 1998.

[130] M. Holm. Towards automatic rectification of satellite images using feature based
matching. Proceedings of the International Geoscience and Remote Sensing

Symposium IGARSS’91, Espoo, Finland, 1991.
[131] Y.C. Hsieh, D.M. McKeown, F.P. Perlant. Performance evaluation of scene

registration and stereo matching for cartographic feature extraction. IEEE

Transactions on Pattern Analysis and Machine Intelligence 14, 1992.
[132] T. Suk and J. Flusser. The projective invariants for polygons. Computer Analysis

of Images and Patterns Lecture Notes in Computer Science, volume 970, 1995.
[133] T. Tuytelaars and L.Van Gool. Matching widely separated views based on affine

invariant regions. International Journal of Computer Vision 59(1), 2004.
[134] Z. Yang and F. Cohen. Image registration and object recognition using affine

invariants and convex hulls. IEEE Transactions on Image Processing, 8(7), July
1999.

[135] Y. Almehio, S. Bouchafa and B. Zavidovique. Level line primitives for image
registration with figures of merit. Integrated Computer-Aided Engineering, 21(2):
101-118, 2014.

http://hal.archives-ouvertes.fr/hal-00841278.
[136] Y. Bentoutou, N. Taleb, K. Kpalma, and J. Ronsin. An automatic image

registration for applications in remote sensing. IEEE Transactions on

Geoscience and Remote Sensing, 43(9): 2127-2137, 2005.
[137] X. Lou, W. Huang, B. Fu, and J. Teng. A feature-based approach for automatic

registration of noaa avhrr images. In IEEE International Conference on

Geoscience and Remote Sensing Symposium, 2006.
[138] L. Ahn, M. Blum, N.J. Hopper and J. Langford. CAPTCHA: using hard AI

problems for security, 22nd international conference on Theory and applications

of cryptographic techniques, Springer-Verlag, Berlin, 2003

245

[139] C. Pope and K Kaur. Is It Human or Computer? Defending E-Commerce with
CAPTCHA. IEEE IT Professional, March 2005.

[140] J. Yan and A.S. El Ahmad. Breaking Visual CAPTCHAs with Naïve Pattern
Recognition Algorithms. In Proc. of the 23rd Annual Computer Security

Applications Conference (ACSAC’07), IEEE computer society, USA, Dec 2007.
[141] G. Mori and J. Malik. Recognizing Objects in Adversarial Clutter: Breaking a

Visual CAPTCHA. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR'03), June 2003.

[142] G. Moy, N. Jones, C. Harkless and R. Potter. Distortion estimation techniques in
solving visual CAPTCHAs. IEEE CVPR, 2004.

[143] Casey. Using AI to beat CAPTCHA and post comment spam, 2005.
http://www.mperfect.net/aiCaptcha/

[144] H. Gao, W. Wang, Y. Fan. Divide and Conquer: An Efficient Attack on Yahoo!
CAPTCHA. 11th IEEE International Conference on Trust, Security and Privacy

in Computing and Communications, 2012.
[145] H.Zjmmermann. Fuzzy set theorv and its applications. Allied Publishers Ltd and

Kluwer Academic Publishers, 2nd Ed. New Delhi, 1996.
[146] http://be.et.uni-magdeburp.de/-hamidl.
[147] C. Schmid, R. Mohr, and C. Bauckhage, Evaluation of interest point detectors, Int.

J. Comput. Vis., 37(2): 151–172, Jun 2000.
[148] J. Denton. Two Dimensional Projective Point Matching. July 2002.
[149] R.Duda and P.Hart, Use of the Hough Transformation to Detect Lines and Curves

in Pictures, Comm. ACM, Vol. 15, pp. 11–15, 1972.
[150] https://edit.yahoo.com/registration?.intl=us&new=1&.done=http%3A//mail.yahoo

.com&.src=ym&.v=0&.u=ak37rod3tebb2&partner=&.partner=&pkg=&stepid=&.
p=&promo=&.last=#

[151] http://users.fmrib.ox.ac.uk/~steve/susan/
[152] http://www.mathworks.com/matlabcentral/fileexchange/17894-keypoint-

extraction
[153] http://www.ee.surrey.ac.uk/
[154] C.H. The and R.T. Chin. On the detection of dominant points on digital curves,

IEEE Transactions of Pattern Analysis and Machine Intelligence 11, pp. 859-872,
1989.

[155] C. Bezdek, Pattern Recognition with Fuzzy Objective Functions Algorithms,
Plenum Press, New York, 1981.

[156] K. Suresh, R. Mohana and A. RamaMohanReddy. Improved FCM algorithm for
Clustering on Web Usage Mining", IJCSI International Journal of Computer

Science Issues, 8(1): 42-46, 2011.
[157] K. Kalti and M. Mahjoub. Image Segmentation by Gaussian Mixture Models and

Modified FCM Algorithm, The International Arab Journal of Information

Technology, 11(1):11-19, 2014.
[158] N. Ahmed, M. Yamany, N. Mohamed, and N.Farag. A Modified Fuzzy C-Means

Algorithm for Bias Field Estimation and Segmentation of MRI Data, IEEE

Transaction on Medical Imaging, 21(3): 193-199, 2002.
[159] W. Cai, S. Chen, and D. Zhang. Fast and Robust Fuzzy Cmeans Clustering

Algorithms Incorporating Local Information for Image Segmentation, Pattern

Recognition, 40(3): 825-838, 2007.
[160] S. Chuang, L. Tzeng, S. Chen, J. Wu, and T. Chen. Fuzzy C-Means Clustering

with Spatial Information for Image Segmentation, Elsevier Science, 30(1): 9-15,
2006.

246

[161] C. Chen and Q. Zhang. Robust Image Segmentation using FCM with Spatial
Constraints Based in New Kernel-Induced Distance Measure, IEEE Transaction.

Systems Man Cybernetics, 34(4): 1907-1916, 2004.
[162] J. Hemanth, D. Selvathi, and J.Anitha. Effective Fuzzy Clustering Algorithm for

Abnormal MR Brain Image Segmentation, in Proceedings of IEEE International

Advance Computing Conference, Patiala, pp. 609-614, 2009.
[163] J. Kawa and E. Pietka. Image Clustering with Median and Myriad Spatial

Constraint Enhanced FCM, in Proceedings of the 4th International Conference on

Computer Recognition Systems, Berlin, vol. 30, pp. 211-218, 2005.
[164] A. Tolias and M. Panas. On Applying Spatial Constraints in Fuzzy Image

Clustering using a Fuzzy Rule Based System, IEEE Signal Processing Letters,
5(10): 245-247, 1998.

[165] J. Wang, L. Dou, N. Che, D. Liu, B. Zhang, and J. Kong. Local Based Fuzzy
Clustering for Segmentation of MR Brain Images, in

Proceedings of the 8th IEEE International Conference on Bioinformatics and

Bioengineering, Athens, pp. 1-5, 2008.
[166] K. Jain, N. Murty, and J. Flynn. Data Clustering: A Review, ACM Computing

Surveys, 31(3): 264-323, 1999.
[167] M.Fonseca and J. Jorge. Using Fuzzy Logic to Recognize Geometric Shapes

Interactively, The Ninth IEEE International Conference on Fuzzy Systems, vol. 1,
pp. 291-296, 2000.

[168] S. Sasi and J.S. Bedi. Handwritten Character Recognition using Fuzzy Logic,
Proceedings of the 37th Midwest Symposium on Circuits and Systems, vol. 2, pp.
1399-1402, 1994.

[169] R.Deriche, Fast Algorithms for Low-Level Vision, IEEE Trans. on PAMI, 12(1),
pp. 78-87, January 1990.

[170] http://zone.ni.com/reference/enXX/help/372656B01/lvasptconcepts/wa_applicatio
n/

[171] http://users.fmrib.ox.ac.uk/~steve/susan/susan/node14.html.
[172] http://www.cs.utah.edu/~manasi/coursework/cs7960/p1/project1.html.
[173] http://dsp.stackexchange.com/questions/1714/best-way-of-segmenting-veins-in-

leaves.
[174] P. Bonnin, Méthode Systématique de Conception et d'Applications en Vision par

Ordinateur, PhD thesis, January 1991.
[175] http://wwwmath.tau.ac.il/~turkel/notes/Maini.pdf.
[176] J.B.A. Maintz and M. A. Viergever. A Survey of medical Image Registration,

Medical Image Analysis, vol 2. Oxford University Press, 1998.
[177] J.V.Chapnick, M.E.Noz, G.Q. Maguire, E.L.Kramer, J.J.Sanger, B.A.Birnbaum,

A.J.Megibow, Techniques of Multimodality Image Registration, Proceedings of

the IEEE nineteenth Annual North East Bioengineeering conference, 18-19 March
1993.

[178] M. Wyawahare, P. Patil and H. Abhyankar, Image Registration Techniques: An
overview, International Journal of Signal Processing, Image Processing and

Pattern Recognition, vol. 2, no.3, September 2009.
[179] U. Maulik and S. Bandyopadhyay, Genetic algorithm based clustering technique,

Pattern Recognition, vol.33, pp. 1455–1465, 2000.
[180] J.Rourke, Computarionul geomerry in C. Cambridge University Press, 2nd

edition, 1998.
[181] A. Bykat, Convex hull of a finite set of points in two dimensions, Inform. Process.

Lett., vol. 7, pp. 296–298, 1978.

247

[182] A. Jain, Fundamentals of Digital Image Processing, Prentice-Hall, Chap. 9, 1989.
[183] S. Pal. Some Low Level Image Segmentation Methods, Algorithms and their

Analysis. PhD thesis, Indian Institute of Technology, 1991.'
[184] S. Annadurai, R. Shanmugalakshmi, Fundamentals of Digital Image Processing,

ebook by Pearson Education India, 2006.
[185] W.K. Pratt, Digital Image Processing, 2nd ed., Wiley, New York, 1991.
[186] D.I. Barnea, H.F. Silverman, A class of algorithms for fast digital image

registration, IEEE Transactions on Computing, vol. 21, 1972.
[187] R.N. Bracewell, The Fourier Transform and Its Applications, McGraw-Hill, New

York, 1965.
[188] A. Goshtasby, G.C. Stockman, Point pattern matching using convex hull edges,

IEEE Transactions on Systems, Man and Cybernetics, vol. 15, 1985.
[189] G. Stockman, S. Kopstein, S. Benett, Matching images to models for registration

and object detection via clustering, IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 4, 1982.
[190] H.G. Barrow, J.M. Tenenbaum, R.C. Bolles, H.C. Wolf., Parametric

correspondence and chamfer matching: Two new techniques for image matching,
Proceedings of the Fifth International Joint Conference on Artificial Intelligence,
Cambridge, Massachusetts, 1977.

[191] G. Borgefors, Hierarchical chamfer matching: a parametric edge matching
algorithm, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
10, 1988.

[192] Barber, C. Bradford, Dobkin, P.David, Huhdanpaa, Hannu, The quickhull
algorithm for convex hulls, ACM Transactions on Mathematical Software, vol.
22, no. 4, 1996.

[193] Uchida, Seiichi. A Survey of Elastic Matching Techniques for Handwritten
Character Recognition. IEICE TRANS. INF. & SYST. E88-D, vol. 8, 2005.

[194] Z. Zhang. Le problème de la mise en correspondance: L'état de l'art, unité de

recherche INRIA Sophia-Antipolis, 1993.
[195] T. Ea, L. Lacassagne, P. Garda, Execution temps reel des detecteurs de contours

de Deriche par des processeurs RISC, Congrès Adéquation Algorithme
Architecture,France,1998,
(http://www.ief.upsud.fr/~lacas/Publications/AAA98.pdf)

[196] J. Zhao and B.K. Bose, Evaluation of membership functions for fuzzy logic
controlled induction motor drive, the 28th IEEE Annual Conference of the

Industrial Electronics Society, vol. 1, pp. 229-234, 2002.
[197] J. Garibaldi and R. John, Choosing Membership Functions of Linguistic Terms,

the 12th IEEE International Conference on Fuzzy Systems, vol. 1, pp. 578-583,
2003.

[198] R.Nachar, E.Inaty, P.Bonnin and Y.alayli. "A robust edge based corner detector
(EBCD)", accepted for publication in IJIG journal, April 2014.

[199] R.Nachar, E.Inaty, P.Bonnin and Y.alayli. "Towards an automatic image co-
registration technique using edge dominant corners primitives", accepted for

publication in ICAE journal, May 2014.
[200] R.Nachar, E.Inaty, P.Bonnin and Y.alayli. "Edge Corner Based Segmentation

Technique to Break down CAPTCHA Using Fuzzy Logic", accepted for

publication in JETWI journal, July 2014.
[201] A. Borji. "Boosting bottom-up and top-down visual features for saliency

estimation", in Proc. IEEE CVPR, pp. 438-445, June 2012.

248

[202] S.Lee, J.Kim, K.Choi, J.Sim and C.Kim. "Video saliency detection based on
spatiotemporal feature learning", in Proc. IEEE ICIC, pp. 1120-1124, October
2014.

[203] S.Aly, A.Youssef and L.Abbott. "Adaptive feature selection and data pruning for
3D facial expression recognition using the kinect", in Proc. IEEE ICIC, pp.1361-
1365, October 2014.

[204] X. Li, Q. Ruan, and Y. Ming. “3D facial expression recognition based on basic
geometric features”, in Proc. IEEE ICSP, pp.1366–1369, 2010.

[205] H. Soyel and H. Demirel. “Optimal feature selection for 3D facial expression
recognition using coarse-to-fine classification”, Turkish Journal of Electrical

Engineering and Computer Sciences, vol. 18, no. 6, pp. 1031–1040, 2010.
[206] A. Alshennawi and A. Aly. "Edge Detection in Digital Images Using Fuzzy Logic

Technique", Word Academy of Science, Engineering and Technology, vol. 3, pp.
166-174, 2009.

[207] K. Reddy, D. Rao and K. Rajesh. "Hand Written Character Detection by Using
Fuzzy Logic Techniques", International Journal of Emerging Technology and

Advanced Engineering, vol. 3, pp. 256-261, March 2013.
[208] L. Zadeh. "Fuzzy sets", Information and Control, vol. 8, pp: 338–353, 1965.
[209] D. Patel and S. More. "Edge Detection Technique by Fuzzy Logic and Cellular

Learning Automata using Fuzzy Image Processing", International Conference on

Computer Communication and Informatics (ICCCI), Jan 2013.

