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Abstract 

 

In this thesis, a new feature detector is proposed. The new features are edge 
corners located on the contours of a studied image. These points are edge points 
where a deviation in the edge direction occurs. In addition, they are repeatable versus 
similarity, affine transformations and also robust to noise at the boundaries of the 
object's image. Due to their repeatability, these corners are used in a shape recognition 
application. Also, a smaller set of corners called "Dominant Corners" or "DCs" is 
extracted form the original set of corners using a new proposed polygonal 
approximation algorithm. These DCs form the vertices of a polygon that best 
approximate their contour. Two applications using the edge corners are also 
developed. The first one is an image registration application that forms invariant 
primitives using the DCs. The second application is a word recognition application 
where the edge corners located on the characters contours are used in a simultaneous 
segmentation/recognition process to recognize the characters in a deformed word 
image. 

 

Keywords: Edge corners, DCs, polygonal approximation, image registration, word 
recognition, affine transformation, invariant primitives, simultaneous 
segmentation/recognition. 
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Résumé 

 

Nous proposons dans cette thèse un nouveau détecteur de « Coins » de contour 
dans une image. Ces coins sont les sommets de la ligne polygonale approximant le 
contour. Ils peuvent appartenir ou non au contour. Ils correspondent à une déviation 
importante de la direction de ce contour. Aussi, ils sont répétables en présence de 
transformations affines ou similitudes et sont robustes au bruit présent aux frontières 
d'une image. Grâce à cette répétabilité, les coins sont utilisés dans une application de 
reconnaissance de la forme.  

Les coins peuvent être classés selon leur force. Ainsi sous ensemble de ces coins, 
appelé "Coins Dominants", peuvent être extraits formant les sommets du polygone 
« minimal » qui représente le contour, pour un nombre de segments donné.  

Deux applications, basées sur les Coins/Coins Dominants du contour ont été 
réalisées : 

 La première est une application de recalage d’images où de nouvelles 
primitives invariantes constituées de quatre "Coins Dominants" du contour 
ont été proposées.  

 La seconde application est la reconnaissance des caractères dans une 
image déformée où les coins du contour des caractères ont été utilisés dans 
un processus de segmentation / reconnaissance simultané. 

 

Mots-clés: Point d’Intérêts, Coins et Coins Dominants du contour, approximation 
polygonale, recalage d’ images, reconnaissance des caractères, transformation affine, 
primitives invariantes, segmentation et reconnaissance simultané. 
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Nous proposons dans cette thèse un nouveau détecteur de « Coins » de contour 

dans une image. Ces « Coins » correspondent à une déviation importante de la 

direction de ce contour. Ils sont obtenus à partir d’un détecteur d’une autre primitive 

basée contour : les « Segments » de contour. Ils constituent les sommets de la ligne 

polygonale approximant le contour. Les Segments, et par conséquent les Coins de 

Contours sont des primitives images très importantes, car elles sont nombreuses dans 

les images de scènes d’environnements faits par l’homme : d’intérieur ou d’extérieur 

urbain [13-16]. 

Bien qu’un « Coin » puisse très bien être considéré comme un « Point d’Intérêt » 

en tant que point particulier du contour, il faut différencier ces deux primitives. En 

effet, les points d’intérêt sont obtenus localement, sans l’extraction des contours au 

préalable. Ils ne font pas nécessairement partie d’un contour, ou n’en sont pas 

nécessairement à proximité. Les Coins de Contour appartiennent aux contours, où en 

sont très proches (dans le cas de la fusion de deux Demi-Coins). 

Les coins peuvent être classés selon leur force. Ainsi un sous ensemble de ces 

coins, appelé "Coins Dominants", peut être extrait formant les sommets du polygone 

« minimal » qui représente le contour, pour un nombre minimal de segments donné.  

Les Coins, comme les Coins Dominants sont répétables en présence de 

transformations affines ou similitudes et sont robustes au bruit présent sur les 

frontières des objets de l’image. Grâce à cette répétabilité, les Coins sont utilisés dans 

une application de reconnaissance de la forme.  

Deux applications, basées sur les Coins Dominants du contour ont été réalisées : 

La première est une application de recalage d’images où une nouvelle primitive 

invariante constituée de quatre "Coins Dominants" successifs   du contour a été 

proposée.  

La seconde application est la reconnaissance de caractères dans une image 

déformée où les coins du contour des caractères ont été utilisés dans un processus de 

segmentation/reconnaissance simultané. 

Le Recalage d’Image détermine la modélisation de la transformation géométrique 

qui permet d’aligner les mêmes points de deux images d’une même scène prise à 
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différents points de vue, sous différents angles, éventuellement à différents instants et 

avec des caméras de différentes caractéristiques.  

Définition: La « Répétabilité » d’une grandeur physique, i.e. les Coins 

Dominants extraits d’une image, est la mesure de leur stabilité lorsque l’image subit 

des transformations.  

En fait, la répétabilité des Coins Dominants a été étudiée en présence de 

déformations affines de l’image et les résultats obtenus sont très bons. Ainsi, les 

Coins Dominants peuvent être utilisés pour une application de Recalage d’Images où 

le temps entre les deux prises de vue est relativement court, telle que la période entre 

les deux images d’une séquence vidéo. Sous cette contrainte, la déformation réelle 

entre deux images est petite, et peut correctement être modélisée par une 

transformation affine [44]. Ainsi, nous suggérons d’utiliser cette technique dans une 

application de robotique mobile et autonome : la surveillance de routes ou 

d’autoroutes à l’aide de drones aériens. En effet, le recalage permet de Compenser  le 

mouvement global du fond lié au déplacement de la caméra montée sur le drone, ce 

qui permet la détection du mouvement différentiel de petites cibles, telles que les 

automobiles sur les routes.    

Les quatre principales étapes du Recalage d’Images sont : 

 la détection de Points de Contrôle (PC) : Ces points doivent être stables ou 

répétables malgré les transformations de l’image,  

 la Mise en Correspondance de Points de Contrôle : les PC des différentes 

images sont associés en utilisant des grandeurs invariantes, 

 l’Estimation de la Transformation : à partir de l’association précédente des 

points de contrôle, 

Ré échantillonnage de l’Image : en appliquant la transformation de l’étape 

précédente, la première image est synthétisée avec le point de vue de la seconde.. 

Dans ce travail, les Coins Dominants sont utilisés comme Point de Contrôle, car 

ils sont stables par transformation, et un nouvel algorithme, très efficace, de mise en 

correspondance de ces points a été proposé. 
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La seconde application concerne la Reconnaissance de Caractères. Nous avons 

cherché à reconnaître des caractères déformés et connectés. Aussi, nous avons 

proposé une méthode permettant simultanément la segmentation et la reconnaissance 

de chaque caractère dans un mot d’une image. Cette méthode a été testée sur des mots 

dont les lettres ont été déformées, comme par le système CAPTCHA, pour la sécurité 

sur internet.  

Notre rôle n’est pas de jouer un « hacker » essayant de pirater l’accès d’une 

application internet.  Au contraire, l’utilisation du détail de notre application 

permettra d’améliorer la sécurité des applications existantes. Notre principal objectif 

est la conception et la réalisation d’une application de robotique, notamment 

d’interaction homme – robot. Le robot doit reconnaître les commandes ou les 

informations écrites à la main produites par un opérateur humain : les caractères 

manuscrits étant déformés et potentiellement connectés. 

1.1.    Détecteur de Coins basé Contours 

Les principales étapes sont les suivantes :  

(i) Détection des Contours: calcul du Gradient par la méthode de Kirsch [17, 18], 

seuillage sur la norme, affinage, prolongation et chaînage. Le chaînage a été 

modifié pour détecter « proprement » les coins du contour. La sortie du 

détecteur de contour est une image des étiquettes contours, associée à une base 

de données. Les contours forment les bords des objets de la scène, où se 

situent les coins que nous recherchons. 

(ii) Détection des Segments de Contours [28, 198]: les segments de contour sont 

des parties du contour en forme de segments de droite. Ils sont également des 

Primitives Image. Le but d’utiliser un détecteur de segments de contour est de 

diviser le contour en une séquence de segments de droites de différentes 

longueurs. Les segments de droite sont obtenus à partir des codes de Freeman 

des points de contour. La robustesse du détecteur de segment de droite est son 

aptitude à détecter proprement un segment même si le contour est corrompu 

par des pixels bruités. Par définition, un pixel bruité est un point de contour 

dont la direction est différente de la direction principale du segment. Ce 

détecteur doit détecter de manière adéquate ces points de bruit et les éliminer, 
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afin que le détecteur de « Coins » de l’étape suivante ne les confonde pas avec 

de vrais Coins. En effet, Points Bruités et Vrais Coins correspondent à des 

déviations du contour. 

(iii)Détection de Coins [28, 198]: un coin est définit comme le point d’intersection 

de deux lignes droites non co-linéaires de longueur appropriée (lors des 

expérimentations du chapitre 5, paragraphe 5.1, le seuillage sur la longueur 

minimale des segments est pris égal à 10).  

(iv) Détection de Coins Dominants [53]: parmi l’ensemble des coins de contour, 

un sous ensemble appelés Coins Dominants CDs est sélectionné en éliminant 

itérativement les Coins « moins marqués ». Ces CDs ont une grande 

répétabilité sous différentes transformations d’images. 

1.1.1.    Détecteur de Contour avec Adaptation 

Le Détecteur de Contour est constitué de deux regroupements, fonctionnant 

séquentiellement, des principales étapes d’une Détection classique de Contours. Ce 

nombre minimal de deux regroupements des étapes, mais également des calculs 

locaux en chaque pixel de l’image garantit la rapidité de la détection [17].  

Le Détecteur de Contour programmé pour le projet CLEOPATRE [17] a pour 

objectif d’extraire les longues lignes droites de l’image. Or nous cherchons à l’utiliser 

pour détecter des Coins de Contour, problématique différente, d’où la nécessité de 

l’adapter. 

1.1.1.1.    Premier Regroupement 

Ce premier regroupement commence par le calcul du vecteur gradient, en norme 

et en argument, en chaque pixel de l’image par l’opérateur de Kirsch [18]. Les étapes 

de Seuillage sur la Norme du gradient et d’Affinage des Contours regroupées 

permettent d’obtenir une image binaire des (points de) contours affinés, c’est-à-dire 

d’un pixel d’épaisseur.  

Un problème survient au niveau de la phase du gradient. C’est le problème 

d’Arrondi des Angles, présenté Figure 1.1 sur un angle droit, et Figure 1.2 sur un 

angle aigu. Les deux figures présentent l’image originale et de la norme du gradient. 

Comme le « Coin de Contour » est l’intersection de deux « Segments de Contour » 

non colinéaires, d’une longueur minimale, il risque de ne pas être correctement 

détecté à cause de ce problème.  
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La solution que nous mettons en œuvre après la Détection de Segments de 

Contour est d’introduire les « Demi – Coins » (DCs). Un Demi Coin est une 

intersection de deux Segments de Contour non colinéaires, dont l’un d’entre eux n’a 

pas une longueur suffisante, comme les deux points C1 et C2 de la Figure 1.3 (a). 

Ainsi, si deux « Demi Coins » sont proches (distance inférieure à 3 pixels), le 

« Coin » réel est obtenu par intersection des deux segments de contour de longueur 

appropriée, si celle-ci est suffisamment proche des deux demi coins. La Figure 1.3 (b) 

présente les deux demi coins C1 et C2, ainsi que le coin réel C correspondant. Le 

Coin C n’appartient pas au contour dans ce cas, mais en est proche. 

 

Fig.1.1. Norme du Gradient en un angle droit avec l’opérateur de Kirsh. 

 

Fig.1.2. Norme du Gradient en un angle aigu avec l’opérateur de Kirsh . 

 

Fig.1.3. (a) C1 et C2 sont deux DCs. (b) C est un Coin “réel”. 

1.1.1.2.    Second Regroupement 

 Le second regroupement est constitué des étapes de prolongation et de 

chaînage des contours, mais séquencées de manière inhabituelle [17]. En effet, la 

prolongation intervient comme procédure de l’étape de chaînage si le pixel courant est 

une extrémité de contour. Prolongation et Chaînage fonctionnent en parallèle : un 

pixel est prolongé puis chaîné, ceci pixel par pixel.  
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 Les étapes de Prolongation / Chaînage ont été conçues pour extraire les 

longues lignes droites [17]. Ainsi à une intersection le chaînage du pixel en ligne 

« droite » est privilégié, et l’intersection n’est pas « relevée ». Notre problématique est 

tout autre : la détection de Coin de contours. Elle nécessite donc une adaptation.  

En effet, notre problème est le suivant. Considérons l’image de la tasse Figure 1.4 

(a), et l’image des Points de Contour correspondant Figure 1.4 (b), où les Points A et 

B sont représentatifs du problème. La procédure initiale suit la « ligne droite » (cf 

Figure n° 1.4 (c)). L’adaptation permet de considérer les différentes possibilités de 

chaînage (cf Figure n° 1.4 (d)), qui sont maintenant considérés comme des points 

doubles. De cette manière, les points A et B pourront être détectés comme des Coins 

de Contour (cf Figure 1.5). 

 

 

Fig.1.4. (a) Image d’une Tasse. (b) Image des Contours. (c) Ancienne procédure aux points A et 

B. (d) Nouvelle Procédure : Introduction d’un double point. 

 

Figure 1.5. Nouvelle Procédure lors d’une Fourche. 
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1.1.2.    Détecteur de Segments de Droite 

On doit être capable de distinguer un Segment de Contour Idéal (SCI) d’un 

Segment de Contour Réel (SCR). Un Segment de Contour Idéal comporte des points 

de contour dont les codes de Freeman  (permettant de passer du point courant au point 

suivant) comportent une ou deux directions au maximum. Par exemple la Figure 1.6 

présente 5 segments de contours idéaux SCI1 à SCI5. SCI1 et SCI5 sont constitués de 

points de contour comportant une seule direction (ou code de Freeman) : 

respectivement 0 et 1.Les trois autres segments de contours idéaux : SCI2 à SCI4 sont 

constitués de points de contours de deux directions principales ; ils diffèrent par leur 

fréquence d’occurrence de ces deux directions. Pour SCI2, la fréquence d’occurrence 

de code « 0 » est double de celle de code « 1 ». Ainsi le code « 0 » est la direction 

principale « pdir » et le code « 1 » la direction secondaire « sdir ». 

 

Fig.1.6. 5 Segments de Contour Idéaux SCI1 à SCI5. 

Dans des situations réelles, les Segments de Contour Idéaux n’existent que très 

peu, à cause du bruit sur les contours. Ainsi, des pixels de bruit figurent dans les 

contours, comme le montrent les points cerclés de la Figure 1.7 (a).Ainsi, un 

algorithme intelligent doit être capable de détecter ces pixels de bruit, et de les 

éliminer de manière à trouver la bonne direction du segment de contour. 



23 
 

 

Fig.1.7. (a) Image Réelle de Contour. (b) Image Réelle et Coins Détectés. (c) Cinq cas où des 

pixels de bruits apparaissent en (a). 

1.1.3.    Détecteur de Coins de Contour 

Les Coins de Contour sont définis comme étant les intersections de deux 

segments de contours consécutifs non co-linéaires, avec une longueur minimale. Dans 

nos expérimentations, la taille minimale des segments de contours a été fixée à 10. La 

Figure 1.7 (b) présente les coins détectés sur une image réelle. 

Un Coin de Contour est caractérisé par deux paramètres. Le premier est son 

angle entre les deux segments de contours. Le second est le rapport des longueurs de 

ces deux segments. Au chapitre 5, nous avons étudié la répétabilité de ces deux 

paramètres face à la variation d’échelle. Il est apparu qu’ils sont quasiment invariants. 

Ainsi, nous avons suggéré une application robotique : une application de 

Reconnaissance de Forme 2D utilisant les Coins de Contour. L’idée est d’embarquer 

notre algorithme sur un robot mobile et autonome. Dans la phase d’apprentissage, un 

opérateur humain présente au robot la forme 2D à rechercher. L’algorithme extrait les 

Coins de Contour qui sont caractérisés par l’angle et le rapport des longueurs des 

Segments de Contours le constituant. Dans la phase opérationnelle, le robot recherche 

la forme 2D apprise. L’algorithme détecte les Coins de Contour de chaque contour, et 

les met en correspondance en utilisant leurs angles et rapports de longueur des 

segments.  
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1.1.4.   Détails de l’algorithme de détection des Segments et des Coins de Contour 

Les Détections des Segments puis des Coins de Contour sont réalisées sur les 

contours extraits. 6 paramètres caractérisent chaque Segment de Contour : 

 La direction primaire pdir et sa fréquence pcount.  

 La direction secondaire sdir et sa fréquence scount.  

 Autres directions odir et leur frequence ocount.  

Pour illustrer l’algorithme, prenons un contour composé de deux segments de 

contour non colinéaires, respectivement en noir et en vert sur la Figure 1.8. 

 

Fig.1.8. Détection de Segments de Contour. 

 L’algorithme démarre du point A. La direction courante (ou code de Freeman) 

est « 0 » : il est enregistré comme pdir et sa fréquence pcount est incrémenté de A à 

B. En B, le contour est dévié et la direction courante vaut « 1 », enregistré en tant que 

sdir. Sa fréquence scount et aussi pcount sont incrémentés jusqu’en C. En C et D, la 

direction courante est « 7 » est enregistré en odir et sa fréquence ocount est égal à 

deux au point D. Entre D et E la direction courante est « 0 », soit pdir ainsi pcount est 

incrémenté et ocount est « effacé ». Cependant, à partir de E sur la portion en vert la 

direction courante n’est pas pdir, ainsi ocount ne sera pas effacé et va dépasser le seuil 

prédéfini, égal à deux dans nos expérimentations. L’algorithme prend le point E 

comme fin du premier segment de contour et début du second. Ensuite, E sera détecté 

comme Coin de Contour. 

Les variables utilisées dans l'algorithme sont: 

- cdir: direction du point de contour courant. 

- pdir: direction du point de contour précédent. 

- adir: direction d'avance. 
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- fdir: direction finale du segment de contour. 

- mdir: direction principale du segment de contour. 

- sdir: direction secondaire du segment de contour. 

- Acc1: accumulateur de la direction principale. 

- Acc2: accumulateur de la direction secondaire. 

- Accn: accumulateur d'autre direction. 

- L: longueur courante du segment de contour.  

- hn: seuil maximal sur le nombre des points bruits permis. 

- hl: seuil minimal sur la longueur du segment de contour. 

- EndofStraightEdge: variable logique pour déclarer la fin du segment de droite. 

L'algorithme de détection du segment de contour et de sa direction finale est 

présenté dans Figure 1.9. 

1.1.1.5.    Suppression itérative de Coins de Contour 

La suppression peut être initialisée à partir d’un nombre quelconque de coins 

sur un contour donné. Le but est d’éliminer itérativement les coins. Le coin éliminé à 

chaque itération correspond à l’erreur minimale d’approximation. L’élimination 

itérative s’arrête lorsqu’un critère d’arrêt est atteint. Le critère d’arrêt est le taux de 

compression CR. 

 (1.1) 

où n est le nombre de points de contour, et nc le nombre de Coins de Contour à 

trouver. 

L’objectif est de minimiser la fonction « Global Integral Square Error » ou 

(GISE). L’ensemble de Coins de Contour restants formera l’ensemble de Coins 

Dominants (Dominant Corner DC).  

L’algorithme utilise deux grandeurs : la “ Local Integral Square Error” (LISE) d’un 

segment et la “Local Integral Square Error Variation” (LISEV) due à la suppression 

d’un Coin de Contour. Pour illustrer ces notions, considérons le contour en noir, 

approximé par la ligne polygonale Cor1, Cor2, Cor3 et Cor4 de la Figure 1.10. 
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Fig.1.9. Algorithme de détection des segments de contour. 

 

Fig.1.10. Elimination d’un Coin de Contour. 
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A l’itération i, la portion de contour comprise entre Cor1et Cor2 est approximée  

par le segment [Cor1Cor2]. L’erreur locale correspondante LISE est la somme des 

carrés des distances entre le contour approximé, et le segment de contour 

l’approximant, ce qui est égal à l’Aire A. L’erreur globale du contour complet 

compris entre Cor1 et Cor4 GISE à cette itération est la somme de toutes les LISE, 

soit : A+B+C. 

A l’itération i+1, l’algorithme a le choix de supprimer  les Coins Cor2 ou Cor3. Si 

le Coin Cor3 est supprimé la variation d’aire associée LISEV3 est égale à la nouvelle 

D moins l’ancienne (B+C) (cf équation Eq (1.2)). La nouvelle aire globale GISE soit 

(GISEi+1) est égale à l’ancienne (GISEi) plus la nouvelle variation (LISEV3). Il faut 

effectuer un calcul similaire pour supprimer le Coin Cor2 (cf Eq (1.3)). Finalement, 

l’algorithme élimine le Coin (Cor2 ou Cor3) qui correspond à l’aire minimale GISE.  

 (1.2) 

 (1.3) 

1.1.6.    Contribution 

La principale faiblesse des détecteurs existants de Points d’Intérêt ou de Coins est 

la qualité de leur détection avec des images réelles où le bruit notamment sur les 

frontières des objets est relativement important. De plus les détecteurs de points 

d’intérêt sont basés sur l’intensité des pixels de l’image. Par conséquent leur détection 

est dépendante d’un ou de plusieurs seuils  sur l’intensité, généralement constant, ce 

qui la rend très sensible aux bruits. 

Nous avons présentés deux nouveaux détecteurs de primitive image : les Coins de 

contour, et les Coins Dominants de contour. Les Coins de contour sont « très 

répétables » ce qui les rend applicables dans de nombreuses applications comme 

l’approximation polygonale, le recalage d’images, la reconnaissance de caractères 

etc...  De plus, comme les coins sont regroupés grâce à leur appartenance à un 

contour, nous n’avons pas besoin d’utiliser une méthode de mise en correspondance 

coûteuse en temps de calculs comme la méthode RANSAC pour mettre en 

correspondance les coins provenant de deux images, ou d’un modèle et d’une image. 
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Comme les contours sont l’une des primitives les plus importantes car répétable 

lors de différentes transformations d’images [3], nous les avons utilisé pour détecter 

nos coins qui leur appartiennent. Ainsi, notre but est de détecter des primitives images 

de type « Point » qui sont à la fois correctement localisées et répétables malgré des 

déformations de l’image. Par conséquent, ils peuvent être utilisés comme Points 

d’Intérêt sur le contour d’un objet, où le descripteur est calculé localement à chaque 

point, en fonction du point et de son environnement.    

Les « Coins Dominants » sont des primitives image de type Point « très 

répétables » sous des transformations affines, et sont utilisés comme sommets de la 

ligne polygonale qui approxime au mieux le contour. Les différences entre les travaux 

existants et nos travaux sont la nature et la stabilité des points sélectionnés.    

Les points sélectionnés par  Masood [127] sont les points qui correspondent à une 

déviation dans la direction du contour. Les points que nous sélectionnons sont des 

coins de contour qui sont des intersections de deux segments de droite approximant le 

contour. Ainsi nous ne détectons pas un coin à chaque changement de direction du 

contour correspondant à un bruit sur le contour.  En plus, Masood élimine 

itérativement les coins en utilisant une mesure de l’erreur appelée « Associated Error 

Value » ou (AEV).  L’AEV à un point dominant est le carré de la distance de ce point 

à la ligne joignant les points dominants précédent et suivant.  

 L’erreur que nous utilisons la « Global Integral Square Error » ou (GISE) est 

proportionnelle à la surface entre la portion de contour et le segment l’approximant. 

Elle est similaire au critère utilisé par Wall and Danielson [118], alors que l’AEV est 

une distance maximale, comme utilisé par Pavlidis [117]. 

1.2.    Première Application : le Recalage d’Images 

Cette application est basée sur les Coins Dominants extraits par l’algorithme de 

Suppression Itérative de Coins présenté paragraphe 1.1.  

Considérons deux images appelées images courante et de référence prise d’une 

même scène, mais à deux différents instants, avec un intervalle temporel relativement 

faible. La première étape consiste en la sélection des Coins Dominants pour chaque 

contour  dans chaque image. Puis, une primitive est formée pour chaque quadruplet de 
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Coins Dominants consécutifs du même contour. Ainsi, une primitive est un ensemble 

de points d’intérêt ou de Coins Dominants formant une quantité invariante par 

transformation d’images. Ensuite, les primitives sont associées entre images, en 

utilisant cet invariant. Finalement, chaque  association de primitives vote pour un 

modèle de transformation affine. Le modèle ayant obtenu le plus grand nombre de 

votes est celui retenu pour le recalage.  

Notre méthode de Recalage d’Image utilise un modèle de transformation affine, 

simple et adéquat lorsque l’intervalle de temps entre les prises de vue est relativement 

faible. Nous avons montré la grande répétabilité des Coins Dominants en présence 

d’une Transformation Affine au Chapitre 6, paragraphe 6.5, c’est la raison pour 

laquelle nous les avons utilisés. Une application de notre méthode pourrait être la 

surveillance de trafic routier à l’aide d’un drone aérien, où la difficulté est d’extraire 

le mouvement de petites cibles : les véhicules, à partir d’une caméra elle-même en 

mouvement. Le recalage permet la compensation du mouvement « global » de la 

caméra.  

1.2.1.    Sélection automatique des Coins Dominants 

Le taux de compression CR n’est pas un critère d’arrêt optimal pour cette 

application, car un nombre différent de Coins Dominants est obtenu pour les images 

courante et de référence. En revanche, le ratio r entre les aires GISE initiale et finale 

l’est. 

 
(1.4) 

 

 La GISE est une aire globale, somme des aires locales LISE. Le rapport entre 

les aires est un paramètre invariant par transformation affine, donc reste un invariant 

par transformation affine. De plus, la variation d’aire due à la suppression d’un Coin 

LISEV est également préservée par transformation affine. Ainsi l’élimination itérative 

des Coins, basée sur la variation d’aire permettant d’obtenir la plus petite valeur 

permet de garder des Coins Dominants qui se correspondent dans les deux images.  



30 
 

1.2.2.    Construction des Primitives 

Chaque quadruplet de Coins Dominants successifs constitue une primitive 

comme présenté sur l’image de la feuille de la Figure 1.11 (a). Le rapport R des deux 

triangles présenté Figure 1.11 (b) forme la première mesure invariante de la primitive. 

 
Fig.1.11. (a) Construction de Primitives sur la feuille. (b) Les deux aires triangulaires construites à 

partir de la Primitive, et la première mesure invariante R. 

 Les angles entre les Coins Dominants constituent la seconde mesure invariante 

issue du quadruplet de Coins Dominants de la primitive. Par l’expérience, nous avons 

apprécié la répétabilité des angles sous différentes transformations affines. 

1.2.3.    Mise en Correspondance de Primitives 

Une primitive de l’image courante est associée à une primitive de l’image de 

référence, si et seulement si : 

 Les deux primitives ont le même rapport d’Aires : R. 

 Les Coins Dominants se correspondant ont les mêmes angles. 

1.2.4.    Estimation du Modèle de Transformation par Transformée de Hough 

La relation entre les Points correspondante à une transformation Affine est:  

 
(1.5) 
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où (x',y',1) et (x,y,1) sont les coordonnées homogènes des deux Coins Dominants 

relies par la transformation. aij sont les 4 paramètres de la transformation linéaire 

associée, tx,ty sont les deux paramètres de translation. 

Comme la transformation comporte 6 paramètres, l’espace de Hough utilisé est de 

dimension 6. Les paramètres de la transformation linéaire aij s’étendent sur l’intervalle 

[-2;2] par pas de 0.01, ce qui représente 400 divisions par paramètre. Les paramètres 

de translation s’étendent sur l’intervalle [-200;200] par pas de 5, ce qui représente 80 

divisions par paramètre. Deux modèles de transformation affine sont identiques si les 

6 paramètres appartiennent à la même division.  

Supposons  DC1(x1,y1), DC2(x2,y2), DC3(x3,y3) et DC4(x4,y4) les 4 Coins 

Dominants successifs constituant la primitive de l’image de référence, et  DC'1(x'1,y'1), 

DC'2(x'2,y'2), DC'3(x'3,y'3) et DC'4(x'4,y'4) de l’image courante. Le modèle de 

transformation affine de l’équation Eq. (1.5) peut être ré-écrit de la manière suivante: 

Eq 1.6 et Eq 1.7. 

 

(1.6) 

 

(1.7) 

où les vecteurs h and h' contiennent les paramètres de la transformation affine et 

peuvent être estimés par les équations Eq 1.8 et Eq 1.9 : 

 (1.8) 

 (1.9) 

Finalement, le modèle de la transformation, contenu dans h et h', est celui qui 

obtiendra le plus grand nombre de vote dans l’espace de Hough précédemment décrit. 

1.2.5.     Notre Contribution 

Nos deux principales contributions dans cette application sont: 

 la construction d’une nouvelle primitive à partir d’un quadruplet de Coins 

Dominants consécutifs. L’importante répétabilité des coins dominants 
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implique une importante répétabilité de cette nouvelle primitive. Ceci permet 

d’augmenter la robustesse par rapport à d’autres primitives. 

 la Mise en Correspondance de primitives, basée sur des paramètres invariants : 

rapport d’aire et angles entre Coins Dominants. 

1.3.    Seconde Application: Reconnaissance de Caractères 

Notre algorithme a été conçu pour « attaquer »le système CAPTCHA dans le but 

de segmenter et de reconnaître les caractères d’une image. Nous ne sommes pas des 

« hackers » cherchant à pirater des accès d’applications internet utilisant le système 

CAPTCHA comme outil de sécurité. Au contraire, notre but est de trouver des 

faiblesses du système existant de manière à le sécuriser et à le rendre plus robuste. 

Notre algorithme pourra ensuite être employé dans une autre application de robotique 

interactive. L’opérateur présentera l’information à donner au robot (commande ou 

autre) sous forme d’écriture manuscrite. 

L’algorithme est basé sur les Coins de Contour (CCs). Chaque Coin de Contour 

est caractérisé par son angle “Ang” et les longueurs  « L1, L2 »des deux segments 

adjacents.Selon ces caractéristiques, nous avons défini trois types de CCs :  

 CCsForts: Ang >  90o et  L1,L2>10 pixels. Par exemple, les points A et D sont 

des Forts CCs sur le« Z » de la Figure 1.12  

 CCs Faibles: Ang> 90o et soit L1 < 10 soit L2 < 10. Par exemple, les points B 

et E sont des Faibles CCs sur la Figure 1.12 

 Coins de Liaison qui apparaissent entre deux caractères connectés.  

 

 

Fig.1.12. CCs sur l’image du caractère Z. 
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1.3.1.    Schéma Proposé : Segmentation et Reconnaissance Simultanées des 

Caractères 

Les Figures 1.13 et 1.14 présentent la reconnaissance d’une image déformée 

composée de deux caractères : G et 3. 

 

Fig.1.13. Recherche  de la meilleure Ligne constituent la Frontière Droite, segmentant 2 caractères 

déformés et connectés. (a) image déformée et ses CCs. (b)  différentes segmentations et les 

reconnaissances correspondantes avec leur taux. 

 

Fig.1.14. Segmentation Optimale utilisant une ligne brisée comme frontière droite.  

(a) Trois différentes tentatives de segmentation utilisant  une frontière  sous forme de ligne brisée, 

et leur taux de reconnaissance. (b) La partie restante à reconnaître par la procédure. 

La reconnaissance est compose de quatre phases: 
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 La frontière gauche (en rouge) est initialisée sous forme de ligne brisée. La 

frontière droite (en bleu), également sous forme de ligne brisée passant par les 

CCs, est recherchée par un déplacement sur la droite. Chaque essai est appelé 

“Tentative de Segmentation”.   

 Pour chaque Tentative de Segmentation, la partie de l’image comprise entre 

les frontières gauche et droite est associée à tous les caractères ou symboles de 

test. La sortie de cette tentative est un taux de reconnaissance. Cinq tentatives 

de segmentation sont présentés Figure 1.13 (b). L’algorithme retient la 

Tentative de Segmentation ayant le taux de reconnaissance le plus élevé, et la 

frontière droite correspondante, sous forme de ligne brisée passant par les 

CCs.  

 Les CCs de la frontière droite retenue, ainsi que tous les CCs voisins sont 

présentés Figure 1.14 (a). La frontière est la séquence de segments passant par 

les CCs. Trois différentes frontières possibles sont présentées Figure 1.14 (a), 

avec leur taux de reconnaissance. La frontière optimale, avec un taux de 

reconnaissance de 56% est associée au caractère « G ». 

 La frontière droite optimale du caractère courant devient frontière gauche du 

caractère suivant, cf Figure 1.14 (b). 

L’algorithme détaillé est présenté Figure 1.15. 

 

Fig.1.15. L'algorithme proposé. 
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1.3.1.1.    Segmentation 

Le but de la segmentation est de trouver les frontières gauche (FG) et droite (FD) 

de chaque caractère. La première FG est la ligne verticale passant par la plupart CCs à 

gauche. La frontière de droite est une ligne brisée qui sélectionne à chaque Coin de 

Contour, un segment parmi un ensemble de M-Segments comportant un segment 

vertical et M-1segments dont les variations d’angles sont comprises entre -

45<∆θ<+45. La Figure 1.16 représente l’ensemble de M segments à partir du coin CC 

de coordonnées (32,35) avec M = 5. 

 
Fig.1.16. Ensemble de M segment au Coin CC(32,35) pour M=5. 

Le meilleur segment de la frontière de droite, extrait de l’ensemble de M-

Segments, permettant le taux de reconnaissance le plus important, est de sorte que la 

ligne brisée comporte un maximum de Coins de Contour. Pour cela les coins voisins 

dont la différence d’abscisse est inférieure à 10 sont pris en compte. La Figure 1.17 

illustre ce principe. Le meilleur segment de la frontière droite est présenté en gris et le 

Coin de Contour correspondant CC(29,30). 

 

Fig.1.17. Meilleure Frontière de Droite pour le Caractère G. 
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Fig.1.18. Trois Frontières Droites à partir du CC de coordonnées (29,30). 

La Figure 1.18 présente trois frontières droites potentielles sous forme de lignes 

brisées, ainsi que leur taux de reconnaissance. Pour la frontière grise, le caractère 

reconnu est un « C » et le taux de reconnaissance est de 33%. Pour la frontière bleue, 

le caractère reconnu est également « C » avec un taux de 35%. Pour la frontière rouge, 

le caractère reconnu est « G » avec un taux de reconnaissance de 38%. Ainsi, la 

frontière droite optimale est la frontière rouge. Elle devient la nouvelle frontière droite 

pour le prochain caractère à segmenter. 

1.3.1.2.    Reconnaissance 

Après chaque tentative de segmentation, une image segmentée est obtenue cf 

Figure 1.19 (a). Elle sera associée à chaque caractère de la base de test. La Figure 1.19 

(b) présente l’image test du caractère (caractère G) correspondant à l’image 

segmentée de la Figure 1.19 (a).  

 

Fig.1.19. (a) Image Segmentée. (b) Image du Caractère Correspondant de la base de test. 
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Trois paramètres sont utilisés pour mettre en correspondances les CCs :  

 Leurs angles. 

 Le nombre de contour traversés de chaque côté de l’angle d’un CC. Pour 

illustrer la méthode, considérons le CC (11, 31) de la Figure 1.20. On dessine 

3 lignes droites avec une déviation de pente de 45o et on enregistre le nombre 

de contours traversés par chaque ligne droite de chaque côté de l’angle. Par 

exemple, pour la ligne droite « 2 » le nombre de contours traversés sont 1 de 

côté gauche et 2 de côté.Ce paramètre est utilisé pour éliminer un certain 

nombre d’associations erronées. Sans lui, les CCs (5,28) et (11,31) ne peuvent 

pas être différenciés en utilisant seulement leurs angles. 

 L’index binaire ou l’index de quadrant. Le caractère segmenté comme le 

caractère test sont divisés en quatre quadrants, cf Figure 1.19. Chaque CC 

appartient à l’un d’entre eux. 

 

Fig.1.20. Trois lignes droites dessinées à partir de CC(11, 31) pour trouver le nombre de contours 

traversés. 

Deux CCs, l’un de l’image de caractère de la base de test et l’autre de l’image 

segmentée, sont -soit Coins Trés Probablement Equivalents (CTPE), -soit Coins 

Equivalents ou bien Coins non Equivalents.  

1.3.1.2.1.    CTPEs 
Les conditions sont: 

 Les deux CCs et leurs CCs directement chainés ont le même angle. 

 Ils ont le même nombre de contours traversés. 



38 
 

 Ils appartiennent au même quadrant. 

CCs (5,28)-(6,31) et (32,46)-(50,69) sont marqués en jaune respectivement dans 

les deux images dans la Figure 1.19 sont CTPEs. 

1.3.1.2.2.    CC Mis en Correspondance 
Les conditions sont: 

 Ils appartiennent au même quadrant avec une certaine déviation t du quadrant 

correspondant. 

– A cause de la déformation globale, certains CCs peuvent être déplacés 

d’un quadrant à un quadrant voisin. Dans la Figure 1.19, CCs (6,36) et 

(27,73) sont Equivalents. Mais, CC (6,36) est déplacé du quadrant 3 au 

quadrant 1. 

 Ils doivent avoir les mêmes nombres de contours traversés sauf pour ceux qui 

traversent les frontières gauche ou droite. 

– A cause de la fusion de deux caractères successifs, quelques segments 

de contour, localisés aux frontières du caractère, peuvent avoir 

disparus. Dans la Figure 1.19 (a), les segments disparus sont entourés. 

C’est pour cela on ne peut pas considérer le nombre de contours 

traversés par une ligne qui à son tour traverse les frontières. 

Un CC de l’image de base peut être Equivalent à plusieurs CCs de l’image 

segmentée.  

1.3.1.2.3.    Système basé sur la Logique Floue 
Un Système basé sur la Logique Floue est proposé pour évaluer le taux de 

correspondance entre le caractère à reconnaitre et les caractères de la base de test. La 

Logique Floue est utilisée compte tenu de la déformation aléatoire des caractères à 

reconnaître. Le schéma bloc de l’algorithme est proposé dans la Figure 1.21.   

 

Fig.1.21. Schéma Bloc du Système à Base de Logique Floue. 
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Le caractère à reconnaitre et le caractère de la base de test sont fournis sous forme 

de Coins associés. La sortie de la première étape est constituée de deux paramètres : 

«  Vector Angle Difference » "VectAngDiff" et« Corner Angle Difference » 

"CorAngDiff". Ces paramètres sont les entrées du “Fuzzy System” qui calcule le taux 

de correspondance. 

VectAngDiff est illustré  Figure 1.22. Considérons deux Coins de Contour 

associés (11,23) et (21,13). Dans chaque image, dessinons le vecteur reliant le 

CoinauxCTPEs. Deux vecteurs, un dans chaque image, sont dits correspondants si 

leurCTPEs sont correspondants. Les CTPEs correspondants sont colorés Figure 1.22 

et sont nommés (V1,V'1) et (V2,V'2). VectAngDiff est la moyenne des  “vectors 

angles differences”. 

CorAngDiff est illustré dans la Figure 1.23, en utilisant la même paire de Coins. 

La direction moyenne “ASE” de deux segments de contour successifs est enregistrée. 

On a deux “ASE” correspondant aux deux coté de l’angle. La différence entre ces 

deux ASE est enregistrée comme CorAngDiff.  

 

Fig.1.22. VectAngDiff entre les vecteurs correspondants  

de deux CCs Equivalents (11,23) et (21,13). 

 

Fig.1.23. “Corner Angle Difference” en un CC. 
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Le système, présente Figure 1.21, a deux entrées: “VectAngDiff” et “CorAngDiff” 

et une sortie “Matching Percentage”. Alors, la “Fuzzification” commence par la 

sélection d’une fonction de membre pour chacun comme présenté  Figure 1.24. 

Nous avons choisi ces formes particulières parce qu’elles mènent 

expérimentalement aux taux d’association les plus élevés.   

 
Fig.1.24. Fonctions Membres. 

Les lois de flou sont résumées Table 1.1. Les utilisant, le taux d’association en 

sortie sera “Like” ou “Alike” avec un pourcentage entre 0 et 1. 

Table 1.1. Lois de Flou. 

  VectAngDiff 

  L M H 

 

CorA

ngDiff 

L Like Like Alike 

M Alike Alike Alike 

H Alike Alike Alike 
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Pour ce taux d’association, on trouve les pourcentages associés à “Like” et 

“Alike” en utilisant les inverses des fonctions gaussiennes cf Figure 1.25. 

 

Fig. 1.25. Calcul des Pourcentages “Like” et “Alike” à partir des fonctions inverses. 

Finalement, le pourcentage d’association peut être calculé: 

 
(1.10) 

Les Coins associés, des caractères à reconnaître et de la base de tests, ayant le 

plus haut score d’association sont marqués. Après chaque association de tous les 

Coins, l’étape de Vérification est une étape très importante pour la reconnaissance. 

Nous vérifions l’ordre des liaisons entre les Coins marqués des caractères à 

reconnaître et de la base de test. S’ils sont reliés correctement, le calcul du 

pourcentage d’association global continue. Sinon, les caractères ne se correspondent 

pas. 

Pour le pourcentage d’association global, on accumule pour chaque CC de base 

marqué le pourcentage du nombre des points de contour équivalents. Cela est fait par 

la multiplication du “MatchingPercentage” par les longueurs des segments de contour 

adjacents. 

nbptsM += MatchingPercentage*adjacent SEs lengths (1.11) 

On calcule également le nombre total des points de contour “nptsT” du caractère 

de base. Ainsi, La pourcentage d’équivalence totale “OveralMP” est égale à : 
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OveralMP = nbptsM*100/nbptsT (1.12) 

Finalement, l’image segmentée est reconnue comme l’image du caractère de base 

correspondant à la valeur maximale de OveralMP. 

1.4.    Conclusion 

Dans cette thèse nous avons introduit un nouveau détecteur de Coins, basé sur les 

contours de l’image. Il obtient de meilleures performances que les détecteurs de 

points d’intérêt de la littérature, notamment en termes de répétabilité. La première 

étape est la détection des contours. Puis un détecteur de segments de droite examine 

tous les contours pour détecter les parties pouvant être approximées par des segments 

de droite. L’intersection de deux segments de contours successifs d’une longueur 

minimale, non colinéaires forme un Coin. 

 Les Coins obtenus sont robustes vis-à-vis des déformations entre images, 

notamment en cas de transformation affine, ainsi qu’en cas de variation d’échelle, 

sans incorporer dans leur détection un invariant vis-à-vis de la variation d’échelle. Les 

résultats expérimentaux prouvent que notre « Edge Based Corner Detector » (EBCD) 

est très intéressant, comparé aux détecteurs existants. Nous avons proposé une 

application de Reconnaissance de Forme 2D l’utilisant. La reconnaissance est 

correcte, même en présence de plusieurs formes. 

 Basée sur les Coins de Contour, une nouvelle technique d’Approximation 

Polygonale est également proposée. En fixant comme critère d’arrêt le taux de 

Compression CR ou la valeur de l’erreur sur la surface, l’algorithme supprime un par 

un les coins de contour de manière à garantir une erreur minimale en surface. Les 

coins restants lors de l’arrêt, appelés Coins Dominants sont les sommets de 

l’Approximation polygonale, approximant de manière optimale le contour. Les 

résultats expérimentaux sont bons, comparés aux méthodes de la littérature.  

 Compte tenu de la répétabilité des Coins Dominant lors des Transformations 

Affines, observée lors de nos expérimentations, nous les avons utilisés lors d’une  

première application au Recalage d’Images. Ainsi nous avons proposé une nouvelle 

primitive formée d’un quadruplet de Coins Dominants successifs. Le rapport entre les 

aires des deux triangles formés ainsi que les angles entre Coins Dominants sont des 
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invariants par Transformation Affine, utilisé pour la mise en correspondances de 

primitives entre l’image courante et l’image de référence.    

Finalement, un algorithme de Segmentation – Reconnaissance simultanée de 

caractères a été proposé pour reconnaître les mots du système CAPTCHA de Yahoo. 

L’objectif en reconnaissant ces mots n’est pas de devenir un « hacker », mais de 

mettre en évidence les faiblesses du système. L’algorithme proposé classifie les Coins 

de Contour en Forts, Faibles et Coins de Connexion entre caractères. Pour segmenter 

les caractères, la notion de frontières gauche et droites est introduite. Ces frontières 

passent au minimum par un Coin de Connexion.  

 Ces frontières passent nécessairement par au moins un point de connexion et 

la partie d’image entre les frontières est la partie à segmenter. Cette partie est à 

l’entrée de la phase de Reconnaissance. Si elle est reconnue comme un caractère de la 

base de tests, l’algorithme continue avec la reconnaissance du caractère suivant de 

l’image. Pour pallier le problème de la déformation aléatoire de chaque caractère, 

nous avons utilisé un système de Logique Floue permettant de reconnaitre les 

caractères à partir de leurs Coins de Contour. Les résultats de nos expérimentations 

ont montré la flexibilité de notre système face à la déformation et à la connexion des 

caractères. Le détail de nos algorithmes sera utile pour améliorer les manières de 

déformer et de connecter les caractères des systèmes comme MSN ou Google 

CAPTCHA, de manière à être plus robuste contre les « hackers ». 

Plusieurs applications robotiques peuvent être développées. La première est la 

reconnaissance de formes basée sur les Coins de Contour que nous avons développée 

pour des applications plus complexes telles que la reconnaissance d’objets où plus 

d’un contour existent. Dans cette application, la mise en correspondance des coins de 

manière individuelle n’est pas suffisante, car elle génère un nombre important de 

fausses associations. Par conséquent, une nouvelle stratégie de mise en 

correspondance a été proposée, basée sur la mise en correspondance d’ensemble de 

coins de contour. Chaque contour de l’image test est associé à un contour de l’image 

courante en utilisant une distribution de contours associés où des coins de contours 

faible peuvent apparaître ou disparaître.  

La seconde est la surveillance de route à partir de drones. La compensation du 

mouvement global important de la caméra permet l’estimation du mouvement local 
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des cibles de petite taille en mouvement. Elle peut être réalisée grâce à notre 

procédure de recalage d’images.  

La troisième est la communication entre l’être humain et le robot, par écriture 

manuscrite. L’homme écrit l’information à transmettre au robot, et le robot la 

reconnait. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 



45 
 

 

 

 

 

 

                           2 

Introduction 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



46 
 

Computer vision is a field responsible for analyzing and processing the acquired 

image to extract numerical and symbolic information from images [1, 2] in order to 

output the appropriate result. This field has many applications ranging from tasks 

such as machine vision systems to research into artificial intelligence and computers 

or robots. Machine vision usually refers to a process of combining computer vision 

methods and technologies to provide automated inspection and robot guidance in 

industrial applications. For example, a mobile robot typically uses computer vision for 

navigation, for producing a map of its environment (SLAM) and for detecting and 

avoiding obstacles. In addition, simple low level algorithms have been introduced so 

far for a better visualization of the image. 

As stated before, the starting point in all computer vision techniques is to extract 

information from images that must be robust to different variations in real world 

applications concerning illumination, translation, rotation and scaling and also to 

noise like cluttered scene due to background. Here, the notion of "interest local 

features" becomes relevant. Local features have been shown to be well suited to 

matching and recognition as well as too many other applications as they are robust to 

occlusion, background clutter and other content changes. They are well defined 

information extracted from an image and that are spatially localized at specific 

locations in that image in the form of isolated points, continuous curves or connected 

regions.  

Feature detection is usually performed as the first operation on an image; it 

examines every pixel to see if there is a feature present at that pixel. For real time 

applications, the features neighboring regions can be the only image parts used to 

extract the needed information. In this way, the required processing time and the 

storage amount can be minimized. 

There are a lot of feature detectors that resemble on searching on informative 

features in an image but vary widely in the kinds of features detected, the 

computational complexity and the repeatability. Here, repeatability is an important 

measure to classify a feature detector, it is the stability of the feature in the same 

location in an image even after applying to it different transformations especially 

rotation and scaling and after adding to it some noise. The feature matching comes 

after the feature detection problem and forms a central process to any intelligent 
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activity. The success of the matching relies on the quality of the features and their 

description but also on the quality of the matching procedure. First, the extracted 

features have to be stable enough against temporal changes due either to motion, 

viewpoint, lighting variations or blurring. Therefore, the features have to be salient 

and accurately characterized in order to avoid any matching ambiguities. Second, the 

matching procedure has to rely on a similarity measure that correctly distinguishes the 

features in order to avoid false pairing.           

2.1.    From feature detectors to applications 

Computer vision is a very important field of research with a huge set of 

applications. According to the nature of the application, a feature detector tries to find 

and explore some image parts [9,10,11]. Any detector developed to extract this 

information in real scenes should have several properties. In application like object 

recognition, it should be able to form a specific representation of the existing objects 

like object's descriptors [12] or object's model that could identify an object from 

others. On the other hand it should be robust to noise and to various image 

transformations and changes like viewpoint, rotation, illumination, translation and 

scaling. In addition, it should be fast enough especially when used for real time 

applications. 

A very large number of feature detectors have been developed so far. They differ 

in the nature, the number and the repeatability of features detected and in the 

computational complexity.  

Some detectors use a smoothing step before start searching for the image features. 

The smoothing concept is introduced in the scale space theory [3,4,5] and the 

smoothing level introduced to an image is represented as a scale level in this theory. 

Thus, the smoothing degree can reveal the size of objects within an image. While 

increasing the smoothing degree, objects vanish from the image. Small objects vanish 

first and larger objects later. The smoothing level at which an object vanishes 

basically reflects the size of this object. For this reason the smoothing parameter is 

also called “scale”. It is used for two main reasons either to smooth the transition 

between image regions of different contrast or to study the repeatability of image 

features over scale. 
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There is a variety of feature detectors that differ by the technique used to extract 

these features. Some detectors can be applied directly on the image intensities to 

extract their features. Whereas other detectors are applied indirectly on image 

intensities since they are based on the features detected by other detectors. For 

example, a corner detector can detect corner points that are edge points. So an edge 

detector should be applied prior the corner detection. In general, the feature detectors 

can be divided into four groups: edges, corners, blobs and ridges. 

In practice, edges are one of the most important features. They are usually defined 

as sets of points in the image which have a strong gradient norm. This means that an 

edge is the boundary between two regions of different contrast. In addition, image 

corners are also very used features. Earlier, corners were points on the edge where a 

rapid change in direction occurs. Corners detectors were applied on edges and the 

detected points are called edge corners. Later on, the search of corners starts including 

all image parts not only image edges. Therefore, corners become image points 

corresponding to a high level of curvature in the image gradient. These points are 

frequently known as interest points. In the other hand, blobs are groups of pixels in 

the image that preserve some common property across it like intensity values, as 

opposed to corners that are more point-like. Therefore, blobs are image parts in the 

image space constructed by pixels of similar contrast. They can be used to form 

models or descriptors for objects that can be recognized by their color distribution. 

Finally, a ridge has been proposed as a useful feature for image analysis [6,7] and has 

been successfully applied to image segmentation [8]. Nevertheless, ridge descriptors 

are frequently used for road extraction in aerial images and for extracting blood 

vessels in medical images. Its goal is to capture the interior of elongated objects in the 

image domain.  

Interest point is an important image feature, presented in a lot of works in image 

processing domain, detected directly using the image intensities in its local 

neighborhood. Many applications are based on interest points in general like stereo 

matching, object modeling and recognition [13,14], image registration [15], video 

tracking, pose estimation and SLAM [16]. Using stereovision technique in a mobile 

robot, a 3D model of a 3D polyhedral object can be formed from the distribution of its 

3D interest points. Therefore, for an autonomous moving robot, these interest points 
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are used to localize the robot and build a map of its surrounding environment 

(SLAM). 

2.2.    Suggested feature detector and its applications 

We have proposed a feature detector, called Edge Based Corner Detector 

(EBCD), whose aim is to provide features points that can be more robust to noise and 

less time consuming for some image processing applications.  

The purpose is to segment the image first into feature segments, called "Straight 

Edges", than into feature points, called "Edge Corners" or simply "ECs", than select 

among the ECs a smaller set called "Dominant Corners" or simply "DCs". The 

Straight Edges are edge parts that are linked in the form of nearly straight lines. 

Therefore, a contour can be seen as a sequence of Straight Edges. Their detection is 

very robust to the normally introduced noise on the image edges. Than the ECs are 

edge points that correspond to the intersections of every non collinear Straight Edges. 

Finally, DCs are only the ECs having a strong repeatability under the affine 

transformation. Therefore, a classification method is developed to eliminate week ECs 

to obtain those strong ones (DCs). This classification is known as polygonal 

approximation.     

The obtained DCs are characterized by their repeatability under affine 

transformation. Therefore, we have suggested some robotic applications to benefit 

from this important characteristic. The first one is an image registration application 

where the goal is to determine the geometric model or transformation that aligns the 

image points in the two studied images, called source and sensed images. The 

deformation relating these two images should be very small in order to be well 

estimated by an affine model. Practically, this can be obtained when these images are 

acquired sequentially for the same scene with a small time interval. This registration 

method can be used to model the global motion of a drone's camera, monitoring a 

certain road, in the purpose to estimate the real motion of small moving targets, e.g. 

cars, on the road. The second application is a character recognition application 

designed for autonomous robots in a human-robot interaction. A human presents to 

the robot some written commands as words containing one or more characters that 

can be connected or not. The robot acquires the commands as images and should 
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recognize the characters and identifies the order. This application is simulated and 

tested in this thesis as a CAPTCHA breaker. The CAPTCHA is a computer program 

that generates randomly deformed words containing one or more characters. The 

random deformation introduced to each character simulates the real deformation in 

handwriting. In addition, the ECs have shown a strong repeatability under these 

deformations and so they are used as landmarks in this application. However, we are 

not seeking to play the role of a hacker and steal an access to log on to certain internet 

application. Due to our study and success to break these CAPTCHA schemes, one can 

improve these schemes to be more robust.  

Our proposed detector is based on ECs rather than interest points. The search of 

ECs is restricted only on edges rather than all the image space. It is defined as an edge 

point where a change in the edge direction occurs. It is more robust than an interest 

point since it is characterized by its angle and the length ratio of its two adjacent 

segments. Therefore, the choice is on ECs since the edges are very fast to extract and 

are less sensitive to noise.                

2.3.    Thesis outline 

Chapter 3 presents the Interest point/Corner features background, edge detectors 

background and an image registration background.  

Chapter 4 presents our segmentation work starting by edge segments, to edge 

corners (ECs), than dominant corners (DCs) with their invariant parameters.  

Chapter 5 shows the experimental results on ECs and DCs. The ECs results are 

compared to various existing interest point detectors. The DCs extraction which is the 

result of a polygonal approximation method is compared to other polygonal 

approximation techniques in the literature.   

Chapter 6 presents our first application on image registration by showing the 

repeatability of the dominant corners versus affine transformations, the primitive 

construction, the primitive invariant parameters and the proposed voting scheme. 

Chapter 7 presents our second application on character recognition by presenting 

first overview on existing techniques, than explaining the suggested system used to 
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recognize the characters in a deformed word image, and finally presenting the 

experimental results. 

Chapter 8 presents the conclusion and future works. 
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Interest points have been used in many computer vision tasks, such as image 

registration [52], image matching [91], object recognition [92, 93] and motion 

analysis [94]. Broadly speaking, there are two different interest point detection 

strategies adopted in literature. The first [61, 62, 99-104] is based on the analysis of 

pre-segmented contours and classified as edge corners detectors, while the second 

[28, 107, 108] is based on the differential analysis of the raw gray-scale image and 

classified as interest point detectors. Therefore, an interest point is a well defined 

point in the image space and it is easy to detect and represents certain variation in 

their local neighborhood. 

Interest points in gray-scale images are characterized by using the first and 

second derivatives of the image luminance function. Although this method does not 

require pre-segmented image contours, it is sensitive to the noise amplification effects 

of the second-derivative operators. An interest point detector can be classified as a 

Template-based detector [97]. Template-based detector detects the similarity between 

a given oriented template image and each image sub-window. The points that 

correspond to maximum similarity are classified as interest points. Because multiple 

orientation templates are used, the technique is computationally expensive. 

So our features classification can be as follows: 

 Intensity based interest point features or simply interest points. 

 Edge based corners and Edge Dominant Corners (DCs). 

Our contribution is on the second class of features. The major strength of our new 

proposed features is in their robustness to noise and scale variation. They are based on 

edges that are less sensitive to noise and don't require a large computation time. 

However, existing interest point detectors are intensity based or region based. This 

will make them more sensitive to the noise existing normally in real images. 

Intensity based interest point features are compared to the newly suggested edge 

based corner features so Section 3.1 provides a survey on various interest point 

features overview. Section 3.2 presents first various edge corner detectors including a 

survey on various edge detectors that form the basis of the suggested corner detector. 

This section also presents various edge segmentation techniques based on polygonal 

approximation that are compared to our polygonal approximation technique using the 

edge dominant corners. Section 3.3 presents a survey on image registration techniques 
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that are compared to our image registration application using the edge dominant 

corners. Section 3.4 presents our contribution. 

3.1.    Interest point features overview   

3.1.1.    Interest points are local image features 

In general, a feature is considered as a "piece of information" extracted from an 

image. The level of interest differ form one application to another. Extracted features 

form an image form the starting point for high level algorithms such as recognition, 

tracking … An important property of a good feature is its repeatability: it reflects the 

ability of a feature extracted from an image to be extracted again in the same image 

but under deformation like adding noise, affine transformations, illumination 

variations and occlusion. A very large number of feature detectors have been 

developed so far. These vary widely in the kinds of interest points detected, the 

computational complexity and the repeatability.  

Some algorithms search for global features, named "global features detectors", 

that try to represent the whole image such shape contexts [63, 64] while others seek 

for local features that represent interest features located in specific regions in the 

image and they are named "local features detectors" or "interest point detectors". 

Many techniques are classified under this category and each searches for different 

features in the image. All of these interest point detectors are based on three different 

bases: some are distribution based [65-73], others are differential based [74] and 

others are spatial frequency like the ones that use gabor filters and wavelets [75-77]. 

The most famous distribution based techniques are appearance-based or model-based 

local feature detectors. As an example, face recognition algorithms [203, 204, 205] 

rely on special features in the human face that distinguishes it from other objects. So, 

they try to extract eyes, mouth [78, 79] and nose [80] from an image or rely on skin 

color [81]. 

Features are classified into three classes: Line features, region features and point 

features. Edges [39, 135], contours [41] and level lines [33] form the line features 

used to represent object contours, roads, coastal line, etc. Straight lines are very 

important image features used in remote sensing applications to register city or roads 

networks images. Regions [42, 201, 202] form the region features used to segment an 
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image into high contrast closed boundary regions that may represent particular 

objects: Forests [129], lakes [130] and buildings [131] are formed. Interest points [43] 

form the point features. These point features are image corners [28], line intersections, 

centroids of regions, curvature extremes, and others.  

Next, we will present various interest point detectors. 

3.1.2.    Moravec detector 

Moravec corner detector [99] is one of the earliest corner detectors. To check the 

presence of a corner at a given pixel C, a 3 x 3 window is placed at C and its four 

direct neighbors: horizontal, vertical and two diagonals as shown in Figure 3.1. 

 

 

Fig.3.1. Original and shifted windows around the tested pixel C. (a) Original window. (b) Windows 

shifted horizontally and vertically. (c) Windows shifted diagonally [99].  

The differences of the pixel intensities in the corresponding positions between the 

original window and the four neighboring ones are calculated. For each neighbor, the 

difference function is given by: 

 (3.1) 

Where W(i,j) is one of four windows, f(x,y) is the image function and (u,v) are the 

coordinates of the corresponding shift. Their values are: 
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 (1;0): for the horizontal shift. 

 (0;1): for the vertical shift. 

 (1;1): for the diagonal shift up-right. 

 (-1;1): for the diagonal shift up-left.   

A corner is detected at pixel C if the minimum of the four values of E(u,v) is 

above a threshold value. 

The major problem in Moravec detector is in the false detection of edge points as 

interest points. Sometimes when the edge changes its direction, it will be chosen as 

interest point. This weakness makes the Moravec detector not suitable for our robotic 

applications where the stability of the detected corners is very essential. 

3.1.3.    Harris detector 

Moravec corner detector constructs the starting point for Harris corner detector 

[100]. Harris has entered several improvements to the Moravec detector to achieve 

better performance in detection and better robustness to noise.  

The first drawback in Moravec detector is its anisotropic response since a discrete 

set of shifts at every 45o is considered (only four discrete shifts are considered at every 

pixel). To overcome this fact, the shifts are considered in all directions as small shifts 

in continuous form. The shifts u and v in the x and y directions are approximated by a 

Taylor expansion up to O(x2;y2) as follows: 

 (3.2) 

Where fx and fy are the partial derivatives of the image function f. 

The difference function E becomes: 

 (3.3) 

In matrix form: 

 (3.4) 

Where: 
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(3.5) 

A is called the Harris matrix. 

The second drawback in Moravec detector is its noisy response due to the usage 

of a hard shaped rectangular window. The Euclidean distances from the center pixel 

of the window to the edge pixels vary for different directions.  This is easily resolved 

by using a circular window.  Being binary puts equal emphasis on all intensity 

variation measures regardless of their distance from the center of the window. 

Intuitively, more weight should be put on measurements made closer to the center of 

the window like a Gaussian window: 

 
(3.6) 

The third drawback of Moravec detector is its response to edges so an incorrect 

detection of corners. In fact, any imperfections in an edge due to noise, pixilation, or 

intensity quantization may lead to a local minimum intensity variation over all shift 

directions that may lead to incorrect corner detection. Harris detector presents a way 

to distinguish between edge response and corner response. The eigenvalues of the 2 x 

2 matrix A in Eq. (3.5) reflect the presence of a corner or an edge point because they 

represent the curvature at the tested point C. 

 If the two eigenvalues are small, point C lies in a homogeneous region in 

intensity. 

 If one of them is small and the other is large, point C lies on an edge. Moving 

along an edge has small intensity variation (small eigenvalue) while moving 

across it the variation will be considerable (large eigenvalue). 

 If both eigenvalues are large, the point C represents a corner point. High 

curvature is present at this point. 

Harris and Stephens have found a very big computation load while calculating the 

eigenvalues of the matrix A. So, they replace this calculation by the function R: 

 (3.7) 



58 
 

Where k is a tunable parameter. R is positive on corner points, negative on edge 

points and very small in flat region.  

The Harris detector, discussed so far, is partially invariant to affine intensity 

change and invariant to image rotation. However, it is not invariant to scale change. 

Figure 3.2 shows the decreasing in the repeatability of the Harris corner points due to 

the scale variation. 

Therefore, the multi-scale Harris detector is introduced. Two Gaussian filters are 

used. The first one of scale t, named local scale, is used as a first step of the detection 

process to blur the image f and reduce the noise effect as shown in Eq. (3.8). The 

other of scale s, named integration scale, is used to smooth the image at different 

values of s in order to extract the corners at multi-scale space. L(x,y,t) is also called 

the smoothed image of f(x,y). 

 (3.8) 

Where G(x,y,t) is 2D gaussian filter given by, 

  (3.9) 

 

Fig.3.2. Performance degradation of Harris detector due to scale change [100].  

The matrix A after integrated smoothing becomes the multi-scaled second 

moment matrix μ: 
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(3.10) 

 

Where Lx and Ly are the first order partial derivatives of the smoothed image L(x,y,t).  

The same Harris function R, named now as multi scale Harris corner measure Mc, can 

be used here in multi scale to judge the presence of a corner: 

 (3.11) 

The Harris detector presents an important improvement for Moravec detector but 

it is not very robust to noise considering real images that are used in our robotic 

applications. Comparative results are presented in Chapter 5.  

3.1.4.    Shi-Tomasi corner detector 

The concept of this method [101, 102] is similar to Harris detector. Harris method 

relies on the matrix A that represents a local autocorrelation function while Shi-

Tomasi or Tomasi-Kanade method relies on the inverse of matrix A. 

 
(3.12) 

At the tested point, if the minimum of the two eigenvalues of A-1 is above a 

threshold value than a corner is detected. Figure 3.3 shows the detected corners by 

Shi-Tomasi detector on a given image.   

 

Fig.3.3. Corner points detected by Shi-Tomasi detector [101].  
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This detector is based on the Harris detector. However, it presents one slight 

variation in the selection criteria. It works quite well where even the Harris corner 

detector fails. However, it still suffers when it is applied to real images. 

3.1.5.    Level curve curvature approach 

The Level curve curvature [61,62] is an approach to detect corner points where the 

curvature of level curves on the edge is very high. The rescaled level curve curvature 

 is a product between the gradient magnitude operator raised to the power three 

and the level curvature operator, 

 (3.13) 

Where Lxy, Lxx and Lyy are the second order partial derivatives of the smoothed image 

L(x,y,t).   

In scale space, while moving from finer to coarse level which means from low to 

large smooth levels, the maxima of any function detected in the image space will 

decrease but remains maxima and also for the minima they will increase but 

remaining minima [4, 5]. Due to this fact, the corner detection depends on the selected 

scale and also is very sensitive to noise. A good solution is to normalize the function 

K using γ-normalization, 

 (3.14) 

 (3.15) 

Where γ = 7/8. 

So extrema  of the obtained operator, shown in Eq. (3.15), are points 

having high gradient norms and also high curvature of level curves. These points 

 are corner points that can be used as descriptors locations. 

This detector introduces a third dimension "scale space" for selection the interest 

points. Therefore, the detected points will be nearly invariant over scale but their 

detection is very time consuming especially in robotic applications where a fast 

decision is required.    
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3.1.6.    SUSAN detector 

SUSAN stands for "Smallest Univalue Segment Assimilating Nucleus" [103]. The 

essential use of this detector is as a corner detector but it also can be used as an edge 

detector. The idea is to use the pixel brightness at a tested point and compare it to 

neighboring pixels to detect the interest point. To achieve that, a circular mask is 

placed at the tested point called "nucleus" and all the points within the mask are the 

neighboring points. The area of the neighboring points that have brightness similar to 

the one of the nucleus is the area of importance. This area is known as USAN.  In 

addition, an important achievement in this approach is that it doesn't require any 

derivative calculation on the image function which reduces the noise effect and also it 

does not require prior noise reduction.  

 

Fig.3.4. Circular masks applied in different nucleus positions in an image of a dark rectangle lying in a 

white background [103].  

 

Fig.3.5. Corresponding USANs shown as white parts within the masks [103].  
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Figures 3.4 and 3.5 give a general explanation of this method. In the first figure, 

five different masks are taken in different regions of the figure. In the second one, the 

USAN area is represented by the white part inside the mask. It is clear that the USAN 

area is at a maximum if the nucleus of the mask lies on a homogenous region in 

brightness, while it falls to the half on an edge nucleus and also it falls more on a 

corner nucleus. As a result, when the nucleus of the mask moves from a flat region in 

brightness to an edge region, USAN attains a minimum value while it falls more when 

it attains a corner point. Thus, the notation smallest USAN (SUSAN) arises.   

The used circular mask has a radius of 37 pixels. This mask is placed at every 

pixel (nucleus) in an input image and the brightness in all pixels in the mask is 

compared to the one in the nucleus as stated before. To give a similarity decision, a 

comparison function C is used, 

 
(3.16) 

Where  represents the position of any pixel in the mask  represents the 

position of the nucleus and t is a threshold on the difference of brightness. The 

performance of this detector is independent on any fine-tuning on the value of the 

parameter t. 

The comparison values taken at all neighboring pixels are summed to form a 

decision represented by function n, 

 (3.17) 

Actually n represents the number of neighboring pixels that have brightness similar to 

the nucleus's brightness. 

The SUSAN can be used as an edge finder and the decision is taken by comparing 

n to another threshold g, named geometric threshold, set to be equal 3/4 the number of 

pixels in the mask. In addition, an edge response function R is formed, 

 
(3.18) 
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Note that R attains a maximum if n has a minimum value which leads to conclude that 

the nucleus corresponding to  is an edge point.   

Instead of using the comparison function C shown in Eq. (3.16) that leads to 

sharp results (0 or 1), a more stable function can be used, 

 
(3.19) 

The SUSAN can be used also as a corner finder which is very similar to the 

SUSAN edge finder. The tuning of the parameters t and g is more important. The 

choice of a value of g affects the quality of the corners detected and also affects their 

number. For example, a low value of g will lead to sharper detected corners therefore 

a small number of them. However, this threshold value can be fixed in the algorithm 

and won't need any further tuning. In other hand, the value of the threshold t won't 

affect the quality of the outputs rather than their number since t reflects the allowed 

amount in change of brightness in the mask. If a value of t used is increased, the 

USAN areas will increase in the masks so the number of detected corners will 

decrease. Therefore, the value of this parameter can be used to control the quantity of 

the outputs rather than their quality.  

The corner finder algorithm can be summarized as follows: 

1. Place a circular mask at all the points in an input image. 

2. Calculate the comparison value at every pixel in the mask using Eq. (3.19). 

3. Calculate the number of those pixels that are very similar in brightness to the 

nucleus using Eq. (3.17). 

4. Use Eq. (3.18) with smaller value of g than the value used in edge finder case 

to detect maxima that correspond to corners. 

5. Eliminate the false positive detected corners by finding the center of gravity of 

the USAN area in the mask and measuring the distance between it and the 

nucleus. When the distance is very small, the detected corner is false reported 

and should be rejected. Next, this statement is clarified. 

The center of gravity of the USAN region in the mask is shown as follows: 
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(3.20) 

Consider next Figure 3.6 that shows a simple portion of an image and three tested 

points (a), (b) and (c) in it. The first two points are on the edge and lie on one side or 

another of the edge, the third point (c) is also on the edge but lie in a region of 

brightness half a way between the 2 main regions that form the edge. USANs and 

their center of gravity of the three cases are shown to the right using a small 3 x 3 

mask. Notice that for the case (c) the center of gravity and the nucleus are 

confounded. This case can report a corner presence since the number of pixels similar 

in brightness to it is small. So, this false detection can be corrected by taking the 

distance between the center of gravity and the nucleus. If it is large enough, the 

detected corner is a true corner else the detected corner is false and should be rejected. 

Results of the SUSAN corner finder applied to a real image are shown in 

Figure 3.7. 

 

Fig.3.6. Center of gravities of USANs at different nucleuses in a portion of an image [103].  
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Fig.3.7. SUSAN corner finder applied to a video captured image with t = 25 [103]. 

This detector is very fast and can be well used in real time robotic applications. 

However, it is related to a threshold value used to classify an image pixel as a corner 

or an edge point. Therefore, its efficiency will decrease when it is applied to real 

images as it is shown in chapter 5.     

3.1.7.    Harris-Laplace Detector 

This method [104, 105] represents first the image in scale space by convolving it 

with a Gaussian filter with variable scale t. It uses different functions based on the 

first and second derivatives of the smoothed image like laplacian or gradient or 

difference of Gaussian … and search for local extrema over image space and scale 

space. These extrema represent the interest points locations in space and scale. The 

characteristic scale at an interest point is the scale for which the extrema is detected 

over scale. This is a very important parameter in matching two images because it 

reveals the scale factor between two images. Consider two images one is a scaled 

version of the other by a scale t, if the characteristic scale of an interest point in the 

original image is a and the one of the corresponding interest point in the scaled image 

is b then   . Figure 3.8 explains this fact using two images; one is a scaled 

version of the other by a scale factor of 2.5. It is shown that the corresponding 
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characteristic scales 10.1 and 3.89 using a function F used to build the scale space 

have a ratio very close to 2.5.   

 

Fig.3.8. Characteristic scale in scale space [105].  

Existing feature detecting discussed so far rely on one operator applied to the 

image f(x,y) in order to detect interest points. These points correspond to the extrema 

over image spatial and scale domains. This operator could be the Laplacian of 

Gaussian, Difference of Gaussian, gradient, Harris, etc. Harris-Laplacian technique 

uses the combination of two operators to detect these points: Harris and Laplacian of 

Gaussian operators.  

Harris operator imposes itself one of the most powerful corner detectors. 

Table 3.1: Experimental results of various interest points detectors [105].  

 

Experimental results in Table 3.1 show the success of the Laplacian operator over 

other operators in detecting interest points taking as parameter the correctness of the 

detected in the same image over scales. Row 2 shows the percentage of detected 

points over scales with a characteristic scale. Row 3 shows the correct detected points; 

a point is detected correctly if the ratio between its characteristic scale at the current 
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scale si and its one at previous scale sj is equal to ratio of these scales si and sj as 

discussed previously. Row4 shows the total correct percentage. Therefore, the idea 

arises to use first Harris corner detector to find interest points over image domain that 

correspond to the maxima of the multi-scale Harris corner measure , 

 (3.21) 

Then the scale normalized Laplacian operator  is used to detect among these 

interest points those who correspond to maxima in scale domain. The characteristic 

scale is given by: 

 (3.22) 

The descriptors are Gaussian derivatives which are computed at the characteristic 

scale using up to 4th order derivatives. Invariance to rotation is obtained by “steering” 

the derivatives in the direction of the gradient. To obtain a stable estimation of the 

gradient direction, the peak in a histogram of local gradient orientations is used. 

Invariance to the affine intensity changes is obtained by dividing the derivatives by 

the steered first derivative.  

Matching interest points in two images is done by comparing their descriptors 

using Mahalanobis distance [106]. Figure 3.9 shows the corresponding interest points 

in two images one of them is a scaled image of the other by a scale of 1.92. Thus, the 

correspondence is found at corresponding smoothing scale s. 

 

Fig.3.9. Points detected on different smoothing levels [105].  



68 
 

Figure 3.10 shows the repeatability of the Harris-Laplacian detector compared to 

other detectors. 

 

Fig.3.10. Repeatability over scale as performance evaluation.  

Results provided here show the quality of this technique. The repeatability is very 

high not only over scale change but also with respect to change in viewpoint as shown 

in Figures 3.11 and 3.12. In Figure 3.11, there are 180 and 176 detected points 

detected in the left and right images. The number of initial matches is 23 and there are 

14 inliers. In Figure 3.12, there are 34 inliers using scale and affine regions.  

 

Fig.3.11 Points detected in two images with different viewpoint and scale change of 2.7 [105].  
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Fig.3.12. Points detected with their characteristic scales in two images with viewpoint change of 

30o and scale change of 1.8 [106]. 

This detector introduces the scale space representation of an image which makes 

him very slow for robotic applications as shown in chapter 5. 

3.1.8.    Scale Invariant Feature Detector (SIFT) 

The SIFT feature points, introduced by D. Lowe [82], and their descriptors are 

shown to be repeatable versus image scaling, rotation and partially invariant to change 

in illumination [82] and 3D camera viewpoint [83]. In addition, they are well 

localized in both the spatial and frequency domains, reducing the probability of 

disruption by occlusion [63], clutter, or noise. Also, these features are highly 

distinctive, which allows a single feature to be correctly matched with high 

probability against a large database of features, providing a basis for object and scene 

recognition. 

The output of the SIFT algorithm is taken by a cascade filtering approach.  This 

cascade is constructed form four essential steps [63]: scale space ectrema detection, 

keypoint localization, orientation assignment and keypoint description. 

SIFT searches for features that are in variant especially to scale. In order to 

achieve that, the image function is taken into various scales and the search is 

restricted on features that are stable. In scale space, the two dimensional image 

function is convolved with Gaussian smoothing filter with different smoothing level. 

Extrema of the image, that can be used as interest points, can be detected using the 

laplacian of Gaussian ( ) operator [57, 58]. 
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(3.23) 

Where Gxx(x,y,t) and Gyy(x,y,t) are the second order partial derivative of the Gaussian 

filter G(x,y,t).  

However, Lowe has introduced the difference of Gaussian (DoG) operator as an 

approximation of the LoG operator as derived in Eqs. (3.24) and (3.25). 

 (3.24) 

 

 

(3.25) 

Where L(x,y,t) is the smoothed image with level  and D(x,y,t) is the difference of 

two smoothed images: one of them with level  and the other with level . 

The derivation of the DoG from LoG is extracted from the diffusion equation, 

 
(3.26) 

 (3.27) 

Since t2 is the scale normalization required for the scale invariant laplacian and 

(k-1) is a constant factor over all scales, the DoG is approximated to LoG. The 

practical calculation of DoG is shown in Figure 3.13. The scales are grouped per 

octave (each octave is a semi-open interval of scales from the starting scale to its 

double). Then, the difference between two successive smoothed images is taken. 
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Fig.3.13. DoG calculation [63].  

The goal of any feature detector is to select special features over scale. The SIFT 

features are the points in the image space that correspond to an extrema of the DOG 

over scales. Lowe detects an extremum by comparing current pixel intensity to its 8 

neighbors in the same scale and then comparing it to the nine corresponding 

neighbors in the previous and next DOG image as illustrated in Figure 3.14. 

 

Fig.3.14. Detecting an extremum by comparing it to its 26 neighbors [63].  

Two major problems appear for extrema detection. The first one is the sampling 

frequency in scale domain which mean the optimal number of scales selected per 

octave. It was shown experimentally [63] that three samples per octave is the optimal 

solution. The second one is the sampling frequency in the image domain. Here, the 
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first scaled image in the octave is pre-smoothed by a scale t=1.6. It is shown [63] that 

this smoothing level offers experimentally maximum repeatability of the points in the 

image after some transformations. Then the pre-smoothed image can be expanded in 

size using linear interpolation to make full use of the input image and to discard high 

frequency components relative usually to noise.   

After detecting the DOG extrema, accurate localization is initiated. This is done 

by using taylor expansion up to quadtratic terms on the scale space DOG function 

D(x, y, t). In addition, this step tests the stability of the detected extrema. A point is 

judged as stable if it has a strong contrast in its region that means it will be more 

robust to noise than other points. Thus, many extrema that are unstable are removed 

and won't be considered as interest points. Also, edge extrema are discarded since 

they are also vulnerable to noise. 

At every detected interest point in the smoothed image L(x,y,t), the gradient 

vector is calculated at the scale level as follows: 

 (3.28) 

 
(3.29) 

A descriptor vector is formed at every interest point. It is highly distinctive and 

partially invariant to the variations such as illumination, 3D viewpoint, etc. In order to 

achieve orientation invariance, the coordinates of the descriptor and the gradient 

orientations are rotated relative to the keypoint orientation. To form this vector, first a 

set of orientation histograms are created on 4x4 pixel neighborhoods with 8 bins each. 

These histograms are computed from magnitude and orientation values of samples in 

a 16 x 16 region around the keypoint such that each histogram contains samples from 

a 4 x 4 subregion of the original neighborhood region. The magnitudes are further 

weighted by a Gaussian function with σ equal to one half the width of the descriptor 

window. The descriptor then becomes a vector of all the values of these histograms. 

Since there are 4 x 4 = 16 histograms each with 8 bins, the vector has 128 elements. 

This vector is then normalized to unit length in order to enhance invariance to affine 

changes in illumination. To reduce the effects of non-linear illumination, a threshold 

of 0.2 is applied and the vector is again normalized. Figure 3.15 gives a simple 

example on the calculation of the descriptor vector. Instead of 16 x 16 region, an 8 x 8 
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region is used. So, the descriptor will be 2 x 2 and its size will be 2x2x8=32 as shown 

in the right figure. 

 

Fig.3.15. A simple 2 x 2 SIFT descriptor [63]. 

Figure 3.16 shows the extraction of SIFT points on four different object images. 

The two left columns images contains two different viewpoint of the object while the 

right column images show the extracted feature points. 

 

Fig.3.16. Kepoints detection [63].  

A practical example for object recognition using SIFT operator is shown in 

Figure 3.17. The top image is the input image where the desired objects to detect are 

the four objects represented in Figure 3.16.  
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Fig.3.17. Object recognition using SIFT keypoints [63]. 

This SIFT points as presented are invariant over scale. However, they are not very 

robust to noise existing in real images as shown in chapter 5.  

3.1.9.   PCA-SIFT 

This technique [84] is inspired by the SIFT operator and its main goal is to 

minimize the dimensionality of the SIFT keypoint features vector. It runs the first 

three steps of the SIFT on an input image (scale space extrema detection, keypoint 

localization and orientation assignment). Then it places a 41 x 41 patch centered at the 

keypoint to form the feature descriptor vector. The group of the high dimensional 

features vectors extracted from the patches of the input image form the input to the 

PCA (Principle Component Analysis [85]) algorithm. PCA outputs low dimensional 
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vectors approximately orthogonal that construct a basis to represent the high 

dimensional feature vectors. These feature vectors are projected onto the basis. Then 

their coordinated are extracted and used as descriptors for matching. PCA extracts this 

low dimensional basis by calculating the eigenvectors and eigenvalues of the 

covariance matrix constructed by the high dimensional vectors. The eigenvectors that 

represent 90%, for example, of the total energy are only selected to form the basis. 

Hence, the reduction in dimensionality is achieved sine the number of these 

eigenvectors is less than the number of initial features vectors. Thus, the time 

reduction of PCA-SIFT with respect to SIFT is due to the reduction in the size of the 

feature descriptor vector after projection onto the PCA basis. So, matching process 

time is reduced due to this reduction in dimensionality. Another important 

achievement in PCA-SIFT is that the eigenvectors are quasi orthogonal and this will 

force the features vectors (used by SIFT) to be more distinctive after projection onto 

the basis of eigenvectors (used by PCA-SIFT) and this fact will lead to a better 

performance in matching these vectors. 

This detector presents a way to reduce the computation time of SIFT descriptors 

and also makes them more distinctive. However, the problem of the false detection in 

real images due to noise is still the same.  

3.1.10.   Speeded Up Robust Feature Detector (SURF) 

The SURF operator [62, 87] is based on the Hessian matrix. It is partly inspired by 

the SIFT descriptor but it is several times faster and also, as claimed by the authors, 

more robust against different image transformations than SIFT. 

Hessian matrix is a square matrix of the second order partial derivative of a 

smoothed image function L(x,y,t) [59], 

 
(3.30) 

It is used as a measure of curvature of L where its responses at specific points 

reflect the presence of local extrema or saddle points. In addition, the Determinant of 

Hessian operator "DoH" can be used as an affine covariant blob detector that responds 

to saddles at its maxima and minima [3]. The scale normalized determinant of 

hessian, referred also as Monge-Ampere operator [60], is given by: 
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 (3.31) 

 (3.32) 

The points  are the feature points detected by the Determinant of Hessian 

(DoH). These points correspond to a high curvature of the image intensities and are 

nearly invariant to affine transformations [3]. In terms of scale selection, blobs 

defined from scale-space extrema of the determinant of the Hessian (DoH) also have 

slightly better scale selection properties under non-Euclidean affine transformations 

than the more commonly used Laplacian operator [3].  

SURF relies on the determinant of the Hessian matrix but uses an approximation 

of its Laplacian partial derivatives since their Gaussian filters are not ideal in any 

case. Thus, second derivative Gaussian filters are approximated by box filters and are 

evaluated very fast using integral images. Also, the performance using these box 

filters is comparable to the methods that use cropped Gaussian filters.  

 

Fig.3.18. Partial second order derivatives of Gaussian filters and Box filters. First 2 images represent 

the Gaussian filters in the y and xy direction. The last 2 represent their approximated box filters [87].  

Figure 3.18 represents the second derivative Gaussian filters Lyy and Lxy and their 

approximates 9 x 9 box filters Dyy and Dxy. As a result the determinant of Hessian 

matrix can be approximated as follows: 

 -  –  (3.33) 

The maxima of the determinant of Hessian reveal the locations of keypoints that 

are invariant in scale space. This process starts by smoothing the image using 

Gaussian kernel at different scale and when moving from a scale level to another the 

image is sub-sampled. In SURF, instead of sub-sampling the image, the box filters 

mask is up-scaled in size in the new scale level and the image size is unchanged. The 

following filter masks are used: 9 x 9, 15 x 15, 21 x 21 and 27 x 27. At larger scales, 

the change in the mask size should be doubled when going from an octave to another 
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in scale. So, the change in size rate will increase from 6 to 12 to 24 …   Then the 

maxima locations are interpolated using the same method discussed in SIFT [89]. The 

need for this interpolation is due to the fact that the difference in scale between the 

first layers in every octave is relatively large. 

To form the SURF descriptors, Haar-wavelets [90] responses are calculated in x 

and y direction in a circular neighborhood of radius 6t around the interest point where 

t the scale at which the interest point was detected. In fact, the size of the wavelet 

depends on the scale t and its length is 4t. Therefore for large scales the size of the 

wavelets filters is big. Only six operations are needed to compute the response in x or 

y direction at any scale. After calculating the wavelet response, the region centered at 

the interest point is weighted with a Gaussian (circle with a radius 2.5t) to reduce the 

effect of abrupt changes in pixel values. In this region, the responses at various pixels 

are represented by 2D vectors with horizontal and vertical components and these 

vectors are summed within a sliding orientation window covering an angle of 60o. 

Dominant vector, which corresponds to the greatest magnitude, are the only one 

considered and the others are rejected. The size of the sliding window is a parameter 

derived experimentally. Figure 3.19 shows the SURF interest points on an image, 

Haar wavelets and the descriptors windows. 

 

Fig.3.19. SURF Interest points. (a) represents the detected interest points-center of the surrounding 

circles with radius equal to the corresponding scale. (b) Haar wavelets. (c) Descriptor windows 

centered at the interest points and rotated according to the dominant vector in it [87].  

The first step in the descriptor's construction is constructing a square region 

centered around the interest point, oriented along the dominant vector and having a 

size of 20t. This square window is divided into square sub-regions of 4 x 4 in size 

with 5 x 5 regularly spaced sample points inside. Then, the Haar wavelet responses 
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are calculated horizontally dx and vertically dy at each pixel taken with respect to the 

dominant vector orientation in the square window. The responses are summed in 

algebraic and absolute values  in the corresponding 

locations in the 4 x 4 sub-regions to form a feature vector of 4x4x4=64 dimensions. 

The absolute values are taken into consideration to extract the information about the 

polarity of the intensity changes. In addition, to make the descriptor invariant to 

contrast, the vector is normalized to a unit length vector.     

Compared to SIFT, SURF is much faster (approximately by 3 times) but it is not 

robust to illumination variation and viewpoint change as well as SIFT. Therefore, it is 

also not very robust to noise in real images. 

3.1.11.   Gradient Location Orientation Histogram (GLOH) 

Gradient location-orientation histogram (GLOH) [86] is an extension of the SIFT 

descriptor. It extracts more detailed information about the SIFT descriptor to increase 

its robustness and distinctiveness. A log-polar histogram centered at the descriptor 

keypoint is formed and corresponding gradient vectors vote for their bins.  It is 

composed from three bins in radial direction (the radius is set to 6, 11, and 15) and 

eight in angular direction. The gradient orientations are quantized in 16 bins. This 

gives a 272 bin histogram. The size of this descriptor is reduced with PCA. The 

covariance matrix for PCA is estimated and the 128 largest eigenvectors are used for 

description similar to PCA-SIFT. 

3.2.    Edge based corner detectors 

In contrast to intensity based interest points, edge corners are edge points that 

correspond to a deviation in the edge direction. Firstly, the image is pre-segmented 

into contours: contours in the image are extracted and chain coded. Then, algorithms 

are developed to detect corners along these contours. According to the contour-based 

approach, corners are defined as the intersection points or junction points between 

straight edge segments. The chain codes can be used in corner detection [95, 96]. 

However, the main difficulty in contour based corners is the ability to extract reliable 

image segmentation in the edge detector. 

Gradient-based detector [61, 98] is an example of edge corner detector. It relies 

on measuring the curvature of an edge that passes through a neighborhood. The 
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strength of the corner response depends on both the edge strength and the rate of 

change of edge direction.  

3.2.1.    The basis of edge corner detectors: edge detectors 

Most edge detections are performed in four steps shown in Figure 3.20: 

 Gradient computation, in norm (magnitude of the edge) and direction (at π 

/ 2 of the edge direction) using classical operators [20-22,25,110-113].  

 Threshold on gradient norm to extract initial edge points. Every image 

pixel having a gradient vector norm greater than a given threshold is 

classified as an edge pixel. 

 Thinning the edge is the process of making the edges of thickness equal to 

one pixel width [17, 182, 183]: a pixel is classified as an edge point if its 

gradient norm is superior to the gradient norm of its two neighboring 

pixels in the direction of the gradient [11].  

 Linking the edge points to form the image contours [17, 184]. After 

detecting all edge pixels, every edge pixel is linked to its neighboring one 

if it exists. If it does not exist, prolongation/closing starts and tries to link 

the edge pixel to its nearest one. 

A lot of effort was done in [11] to gather the edge detection steps to reduce the 

number of image scans which are very time consuming. It is possible to gather the 

gradient vector computation step with the thresholding step because this last step 

requires only the knowledge of the current pixel. With slight modification to the 

thinning procedure, the thinning step can be also gathered with them. The new 

principle is the following: a pixel is kept as an edge point if its gradient norm is 

superior to the gradient norm of its past neighboring pixel in the direction of the 

gradient. The second gathering gathers the linking and closing steps. The principle is 

as follows: at an edge pixel, if an unlinked neighboring edge pixel exists than the 

linking procedure is initialized otherwise the closing step is initialized. 

3.2.1.1.    Gradient computation 

Most edge detectors are based in some way on measuring the intensity gradient at a 

point in the image. The gradient operator [56] is characterized by its norm and its 

direction. At a tested pixel, the gradient norm gives the amount of intensity difference 
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between the current pixel and its direct neighboring ones. Therefore, this difference 

reflects the strength of the edge (greater difference implies stronger edge). In other 

hand, the gradient direction gives the direction of the greatest change which is normal 

to the edge direction as shown in Figure 3.21.    

 

Fig.3.20. Edge detection steps [11]. 

 

Fig.3.21. Gradient direction is normal to edge direction. 

As an example on the gradient magnitude, Figure 3.22 shows the horizontal 

gradient, as the first derivative, peaks that correspond to the edge between two regions 

of intensities in the top row image. Figure 3.23 shows three edge images, 
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corresponding to three different values of th, of a face image. Figure 3.23 (b) 

corresponds to a low threshold, Figure 3.23 (c) corresponds to a medium threshold 

and Figure 3.23 (d) corresponds to a high threshold. Here, we should note that the 

choice of the threshold is very important. A very low threshold can introduce a lot of 

unwanted edges whereas a big threshold will keep only very strong edges so it can 

neglect some informative edges.  

 

Fig.3.22. Peaks of the gradient norm corresponds to the edge.  

 

Fig.3.23. (a) Original image. (b), (c) and (d) Corresponding edge images. 
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Mathematically, the image can be seen as a function f(x,y) of two variables x and 

y,  and the local gradient  at every point in the image is given by, 

 

 

(3.34) 

The magnitude and the argument of this vector represent respectively the 

amplitude and orientation of the contour in the image, 

 

 

(3.35) 

In image processing, due to large computation time required for calculating the 

gradient magnitude and argument, the continuous gradient function is approximated 

by discrete masks. The search for edge points starts by placing this mask at every 

pixel and calculates the intensity difference in more than one direction. Every pixel 

having a gradient norm greater than a given threshold th is classified as an edge pixel. 

Many operators have been suggested so far for gradient vector computation. 

Robert operator [110] was introduced first in 1965. It uses a 2x2 mask. The results are 

very sensitive to noise and not suitable for our case. Prewitt [112] (1970), Kirsch [18] 

(1971) and Sobel [20,111] (1978) operators have used 3x3 masks (filters with finite 

impulse responses). The results are correct and fast enough for robotic applications. 

Therefore, these operators are our target operators. Then we have Canny [113] (1986), 

Deriche [21, 195] (1987) and Shen-Castan [22] (1992) operators using recursive 

filters with infinite impulse responses. The results are much better than the previous 

ones but they require huge computation time relative to our suggested applications.        

3.2.1.2.   Comparative results 

Each of the presented edge operators has its own characteristics. The selection of 

an operator depends on the desired application. Some applications like medical 

imaging requires excellent edge detection which is time consuming whereas other 

applications like mobile robot requires real time vision algorithms and don't require 
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perfect edge detection. Therefore, we can classify the presented edge detectors into 

two classes:  

 Classical operators: Roberts, Kirsch, Prewitt and Sobel operators. 

 Gaussian operators: Canny, Deriche and Shen-Castan. 

For the classical operators desired in our application, the edge detection is simple, 

very fast and the edges are detected with their orientations. However, these operators 

are very sensitive to noise. For the Gaussian operators, they are more complex, more 

time consuming. However, they are more robust to noise and provide better, accurate, 

and well localized edges.  

Figure 3.24 shows Gradient norm images of the Robert, Sobel and Prewitt 

operators. 

 

Fig.3.24. Gradient magnitude images of various operators. 

Figure 3.25 shows the difference in accuracy in the presence of noise between the 

outputs of two classical operators (Robert and Sobel in Figures 3.25 (b) and (c) 

respectively) and the output of a Gaussian operator (Canny in Figure 3.25 (d)).  
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Fig.3.25. Edge detection on a noisy image. (a) original image with noise. (b) output of Sobel 

operator. (c) output of Robert operator. (d) output of Canny operator [175].  

3.2.2.    Edge segmentation: Polygonal Approximation 

After edge detection, edge segmentation is a crucial step to detect edge corners. 

An edge corner can be defined as an intersection of two non collinear edge segments. 

In addition on a given contour, some edge corners that have greatest interest are 

selected to form the vertices of a polygon approximating the contour. This is known 

as polygonal approximation. Therefore, a survey of various polygonal approximation 

methods using corners (a survey can be found in [116]) is provided in this section. 

The polygonal approximation problem is defined by Kolesnikov [24, 121-123] as 

follows: an open N-vertex polygonal curve P in 2-dimensional space is represented as 

the ordered set P of vertices. The output coarser curve Q consists of M vertices that 

from a subset of P and M<N. The end points of Q are the end points of P. 

In Figure 3.26, Assume that we try to approximate a polygon's part starting at 

point Pi(xi,yi) and ending at point Pj(xj,yj) by a straight segment [PiPj]. 

 

Fig.3.26. Approximating a polygon. 
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The distance dk between a vertex Pk and the approximation segment can be expressed 

as follows: 

 
(3.36) 

Where the coefficient aij and bij are the coefficients of the straight line (PiPj):  

 

 

(3.37) 

According to this distance, two approximation errors are introduced. The first one is 

the sum of all distances between the polygon vertices and the approximating line 

(PiPj): 

 
(3.38) 

The second one is the maximal distance between the vertices and the approximating 

line: 

 (3.39) 

After extracting the image corners based on straight edges of a shape, we have 

developed the "polygonal approximation" technique that consists of selecting a 

number of well chosen corners to construct the polygon that best approximates the 

contour of that shape. Polygonal approximation is widely used in object recognition 

[29] because it smoothes the contour of the objects in the images without loss of 

critical information.   

Pavlidis in [117] presents an algorithm, known as split and merge technique. It 

divides an edge into a set of segments that has each one a maximal distance to the 

edge less than a given threshold d as shown in Figure 3.27.  
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Fig.3.27. Polygonal Approximation. 

The parameter used in this technique is the maximal distance dmax between the 

segment and the edge as described in Figure 3.28. If dmax is greater than the threshold 

d, the segment [AB] is divided into two segments; [AM] and [MB] where M is the 

edge point corresponding to dmax. 

 

Fig.3.28. Segment division according to maximal distance. 

Wall and Danielsson in [118] presented another algorithm that tries to find the 

segment [AB] shown in Figure 3.28 by moving its endpoint B starting from the edge 

point A along the edge until a certain criterion is no longer verified. The criterion used 

here is the maximal area per unit of length of the deviation between the edge and the 

corresponding approximated segment that should be less than a given threshold. 

Pavilidis and Wall-Danielsson techniques use two different mathematical 

approximation errors to select the endpoints of the segments approximating the edge. 

However, our corner detector tests directly the edge to select the edge corners. The 

major improvement is in the good selection of these corners and especially in the 

detection of Complete Corners located sometimes outside the edge as shown in 

Chapter 4.     

Another technique for obtaining a polygonal approximation of an object's contour 

based on an updated Hough Transform is presented in [119]. On the other hand, the 
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method in [120] is dedicated for the polyline representation of a scanned text or 

graphic objects.  

Pinheiro in [124] searched for edge points, called curvature extremes, that 

correspond to a change in the direction of the curve (edge) using a curvature function 

which form the polygon vertices. These extremes are selected at different scale level 

of the smoothed image since when the scale level increases, the edge details become 

smoother and the number of extremes will be reduced.  

Parverz and Mahmoud in [125] searched for cut-points on the contour of the 

studied shape. These points correspond to a deviation in the contour direction. Then 

the algorithm tries to minimize the number of detected cut-points until a terminating 

condition is satisfied. The final approximated polygon will have these cut points as 

extremes.  

In [126], the authors presented a technique based on detecting dominant points on 

the contour and then iteratively suppressing the redundant ones in order to obtain the 

best approximated polygon with the minimal number of segments.  

The algorithm of Masood in [127] also detects first dominant points called break 

points. Given the contour presented by linked edge points, every edge point 

presenting a deviation in the edge direction is classified as a break point as shown in 

Figure 3.29. 

 

Fig.3.29. Masood break points. 

The edge directions are coded using Freeman codes [96]. For every sequence of 

three break points Pk-1(xk-1, yk-1), Pk(xk, yk) and Pk+1(xk+1, yk+1), draw the perpendicular 

line from Pk to the line (Pk-1Pk+1). This perpendicular squared distance shown in Eq 
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(3.40) and drawn in Figure 3.30, called Associated Error Value (AEV), is the measure 

used to reflect the strength of a break point. 

 
(3.40) 

 

Fig. 3.30. AEV calculation at a vertex Pk. 

The algorithm compares the AEV sequence and identifies the least AEV's breakpoint 

to be deleted. This is an iteration process that eliminates some break points until a 

compression ratio or a maximal error is reached. The resulting Integral Square Error 

(ISE) is the sum of the remaining AEVs. In addition, after eliminating a dominant 

corner, a stabilization algorithm is initiated. It compares the current ISE to its 

predecessor and successor values and relocates the break point to obtain smaller ISE.      

Finally, Marji and Siy in [128] presented a very similar technique to Masood's 

technique but it differs by the measure of error of each dominant point. Here, a 

dominant point is characterized especially by its strength that means its non 

collinearity with respect to its direct neighbors. 

Masood and Marji-Siy methods are the two methods from the state of the art that 

are very close to our polygonal approximation technique based on DCs. The 

comparative results are shown in Chapter 5. Two essential points make our technique 

very competitive compared to existing ones. The first one is the reselection of already 

suppressed points (DCs). The second is the detection of Complete Corners outside the 

edges as explained in Chapter 4.  

3.2.3.   Existing edge corner detector: Corner detection using difference chain 

code as curvature 

This corner detector [107] detects corners located on edge corners. By definition, 

an edge corner is an edge point where the curvature is high. 
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The corner detection algorithm is composed from several steps: 

 Edge thinning: the authors have developed their own thinning algorithm 

applied on the image edges to obtain compact edges of thickness equal to 

one pixel. They have used mathematical morphology for this purpose. 

 Coding the edge slope at every edge point: the chain code of an edge can 

have a value from 0, 1, 2, 3, 4, 5, 6, 7 in anti-clockwise direction (Freeman 

codes [96]), where 0 means moving one unit in x direction making angle 

0o with the x axis, code 1 represents 45o from the x axis and so on. 

Therefore, the chain code thus codes the slope of the curve. 

 Boundary smoothing: this step aligns the stray edge pixels along the 

dominant slope of the line and removes all spurious codes on that line. 

Figure 3.31 shows the result of the smoothing step.  

 

Fig.3.31. (a) Various erroneous stray pixels cases. (b) Results after smoothing [107]. 

 Avoiding false corners and detecting true corners: a corner is an edge 

point where a change in the edge direction occurs. Not all changes in the 

edge direction correspond to true corners. Thus, a true corner is an 

intersection of two lines of an appropriate length. If the length of one of 

these two lines is below a threshold, a corner is classified as a false corner 

as shown in Figure 3.32.   
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Fig. 3.32. True and False corners detection on an edge. 

Figure 3.33 shows the comparative results with Harris detector [100] and He-

Yang detector [109].  

 

Fig.3.33. Test image with regular curvature change [107]. 

The detector is also tested on the same image in the presence of noise like 

Gaussian, Poisson, Speckle and Salt-Pepper. It is also compared to the same previous 

detectors as shown in Figure 3.34. It has a good performance in the presence of noise. 
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Fig.3.34. Corners extracted on noisy images [107]. 

It also has good immunity versus affine transformation. Figure 3.35 shows the 

detected corners on the original image and the transformed versions using affine 

transformations. 

 

Fig.3.35. Transformation invariance of the corner detector. (a) Original (b) rotated 270o (c) scaled 

50% (d) scaled 50% and rotated 90o. 
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This detector is edge based as our detector. It has good results when applied to 

synthetic images. However in robotic applications where we have real images, the 

proposed corner detector may fail especially when we have noisy edge pixels. We 

have proposed in our detector a solution to eliminate these noisy pixels as explained 

in Chapter 4.  

3.3.    First application: Image Registration 

3.3.1.    Introduction 

Image registration [38] is one of the fundamental tasks in image processing. In 

recent years, many image registration approaches have been developed, leading to a 

great evolution in this domain [38]. Image registration is frequently used in remote 

sensing [30] for a wide variety of tasks such as change detection, image fusion, and 

image overlay. It is also used in image matching [33, 133], stereovision [34], image 

mosaicking and animation [36, 35], motion analysis [15], motion compensation to 

compensate the global motion of a camera in order to track the local motion of small 

targets in the acquired images sequence. Finally one of the most developed image 

registration applications are on medical imaging [37]. Most of the image registration 

techniques aim is to detect specific points, called control points (CPs), in the source 

and sensed images. These CPs are then used to estimate the transformation model that 

aligns the two images. Some of traditional techniques required the manual selection of 

the CPs at significant landmarks of the images. The primary drawback to this 

approach is that a trained expert is needed to manually select each individual CP in 

the remotely sensed images. This is very time consuming, especially when dealing 

with the large volumes of remote sensing data available today. Therefore, an 

automatic method of aligning such images is highly desired. Thus, the development of 

an intelligent algorithm that can automatically explore the CPs and then match them is 

very important. 

Image registration is the process of transforming different images spaces into one 

coordinate system. These images may be taken by different cameras or by the same 

cameras but at different times or from different viewpoints. Usually the inputs of a 

registration process are two images, one called source image and the other called 

sensed image, related by a real deformation model. In fact, the whole process starts by 

detecting image features in both images. These features should have some invariant 



93 
 

measures under the estimated deformation. Then, features in the source image are 

matched with those of the sensed image using their invariance measures. Thus, the 

real deformation model is estimated by a mathematical transformation model 

determined by the corresponding features in both images. By applying the obtained 

transformation model to the sensed image (image resampling), the two images can be 

compared, aligned or analyzed.  

Image registration techniques can be classified as follows: 

 Spatial domain techniques. They are applied directly on image intensities or 

on image features like edges [15,39], contours [40, 41], regions [42], interest 

points [43] and lines [33].  

 Frequency domain techniques. A common frequency-domain technique is 

phase correlation [31], which is based on the Fourier Shift Theorem. The 

Fourier coefficients of first image are divided by the Fourier coefficients of the 

second image, and the inverse of the result is an image with a single peak. 

This peak indicates the translation between the two images. This technique has 

also been extended to account for rotation and scaling [32]. 

In real experiments, the deformations produced in images of a real scene in 

motion or acquired by a moving camera are better estimated using a projective 

(elastic) or affine transformations rather than similarity or Euclidian transformations 

[44]. On the other hand, when the time interval between successively acquired images 

is large, the projective transformation describes better the deformation occurring in 

the image than the affinity. However, if the time interval is relatively small, affine 

model is a very good approximation of the real deformation [44]. In fact, the main 

difference between affine and projective transformations is that the deformation 

produced by projectivity for a given line does not depend only on its orientation, like 

in the case of affinity, but also on its position relative to the camera. Thus, if the time 

interval between two successive scenes is relatively small, the position of the 

elements in a scene will remain nearly the same and thus the transformation can be 

modeled by an affinity. 

The majority of these registration techniques can be decomposed into four steps.  
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 Feature detection: Salient and distinctive objects (closed-boundary regions, 

edges, contours, corners, etc) in both source and sensed images are detected. 

An overview on feature detectors has been presented in Sections 3.1 and 3.2. 

These features can be represented by their point representatives called control 

points (CPs). However Section 3.3.2 presents various primitive construction 

schemes, based on grouping on or more CPs, in the literature.  

 Feature matching and classification: The correspondence between the features 

in both images is established. Various matching approaches are proposed. 

Some feature matching methods use feature descriptors to match features in 

the studied source and sensed images. Other matching methods use the spatial 

information of the features as keys for matching. The cross correlation method 

could be the famous method used to match features or their descriptors. The 

matching methods are classified in section 3.3.3. 

 Model estimation: the image transformation parameters, that align the two 

images, are estimated. Theses parameters are computed using different 

techniques like Hough transform, RANSAC, least square estimation 

technique, etc as explained in section 3.3.4.   

 Image resampling and transformation: The sensed image is transformed by 

means of the estimated model. An overview of various geometric 

transformation models is provided in section 3.3.5 

The new image registration technique presented in this thesis is targeting mainly 

for motion analysis where the deformation between the source image and the target 

one can be well modeled by an affine transformation. The reason is that the detected 

DCs have shown very good repeatability under affine transformations as shown in 

Chapter 6. Thus, the suggested robotic application is surveillance of a road by a 

drone's camera. The drone's camera is in motion and the acquired images have a small 

time interval. The goal is to estimate the global motion of the camera in order to 

determine the local motion of small targets, e.g. cars, moving on the road. This 

application is to be build as a future work. 

3.3.2.    Primitive construction: From features to primitives 

Primitives can be formed by one feature, for example an interest point like Harris 

corner [136, 137], or by a group of features like grouping intersecting level lines to 
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form a particular shape [135]. The way of grouping features into primitives depends 

on the estimated transformation relating the two images to register. For example, a 

similarity transformation preserves angles so three non collinear corner points can be 

grouped into one primitive in a triangular form. The three obtained angles are three 

primitive invariant measures in this case. An invariant measure is a quantity that 

remains constant for all viewpoints of the scene. According to the registration 

application constraints, the real deformation between two acquired images can be 

modeled by a similarity, affinity or projective models. For example, when acquiring 

images by a moving camera with small acquisition time interval, the deformation can 

be well modeled by an affine model [44]. Each kind of these transformations has its 

own invariant measures. For example, the ratio of areas is an invariant measure under 

an affine transformation but it is variable under a projective transformation. 

Our primitive is formed by four consecutive DCs located on the same contour. 

The DCs are more stable than Harris corners versus affine deformations as shown in 

Chapter 6. 

3.3.3.    Classification and feature matching 

The classification of registration methods based on Maintz et al [176] survey is 

designed for medical image registrations. They have introduced nine basic criteria 

each of which is again subdivided into one or two levels. Wyawahare et al [178] and 

Chapnich et al [177] have cited various approaches to image registration. In addition, 

Zitova et al [38] have presented a survey on image registration methods where they 

have classified the image matching techniques into two categories: Area based and 

Feature based. 

This classification is suitable also for our robotic image registration application.  

3.3.3.1.    Classification of registration methods 

Registration methods are classified in several classes. The targeted application, its 

constraints, the quality of registration and the time interval between the registered 

images play the essential role in the selection of a class. In each class, the application 

constraints are specified.  
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3.3.3.1.1.    Dimensionality 
We should distinguish between "spatial registration methods" where all the 

dimensions are spatial dimensions and "registration of time series methods" where the 

time dimension is added. 

For spatial registration methods, they are categorized by the number of 

dimensions used. It could be 2D-2D, 2D-3D or 3D-3D. Note that the method 

computation time is related to the number of dimensions used. They can be addressed 

in many registration applications that can be achieved by off line registration. In these 

applications, speed issue is not very important rather than the quality of the 

registration obtained. 

For registration of time series methods, more than two images with spatial 

dimensions taken at short or long time intervals are studied for several reasons, such 

as monitoring the bone growth in children (long time interval) or monitoring of 

healing (short time interval), or evaluation of drug effects (various time interval), etc.        

3.3.3.1.2.    Source of features 
The source of features is divided into three classes: Extrinsic, Intrinsic and Non-

image based. 

Extrinsic methods rely on artificial objects attached to the patient for medical 

applications, objects which are designed to be well visible and accurately detectable. 

As such, the registration of the acquired images is comparatively easy, fast, can 

usually be automated, and, since the registration parameters can often be computed 

explicitly, has no need for complex optimization algorithms. 

Intrinsic methods rely only on patient generated image content so they don't rely 

on artificial objects attached to the body. In these methods, salient points or 

landmarks are identified on the patient body and used in the registration process.  

Non-image based methods are used to register multimodal images if the imaging 

coordinate systems of the two scanners involved are somehow calibrated to each other 

and also the patient remains motionless during images acquisition. Therefore, in these 

methods there is no need for external attached objects to body neither for landmarks 

to be detected on the body since the two studied images are on the same coordinate 

system.  
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3.3.3.1.3.    Nature of transformation 
Various mathematical transformations [44] are introduced to model the real 

deformation between the studied images. A transformation is called rigid, when only 

translations and rotations are allowed. If scaling factor is also allowed, it becomes 

affine transformation and maps parallel lines onto parallel lines. If it does not 

conserve collinearity but still maps lines onto lines, it is called projective. Finally, if it 

maps lines onto curves, it is called curved or elastic. Section 3.3.5 provides a detailed 

explanation of some of these transformations. 

3.3.3.1.4.    Domain of transformation 
A transformation is called "Global" if it applies to the entire image space or in 

other terms all image parts can be modeled by the same transformation. It is called 

"Local" if is applied to subsections of the image since each has its own transformation 

model. 

3.3.3.1.5.    Interaction 
Many users prefer fully automatic methods (no human interaction). However, the 

argument is that many current methods have a trade off between minimal interaction 

and speed, accuracy or robustness. 

The interaction level of registration methods can de divided into three levels 

referring to the control exerted by a human operator over the registration algorithm. It 

is called "Interactive" when the user does the registration himself, assisted by 

software supplying a visual or numerical impression of the current transformation, 

and possibly an initial transformation guess. Semiautomatic when the user interacts 

only to initialize the algorithm. For example, segmentation based methods are semi 

automatic intrinsic methods that need user initialization. Automatic when the user 

only supplies the algorithm with the image data and possibly information on the 

image acquisition. Extrinsic methods are usually easily automated since the marker 

objects are designed to be well visible and detectable in the studied images. 

3.3.3.1.6.    Method of parameter determination 
The transformation's parameters can be calculated directly for the available data 

or calculated by searching for the optimal solution (set of parameters) of some 

functions defined on the parameter space. This class is detailed in section 3.3.4. 



98 
 

3.3.3.1.7.    Modalities involved 
Registration methods are grouped into four classes based on the involved 

modalities: "Monomdal", "Multimodal", "Modality to model" and "Patient to 

modality". 

In Monomodal applications, the images to be registered belong to the same 

modality. For example, two images of the same modality are taken of the patient 

under two different positions for diagnostic purposes. 

As opposite to Monomodal class, in Multimodal registration tasks the images to 

be registered are taken from two different modalities.  

In modality-to-model, only one image is involved and the other is a model. The 

task here is to register an image referred to a mathematical model. For example, the 

registration of an MR brain image to a mathematically defined model of gross brain 

structures.  

In patient-to-modality, only one image is also involved but the other is the patient 

himself. For example, in some treatments, the patient can be positioned with the aid of 

an X ray simulator to a pre treatment image. Thus, the registration task is performed 

using only the acquired patient images so it is classified as patient to modality.     

3.3.3.1.8.    Object  
Registration methods are also classified based on the particular region of anatomy 

to be registered: head, thorax, abdomen, etc. 

3.3.3.1.9.    Subject of registration 
There classes of subjects are introduced: Intrasubject, Intersubject and Atlas. 

When all the studied images are acquired for a single patient, the registration is 

called Intrasubject. If the two studied images do not belong to the same patient but to 

different patients, e.g. patient and model, the registration is called Intersubject. If one 

of the images belongs to a single patient and the other is constructed from an image 

information database obtained using imaging, the registration is called Atlas. 

3.3.3.2.    Feature matching methods 

Feature matching [38] is divided into two classes: Area based and Feature based. 

Our matching strategy can be classified as Feature based method. The template 

matching in section 3.3.3.2.2.8) and Matching using level lines primitives in section 
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3.3.3.2.2.7 are the two matching schemes that can be compared to our method as 

shown in Chapter 6. 

3.3.3.2.1.    Area based methods 
There are two different approaches. The first one is the correlation like methods. 

The normalized cross correlation [185] function is one of the most important methods 

to measure the similarity between windows pairs from the source and sensed images. 

It is given by, 

 
(3.41) 

Where W is the window placed in the two images, I(x,y) and J(x,y) are the intensities 

of the pixel (x,y) in the source and sensed images and  are their respective means in 

W. The windows pairs for which the maximum cross correlation is achieved are set as 

corresponding pairs. The cross correlation can be used to align two translated images 

only or when slight rotation or scaling are also present. Another method [186] similar 

to cross correlation and uses simpler distance measure is the sequential similarity 

detection algorithm. It accumulates the sum of squared differences of the intensities of 

the pixels lying into the windows pairs. If the obtained value is below a preset 

threshold than the two windows pairs are set as corresponding.  

The second approach in area based method is the Frequency methods. They are 

preferred rather than the correlation in some cases especially for computational speed. 

The studied images are first represented in frequency domain. Then the phase 

correlation method, based on Fourier Shift Theorem [187], is applied to register 

translated with slight scaling images. Peak in the phase correlation function reveals 

the transformation relating the two images. 

3.3.3.2.2.    Feature based methods 
Various methods have been introduced so far trying to give a similarity measure 

between image features in the two studied images using their spatial relations or using 

some feature descriptors. 

3.3.3.2.2.1.    Graph matching  

Graph matching [188] is one of the feature based matching algorithms that 

gathers global information on the whole scene. The similarity measure used is the 
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number of feature points in the sensed image that, after a particular transformation, 

are mapped within a given range next to feature points in the source image. The 

transformation parameters corresponding to the highest similarity measure are 

selected to form the transformation relating the two images. 

3.3.3.2.2.2.    Clustering 

Clustering technique [189] is another feature based method. For every pair of 

feature points from both images, the parameters of the transformation that maps the 

one onto the other is calculated and a point is added in the space of the transformation 

parameters. In this space, the points of parameters that closely map the highest 

number of feature points tend to form a cluster while mismatches fill the parameter 

space randomly. For the cluster of the highest number of points, its centroid 

represents the set of parameters of the desired transformation. 

3.3.3.2.2.3.    Chamfer matching 

Chamfer matching [190, 191] is a technique for finding the best fit of edge points 

(or any other image feature) from the two studied images, by minimizing a 

generalized distance between them. The chamfer distance between two shapes can be 

efficiently computed using a distance transform (DT). This transformation takes a 

binary feature image as input, and assigns to each pixel in the image the distance to its 

nearest feature. The distance between a template and an edge map can then be 

computed as the mean of the DT values at the template point coordinates. The 

matching can be made more robust by using the mean of the thresholded distance, 

 
(3.42) 

Where ui is a feature point in the source image I, vj is its closest feature point in the 

sensed image J and th is a preset threshold to reduce the effect of outliers. 

3.3.3.2.2.4.     Cross-Ratio projective invariant measure 

Suk and Flusser [132] have developed invariant features under projective 

transformation which is the cross-ratio of five points. Their features are point based 

for recognition of projectively deformed polygon. They have used this cross ratio as a 

description of five feature points to match candidates in the two studied images. 
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In general, when the distance between the camera and the object is not much 

greater than the size of the object, the introduced distortion is well approximated by a 

projective model [132]. Therefore, projective invariant features are needed to be 

developed. 

Consider three non collinear points (xi,yi), (xj,yj) and (xk,yk) and their transformed 

points (xi',yi'), (xj',yj') and (xk',yk'). Their projective coordinates are (xi,yi,1), (xj,yj,1), 

(xk,yk,1) and (x'i,y'i,1), (x'j,y'j,1) and (x'k,y'k,1) related by a projective transformation 

given by the matrix H: 

 
(3.43) 

The relation between the coordinates of a point (x,y) and those of its transform (x',y') 

can be described by, 

 

 

(3.44) 

 

(3.45) 

The areas A and A' [132] of the triangles whose vertices are (xi,yi), (xj,yj), (xk,yk)  and 

(xi',yi'), (xj',yj'), (xk',yk') respectively are given by,  

 
(3.46) 

Combining Eqs (3.4), (3.5) and (3.6) give the relation between A and A', 

 
(3.47) 

Where J(x,y) is the Jacobian of the projective transform at point (x,y), 

 

(3.48) 

The relation given in Eq. (3.49) is so called relative invariant projective transform and 

it is utilized to derive the absolute projective invariant which is the cross-ratio of five 

points, 
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(3.49) 

3.3.3.2.2.5    Matching using a contour based method  

Li, Manjunath and Mitra [40] have proposed an image registration technique 

based on region boundaries and strong edges as primitives. They have detected open 

and closed contours and have used different matching criterion for each class. 

The contour extraction forms the first step in their operator. For this purpose, they 

have used a Laplacian-of-Gaussian (LoG) operator and the edges are located at zero 

crossing points. At every edge point (x,y), a strength measure is introduced. It is 

proportional to the slopes of the LoG along the x and y directions. Then a contour is 

retained if: 

 The edge strength at each point along it is greater than T1. 

 At least one point on the contour has strength greater than T2.   

Where T1 and T2 are two preset thresholds (T1< T2). 

Each contour is coded using the chain codes of its edge points using Freeman 

codes [96]. The primitive matching or primitive/primitive correspondence is based on 

a correlation measure between every two contours A and B: A from the source image 

and B from target image. This correlation function is based on the chain codes of the 

contours, reflects the similarity between them and the shift that must be introduced to 

one of them in order to best fit the other. The contour matching process begins with 

the matching of closed contours. For every closed contour, five shape attributes are 

computed: the perimeter, the longest and shortest distances from boundary to the 

centroid, and the first and second invariant moments. These moments were defined 

originally for 2D images. For the case of 2D contours, the first and second moments 

can be defined as: 

 
(3.50) 

 
(3.51) 
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Where xi and yi are the coordinates of each point along the contour. xc and yc are the 

coordinates of the centroids of the contour. n is the length of the contour. 

 Two closed contours, one from each image, are accepted as candidate matches 

if the differences between their five attributes are below some preset thresholds. Then 

two candidate contours are matched if they have the same chain codes taking into 

consideration the possible shift in one of the.  

For open contours, corner points that correspond to a deviation in the contour 

chain code are detected first. The contour segments surrounding the corner points are 

then used as 1D template in finding the corresponding matches in the two images.    

The matched contours enter in the estimation of the transformation model. The 

transformation is assumed to be an affine transformation. For two matched edge 

points, (x,y) and (x',y'), on two matched contours in the two images, the 2D affine 

relationship can be expressed as follows: 

 
(3.52) 

Where s represents the scaling level, θ represents the rotation angle and tx, ty 

represent the translation along the two orthogonal directions respectively. These four 

transformation unknowns are found using least squares sense based on all matched 

points.  

3.3.3.2.2.6.    Affine invariants in convex hulls 

Yang and Cohen [134] have proposed a registration method for scene recognition 

under affine distortion. Their affine invariants are the areas of triangles whose vertices 

are three vertices among four consecutive ones of a convex hull.  

For a set of feature points in the plane, the convex hull is the smallest convex 

object containing all the points. These feature points can be corner points, inflexion 

points, fiducial or marking points etc. the authors have used the algorithm developed 

by Bykat [181] to find the convex hull of a set of points. The convex hull bounds the 

set of these points from the outside, as illustrated in Figure 3.36. Thus, the convex 

hull is suitable in a shape representation or shape matching applications. 
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Fig.3.36. Convex hull of a scatter of feature data [134]. 

Barbar et al. [192] have explained the Bykat convex hull algorithm, called 

"QuickHull". It can be broken down to the following steps: 

1. Find the two points with minimum and maximum abscissas; those are bound 

to be part of the convex hull. 

2. Use the line formed by these two points to divide the set in two subsets of 

points, which will be processed recursively. 

3. Determine the point, on one side of the line, with the maximum distance from 

the line. The two points found before along with this one form a triangle. 

4. The points lying inside of that triangle cannot be part of the convex hull and 

can therefore be ignored in the next steps. 

5. Repeat the previous two steps on the two lines formed by the triangle (not the 

initial line). 

6. Keep on doing so on until no more points are left, the recursion has come to an 

end and the points selected constitute the convex hull. 

In a test scene image, which has undergone an affine distortion or occlusion, a 

part of the convex hull may change or the number of its vertices may increase, 

decrease or remain unchanged. In Figure 3.37, three images are taken for the same 

scene where some objects are added or disappeared. The corresponding convex hulls 

are drawn in Figure 3.38. It is clear that the vertices 7 and 8 in Figure 3.38 (b) have no 

corresponding in Figure 3.38 (a). Also, vertex 8 in Figure 3.38 (c) corresponds to 

vertex 9 in Figure 3.38 (b). For this reason, the authors have suggested first an 

algorithm to detect corresponding vertices in two convex hulls related by an affine 

transformation.    
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Fig.3.37. Image scenes with objects added or disappearing [134]. 

 

Fig.3.38. Corresponding convex hulls of the images in Figure 3.37 [134]. 

After detecting the corresponding vertices on two convex hulls related by an 

affine transformation, groups of four consecutive vertices are formed on each convex 

hull. The ratio of areas of the two triangles per group is the invariant affine measure 

used to detect matched groups as shown in Figure 3.39. 

 

Fig.3.39. Affine invariants in Convex hulls [134]. 

The four points in every group with the corresponding points in the matched group 

enter in the calculation of the six unknowns of the affine model described in section 

3.3.5. 
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3.3.3.2.2.7    Matching using level lines primitives  

Almehio, Bouchafa and Zavidovique [135] have recently presented their work on 

image registration. It is based on level lines that form the boundaries of the image 

level sets. A level set is a set of image pixels with intensities greater than or equal to a 

given threshold. One can extract all the level sets in an image by using a series of 

thresholds. The obtained level sets are included one in another. Therefore, the level 

lines could be locally juxtaposed but never cross. 

The estimated transformation model that relates the two images to register is 

either an affine or projective. For affine transformation, the authors have formed, 

using intersecting level lines, two primitives in the form of "Y" and "Z" shapes shown 

in Figure 3.40. So three intersecting level lines (four non collinear points) are needed 

to complete these two forms. For the Y-shape, the four non collinear points P0, P1, P2 

and P3 define barycentric coordinates in considering P0 with respect to the other 

points. These barycentric coordinates {a1, a2, a3} are affine invariants and are 

formulated as follows: 

 
(3.53) 

 

 

Fig.3.40. Primitive shapes for an affine transformation. (a) Z-shape. (b) Y-shape. 

For the Z-shape, the ratio of the lengths of two collinear segments is set as the 

invariant measure. Thus, the two ratios r1 and r2 derived in Eq. (3.54) are used as 

invariant measures. 
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(3.54) 

Where X is the intersecting point as shown in Figure 3.41 (a). 

For two matched primitives in the two images, the four points {P0(x0,y0), P1(x1,y1), 

P2(x2,y2) and P3(x3,y3)} of the first primitive and the corresponding ones {Q0(x'0,y'0), 

Q1(x'1,y'1), Q2(x'2,y'2) and Q3(x'3,y'3)}enter in the calculation of the affine model. To 

do so, the affine model in Eq. (3.53) can be expended into, 

 

(3.55) 

A least square estimation technique is used to solve this system. 

For projective transformation, the W-shape is formed as shown in Figure 3.41. 

 

Fig.3.41. Primitive shape for a projective transformation [135]. 

In this case, four intersecting level lines are needed which is equivalent to five non 

collinear points. The cross ratio is an invariant measure under a projective 

transformation [44]. Therefore, the authors have used this property to derive the W-

shape invariant measure, 

 
(3.56) 

Where q1, q2, q3 and q4 are the four collinear projections the four points P1, P2, P3 and 

P4. 

In this method, the repeatability of level lines is not considered in the primitive 

construction phase. Thus, many constructed primitives in the source image will not 

have corresponding primitives in the sensed image. Some of them will be matched 

incorrectly and this can hamper the solution. This is illustrated in Chapter 6 section 

6.5.3.      
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3.3.3.2.2.8.   Template matching 

Bentoutou et al. [136] have proposed a registration technique for multitemporal or 

multisensor images in the area of remote sensing and Lou et al. [137] have presented 

their approach for an automatic registration of NOAA AVHRR satellite images. The 

two techniques are very similar. They have used the canny edge detector to detect first 

the required edges [25]. The edge points are selected by setting a threshold on the 

gradient magnitude. The threshold value is assigned as the average gradient 

magnitude [147].  

They have used the normalized cross correlation as a similarity measure between 

the two regions lying inside two windows centered at the tested CPs in both images. If 

this correlation corresponds to a local maxima, than the tested CPs are set to be 

corresponding. They have claimed that some of these corresponding CPs are wrong. 

However, they have proposed a solution that can eliminate some of these false 

matches.  

In the reference image, Harris corner detector [100] is used to detect the corners 

that form the CPs of the suggested registration applications. A correspondence 

mechanism between image regions around these points must be established to match 

the reference and the sensed images. This correspondence mechanism is called 

template matching. It finds the regions in the sensed image that are similar to those 

surrounding the CPs in the reference image. From every matched region, a CP 

position is extracted. The most important aspect of template matching is the similarity 

measure that is used to determine the degree of resemblance of windows in two 

images. They have defined first the central moment mpq of a window W inside an 

image f(i,j). It is given by, 

 (3.57) 

Where p+q is the order of the moment and (xc,yc) are the coordinates of the centre of 

gravity of the window W. Their similarity measure is the normalized central moment 

nmpq, given in Eq.(3.57), that is invariant under translation, rotation and scaling [136]. 

 (3.58) 
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Every three matched CPs pairs from the reference and sensed images enter in the 

calculation of transformation model relating the two images. The same model, derived 

in Eq. (3.55), is obtained and solved also using least square estimation technique. 

This method tries to match two primitives (Harris corners), one from each image, 

using the similarity (cross correlation) of their surrounding regions. The fact that the 

primitive is formed by one interest point rather than a group of them and also the 

introduced similarity measure lead to a large number of false matches as shown in 

Chapter 6 section 6.5.4. 

3.3.3.2.2.9.   Elastic matching 

Elastic matching [193] has been employed in many image pattern matching 

problems such as face recognition, motion analysis, medical image analysis and 

computer vision. It is defined as an optimization problem with respect to a linear or 

nonlinear pixel to pixel mapping of two images I and J. Consider I and J as two sets of 

feature points ui,j and vx,y respectively where (i,j) and (x,y) are their coordinates in I 

and J respectively. Let F denote a 2D-2D mapping from I to J. Thus, the elastic 

matching is the minimization problem of the following objective function T with 

respect to F: 

 (3.59) 

Where D(.,.) is an Euclidian or absolute distance between the two image patterns and 

F(J) is the image obtained by fitting J to I using F. Therefore, F is the transformation 

that minimizes the objective function T. The distance D obtained is deformation 

invariant distance due to the minimization problem. 

3.3.3.2.2.10.    Relaxation 

The relaxation [194] is a recursive parallel algorithm. Initially, a set of possible 

matching criteria is selected when matching every primitive from the first image with 

every primitive in the second image. For example, the angles of corners and the 

segment lengths are two matching criteria when the primitive is an image corner. This 

set is organized as a collection of nodes corresponding each to a primitive in the first 

image. For each node (primitive in the first image), a vector representing the 

primitive's geometric information and the set of labels representing the possible 

matching criteria is formed. A special label called "Null Character" signifies that the 

current primitive has no corresponding primitive in the second image. For each label 
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l, we associate the number pi(l) that is interpreted as the probability that l is 

effectively the matching criterion corresponding to the current primitive in the first 

image. Thus, we have  and . These probabilities will be 

updated by considering the coherence of the neighborhood. If relatively a lot of 

primitives in the neighborhood are compatible with the matching criterion l, than pi(l) 

will increase otherwise it will decrease. The essential task in this technique is the rule 

used to update the probabilities.                             

3.3.4.    Model transformation estimation 

A lot of techniques have been proposed so far to estimate the transformation that 

maps the set of features of the sensed image into the corresponding set in the source 

image. 

We have used the Hough transform (section 3.3.4.1) to estimate our affine model 

since it has lead experimentally to correct estimation.  

3.3.4.1.   Classical Least square technique 

This estimation technique is used by some previously explained feature matching 

techniques (Li et al. in section 3.3.3.2.2.5, Almehio et al. in section 3.3.3.2.2.7 and  

Bentoutou et al. in section 3.3.3.2.2.8). To illustrate, let us take a simple example: 

Given a set of N two dimentional points {(x1,y1), …, (xN,yN)), we try to find the 

straight line y = ax+b that best fine the set of points. The associated error can be: 

 
(3.60) 

The Least square technique consists of finding the optimal values of a and b that 

minimizes the error E by solving these two equations: 

 
(3.61) 

By finding the derivative of E(a,b) with respect to a and b, we will obtain: 

 
(3.62) 
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Eq. (3.62) can be rewritten as 

 
(3.63) 

 
 

 

 

In matrix form, 

 

(3.64) 

  

Or 

 

(3.65) 

In image registration application and for a given transformation relating two 

images (source and sensed images), the least squares problem becomes finding the 

optimal transformation parameters that maps correctly the matched points in the two 

studied images. For example, Almehio et al [135] and Bentoutou et al [136] have used 

the least squares method to estimate their affine model. In Eq. (3.65) denote by X', Y' 

the vectors of coordinates of the points in the sensed image, h and k the vectors of 

affine parameters and by M the 3x3 matrix. So, it can be rewritten as,     

 (3.66) 

    The least squares task is to find the matrices h and k that minimizes the norms ||X'-

M.h|| and ||Y'-M.K||. So by following the same solution method from Eq. (3.61) to 

Eq. (3.66), we can find solutions as follows,  

 (3.67) 
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Where X, Y the vectors of coordinates of the points in the source image. 

The classical least square method can lead often to incorrect solutions due to the 

existence of more than one solution. However, the iterative least square estimation is 

a suggested solution to eliminate iteratively incorrect solutions and keep finally the 

correct one. The other two presented methods "RANSAC" and "Hough Transform" 

lead to correct solutions with noticeable difference with incorrect ones.   

3.3.4.2.    RANSAC 

The RANdom SAmple Consensus (RANSAC) algorithm proposed by Fischler 

and Bolles [23] is a general parameter estimation approach designed to cope with a 

large proportion of outliers in the input data. Unlike many of the common robust 

estimation techniques such as M-estimators and least-median squares that have been 

adopted by the computer vision community from the statistics literature, RANSAC 

was developed from within the computer vision community. RANSAC is a 

resampling technique that generates candidate solutions by using the minimum 

number observations (data points) required to estimate the underlying model 

parameters. As pointed out by Fischler and Bolles [23], unlike conventional sampling 

techniques that use as much of the data as possible to obtain an initial solution and 

then proceed to prune outliers, RANSAC uses the smallest set possible and proceeds 

to enlarge this set with consistent data points. 

The algorithm for image registration can be summarized as follows: 

1. Select randomly the minimum number of points from the source and sensed 

images required to determine the model parameters. 

2. Solve the system of parameters of the target transformation model relating the 

two images. 

3. Determine how many points from the both images fit with a predefined 

tolerance. 

4. If the fraction of the number of inliers over the total number of points exceeds 

a predefined threshold, re-estimate the model parameters using all the 

identified inliers and terminate. 

5. Otherwise, repeat steps 1 through 4. 
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3.3.4.3.    Hough transform 

The concept of the Hough transform is to accumulate, in the interior of a space of 

representative parameters, the information confirming the presence of some particular 

forms or some particular transformations [119, 149]. 

Each image transformation has its own number of parameters called degrees of 

freedom (section 3.3.5). For example, an affine transformation has six parameters. To 

estimate these parameters, we need three points from the source image and their three 

matched points from the sensed image to solve the system. For this reason in Almehio 

et al. registration method [135], an affine primitive is a set of three non collinear level 

lines or four points. Note that the coordinates of the fourth point can be used only for 

verification. In this case, the Hough space has six dimensions (one dimension per 

parameter). Every matched couple of primitives gives its vote to a point of six 

coordinates in this space. The voting scheme accumulates the votes for the same point 

in the space. Finally, the coordinates of the point having the highest accumulated vote 

form the parameters of the target affine model. 

One of the most important Hough transform feature is the selection of the 

parameter space. A high dimensional parameter space is not only slow but it can 

easily overrun the available memory. Finding lines in polar coordinates (ρ,θ) that are 

two dimensional requires a two dimensional Hough space corresponding to ρ and θ. 

Finding planes (y = ux + vy + w) requires a three dimensional Hough space 

corresponding to u, v and w. To illustrate the importance of the discretization of the 

parameter space to minimize the required memory space, consider for example the 

task of finding circles in a 400x200 image. A circle is defined by its center C(x,y) and 

its radius R. Therefore, the required Hough space is three dimensional space 

corresponding to x, y and R. Allowing the center C to be anywhere in the image, adds 

the constraint 0<x<400, 0<y<200 and 0<R<200. The used three dimensional array 

accumulator has a size of 400x200x200 = 16 million values. Therefore, one must add 

other restricted constraints on the three dimensions to lower the accumulator size. 

This is called discretization of the space: It may be assumed that the radius of the 

searched circle does not exceed a certain value much less than 200. It may also be 

assumed that the centers of neighboring circles are at a minimal distance d from each 

other. Thus, the discretization of x and y (and even R) dimensions can be decreased to 

a lower number of values leading to a great minimization in the accumulator size.      
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3.3.5.    Geometric transformation model: Affine transformation and its 

invariants [44] 

Transformations are classified starting by the most particular one, the isometric 

transformation, than similarity transformation until reaching the more generalized 

affine transformation used in our application. Each transformation has its own number 

of degrees of freedom increasing form the isometric to the affine transformation. 

Therefore, the choice of the transformation model that could best estimate the image 

deformation is very important since additional degrees of freedom may imply a wider 

transformation space. Thus, it is better to select first which kind of transformations is 

more suitable for a studied application then construct the primitives and their invariant 

measures based on the selected transformation. We have restricted our study on affine 

transformation since it is the transformation used in our application.    

An affine transformation is a non singular linear transformation followed by a 

translation. The matrix form of the affine transformation relating two points M(x,y) 

and N(x',y') in the two images is given by: 

 
(3.68) 

The parameters a11, a12, a21 and a22 form the elements of the 2x2 matrix A, called 

affine matrix, given in Eq. (3.68). (tx, ty) form the translation vector coordinates. The 

affine transformation is a decomposition of two fundamental transformations, namely 

rotations and non isotropic scalings. A can be written in terms of the parameters Ω, φ, 

λ1 and λ2 as shown in Eq. (3.69), 

 (3.69) 

 

 (3.70) 

where Ω is the rotation angle, φ is the scaling angle both of them with respect to the 

horizontal axis, λ1 is the scaling factor across direction of scaling (set by φ), λ2  is the 

scaling factor across the normal direction to the direction of scaling. R(Ω) and R(φ) 

are rotation matrices and D is a diagonal matrix given by, 

 
(3.71) 
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Using Equations (3.69), (3.70) and (3.71), the affine parameters aij can be 

rewritten as follows, 

 

(3.72) 

To illustrate the role of matrix A, consider the image point M shown in Figure 

3.42. The scaling axes x' and y' are also drawn with respect to the original image axes 

x and y. The scaling factor of M, derived in Eq. (3.73), is relative to its angle α with 

respect to scaling axis x'. 

 

Fig.3.42. Scaling directions in an affine transformation. 

 
(3.73) 

The affine invariants are the following as stated in [44]: 

 Parallel lines: Consider two parallel lines. These intersect at a point at infinity. 

Under an affine transformation this point is mapped to another point at 

infinity. Consequently, the parallel lines are mapped to lines which still 

intersect at infinity, and so are parallel after the transformation. 

 Ratio of lengths of parallel line segments: The length scaling of a line segment 

depends only on the angle between the line direction and scaling directions. 

Suppose the line is at angle α to the x axis of the orthogonal scaling direction, 

then the scaling magnitude is . This scaling is common to 

all lines with the same direction, and so cancels out in a ratio of parallel 

segment lengths. 

 Ratio of areas: This invariance can be deduced directly from the 

decomposition Eq. (3.73). Rotations and translations do not affect area, so 
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only the scalings byλ1 andλ2 matter here. The effect is that area is scaled by λ1

λ2 which is equal to det(A). Thus the area of any shape is scaled by det(A), 

and so the scaling cancels out for a ratio of areas. It will be seen that this does 

not hold for a projective transformation.  

3.4.    Our contribution 

The major weakness of existing interest points and edge corner detectors is in the 

correct detection in real images where the noise at the included objects boundaries is 

relatively high. In addition, interest point detectors are based on image intensities. 

Therefore, the detection of their interest points is highly dependent on threshold on 

intensities which is not automatic and very sensitive to noise. 

Our contribution is to detect our first features, "repeatable edge corner points" on 

an object contour that are very accurate, automatic and less sensitive to noise. They 

can be used in many computer vision applications like image registration [52], 

polygonal approximation [53], object recognition, etc. In fact, we have used the 

corners angles and lengths ratios of its two adjacent segments as matching keys. Thus, 

two objects are matched if their contours have matched corners in angle and length 

ratio. In addition, since corners are grouped together according to their contour, we 

don't need to use an existing grouping method like RANSAC [23]. 

We have focused on corners located on edges since edges are one of the most 

important image features that are repeatable versus various image transformations [3]. 

Our goal is to detect feature points that are also well localized and repeatable against 

many image deformations. Therefore, they can be used as interest points on an 

object's contour where a descriptor can be formed at every interest point using its 

local information from its surrounding pixels. 

Using the detected edge corners, we have proposed an approach for detecting our 

second features, "Dominant Corners", inspired by that presented by Masood [127]. 

We have searched for dominant corners that best approximate a given shape by a 

polygon having these corners as vertices. The differences between our work and the 

existing works are in the nature and stability of the selected points and in the method 

used to select them among others. The selected points of Masood [127] are points that 
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correspond to a deviation in the edge direction. Our selected points are edge corners 

that are intersections of two straight edges. For us, not every deviation in the edge 

direction corresponds to an edge corner. It may correspond to a noisy edge direction. 

In addition, Masood iteratively eliminates unwanted corners using a measure called 

associated error value (AEV). The AEV at a dominant point is the perpendicular 

squared distance of this point to the straight line joining its previous and next 

dominant points. However, the error measure associated to our DC is the Integral 

square error which is proportional to the area bounded by the DC straight edges and 

their approximating polygon's segment. So, it is similar to the criterion used by Wall 

and Danielson [118] that relies on the area of the region included between the edge 

part and its approximated segment rather than only relying on the maximal distance 

like in the method of Pavlidis [117]. 

The most important matter in image registration is the repeatability of the CPs for 

a side and the correct CPs matching. Since unrepeatable and false matched CPs 

hamper the solution in a lot of existing techniques like Lou et al. [137], Bentoutou et 

al. [136] and Almehio et al. [135] techniques. In our technique, we have built and 

matched image primitives composed by a group four consecutive edge corners called 

"Dominant Corners". This grouping gives to the primitive more efficiency in terms of 

uniqueness and dissimilarity. In addition, we have suggested an efficient matching 

algorithm to reduce the number of false matches. 

The DCs repeatability can be compared to that of the Harris corners introduced by 

Bentoutou et al. [136] and Lou et al. [137]. In this work, the introduced iterative 

suppression technique leads to high repeatable DCs (CPs). High repeatable primitives 

are formed by a group of four DCs. In addition, two primitives are matched if their 

four DCs are corresponding. This will lead to a smaller set of repeatable voters 

(primitives) and also more accurate transformation estimation compared to the voters 

introduced by Harris corners in [136, 137].   

Using the detected dominant corners on an image contour, our primitive is formed 

by grouping four consecutive DCs. So our technique can be classified as feature based 

technique since it is based on DCs that are feature points in the image domain. Its 

invariant measure is the ratio of the areas of two triangles whose vertices are three 
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DCs among the four. This invariant measure is similar to that used by Yang and 

Cohen [134]. However, our DCs are more repeatable than their convex hull vertices. 

The matched primitives from both images enter as voters to estimate the affine 

model of six parameters. Therefore, we have relied on the Hough technique based on 

a Hough space of six dimensions and apply a voting scheme to accumulate the votes 

of every set of six parameters. The set that gets the highest votes constructs our target 

affine model. 

Two main goals are achieved in this research. The first one is the detection of 

new CPs (DCs) that are very repeatable versus affine deformations. The second one is 

a new matching scheme proposed for proper transformation estimation.     
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A robust Edge Based Corner 

Detector (EBCD): Straight 

Edges, Edge Corners and 

Dominant Corners 
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An edge corner is an edge point that corresponds to a deviation in the edge 

direction. Or in other terms, it is the intersection point between two non collinear 

straight edges where a straight edge is an edge segment linked nearly in the form of a 

straight line. 

4.1.    EBCD block diagram 

The main steps of this detector can be summarized as follows: 

(v) Edge detection with updates in the linking phase: we have used the Kirsch 

edge detector with updates, described in section 4.2, for proper detection of 

edge corners. The output of an edge detector is a binary image of edges. These 

edges form the contour of the objects in the image that are our candidates to 

test the presence of corners. 

(vi) Straight edges detector: the straight edges are parts of a contour linked in the 

form of straight lines. They can be called "Edge Segments" and described in 

section 4.3. The goal of applying a straight edge detector is to divide a contour 

into a sequence of straight edge segments of different lengths using the edge 

point chain codes. The robustness of the straight edge detector is its ability to 

properly detect a straight edge even if it is corrupted with some noisy pixels. 

By definition, a noisy pixel is an edge pixel whose direction is different from 

the main straight edge direction. This detector should detect adequately these 

noisy pixels and eliminate them in order for the corner detector to extract the 

true corners and not mix them with noisy pixels since both noisy and corner 

points correspond by definition to an edge deviation. We published this 

detector in [28, 198]. 

(vii) Corner Detector: a corner is defined as the intersection point of two 

non collinear straight edges of appropriate lengths (In Chapter 5 experiments 

in section 5.1: the length threshold is set to be equal 10 pixels). This is 

described in section 4.4. In addition, a pattern recognition application using 

corners is developed in section 4.5. We published this detector in [28, 198]. 

(viii) Dominant corners detector: among the set of edge corners, a smaller 

set called "Dominant Corners" or "DCs" is selected iteratively. These DCs 

have a great repeatability under various image transformations as described in 

section 4.6. We published this detector in [53]. 
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The algorithm block diagram is shown in Figure 4.1. 

 

Fig.4.1. The corner detection functions.  

4.2.    Edge detector with suggested updates 

We have used the existing edge detector based on Kirsch algorithm composed of 

the five classical steps of edge detection (see chapter 3). These steps are grouped into 

two functions for a temporal optimization. This grouping is a part of the open source 

CLEOPATRE project [17] but used with updates to meet our requirements. The first 

grouping performs gradient vector calculation, thresholding on the gradient norm, and 

edge thinning. The second one operates on edge linking and closing.  
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4.2.1.    First grouping: gradient vector calculation, thresholding and edge 

thinning  

4.2.1.1.    Gradient vector computation 

We have used Kirsch operator that offers a very good compromise for our mobile 

and autonomous robotic applications between the quality of results and the low 

processing time. 

At every image pixel, the gradient vector is calculated by placing the Kirsch four 

masks (chapter 3). The norm and the direction of this vector are calculated using Eqs. 

(3.47) and (3.48). Therefore, the gradient norm reflects the strength of the edge while 

the direction is normal to the edge direction. Figure 4.2 (a) provides an example 

where the image intensity (8 bit character) is shown at every pixel. The gradient norm, 

based on Kirsch, is calculated at every pixel in Figure 4.2 (b). 

0 255 255 255 255 255100000

0 255 255 255 255 255100000

0 255 255 255 255 255100000

0 255 255 255 255 255100000

0 255 255 255 255 255100000

0 255 255 255 255 255100000

0 255 255 255 255 255100000

0 255 255 255 255 255100000

0 255 255 255 255 255100000

0 255 255 255 255 255100000

0 0 0 0 0 0 0 0

0 0 0 100 255 155 0 0 0 0

0 0 0 100 255 155 0 0 0 0

0 0 0 100 255 155 0 0 0 0

0 0 0 100 255 155 0 0 0 0

0 0 0 100 255 155 0 0 0 0

0 0 0 100 255 155 0 0 0 0

0 0 0 100 255 155 0 0 0 0

0 0 0 100 255 155 0 0 0 0

0 0 0 0 0 0 0

0 0

0 0 0
 

 

Fig.4.2. Gradient norm on an edge using Kish operator. 

4.2.1.2.    Thresholding 

Thresholding is the process that enables to extract the edge points. This is 

achieved by presetting a threshold on the gradient norm called "thH". If an image 

pixel has a gradient norm greater than thH, it will be classified as an edge pixel. For 

example in Figure 4.2 (b), the corresponding edge points are grey colored and form 

the edge in this figure. 

4.2.1.3.    Thinning 

Usually, the thresholding phase can produce more than one pixel in the normal 

direction to the edge. For example in Figure 4.2, if the threshold is equal to 80, the 
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edge width, shown in Figure 4.2 (b), will have a width of 3 pixels in the normal 

direction to the edge. In addition, this problem of thick edges is well illustrated in 

Figure 4.3. It is shown that an edge can be of thickness more than one pixel in the 

normal direction to the edge. 

 

Fig.4.3. More than one pixel can exist in the normal direction to the edge. 

For this reason, the thinning step is introduced. Its goal is to obtain an edge of 

thickness equal to one pixel at maximum. To explain the algorithm, one must know 

these definitions: 

 Current pixel: the pixel currently tested. 

 Past pixels: pixels in the 3x3 neighborhood of the Current pixel and that are 

already tested as edge pixels. 

The thinning algorithm is shown in Figure 4.4. 
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Fig.4.4. Thinning algorithm. 

4.2.1.4.    First problem: rounding angle problem 

The three already discussed steps are grouped together into one function. Thus, 

for a single image processing (video mode) and at every pixel, the gradient vector is 

calculated then thresholding on the gradient norm is applied then thinning step is 

initiated. This grouping output a binary image of the edge points called "edge image".   

However, a problem arises since the gradient computations will round the angle. 

Figure 4.5 and Figure 4.6 show the result on right and acute angles respectively. Note 

that the detected angles are rounded. To solve this problem, we will introduce the 

notion of “half corner” in the corner detection phase explained in section 4.4. 

 

Fig.4.5. Gradient norm on a right angle using Kish operator. 

 

Fig.4.6. Gradient norm on an acute angle using Kish operator. 
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4.2.2.    Second grouping: edge linking and closing 

4.2.2.1. Automatic Edge linking  

The edge linking processes all the pixels in the generated binary edge image. The 

idea is to link the neighboring edge pixels together in the attempt to form the contours 

in a given image. A contour is a sequence of edge pixels linked together. It is 

characterized by a Head pixel, a Tail pixel and by the transition codes (directions of 

the edge coded using Freeman codes) at every belonging edge pixel from the Head to 

the Tail. 

At any unlinked Current edge pixel, the automatic linking algorithm is shown in 

Figure 4.7.  

 

Fig.4.7. Linking algorithm at an unlinked edge pixel. 

4.2.2.2.    Automatic Closing 

The closing phase is initiated when trying to link an edge pixel and no unlinked 

neighboring edge pixel exists as shown in Figure 4.8 (a) or in other terms when 

linking ends. The closing first introduces a second threshold less than that used in the 

thresholding phase called "thL". It starts by examining the unlinked pixels in three 

directions that form a cone of 45o at vertex as shown in Figure 4.8 (b). The closing 

algorithm at an unlinked edge pixel is shown in Figure 4.9. The variables used in the 

algorithm are: 

- AllNeighLinked: a flag signaling that the three tested neighbors are already 

linked. 
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- AllNeighWeek: a flag signaling that all the three test neighbors have a gradient 

norm below thL. 

- EdgeFound: a flag signaling that one of the three tested neighbors is an unlinked 

edge pixel. 

 

Fig.4.8. The 3 selected pixels for closing. 

 

Fig.4.9. Closing algorithm at an unlinked edge pixel. 

4.2.2.3.    Grouping 

The linking and closing procedures can be linked easily in one automatic 

algorithm that requires one examination of the pixels in the edge image in video 

mode. The algorithm is explained in Figure 4.10 where the only variable used is: 
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- dmax: the maximal allowed prolongation distance. 

 

Fig.4.10. Automatic Linking/Closing algorithm. 

4.2.2.4.    Second problem: Linking in straight direction  

The explained linking step was designed to follow “strong edges in straight 

direction” in an image, in order to extract structures of the 3D scene. When a fork 

between edges is encountered, it follows the strongest edge with the greatest 

magnitude. Our problem with this strategy is the ignorance of the other possible edges 

due to their smaller gradient magnitudes. This can lead to an elimination of real 

corners when we have an intersection of two edges in the form of T. This problem is 

an inappropriate edge linking because the existing edge detector focuses on detecting 

straight edges. Figure 4.11 (a) presents a colored image of two rectangles with 

different colors and Figure 4.11 (b) shows the corresponding edge image. Two edges 

are formed and each one is represented by a different color. Consider the points A and 

B where real corners exist. Each of the edge pixels at A and B has two neighboring 

edge pixels where one of them is in a straight direction and the other in the normal 

direction. Using the existing linking strategy, the algorithm chooses and links only the 

one who has the greatest gradient norm which is, in this case, the straight neighbor 
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that does not correspond to a change in the edge direction. So, no corners will be 

reported at A and B at the end of our corner detector.  

4.2.2.5.    Our Suggested Update to solve the problem 

Therefore, the linking phase at these points should be updated as follows: 

 If an edge point has more than one neighboring edge points, mark these points 

as double points, like points A and B in Figure 4.11. (b). 

 At the double points: 

 The straight edge detector, detailed in §4.3, is launched and two straight edge 

segments, starting from the double point, should be detected.  

 If the detected edge segments are not collinear with appropriate lengths 

(greater than a preset threshold), than the double point corresponds to an edge 

corner.  

Usually, our algorithm is initiated to check a corner presence at only edge pixels 

having deviations in the edge direction. Therefore, we mark the double points in the 

linking phase to force the algorithm to test them for corner presence besides those 

who correspond to an edge deviation. Since the double points do not correspond 

usually to an edge deviation. 

In Figure 4.11 (b), we have shown two edge pixels A and B among many that 

correspond to an intersection of two edges in the "T" form. The existing edge linking, 

Figure 4.11 (d), from top to bottom at A has followed the straight direction which is 

direction 6 in Freeman code without considering the second intersecting green edge. 

Also the edge linking from left to right at B has followed the straight direction which 

is direction 1 in Freeman code without considering the second intersecting blue edge. 

Thus, in both situations, the existing linking algorithm will not take any action 

according the intersection between the two edges. So, when searching for corners, a 

corner will not be detected at edge points A and B since they do not correspond to an 

edge deviation. To overcome this problem, we use our updated linking phase, shown 

in Figure 4.11 (c), which marks the points A and B as double points. In the straight 

edge detector (next stage), at these double points we will obtain two non collinear 

straight edges: at A, the navy and green edges. At B, the navy and blue edges. In the 

corner detector, these two points will be then reported as corners.    
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Fig.4.11. The problem in the linking phase of the existing edge detector: (a) original image. (b) edge 

image. (c) updated linking phase with double points. (d) old linking phase. 

4.3.    Straight edges 

Our objective is to detect edge segments that can be considered straight using 

only their chain codes. However, we must distinguish first between two kinds of 

straight edges: Perfect and real straight edges. 

4.3.1.    Perfect straight edges 

We notice that a corner can be defined as an intersection of two non collinear 

straight edges. So our idea is to classify a given edge as a sequence of non collinear 

straight edges. A perfect straight edge is an edge whose chain code is composed of 

one code or two codes at maximum. There are eight different straight edges 

corresponding to a unique code among the eight Freeman codes. For example, a 

perfect horizontal straight edge has a chain code of only 0 or 4 and a perfect straight 

edge along the first diagonal has a chain code of 1 or 5 as shown in Figure 4.12.   

In addition to these eight cases, a perfect straight edge has a chain code composed 

of two codes: one primary and the other secondary with a difference equal to one 

between them. The classification of these two codes is done according to their 



130 
 

frequency of occurrence in the edge's chain code. This is illustrated in Figure 4.13. In 

Figure 4.13, five edges are considered starting from one origin O. Edges1 and edge5 

are those that have a unique code 0 and 1 respectively, and their slope are 0o and 45o. 

Edge3 is the one that have double codes 0 and 1 of the same frequency of occurrence 

so its slope is 22.5o and it is the bisector of the angle formed by edge1 and edge5. 

Edge2 is near to edge1 and has also double codes 0 and 1 but with different frequency 

of occurrence. Code 0 is primary and code 1 is secondary. Same result can be seen in 

edge4 that has code 1 as a primary and code 0 as secondary. 

 

Fig.4.12. Straight Edges with unique code. 

As a conclusion, we can say that the perfect straight edges that have double codes 

are of two kinds. The first kind of edges has double codes of same frequency (edge3). 

It is equidistant between two straight edges of unique code (edge1 and edge5). The 

second kind of edges also has double codes but of different frequency (edges2 and4) 

and it is also between two straight edges of unique code corresponding to the primary 

or secondary code. Here, the nearest one's code forms the primary code. In Figure 

4.13, Edge1 is the nearest to Edge2, so the primary code for Edge2 is 0. 

 

Fig.4.13. Straight edges with double Freeman codes. 
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4.3.2.    Algorithm explanation and real straight edges  

In real images, the chain code of a straight edge that should be composed of one 

or two successive codes has usually more than two codes. Our goal is to identify 

which of them are the primary and secondary codes and reject the remaining codes. 

This problem is due to natural noise at the object borders.   

Real straight edges are shown in Figure 4.14 (a) where some perturbations, 

circled in the image of edges Figure 4.14 (c), are encountered along these edges. The 

challenge is to build an intelligent algorithm that can identify these perturbations and 

detect real straight edges that meet at corner points as shown with their angles in 

Figure 4.14 (b). 

 

Fig.4.14. (a) image of edges, (b) detected corners, (c) noisy pixels. 

While moving across the edges in a given image, our straight edge algorithm can 

be initiated at the current edge point in one of two cases: 

 If it is a double point. 

 If it corresponds to a deviation in the edge direction. 

The initiation of the algorithm is shown in Figure 4.15 where the variables used are: 

- ppdir: pixel previous edge direction as shown in Figure 4.16 at a corner point A 

located on an edge. 

- cdir: pixel current edge direction.  

- diff: direction difference. 
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- FlagInit: flag to signal the initialization.  

 

Fig.4.15. Condition to initiate the straight edge detector. 

 

Fig.4.16. The current and previous directions at an edge pixel A. 

The purpose is to test the existence of a real straight edge with successive infected 

pixels less than m and of a length greater than a threshold d (In the experiments in 

Chapter 5 section 5.1 on detecting the straight edges and corners, d is et to be 10 

pixels and m to be 2 pixels). The idea behind the algorithm is to start testing an image 

edge starting from its head to its tail. Consider the first encountered edge direction as 

primary direction and the next encountered edge direction as secondary edge 

direction. While moving the current pixel to the tail, increment the frequency of 

primary or secondary directions when the current pixel's direction corresponds to 

primary or secondary directions, respectively. Or increment the frequency of infected 

pixels, if the current pixel's direction differs from them. If the number of infected 

pixels exceeds a given threshold m, the edge test stops at the current pixel. If the edge 

length is greater than another threshold d, the edge traversed so far is considered as a 

straight edge.  

Let us define the variables used in the algorithm: 
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- pdir: edge primary direction. 

- pdirfreq: frequency of pdir. 

- sdir: edge secondary direction. 

- sdirfreq: frequency of sdir. 

- InfectedCount: number of infected pixels encountered so far. 

- el: edge length. 

- SecondaryFound: a flag that is set when a secondary direction is found. 

- diff: absolute difference between cdir and pdir 

The algorithm details are shown in Figure 4.17. 

An infected pixel is an edge pixel, located on a real straight edge, whose edge 

direction is different than those of the corresponding perfect edge. Therefore, the 

variable diff is introduced. The search is for the edge direction, if exists, that differs by 

one from the primary direction pdir knowing that a perfect straight edge can have a 

chain code composed at maximum of two codes with difference equal to one. The 

variable InfectedCount is incremented each time an infected pixel in encountered and 

it is cleared only if the current edge pixel direction cdir is equal to pdir. On the other 

hand, if cdir is equal to sdir, the variable InfectedCount should not be cleared. In 

Figure 4.18 (a), consider the example of a straight edge whose pixels are in black. It is 

linked with pdir = 1 and sdir = 2. At point A, the cdir is 3 so InfectedCount is 

incremented. Next at point B, the cdir is 2 and it is clear that the remaining edge in 

gray forms a different straight edge. If we reset InfectedCount at B when cdir = sdir = 

2, the algorithm will not stop and will consider both edges, in black and in gray, as 

one straight edge which is incorrect. A final point should be discussed which is the 

need to update pdir and sdir. The logical reason for this case is that a straight edge 

primary direction is not necessary the first encountered cdir as shown on the straight 

edge in Figure 4.18 (b). Initially pdir = 4 and sdir = 5. But after traversing the 

remaining edge pixels, it is clear that pdir should be 5 and sdir should be 4. 
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Fig.4.17. Straight edge detector. 

The robustness of the straight edge detector against noise due to shadowing effect 

is due to the usage of the parameter Accn. Normally, the shadowing effect will 

introduce some noisy edge pixels having their directions different from the two main 

straight edge directions. 

 

Fig.4.18. Two straight edges. 
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4.4.    Corner detection 

By definition, a corner is the intersection of two non collinear straight edges with 

appropriate lengths which means greater than a preset threshold. We should 

distinguish between two situations: the first one is when the two non collinear straight 

edges intersect at an edge point and the second one is when they intersect outside the 

edge. 

 

Fig.4.19. (a) edge image of a leaf shape with CCs in orange and HCs in pink. (b) The CCs and 

HCs of the top right circled part. (c) HCs combination results. 

In the first situation, the corner point is called "Complete Corner" or "CC". They 

are shown as orange points on the contour of a leaf shape of Figure 4.19. In the 

second situation, sometimes due to the fact that the edge detector rounds the angle 

described in section 4.2.1.4, the intersection point of two non collinear straight edges 

is located outside the edge. To overcome this error, we mark the endpoints of the two 

straight edges as "Half Corners" (HCs). These HCs are shown as white points in 

Figure 4.19. By definition, a HC is an endpoint of a straight edge. It corresponds to an 

intersection point between a straight edge and a very small edge part (not classified as 

a straight edge due to its small length) like the points C1 and C2 shown in Figure 
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4.20. If the distance between two HCs is very small (less than three pixels), we extend 

their straight edges. If they intersect at a very small distance from the two HCs than a 

true corner is reported. 

In Figure 4.20, C1 is a HC since a change in direction occurs from 7 to 5 and one 

of its intersecting edges DC1 is a straight edge with considerable length while the 

other edge C1C2 is not due to its small length. C2 is also a HC for the same reason. 

Thus, these two HCs can form a true corner by extending the corresponding straight 

edges along the directions of the corresponding segments. If they intersect at a point 

very near to the original HCs with a considerable gradient norm, this intersection is 

considered as a true corner point. In Figure 4.20, the straight edge DC1 is a straight 

edge passing through C1 and having a direction (slope) 7. EC2 is also a straight edge 

passing through C2 and having a direction 0. They will intersect at point C. The 

summary of the algorithm for HCs combination is shown in Figure 4.21. 

 

Fig.4.20. (a) Original image. (b) Edge image and HCs. 

Figure 4.19 (a) shows the edge CCs in orange and HCs in white located on the 

contour of a leaf shape. After the application of the HCs combination algorithm, every 

two neighboring HCs satisfying the combination conditions will be combined into one 

CC located outside the contour. The three pairs of HCs in the image part shown in 

Figure 4.19 (b) are combined into three CCs in Figure 4.19 (c). 
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Fig.4.21. HCs combination algorithm. 

Each CC is characterized by its angle, which is the difference between the 

directions of the two intersecting straight edges, and its adjacent segments lengths 

ratio. These corners are compared in chapter 5 with other interest point detectors in 

the literature (SUSAN, SIFT, FAST, Harris and Harris-Laplace) already explained in 

the bibliography chapter 3 (§3.1). 

4.5.    Image matching using corners: a 2D shape recognition 

application 

In this section, we have developed a 2D shape recognition application using the 

edge corners. The goal is to recognize a target shape even when it is rotated, 

translated and essentially scaled. Mathematically, this deformation is well modeled by 

a similarity transformation (see chapter 3). Theoretically, this transformation 

conserves angle and lengths ratio. Therefore, two characteristics are selected for our 

edge corners (as shown in Figure 4.22): 

 Angle: it is the difference between the two adjacent straight edges directions. 

 Length Ratio (LR): it is the ratio of the lengths of the two adjacent straight 

edges. 

 

Fig.4.22. Edge corner characteristics: Angle and LR. 
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Practically, we have studied the stability of these two characteristics under scale 

variation. For this purpose, we have selected five corners (A, B, C, D and E) on the 

contours of an image at scale S shown in Figure 4.23 (a). Also, we have taken three 

other figures shown in Figure 4.23 (b), (c) and (d) at different scales S/2, S/3 and S/4 

respectively. Table 4.1 show the repeatability of corners characterized by their angles 

and length ratios (LR). It is clear that the angle and the LR remain approximately 

constant against scale variation. Thus, these two parameters can be chosen as 

invariant corner's parameters under image similarity transformation. 

 

Fig.4.23. Repeatability of corners under scale variation. 

Table 4.1. Length ratio and angle of some corners at different scale. 

S 
 

S1 S1/2 S1/3 S1/4 

L.R Angle L.R Angle L.R Angle L.R Angle 

A 1.64 <6,7> 1.62 <6,7> 1.65 <6,7> 1.68 <6,7> 

B 2.37 <0,2> 2.33 <0,2> 2.26 <0,2> 2.28 <0,2> 

C 2.51 <2,4> 2.66 <2,4> 2.6 <1,4> 3.12 <2,4> 

D 2.69 <2,4> 2.61 <2,4> 2.57 <2,4> 1.42 <2,4> 

E 1.55 <4,4> 1.01 <4,4> 1.1 <4,4> 1.17 <4,4> 

 

We have developed an algorithm using the corner's angle and LR as invariant 

parameters to detect a 2D shape in a given image. The idea is to embed the suggested 

algorithm in an autonomous robot whose target is to detect a desired shape and tries to 

bring it.  

The contour is one of the most important image features that are repeatable versus 

a lot of image transformations except for occlusion. Therefore, we can rely on this 

feature to detect our corners that are also repeatable as shown before. These corners 

are grouped according to their contour. This is also an efficient property that relates 

the corners on the same contour. Without this property, we must use another 

technique to group the corners like RANSAC [23] or other. Since the target 2D 
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object/shape can be composed from several contours, the matching between two 

object's images is based on matching of the corresponding contours.   

The algorithm training phase consists of presenting to the robot a real image that 

contains clearly the target shape/object to detect as shown for the star shape in Figure 

4.24. The straight edges are extracted and then the corners are reported. Thus, a 

descriptor called "Training Descriptor" is formed. It is a vector of the ordered 

contour's corners defined by their angles and LRs. 

   

 

Fig.4.24. Training Image. 

After the construction of the Training Descriptor, the robot starts searching for the 

object. So, it enters the test phase. In each acquired test image, it will detect the 

corners of every contour presented in the image. A test descriptor is formed per 

contour. Then, the matching process starts. It will match each test descriptor with the 

training one. Two descriptors are matched if their ordered corners are matched in 

Angle and LR. Figure 4.25 (a) shows a test image, Figure 25 (b) shows the different 

contours in the test image and their edge corners and Figure 4.25 (c) shows the 

corners of the matched contour only. So, the matched shape is the star shape even 

with the big scale change between the star shapes in the training and test images. The 

overall matching algorithm is shown in Figure 4.26. 
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Fig.4.25: (a) Test image. (b) Corresponding image of contours with corners shown on the matched one. 

 

Fig.4.26. The corners descriptors. 
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Fig.4.27. Matching a test contour to a training contour using their corners descriptors.  

In the algorithm shown in Figure 4.26, the extraction of corners descriptors 

(length ratio of adjacent segments and angle) is explained. The algorithm shown in 

Figure 4.27 explains how we can match two contour, training and test, by matching 

their corners following their linking order. The ratios of the lengths of two corners are 

considered equal if their ratio is between 0.9 and 1.1. In addition, their angles are 

considered equal if their absolute difference is less than 0.3. 

4.6.    Detecting dominant corners from edge corners: Polygonal 

Approximation 

The corners, reported by the suggested corner detector, are characterized by the 

lengths of its two sides (straight edges) and by its angle between its two sides. The 

corners for the chromosome shape in Figure 4.28 (a) are shown in the linked edge 

image in Figure 4.28 (b) with their angle directions. 

The main goal of this function is to introduce an operator that is able to extract a 

polygon that best approximate an object's contour. The vertices of this polygon are 

selected among the set of edge corners detected so far. The best approximation is 

obtained by selecting only strong corners called "Dominant Corners". For this 
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purpose, we have introduced first a corner strength measure and then developed a 

technique to remove iteratively the corners with weakest strength measures. This is 

described by a function called "Iterative Corner Suppression". 

 

Fig.4.28. Detected corners for a chromosome shape: (a) Chromosome shape, (b) Linked edge image. 

4.6.1.    The corner strength measure 

Some parameters should be defined to illustrate the corner strength measure: 

 LISE: is the Local Integral Square Error between a polygon's segment and its 

approximated edge part. The LISE relative to a polygon's segment is given by, 

 
(4.1) 

Where n is the total number of edge points on the approximated edge part and 

d is the distance between an edge point and the polygon's segment. Figure 4.29 

shows an edge part in black approximated by a polygonal segment in grey. 

The LISE is the sum of squared distances dk of edge point Pk (moving from P1 

to Pn) relative to the polygon's segment. 
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Fig.4.29. Illustration for LISE measure. 

This measure is proportional to the area of the region bounded by the edge 

part and the approximating segment. 

 GISE: is the Global ISE and it is equal to the sum of LISEs of polygon's 

segments. Since the LISE of a segment is proportional to the local area limited 

by the corresponding segment and edge part, the GISE is also proportional to 

the global area which is the sum of all local areas. 

 LISEV: Local ISE Variation due to the removal of a corner from the list of 

polygon's vertices. This measure reflects the corner strength. Consider the 

contour shown in Figure 4.30 and its three corners P, Q and R. A, B and C are 

the areas of the regions bounded by edge parts and corresponding polygon's 

segments. The LISEV due to the removal of corner Q is proportional to the 

difference between the new area C (after removal) and the sum of the two 

areas A and B (before removal). The strength of a corner is proportional to this 

measure.  

 

Fig.4.30. LISEV calculation. 

4.6.2.    Iterative corner suppression 

Starting from the original set of detected edge corners on a contour, the goal of 

the iterative corner suppression technique is to obtain a smaller set of corners, called 
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"Dominant Corners" or "DCs" that form the vertices of a polygon that best 

approximates the contour.     

The algorithm efficiency is compared in chapter 5 to other existing polygonal 

approximation algorithms detailed in chapter 3. They have eliminated their corners 

until a given compression ratio CR is met:    

 (4.2) 

where n is the number of shape's edge points and nc is the number of selected corners 

that form the polygon vertices. In order to compare, we have followed in this chapter 

the same stopping criterion.  

At a given CR, the objective function is to minimize the global integral square 

error (GISE). For a particular shape as in Figure 4.31, since n is constant CR becomes 

a function of nc only. Therefore, the problem is limited to obtain the minimal possible 

ISE for a given number of dominant corners nc. In general, the entry of the algorithm 

is the parameter CR, nc will be calculated automatically for every contour. 

Figure 4.31 shows the approximated polygon of the chromosome shape used in 

Figure 4.28 at various nc. The global ISE decreases while nc increases. 

The ICS algorithm is shown in Figure 4.32. 

 

Fig.4.31. Polygonal approximation at various nc. 
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Fig.4.32. Iterative corner suppression algorithm. 

 

Fig.4.33. Corner suppression. 
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Starting by considering all the corners as polygon's vertices, the idea behind the 

ICS algorithm is to decrease the number of vertices iteratively of the approximated 

polygon. Here, the suppressed corner (vertex) is the one that its suppression will cause 

the minimal increase to the current global ISE and this will ensure the selection of the 

optimal polygon at every iteration (at every value of nc). Consider the case presented 

in Figure 4.33. We have four selected corners at iteration i so there are three polygon's 

segments with their corresponding LISE represented by the areas A, B and C. The 

idea is to calculate the LISEV caused by the removal of one of the two corners Cor2 

or Cor3, for example, at iteration i+1. D is the area that represents the LISE of Cor3 

and E is the one that represents the ISE of Cor2. The removal of Cor3 will add a new 

polygon's segment [Cor2Cor4] and eliminate two others [Cor2Cor3] and [Cor3Cor4]. 

Therefore, we can write 

 (4.3) 

Same procedure will apply for calculating the LISEV caused by the removal of Cor2 

with:  

 (4.4) 

If LISEV3 is smaller than LISEV2 than Cor2 will be removed otherwise Cor3 will be 

removed. 

 

Fig.4.34. Corner reselection. 
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While the corners are suppressed one after the other, the LISEV of a corner that 

depends on the current corner "Corc" and the directly selected neighboring corners 

(previous one "Corp" and next one "Corn"), may change since "Corp" or "Corn" may 

also change. So we should always update and then check the LISEV of even the 

suppressed corners to ensure the optimality of the suppression at each iteration. This 

can be illustrated using the list of corners shown in Figure 4.34 where all the five 

corners are selected initially. This is a tested case by the algorithm where C4 (Figure 

4.34 (a)), C5 (Figure 4.34 (b)) then C3 (Figure 4.34 (c)) are suppressed iteratively first 

and the remaining polygon has only C1, C2 and C6 as vertices. Now if we calculate 

the LISEV of removing C2 and that of removing C3, C4 and C5 taking C1 as "Corp" 

and C6 as "Corn", we find that the LISEV of removing C3 is the greatest one. So we 

should suppress C2 and reselect C3 (Figure 4.34 (d)). Then, the LISEV resulting from 

adding [C1C6] is that of removing C3 and it will be compared with the LISEV of 

removing the remaining selected corners existing on the whole contour  to deselect 

the corner with the minimal one. 

4.6.3.    Towards an automatic stopping criterion 

Using the CR as a stopping criterion works well to compare the efficiency of our 

proposed polygonal approximation algorithm with others algorithms on the same 

shape. However, when we intend to use this stopping criterion to generate the DCs on 

the same shape but at different resolutions, this will generate different number of DCs 

for each resolution. Therefore, to generate the same number at any resolution, one 

should adjust the CR each time which is not feasible. Therefore, an automatic 

stopping criterion that can generate nearly the same number of DCs at any resolution 

is needed. 

 In chapter 6, we present our work on an image registration application using the 

DCs. However as discussed before, using the CR as a stopping criterion will not give 

the same number of DCs on corresponding contours in the two images to register. So, 

we have suggested a new automatic stopping criterion to select the same number of 

DCs. In addition, we present a shape recognition application to recognize shapes at 

different resolutions using the DCs. In this application, we see the benefit of the 

automatic selection of DCs as a stopping criterion compared with the CR. 
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Another possibility to benefit from DCs is a shape recognition application to 

recognize shapes at different resolutions (at different scales) by using the number of 

DCs as a stopping criterion. If we have two images of the same shape but at different 

resolutions (at different scales), the number Nd of DCs on the low resolution shape's 

contour (smaller shape) is smaller than that on the high resolution shape's contour. 

Due to the repeatability of the DCs over scale, if we choose Nd as a stopping criterion 

for DCs selection on the high resolution shape's contour, the obtained Nd DCs will be 

corresponding to the Nd DCs on the low resolution shape.    
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This chapter shows the experimental results on the two new proposed image 

features: edge corners and dominant corners. Section 5.1 shows the corners 

experimental results and Section 5.2 shows those of the dominant corners.  

5.1.    Experimental results on edge corners 

Experimental results are presented in three parts using three sets of images. The 

first experiment uses a synthetic image, the second one uses a newly introduced 

simple real images database used in our robotic application and the third one uses a 

set of existing real images. In addition, the results of 2D object recognition are also 

shown.  

5.1.1.    First experiment: synthetic images 

The first experiment using the newly proposed detector is on the test synthetic 

image used by SUSAN [151] and it is shown in Figure 5.1.  

Figure 5.2 (a) shows the results of our newly proposed EBCD detector, which 

indicate the corners and their angles on the edges of the test image. They are 

compared to the results of the five existing operators: SUSAN, Harris, Harris-Laplace, 

FAST and SIFT as revealed in Figure 5.2 (b), (c), (d), (e) and (f), respectively. These 

operators are simulated using their MATLAB codes provided in the website [152]. 

The results show the ability of the proposed EBCD to identify corners even with small 

acute or large obtuse angles which are normally very difficult to detect.  

 

Fig.5.1. SUSAN's test image [151]. 
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By definition, a False Positive corner is a real corner not detected and a False 

Negative corner is an ordinary point detected as a corner. It is shown clearly that the 

numbers of False Positive and False Negative corners reported by the EBCD are the 

smallest among all as revealed in Table 5.1. 

The comparative results shown in Table 5.1 and also in Tables 5.2, 5.3, 5.4 are 

derived manually. From the original image, one can count the number of true corners. 

From the output image with detected corners, one can count the number of false and 

true detected corners. Note that "NA" stands for Not Applicable. This term is used for 

the False Negative results of the SIFT operator. Since SIFT is not introduced to detect 

edge corners, SIFT points that are not edge corners and that are classified as False 

Negative Corners will be detected in all image space. So to be fair with this detector, 

we have put "NA" instead of its number of False Negative Corners.  

Table 5.1. Quantitative results on SUSAN's test image. 

Corner Detector #Real 
Corners 

#False Positive 
Corners 

#False Negative 
Corners 

#True Detected 
Corners 

EBCD 61 0 1 61 

SUSAN 61 19 1 42 

Harris 61 37 3 24 

Harris-Laplace 61 45 0 16 

FAST 61 58 0 3 

SIFT 61 20 NA 41 
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Fig.5.2. Output of tested detectors: (a) EBCD, (b) SUSAN, (c) Harris, (d) Harris-Laplace, (e) FAST, 

and (f) SIFT. 
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5.1.2.    Second experiment: newly introduced simple real images database 

The second experiment shows the robustness of our detector against scale, 

rotation variation and viewpoint change in comparison to the other operators. The test 

image is a real image shown in Figure 5.3 contains four different shapes with different 

corner angles. This image is taken manually by a webcam. The first set contains also 

four images that correspond to a rotation of the camera by 30o for each image with 

respect to the camera central axis normal to the image plane as shown in the first row 

of Figure 5.4. The second set contains four images that correspond to four different 

scale levels formed by changing the distance between the camera and the image plane 

as presented in the first row of Figure 5.5. For each image, the distance is doubled 

adequately to obtain a scale reduction by two. The first row of Figure 5.6 shows the 

third experimental set which contains also four images of the main database taken at 

different viewpoint position. 

 

Fig.5.3. Main image database of simple real images. 
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Fig.5.4. Rotation results. Row 1: original images. Row 2: Proposed detector outputs. Row 3: SUSAN 

outputs. Row 4: Harris outputs. Row 5: Harris-Laplace outputs. Row 6: FAST outputs. Row 7: SIFT 

outputs. 



155 
 

 

 

 

Fig.5.5. Scale variation results. Row 1: original images. Row 2: Proposed detector outputs. Row 3: 

SUSAN outputs. Row 4: Harris outputs. Row 5: Harris-Laplace outputs. Row 6: FAST outputs. Row 7: 

SIFT outputs. 
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Fig.5.6. Viewpoint change results. Row 1: original images. Row 2: Proposed detector outputs. Row 3: 

SUSAN outputs. Row 4: Harris outputs. Row 5: Harris-Laplace outputs. Row 6: FAST outputs. Row 7: 

SIFT outputs. 

Figure 5.4, Figure 5.5 and Figure 5.6 show the results of applying our proposed 

EBCD and the existing operators on the three sets. Tables 5.2, 5.3 and 5.4 contain the 
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quantitative results of the EBCD and the existing operators on the three sets. In Table 

5.2 we show results on the image rotated by 60o. On the other hand, Table 5.3 

presents results on the image scaled by half from the original one. While in Table 5.4, 

we discuss results on the image taken on the second viewpoint position. We can see 

the competitive results of our EBCD compared to others. The repeatability of the 

detected corners by EBCD, shown in Tables 5.2, 5.3 and 5.4, versus various image 

transformations makes them more practical to use in many image processing 

applications, especially those relying on repeatable points, than interest points.   

 

Fig.5.7. The five corners studied versus scale variation.  

Table 5.2. Quantitative results on the image rotated by 60o: third column of Fig.5.4. 

Corner 
Detector 

#Real 
Corners 

#False Positive 
Corners 

#False Negative 
Corners 

#True Detected 
Corners 

EBCD 26 2 6 24 
SUSAN 26 2 132 24 
Harris 26 3 7 23 

Harris-Laplace 26 24 6 2 
FAST 26 4 0 22 
SIFT 26 7 NA 19 

 

Table 5.3. Quantitative results on the image scaled by half: second column of Fig.5.5. 

Corner 
Detector 

#Real 
Corners 

# False Positive 
Corners 

# False Negative 
Corners 

# True Detected 
Corners 

EBCD 26 3 4 23 
SUSAN 26 6 77 20 
Harris 26 11 7 15 

Harris-Laplace 26 25 4 1 
FAST 26 4 20 22 
SIFT 26 15 NA 11 
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Table 5.4. Quantitative results on the image taken at second viewpoint: second column of Fig.5.6. 

Corner 
Detector 

#Real 
Corners 

#False Positive 
Corners 

#False Negative 
Corners 

#True Detected 
Corners 

EBCD 26 2 8 24 
SUSAN 26 5 154 21 
Harris 26 13 9 13 

Harris-Laplace 26 22 4 4 
FAST 26 1 20 25 
SIFT 26 20 NA 16 

 

Finally, the computation times of all the algorithms are investigated. The EBCD 

is implemented and executed using C++ compiler and other detectors are executed 

using MATLAB. The machine used has 1.7 Ghz processor with 512 MB RAM.  In 

addition, we have coded one program written in C++ and MATLAB and we have 

found that the execution time ratio between MATLAB and C++ is nearly 70.4.  The 

main image, shown in Figure 5.3, of size 320x240 pixels is used to explore the 

computation time of all detectors. Table 5.5 shows the normalized computation time 

results of the tested operators using MATLAB. It is shown that the EDBC requires 

more computation time than most other detectors.  

Table 5.5. Computation time of various detectors. 

Operator EBCD SUSAN Harris Harris Laplace FAST SIFT 

Time in seconds 7.1315 0.047 3.297 47.391 1.016 1.344 

5.1.3.    Third experiment: real images  

Our third test is conducted on three real images taken from the literature [153] as 

shown in Figure 5.8. In Figure 5.9 we present the corners detected by our proposed 

EBCD. Figures 5.10, 5.11, 5.12, 5.13 and 5.14 show the results of other detectors. The 

numbers of true detected corners, False Positive corners and False Negative corners 

for the rectangles and house images (Figure 5.8) are shown in Table 5.6 and Table 5.7 

respectively. 

 

Fig.5.8. Original real images [153]. 



159 
 

 

Fig.5.9. Detected corners by our proposed EBCD. 

 

Fig.5.10. Detected corners by SUSAN detector. 

 

Fig.5.11. Detected corners by Harris detector. 
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Fig.5.12. Detected corners by Harris-Laplace detector. 

 

Fig.5.13. Detected corners by FAST detector. 

 

Fig.5.14. Detected corners by SIFT detector. 
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Table 5.6. Quantitative results on the rectangles image. 

Corner 
Detector 

#Real 
Corners 

#False 
Positive 
Corners 

#False 
Negative 
Corners 

#True 
Detected 
Corners 

EBCD 61 9 31 52 
SUSAN 61 11 32 50 
Harris 61 46 6 15 

Harris-Laplace 61 52 9 9 
FAST 61 25 5 36 
SIFT 61 17 NA 44 

 

Table 5.7. Quantitative results on the house image. 

Corner 
Detector 

#Real 
Corners 

#False 
Positive 
Corners 

#False 
Negative 
Corners 

#True 
Detected 
Corners 

EBCD 35 7 20 28 
SUSAN 35 8 24 27 
Harris 35 26 6 9 

Harris-Laplace 35 28 8 7 
FAST 35 9 69 24 
SIFT 35 10 NA 25 

 

From these quantitative results, we can deduce the following observations. First, 

the number of false corners reported by the EBCD is very small compared to that of 

the true ones. The numbers of true and false detected corners are derived visually 

from the figures. Second, the corner detection is nearly independent of the contrast of 

the regions surrounding the corner. Corners are detected on edges between white-

black regions, black-grey regions, grey light-grey dark regions and even between 

regions of very low contrast. Third, corners of various angles from very acute to 

obtuse ones are detected. Fourth, the detected corners are of variety of angles starting 

from small acute angles to big obtuse ones and also they are of various sides lengths. 

Finally, the number of False Negative corners, especially with SIFT detector, does not 

reflect the true efficiency of the detector. SIFT detector is not built to detect specially 

edge corner points. It detects all scale invariant points. Therefore, this number is not 

applicable for all experiments. 
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5.2.    Experimental results on dominant corners: Polygonal 

Approximation 

Our proposed algorithm is tested on three different shapes shown in Figure 5.15: 

(a) Chromosome, (b) Leaf and (c) semicircles [154]. The results obtained are 

compared to those presented in various papers [125-128]. 

Other than the ISE, a new parameter is introduced for the comparison: the 

weighted sum of square error WE given by 

 (5.1) 

Since our algorithm requires a colored or grey image as an input not only a digital 

image or edge image while the others are tested directly on a digital image, we need a 

unique platform for comparison. From here, we have selected manually on the edge 

image derived by our algorithm the vertices of the polygon reported by each method 

in [125-128], then calculate the corresponding ISE and show the results in Table 5.8. 

Table 5.8: Comparative Results for the Chromosome, Leaf and semicircle shapes. 

Contour Method nc CR ISE WE 

Chromosome Marji and Siy [128] 10 29.6 546.2 54.6 
(n=296) Carmona-Poyato et al. [126] 12 24.6 439.9 36.6 
 Masood [127]  12 24.6 302.5 25.2 
 Parvez and Mahmoud [125] 11 26.9 586.9 53.3 
 Our Method 10 29.6 429.5 42.9 
  11 26.9 370.9 33.7 
  12 24.6 302.5 25.2 
Leaf (n=840) Marji and Siy  17 49.4 2124.4 124.9 
 Carmona-Poyato et al.  21 40 1396.2 66.5 
 Masood  23 36.5 1203.1 52.3 
 Parvez and Mahmoud  23 36.5 1264.9 55.0 
 Our Method 17 49.4 2089.9 122.9 
  21 40 1250.2 59.5 
  23 36.5 1192.3 51.8 
Semicircles  Marji and Siy  15 30.7 789.5 52.6 
(n=461) Carmona-Poyato et al.  21 21.9 490.1 23.3 
 Masood  26 17.7 334.1 12.8 
 Parvez and Mahmoud  14 32.9 957.2 68.4 
 Our Method 14 30.7 574.5 41.0 
  21 21.9 347.3 16.5 
  26 17.7 270.0 10.4 

 

From Table 5.8, it can be seen clearly that our algorithm has better ISE and WE 

compared to others. This is due to three main reasons. The first one is the excellent 

location of the corners due to the efficient straight edge detector. So, the optimal 

polygon is the one whose vertices are selected among these corners. The second one 
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is the efficient technique to select the best corners as polygon vertices that will lead to 

the minimal error (ISE) at a specific nc. The third one is the update of the LISE, at 

each iteration, even for previously suppressed corners. This feedback will ensure that, 

when eliminating a corner or selecting a new segment, the maximal LISE is set for 

this segment. This fact will show the real LISEV caused by selecting this segment and 

as a result will ensure the selection of the segment with the real minimal LISEV. 

 

Fig.5.15: Tested shapes and their polygonal approximations at a particular nc. 

For a real image that contains more than one shape or contour, nc cannot be fixed 

and considered as an input for the algorithm since existing contours maybe best 

approximated by polygons of different number of vertices. In other words, nc cannot 

be fixed for all contours. Here, CR or WE plays the big role and must be used both or 

at least one of them as inputs. By specifying a threshold for the WE parameter used as 

an input, the role of a polygonal approximation algorithm becomes to find the greatest 
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nc per contour that corresponds to the greatest WE less than the specified threshold. 

Here the CR is an output. On the other hand, by specifying a threshold for CR used as 

an input, the goal still to find the greatest nc per contour, that corresponds to the 

minimal CR greater than the threshold. In this case, WE is an output. So the choice of 

selecting which parameter or maybe both depends on the specific application. 

Finally, Figure 5.15 shows the polygons approximating the tested shapes at a 

given nc. It can be seen clearly that the results are very precise. 
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First Application Using 

Corners: Image Registration 
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6.1.    Introduction: Method Outlines 

This chapter will discuss our first application using the edge corners and 

especially the DCs. This application is an image registration application where the 

aim is to model the transformation that related the source and sensed images to 

register. Therefore, the suggested registration technique is targeted mainly to register 

images where the deformation between them is well approximated by an affine 

model. To meet this constraint, the acquisition time interval between the two studied 

images should be small. A suggested application is to estimate the motion of a camera 

(e.g. drone's camera) acquiring a video sequence of images to monitor the traffic on a 

road. The goal is to estimate the motion of moving small targets, e.g. cars, on the 

road. We have published our image registration application in [52, 199]. 

Some precise definitions are required in this chapter: 

1. Primitive: it is a set of image features like interest points, level lines, edge 

corners, etc that form a specific shape providing some invariant measures 

relative to the studied transformation model. 

2. Invariant measure: An invariant measure is a quantity, resulting form the 

evaluation of an algebraic expression, derived form the primitive and keeping 

invariant under the studied transformation. 

3. Transformation model: it is the affine transformation that maps the sensed 

image to the source image correctly.   

Our goal in this chapter is to define new primitives that have invariant parameters 

under affine transformation. We need first very repeatable image interest points. Our 

DCs meet this constraint as shown in §6.5. In addition, this transformation has more 

than one invariant measure, as detailed in chapter 3, which should be followed to form 

a primitive. One of these measures is the ratio of areas (Figure 6.4). For this reason, 

our primitive is a set of four non collinear DCs located on the same contour. The 

primitive invariant measure is the ratio of two triangles areas drawn by these four 

DCs. Note that the illumination invariant condition is not required, since the image 

features used here are the edges that have normally a strong immunity against 

illumination variation. 
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After the construction of the primitives in both source and sensed images, each 

primitive in the source image searches for its best match in the sensed image. The 

detected couple will vote for the affine model that relates them. After the voting 

process, the model that gets the highest vote is selected as the target model 

approximating the motion between the two images. 

Our main contribution is in the nature of the detected primitives from one side 

and the efficiency of the detected points (DCs) used in the primitive construction. 

Most registration techniques, based on primitives, form their primitives in both 

images focusing mainly on specific shapes that have some invariant properties 

without taking into consideration the repeatability of these primitives [33]. Therefore, 

a large number of unrepeatable primitives will be introduced in both images. This in 

turn will introduce a lot of wasted time in the primitive construction and voting 

phases. In addition, unrepeatable voters (primitives) can hamper the solution and can 

even lead to an incorrect one especially when they are incorrectly matched together in 

both images. Our image registration results are compared in §6.5 with those of 

existing techniques in the literature explained in chapter 3. 

The main steps of the method can be summarized as follows:       

(i) Automatic selection of DCs: On a given contour, the DCs are selected among 

the original set of edge corners. It is not efficient to use the CR, explained in 

chapter 5, as a stopping criterion due to two reasons. The first one is that it 

will lead to a lot of non corresponding DCs on two corresponding contours. 

The second one is the need for an automatic criterion to select DCs. Therefore, 

we have suggested and used our automatic selection described in section 6.2.   

(ii) Primitive construction: A primitive is a group of four consecutive Dominant 

DCs located on the same contour. Since the ratio of areas is one of the 

invariant parameters against affine transformation, we have taken the ratio of 

areas of two triangles formed by two selected triplets of DCs in one primitive 

as an invariant measure. This is described in section 6.3. 

(iii)Primitive matching and model estimation: When matching two primitives, one 

from the source image and the other from the sensed one, two parameters are 

taken into consideration. The first one is the ratio of areas while the second 
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one is the corner's angle directions difference. These two parameters are 

shown invariant under affine transformation. This is described in section 6.4. 

One can add a fourth step which is image resampling to align the source image 

and the transformed sensed image. The stages of the algorithm are shown in Figure 

6.1. The image registration experimental results are provided in section 6.5. 

 

Fig.6.1. General Overview of the suggested algoritm. 

6.2.    Automatic selection of dominant corners  

In Chapter 5, we have explained the function "Iterative Corner Suppression" that 

detects the DCs on a given contour given a certain compression ration CR. In real 
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images, experimental results have lead to bad selection of corresponding corners 

using the CR factor or in other terms different numbers of DCs are generated on 

corresponding contours in the source and sensed images to register (as shown in 

section 6.2.2). To illustrate this point, assume that two images of the same scene are 

taken but at different viewpoints. Non corresponding edges could appear. Even 

corresponding edges in the two images may have different number of corners. 

Therefore, we cannot rely on a compression factor CR as a stopping criterion because 

it will lead to a lot of non corresponding corners. On the other hand, even 

corresponding corners may have different ISE values if the scaling factor relating the 

two images is relatively high. Thus, we need another stopping criterion that solves 

this issue. 

From chapter 5, the basic measure according to it a corner could be removed is 

the LISEV (reflecting the corner strength) that is added iteratively to the GISE. The 

affine transformation has the ratio of areas an invariant parameter [44]. So we can 

state that any two LISEVs (LISEV1 > LISEV2) corresponding to two corners on the 

same contour, will remain in the same order under an affine transformation. Thus, 

their order is invariant with respect to an affine transformation. We expect that only 

corners with corresponding LISEVs will show up in an image and its transformed one 

since the elimination of a corner is based on its LISEV value compared to others 

LISEVs. On the other hand, taking the ratio r of the current GISE with respect to the 

initial one GISE0 is a good measure that can be used as a stopping criterion. 

 
(6.1) 

While eliminating the corners one after the other, GISE will increase. Thus, we 

can stop the elimination automatically when this ratio exceeds a fixed threshold. This 

way, even when the scaling parameter between the two images is considerable, we 

can still obtain only the corresponding DCs in both images. 

6.2.1.    The algorithm 

The algorithm of iterative corner suppression already presented in Figure 4.32 is 

updated to the one presented in Figure 6.2. 
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Fig.6.2. Iterative corner suppression algorithm. 

6.2.2.    Shape recognition using the automatic selection of DCs 

In this section, we study the number of DCs on the contours of two shapes related 

by an affine transformation using the two stopping criteria: CR and r. 

Figure 6.3 shows two images of the chromosome shapes related by an affine 

transformation where a scale variation by a factor near to two occurs in the horizontal 

direction. In Figure 6.3 (a), the number of edge points is 487. We set a CR = 3% that 

leads to 14 DCs. The GISEs ratio r is in this case equal to 1.3. In Figure 6.3 (b), we 

use first the CR = 3% as a stopping criterion and we obtain 11 DCs shown on the edge 

image in the middle. Note that 10 DCs are corresponding to the original set of DCs. 

Then, we use r = 1.3 as a stopping criterion and we obtain 13 DCs shown on the edge 

image to the right. 12 DCs are corresponding to the original set of DCs. It is shown 

that using r as a stopping criteria leads practically to better results.     
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Fig.6.3. DCs on a chromosome shape using both stopping criteria. 

Since our algorithm can select nearly corresponding DCs on both original and 

deformed shapes, we can suggest a shape recognition application based on DCs in the 

attempt to recognize shapes at different resolutions.   

6.3.    Primitive Construction 

We present two options for primitive construction from nc DCs located on the 

same contour. The first option is to group every four consecutive DCs. So the total 

number of primitives is nc. The second option is to take four DCs out of nc. Than the 

total number of primitives is the combination of four DCs out of nc  . For a given 

contour of nc DCs, assume that x is the number of unrepeatable DCs. The number N1 

of repeatable primitives using first option is given by: 

 (6.2) 

Whereas the number N2 of repeatable primitives using second option is given by: 
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 (6.3) 

In Equations (6.2) and (6.3), if x is greater than or equal to nc-3 than the number 

of repeatable primitives N1 and N2 will be negative which means that no 

corresponding primitives exist. 

Table 6.1 provides a theoretical study of the repeatability of primitives using both 

options. A contour with eight DCs is introduced. The repeatability of the primitives is 

shown for various values of x. It is shown that the repeatability of the first option 

primitives is higher than that of the second option with smaller number of primitives. 

Therefore, if we construct the primitives based on the first option, we can ensure the 

best repeatability with less number of primitives in turn reduce the voting time. In the 

last row in Table 6.1, we assume that e is the number of unrepeatable DCs. By 

replacing x by e and nc by eight in Eqs. (6.2) and (6.3), we can find the number of 

unrepeatable primitives in the two options.    

Table 6.1. Repeatability performance using consecutive or non consecutive DCs. 

 Consecutive DCs (option 1) Non Consecutive DCs (option 2) 

#  

unrepeatable 

DCs: x  

#Primitives 

nc 

#Repeatable 

Primitives N1 

Repeatability 

% 

#Primitives 

 

# Repeatable 

Primitives N2 

Repeatability 

% 

1 8 4 50 70 35 50 

2 8 3 37.5 70 15 21.42 

3 8 2 25 70 5 7.1 

e<5 8 5-e  70  
 

 

The strength of a DC is proportional to its LISEV value. The LISEV is the 

variation introduced to the GISE due to the removal of a corner from the list of 

polygon's vertices. It is proportional to the area limited by the corresponding segment 

and edge part. Figure 6.4 (c) explains the LISEV3 corresponding to DC3. The average 

of the four corners LISEVs is set as the primitive LISEV. Primitives are classified 

according to their LISEV. The strongest are those who have the highest LISEVs. The 

vote of each primitive will be biased by its LISEV since strong primitives are formed 

by DCs of high LISEVs. This means that the corners are of high repeatability or high 

probability of occurrence in both images. 

To illustrate the method, a polygon of ten DCs as vertices approximating the 

contour of a leaf image is shown in Figure 6.4 (a). The four windowed DCs are 
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grouped into one primitive as presented in Figure 6.4 (b). Two triangles,  

and , are considered. The ratio of their areas R is the invariant parameter 

and will be used for matching with other primitives in the second transformed image. 

 

 

Fig. 6.4. Grouping four consecutive DCs into one primitive. 

6.4.    Primitive matching and model estimation 

After the construction of the primitives in the source and sensed images, these 

primitives are compared together for matching and only the ones matched enter in the 

model estimation. 

6.4.1.    Two invariant parameters for primitive matching  

Using only the ratio R to match two primitives will lead to a lot of false positive 

matches. This means that two non corresponding primitives that have similar ratio of 

areas are considered by the algorithm as corresponding. To minimize these false 

positives, we propose to add another parameter: the corners directions. 

These directions are the directions of the two meeting straight edges coded in 

Freeman code (0,4 for horizontal right-left, 2,6 for vertical up-down, 1,5 for first 

diagonal and 3,7 for second diagonal) [96]. In section 6.5.1, we can show 

experimentally that the detected corners are very repeatable against affine 

transformation. More details on this experiment, how we can set an affine model and 

how we can setup the affine deformation can be found in section 6.5.1. 
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Definition1: The repeatability of a physical quantity derived from an image, e.g. 

corner angle, is the stability of this quantity (conserving its value) when deformation, 

e.g. affine deformation, is introduced to the image.    

Figure 6.5 shows the matching algorithm of two primitives: one from the source 

image and the other from the sensed image.  

 

Fig.6.5. Matching algorithm. 

6.4.2.    Model estimation using Hough transform  

Consider now two images related by an affinity. We adopt a group voting scheme 

based on Hough transform [149] for the six unknown parameters of the affine 

transformation. The idea behind the Hough transform (see chapter 3) is to accumulate, 

in a space of representative parameters, the information that insures the presence of a 

certain shape or model. In our case, the desired model to be found is an affine model 

that has six unknowns. So, the used Hough space has six parameters and each 

matched couple of primitives from the two images will increase by one the 

accumulator of the corresponding point in this space.  

In fact, the division of the four axes corresponding to the affine parameters aij, 

shown in Eq. (3.69), is equal to 0.01 and the range is between [-2;2] (we have 400 
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division/parameter). Whereas the one used for the two translations axes is equal to 

five and the range is between [-200;200] (we have 80 division/parameter). Thus, two 

primitives are matched or said to be very close in the algorithm shown in Figure 6.6 if 

their six parameters are equal (belong to the same division). For two matched 

primitives, three corresponding DCs from each one are enough to calculate these 

parameters and give their vote for the set of the six obtained parameters. Finally, the 

set that gets the highest votes will be selected as the target affine model. 

Let DC1(x1,y1), DC2(x2,y2), DC3(x3,y3) and DC4(x4,y4) be the DCs constructing a 

training primitive in the source image. In addition, let DC'1(x'1,y'1), DC'2(x'2,y'2), 

DC'3(x'3,y'3) and DC'4(x'4,y'4) to be the DCs constructing the corresponding test 

primitive in the sensed image. Since the affine matrix has six degrees of freedom, 

three DCs, {DC1, DC2, DC3} from the training primitive with their three matched 

ones, {DC'1, DC'2, DC'3}, from the matched test primitive will be used to form the 

model. Thus, the affine transformation [44] in Eq. (3.68) can be rewritten as, 

 

(6.4) 

 
(6.5) 

The affine parameters presented in vectors h and h' are calculated in Eq. (6.6) and Eq. 

(6.7), respectively: 

 (6.6) 

 (6.7) 

The overall algorithm is fully presented in Figure 6.6. In this algorithm, we use 

the four points from each primitive in the parameters calculation. For each primitive, 

we form four sets of three DCs each by a combination three DCs out of four. Then, 

we let the four sets from the first primitive form four affine models with the 

corresponding sets from the second primitive. If two primitives are really 

corresponding, their DCs should have same angle directions difference. In addition, 

the four formed models should have nearly the same affine parameters. In this case, 

the two matched primitives give their vote to their average affine model. At the end of 

the voting process, if the difference between the number of votes of the elected model 
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and other models is not relatively high, we can form an additional set of primitives 

and thus an additional number of voters. In this set of primitives, a corner is grouped 

with its three nearest neighboring DCs to form a primitive. This way of grouping is 

also invariant under affine transformations.  

 

Fig.6.6. Image registration algorithm.  

6.5.    Experimental results 

The results are shown using synthetic and real images.  

6.5.1.    First synthetic images set 

The goal from this set is to show the repeatability of the detected DCs versus 

various affine transformations. This set is composed of two images: a source leaf 
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image and a target leaf image as shown in Figure 6.7 (a) and (b) respectively. The 

target image is generated from the source image using an affine model with the 

following values: a11 = 0.8800, a12 = 0.1907, a21 = -0.1008, a22 = 0.7728 

(corresponding to Ω = 10o, φ = 15o, λ1 = 1.1 and λ2 = 1.3), tx = -150 and ty = 15.  

Due to the introduced affine deformation, some DCs in the source image will not 

have corresponding DCs in the target image. However, the number of non 

corresponding DCs is small relative to the number of corresponding ones. These two 

numbers in the source and target images are derived manually since the remaining 

number of these DCs is small. Therefore, their repeatability is calculated manually.   

We set the threshold r (ratio of current GISE and initial GISE used as a stopping 

criterion) to be r = 5. The number of DCs extracted in the source image shown in 

Figure 6.7 (a) is 16 out of 98 corners while their number in the target image shown in 

Figure 6.7 (b) is 17 out of 122 among them 15 DCs are corresponding ones. 

 

Fig.6.7. Polygonal approximation and DCs: (a) Source image, (b) Target image. 

Next, we will show the repeatability of DCs under various deformations between 

the source and target images caused by affine transformation. The source image is the 

leaf image shown in Figure 6.7 (a). In each experiment we fix three out of the four 
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affine parameters (Ω, φ, λ1 and λ2) and vary the remaining one. So for each 

experiment we have an affine model. Than we generate the target image by applying 

the resulting affine model to the source image (as it is shown in Figure 6.7). The DCs 

are automatically detected on both contours (source and target) using the same value 

of stopping criterion r. Finally, we count manually the number of corresponding DCs 

on both contours. Thus, the repeatability is the number of corresponding DCs over the 

total number of DCs on the source contour. For example, in Figure 6.8, the 

repeatability of DCs and Harris corners used in [136, 137] versus the scaling factor 

λ1/λ2 is evaluated. The minimal value of the DCs repeatability is 70% at scale ratio of 

four which is considered high when dealing with the suggested application of video 

image sequence with small interval of time. Figure 6.9 shows the repeatability of DCs 

and Harris corners versus scaling angle φ. It is clear that the worst DCs repeatability 

is 75% which will lead to a high repeatability of the formed primitives. Figure 6.10 

presents the repeatability versus the rotation angle Ω between the source and the 

target images. The worst DC repeatability is 85% which means that the rotation angle 

Ω has a small influence on the repeatability value. In these results, we have selected 

the stopping criterion as the remaining number nc of DCs which is 20 DCs. 

 

Fig.6.8. Repeatability of corners versus scaling factor λ1/λ2  (Ω = 10o, φ = 15o and λ2 = 1).  
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Fig.6.9. Repeatability of corners versus scaling angle φ (Ω = 10o, λ1 =1.3 and λ2 = 0.8). 

 

Fig.6.10. Repeatability of corners versus rotation angle Ω (φ = 10o, λ1 =1.3 and λ2 = 0.8). 

We can even obtain higher DCs repeatability if we select for example 80% of 

these DCs that correspond to the highest ISEs. In Figure 6.10, it is shown that for the 

given values of the affine parameters (φ = 10o, λ1 =1.3, λ2 = 0.8 and Ω = 90o), the 

repeatability of DCs is 85% (17 corresponding DCs out of 20). If we select only 80% 

of these DCs, the repeatability becomes 93.75% (15 corresponding DCs out of 16). 

It is shown clearly that the suggested DCs detector leads to more repeatable CPs 

(DCs) in comparison with the Harris detector used in [136, 137]. The high 

repeatability of the DCs leads to a highly repeatable primitives. This is an important 

primitive property that is necessary in order to use the primitives for voting for the 

affine model relating the target and source images. 
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6.5.2.    Second synthetic images set 

We used the synthetic image used by Almehio [135]. This image is shown in 

Figure 6.11 where we present both the source image (a) and the target image (b). The 

target image is generated from the source image using a known affine model. The 

goal is to estimate the model using our technique and than compare it with the real 

and Almehio models as shown in Table 6.2. 

 

Fig.6.11. Synthetic images [135]. (a) Source image. (b) Target image.

According to the models shown in Table 6.2, we can say that the two methods 

give nearly similar affine parameters. 

Table 6.2. Estimated affine models.  

 a11 a12 a21 a22 tx ty 

Real Model  0.9 0 0.05 0.85 0 0 
Our Model  0.91 -0.04 -0.04 0.81 2 4 

Almehio 
Model [135]  

0.88 0.008 0.05 0.85 -0.1 -7.7 

 

6.5.3.    Third synthetic images set 

The goal from this experiment is to show the repeatability of the obtained 

primitives and the automatic reduction of their number compared to others primitives. 

In addition, we will discuss the time reduction and efficiency of the proposed voting 

scheme.    

The construction of primitives using the straight edges without any constraints 

leads to a major problem. The problem is in the generation of a lot of non 

corresponding primitives in both source and target images. It can also lead to an 

incorrect solution. Non corresponding primitives in one image could hamper the 
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solution due to their possible incorrect matches (False Positive matches) to other 

primitives in the second image. To illustrate this, consider the two images show in 

Figure 6.12. Figure 6.12 (a) shows the original shape and Figure 6.12 (b) is the result 

of an affine transformation on the original image with the following values: a11 = 

0.5187, a12 = -0.0114, a21 = -0.3876, a22 = 1.6150 (corresponding to Ω = 10o, φ = 5o, 

λ1 = 2 and λ2 = 0.6), tx = -150 and ty = -70. Visually, the two images are very different. 

The second image is very deformed. 

Figure 6.13 shows the image straight edges and their corners of the two images 

presented in Figure 6.13. In Figure 6.14 (a) and (b), the DCs are shown as solid points 

by setting the threshold r given in Eq. (6.1) to be equal to four for the source image 

and the transformed one, respectively. The corresponding number of DCs is equal to 

eight in both images.  
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Fig.6.12. (a) Source shape. (b) Transformed shape. 

 

Fig.6.13. Level line segments endpoints. 

 

 

Fig.6.14. DCs on both images. 

The primitives are formed using the eight DCs in both images shown in Figure 

6.14 (a) and (b). Since all the eight DCs are repeatable, all formed primitives are also 

repeatable. In the primitive construction phase, primitives are constructed by only 

DCs. Therefore, week corners like the unrepeatable corners of Figure 6.13 are filtered 

out from the beginning and will not enter in the primitive construction phase. This 

way, since the CPs are equivalent to DCs only, their reduced number compared to the 

total number of corners leads to a reduced set of highly repeatable primitives. In 

addition, the voting scheme will be accurate due to the high repeatability of the 

primitives and also less time consuming since the number of introduced primitives is 

smaller and can be controlled through the input parameter r.  

6.5.4.    NOAA AVHRR real image 

The goal from this experiment is to show the enhancement, in terms of CP 

construction and matching, that can be done to the work of Lou et al. [137] using the 

DCs primitives. Using the algorithm presented in Figure 6.6, two primitives, from the 
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source and sensed images are considered corresponding if their corresponding DCs 

have: 

 same directions difference. 

 similar ratio of areas R. 

 similar affine models formed by the voting of every triplet from the target 

primitive with the corresponding triplet from the sensed primitive.   

In the work of Lou [137], two CPs from the source and sensed images are 

considered corresponding if they have similar regions lying inside windows with 

proper size centered at these CPs. The similarity measure is a normalized cross 

correlation that reflects the degree of resemblance between the two regions.  

 

Fig.6.15. A NOAA AVHRR image. (a) CPs of Lou et al. [137]. (b) DCs as CPs. 

The CPs detected by Lou are shown in Figure 6.15 (a). Consider the five CPs 

lying inside the yellow rectangle. If we place five windows with the same size 

centered at these CPs, we can notice that all the regions lying inside the windows are 

very similar. This is the main reason for the wrong correspondence reported by Lou et 

al. [137]. In Figure 6.15 (b), our proposed CPs (DCs) are presented located on the 

image edges. For every image contour, the DCs are selected from the set of edge 

corners by setting the threshold r to be equal to two. Consider the four DCs to the 

right joined by yellow segments. These DCs belong to the same edge and form one 

primitive. Using the three corresponding conditions for primitives matching makes 

this primitive very dissimilar to any other primitive. Experimentally, no other 

primitive from Figure 6.15 (b) have the same characteristic. 
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6.5.5.    Real images set 

For real applications, it is instructive to test the proposed image registration 

technique using real images. In the real interior and exterior urban scenes, there are a 

lot of straight edges and corners. These corners are nearly stable from one image to 

another. This observation makes the corners very important CPs that can be used for 

image registration.   

Our algorithm relies on DCs extracted by approximating their contour by a 

polygon. Therefore, the repeatability of the DCs is based on linking the same contour 

in both studied images. In colored real images, some image parts containing two 

neighboring regions of a small contrast are encountered. The edge between these two 

regions is not always the same in the source and target images even if the deformation 

between them is relatively small. Non corresponding primitives will be generated in 

this case. However, still in colored real images, a lot of neighboring regions will have 

a high contrast enough to generate repeatable contours and thus repeatable primitives. 

 
Fig.6.16. Two tested real images of a common scene. 

Figure 6.16 shows two real images taken for a desk in a classical indoor scene 

with a camera in motion. Two matched primitives are shown in Figure 6.17 and the 

image of difference between the target and the resampled source image using the 

obtained affine model is revealed in Figure 6.18. Figure 6.18 (a) shows the second 

scene image (Figure 6.16 (b)), Figure 6.18 (b) shows the transformed image of the 

first scene image (Figure 6.16 (a)) and Figure 6.18 (c) shows the image difference 

between them. In Figure 6.18 (c), Each pixel's intensity is obtained by taking the 

absolute difference of corresponding pixels intensities in both images. Thus darker 
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pixels represent higher difference between the compared intensities. Also, the 

alignment between the two images is shown. In addition, it is shown that the 

transformed image is correctly registered and the difference between the two images 

(dark pixels) comes from the registration's interpolation. 

For the voting process, the division of the four axes corresponding to the affine 

parameters aij is equal to 0.01. Whereas the one used for the two translations axes is 

equal to five. Let us concentrate on the primitives, composed of four yellow points, 

circled in both source and target images as revealed in Figure 6.19. Each of the two 

primitives in the source image is matched to the corresponding one in the target 

image. They vote for the same model with the following values: a11 = 0.9682, a12 = -

0.0158, a21 = 0.0106, a22 = 1.0053, tx = 5 and ty = 15. These primitives are repeatable 

because they belong to two closed rectangular contours (computer screen contour and 

computer window contour) with strong contrast with their background. Therefore, the 

more we have shapes with strong contrast with its environment the more likely to 

have more repeatable primitives. In addition, many other primitives vote for the same 

model. They don’t necessary belong to polygonal contours. The majority belongs to 

contours with high gradient vector norm. These contours are located between two 

highly contrast regions. Figure 6.18 (a) shown the target image of the scene and 

Figure 6.18 (b) shows the transformed image of the source image using the obtained 

model. In Figure 6.18 (c), the image of difference is presented. The level of brightness 

of a pixel is proportional to the absolute difference of the corresponding target and 

transformed pixels. Therefore, the darker the pixel means the greater is the difference. 

In real images, the number of corresponding DCs, thus the number of matched 

primitives, is less than those in synthetic images due to the complexity of these real 

images. Also, the numbers of false positive and true negative matches increase. 

However, using group primitive voting or the sum of all votes leads in most cases to 

the true model with a good difference with the nearest false one. 
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Fig.6.17. Two matched primitives circled in yellow in the two real images. 
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Fig.6.18. (a) Second scene image. (b) First scene transformed image by the calculated model. (c) 

Image of difference between them. 
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In this chapter, we provide first in Section 7.1 a background on our suggested 

application based on edge corners: character recognition. Section 7.2 explains how to 

use ECs for character recognition. Section 7.3 presents the proposed scheme. Section 

7.4 shows the experimental results.    

7.1.    Character recognition overview 

This section starts by providing the problem definition in section 7.1.1. Than by 

presenting the Yahoo scheme, in section 7.1.2, that is based on connected characters 

strategy and that forms also the basis of our work. Section 7.1.3 is an overview on 

fuzzy logic that is introduced in the proposed scheme. Section 7.1.4 provides the 

contribution from this application. 

7.1.1.    Introduction: What is CAPTCHA? 

Our goal from working on word recognition is not to be hackers to steal access to 

some internet application using deformed word images as entry points. However, it is 

rather a warning that the introduced schemes, even based on connected characters 

strategy, are not very robust and can be attacked. From the explanation of our 

technique, one can conclude with a number of improvements that can be made to the 

design of the CAPTCHA schemes. In addition, this application is a prior work for our 

main robotic application. This application is classified as a Human-robot interaction 

where the goal is to communicate with images containing written commands or 

information. This application known as Handwritten application is a future work 

application that should be developed. 

Ahn et. al [138] have proposed several novel designs for CAPTCHA to obtain 

more complicated schemes and make them more difficult to recognize for computer 

programs. In [139], a survey on the CAPTCHA's earlier works can be found. Yan and 

El Ahmad [47] have reported a low cost segmentation attack on the MSN 

CAPTCHA's scheme with a success rate of about 60%. They have also developed 

another work [140] based on pattern recognition algorithms to break visual 

CAPTCHA schemes generated by a web service. Mori and Malik [141] have 

developed a shape context matching method that can identify the EZ-Gimpy image 

with a success rate of 92% and the Gimpy image with a success rate of 33%. 

Chellapilla and Simard [50] have studied various Human Interaction Proofs (HIPs) 
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and have developed a machine learning algorithm with a good success rate. Moy, et. 

al [142] have developed a correlation algorithm that estimates the distortion in a text 

image. They have achieved a success rate in identifying the word in EZ-Gimpy of 

99% and in Gimpy-r of 78%. An attack on a simple CAPTCHA scheme using Neural 

Network with a success rate of 66% is reported in [143]. Gao et. al [144] have 

combined the segmentation and recognition to attack Yahoo HIPs and have achieved 

a success rate of 78%. Their pattern recognition technique is designed especially to 

divide and conquer the characters in a word image composed of connected characters. 

It starts by a preprocessing step to remove noisy pixels around the characters contours 

and then fix the broken characters. Then a guide line principle is introduced and 

according to it they can classify the characters into three groups that can help the next 

recognition step. Finally, the extraction of each character takes place. It starts by 

recognizing the top left character by using its feature of projection only. Then, the 

recognized character is removed from the image and the extraction restarts.   

We have proposed a fuzzy logic scheme for this problem. There are two 

important reasons on the application of fuzzy techniques for character recognition. 

The reasons as stated in [146] are:  

 Fuzzy techniques are powerful tools for knowledge representation and 

processing. 

 Fuzzy techniques can manage the vagueness and ambiguity efficiently. 

The vagueness in CAPTCHA is due to warping ambiguity, geometrical 

deformations and uncertain knowledge. 

7.1.2.    Yahoo Scheme 

Our algorithm can be tested on any CAPTCHA's scheme that follows the same 

Yahoo's design characteristics. We will present the experimental results on a database 

generated according to the Yahoo characteristics [144] and also compare with other 

works using the same Yahoo scheme.  

The new Yahoo scheme used for security purposes is based on the connected 

characters principles [144]. It consists of merging the characters horizontally after 

distorting them as shown in Figure 7.1. The obtained text image can still be easier for 

a human to guess but it will be harder for a computer attack. 
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In order to define the Yahoo scheme, we have used the study in [144]. The 

authors have collected from Yahoo's website 100 random samples. By analyzing these 

samples, they have reported the following characteristics: 

 Six to eight characters are used in each sample. 

 The background is white and the foreground is dark gray. 

 Only 10 upper cases, 12 lower cases and 7 digits are used in the challenges. In 

order to guarantee the usability, the other 33 alphanumeric characters are not 

used. For example, it is not easy to identify I with 1 clearly for a human being. 

 Warping is used for character distortion. 

 Characters mostly connect with its neighbors. 

 Scattered points are located around the challenge text. 

 The whole text of some CAPTCHAs is cosine distorted. From left to right in 

horizontal direction, the previous character is upper than the next character in 

first quarter and last quarter parts. But in the middle part the previous 

character is lower than the next character. And other CAPTCHAs are flat. 

 Characters are placed in accordance with their location at the guide lines. 

 

Fig.7.1. The current Yahoo CAPTCHA [144]. 

Starting from these characteristics, our algorithm is based on the following 

observations: 

 Knowing the number of characters in advance (between six and eight) helps in 

the segmentation. 

 The strong foreground and background contrast makes the detection of the 

characters contour possible, accurate and even repeatable for deformed 

characters. 

 The linking phase in the edge detection eliminates easily the scattered points. 

 Most of the characters connections correspond to ECs. Therefore, ECs can be 

used as keypoints for characters segmentation. 
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7.1.3.    Fuzzy logic 

In this section, we present first an introduction to fuzzy logic and then an 

overview on different fuzzy logic techniques applied in image processing.  

7.1.3.1.    Introduction: What is fuzzy logic? 

Fuzzy Logic [145] is built around the concept of reasoning in degrees, rather than 

in boolean (yes/no) expressions like computers do. A fuzzy system is composed of 

input and output variables, called linguistic variables, defined in terms of fuzzy sets. 

Decision rules are specified by logically combining fuzzy sets. The combination of 

fuzzy sets defined for input and output variables, together with a set of fuzzy rules 

that relate one or more input fuzzy sets to an output fuzzy set, built a fuzzy system. 

Different block diagrams have been introduced for a fuzzy logic system. 

However, the most commonly used [208] is composed from three main functions: 

 Fuzzification: The input/output deterministic variables are transformed to 

linguistic variables defined as fuzzy sets. A membership function (Triangular, 

Trapezoidal or Gaussian) is selected to represent each fuzzy set. 

 Fuzzy Laws: The fuzzy laws are applied on the input linguistic variables to 

calculate the output linguistic variable. 

 Defuzzification: The output deterministic variable is estimated from the output 

linguistic variable using the inverse of the output membership function. 

In image processing, fuzzy logic is widely used for clustering (known as fuzzy 

clustering detailed in section 7.1.3.2.1) or segmenting an image. It is also used in 

image feature detection (e.g. edge detection explained in section 7.1.3.2.2) and for 

shape/character recognition (detailed in sections 7.1.3.2.3 and 7.1.3.2.4).  

7.1.3.2.    Fuzzy logic overview  

7.1.3.2.1.    Fuzzy clustering 
Fuzzy-C-Means (FCM) [155] is one of the most famous unsupervised fuzzy 

clustering techniques that are applied with success in image segmentation [156-166]. 

Although the original FCM algorithm yields good results for segmenting noise free 

images, it fails to segment images corrupted by noise or containing inaccuracy edges. 

This sensitivity is essentially due to the absence of utilization of the information on 

the spatial position of pixels to be classified.  
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The idea [179] is to partition a finite collection of n elements into a collection of 

C fuzzy clusters. FCM clustering [157] can be described as follows: Let X={x1, x2, …, 

xn} denoted a set of n objects to be partitioned into C clusters, where each xj has d 

features. The FCM algorithm minimizes the objective function J defined as follows: 

 

(7.1) 

Where: 

 vi represents the ith cluster center. 

 uij represents the membership degree of the jth object to the ith cluster. 

 D represents a distance metric (e.g. Euclidean distance) that measures the 

similarity between an object and cluster center. 

 m≥1 is the degree of fuzzification. 

The membership degree uij of xj  to the ith cluster is determined by calculating the 

gradient of the objective function J with respect to uij. It is given by: 

 
(7.2) 

The cluster centers vi (1 ≤ i ≤ C) are determined by calculating the gradient of J with 

respect to vi: 

 
(7.3) 

The FCM algorithm can be summarized in the following steps: 

 Step 1: Fix the cluster number. Initialize the centers by random points from 

data set. 

 Step 2: Update the membership degrees by using Eq. (7.2). 

 Step 3: Update centers using Eq. (7.3). 

 Step 4: Repeat steps 2 and 3 until convergence. 

The convergence of this algorithm will be reached when the change in membership 

values is less than the threshold. 
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Applied in image processing, the FCM's object xj is an image pixel and the FCM 

clusters are the regions of similar contrast. For traditional FCM algorithm, the only 

used pixel's feature is the grey level feature which leads to bad classification in the 

presence of noise. Kalti et al [157] have tried to minimize this drawback by 

introducing additional pixel features like the spatial information of a pixel in its 

neighborhood.        

7.1.3.2.2.    Edge detection in digital images using fuzzy logic       
Alshennawi et al [206] have proposed an edge detection technique in digital 

images using fuzzy logic. The major improvement is in the detection without 

determining a prior threshold value or need training algorithm. Patel and More [209] 

have suggested nearly the same edge detection method with the same enhancement 

but for Cellular Learning Automata (CLA). Next, we will detail the edge detection 

technique proposed by Alshennawi. 

The input and output images of the suggested fuzzy system are both 8 bit 

quantized. Thus, their grey levels are between 0 and 255. The first step is the 

fuzzification where membership functions are selected for the input and output 

variables (pixel's grey level) shown in Figure 7.2. The membership functions are 

triangular and experimentally it is found that the best result to be achieved at the 

range black from zero to 80 gray values and white from 80 to 255. Thus, we have two 

fuzzy sets for the input variable: Black and White and three for the output variable: 

Black, Edge and White. 

The second step, after fuzzification, is the introduction of fuzzy laws to find the 

fuzzy output. The proposed approach begins by segmenting the image into regions 

using 3x3 matrix. The condition of each pixel (Black, White or Edge) is depending on 

the weights of the eight neighbors that are degree of Black and degree of white. 

Figure 7.3 shows all the cases where the checked pixel is classified as an edge pixel: 

If the levels of the eight neighbors represented in one line are black and the remaining 

ones are white (Figure 7.3 (a)) then the checked pixel is an edge pixel. If the levels of 

four sequential pixels are black and those of the remaining four neighbors are white 

(Figure 7.3 (b)) then the checked pixel is an edge pixel. 
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Fig.7.2. (a) Membership associated to the input variable. (b) Membership associated to the output 

variable [206]. 

 

Fig.7.3. Fuzzy laws [206]. 

The third step is the defuzzification. The output image is a binary edge image 

where Black/White pixels are set to 0 grey level and Edge pixels are set to 255.  

The major drawback of this method, as also claimed in the previous section 

7.1.3.2.1, is in the only usage of the pixels grey levels without any usage of their 

spatial information. This fact makes the detection of edges fails in the presence of 

noise.    

7.1.3.2.3.   Recognizing hand-drawn geometric shapes using fuzzy logic 
Fonseca et al [167] have proposed a fuzzy logic technique to recognize hand-

drawn geometric shapes interactively. Their algorithm recognizes elementary 

geometric shapes: triangles, diamonds, rectangles, circles, ellipses, lines and arrows 

shown in Figure 7.4 (a) and five gestural commands: delete, undo, wavy-line, move 
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and copy shown in Figure 7.4 (b). Shapes are recognized independently of changes in 

rotation, size or number of individual strokes. Commands are shapes drawn using a 

single stroke. 

 

Fig.7.4. (a) Multi-stroke geometric shapes. (b) Uni-stroke shapes [167]. 

A training set is formed by drawing each shape thirty times: ten times using solid 

lines, ten times using dashed lines and ten times using bold lines. Next, the convex 

hull of these shapes is computed using Graham's algorithm [180]. Then using this 

convex hull three special polygons are computed and drawn. Using a simple three-

point algorithm, the largest-area triangle that fits inside the convex hull is identified. 

The second polygon is the largest-area inscribed quadrilateral and the third is the 

smallest area enclosing rectangle (See Figure 7.5). Finally, the area and perimeter of 

each polygon are computed to estimate features and degrees of likelihood for each 

shape class. 
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Fig.7.5. Polygons used to estimate features [167]. 

Each particular shape is characterized by a set containing one or more of these 

geometric features. For example, to distinguish Diamonds from other shapes the area 

of the largest triangle that fits inside the convex hull (Alt) is divided by the area of the 

largest quadrilateral (Alq). The obtained ratio has values between 0.5 and 0.6 for 

diamonds and bigger ones for other shapes as shown in Figure 7.6. Another example, 

in order to identify Rectangles two ratios are used. One measures the largest 

quadrilateral that fits inside the convex hull against the enclosing rectangle. For 

rectangular shapes the area of the convex hull will be very close to that of the 

enclosing rectangle (Aer) and this one will be very close to the largest quadrilateral. 

The Ach/Aer and Alq/Aer ratios will have values near unity for rectangles as shown in 

Figure 7.7. 

 

Fig.7.6. Percentiles for the ratio Alt/Alq [167]. 

The fuzzification starts by selecting a fuzzy set for each shape per geometric 

feature. For example, the fuzzy sets for the Diamond and Rectangles shapes versus 

the geometric feature Alq/Aer is shown in Figure 7.8. Each fuzzy set boundary is 

determined experimentally and can be concluded as well from the bottom row image 

in Figure 7.7. "Dom" in Figure 7.8 refers to degree of freedom. 
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Fig.7.7. Percentiles for the ratios Ach/Aer and Alq/Aer [167]. 

 

Fig.7.8. Fuzzy sets [167]. 

Next fuzzy rules are applied to take a decision and recognize the studied shape. 

The recognizer calculates the degree of membership for each shape class. This degree 

is the result of AND together degrees of membership for the relevant fuzzy sets. As an 

example, the fuzzy rule that recognizes a Diamond can be stated as follows: 

If  Alt/Alq is like Diamond AND 

    Alq/Ach is not like Ellipse AND 

    Alq/Aer is not like Rectangle 

THEN 

   Shape is Diamond. 

Where Alt/Alq, Alq/Ach and Alq/Aer are geometric features that characterize 

Diamond, Ellipse and Rectangle shapes respectively. "AND" denotes the conjunction 

of fuzzy predicates dom(f AND g) = min(dom(f),dom(g)) and "NOT" is defined by 

dom(NOT f) = 1 – dom(f). 
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This method is very important recognition method since it is based on geometric 

features of shapes. In addition, the fuzzification makes it very robust against natural 

random deformation introduced to each hand-drawn shape.   

7.1.3.2.4.    Recognizing handwritten characters using fuzzy logic 
Fuzzy logic is also introduced for recognizing handwritten characters [168, 207]. 

The proposed system is shown in Figure 7.9. 

 

Fig.7.9. Proposed character recognizer [168]. 

 The input image is a handwritten character image from A to Z. It is partitioned 

into 4x4 matrix cells as shown in Figure 7.10.  

 

Fig.7.10. Character 'A' [168]. 

Each character cell is analyzed for characteristic features according to a specific 

pattern. Therefore, a pattern extractor is used for this purpose. Then, the Character 

Analyzer and Character Recognition System which constitute the fuzzy processor 
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consists of a number of IF ..... THEN .... ELSE rules (fuzzy rules). These rules may be 

applied to the output from the pattern extractor which will be in the form of a fuzzy 

matrix of all the cells constituting a particular character, each cell having the 

membership value, and the category name under which it has membership associated 

with them. The membership values may be classified into 'Low', 'Medium', and 'High' 

with membership values overlapping between them as shown in Figure 7.11. So, three 

fuzzy sets are introduced for this application. 

 

Fig.7.11. Membership functions for each pattern in each cell [168]. 

This method is a pattern recognition method that can lead to wrong recognition 

when the deformation introduced to the handwritten character is not small. In 

addition, it will not work in an attempt to recognize connected characters since some 

parts of a character can be merged with its successive character. In this case, a pattern 

recognizer would fail.           

7.1.4.    Our contribution 

The proposed character recognition application is designed to attack and break 

CAPTCHA schemes to segment and recognize correctly the included characters. Most 

of existing methods have developed pattern recognition or machine learning 

algorithms to attack the CAPTCHA schemes but they haven't reported till now 

effective attacks on the new Yahoo CAPTHCA scheme based especially on the 

connected characters. In addition, they have tried to segment all the characters and 

after that try to recognize them. 

Our proposed algorithm tries to solve the same problem of these studied ones but 

using new features called "Edge Corners (ECs)". These ECs are edge points 

corresponding to edge deviations that are repeatable over affine transformation. In 

addition, a given contour can be approximated using a polygon whose vertices are 

dominant ECs. These points are detected after the construction of the contours of an 

image using an edge detector. We have developed a simultaneous segmentation and 
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recognition technique per character similar to that suggested by Gao et.al [144] with a 

good success rate. The main difference is in the features used. They have developed 

pattern recognition scheme and we have used ECs to develop a fuzzy logic matching 

scheme.  

In addition, we have developed a very efficient fuzzy logic algorithm for the 

character recognition based on the distribution of the ECs on the contour. The 

fuzzification idea comes from the introduced random deformation on the characters. It 

is shown to give good matching results even with this randomness. The overall 

suggested technique is able to solve many segmentation difficulties shown by other 

researchers. The idea proposed by Kalti [157] inspires us to develop spatial 

information rather than grey level information for robust matching of our image 

features (ECs). In addition, in our recognizer, we have followed nearly the same 

procedure of Fonseca [167] with also geometric features. However, our geometric 

features are very different since our application constraints are different. 

We have published our work on ECs in [28, 198] and our work on character 

recognition using fuzzy logic in [200]. 

7.2.    Edge corners "ECs" classification 

In this application, edge corners "ECs" defined in chapter 4 are used. Each corner 

is characterized by: 

 its angle which is the absolute difference of the two adjacent straight edges 

directions. 

 the lengths of its two adjacent segments or straight edges. 

Each EC is classified according to its two characteristics into "Strong" or "Week" 

corner (detailed in the next section). Therefore, we have made a small update to our 

EBCD to detect and classify the ECs according to these two types.     

7.2.1.    ECs Detection: Update to the EBCD 

After detection of all edge pixels, the corner detection is initialized. At each edge 

pixel, three variables are used: 

- dirc: the current direction of the edge at the current edge point. 
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- dirp: the previous direction of the edge at the previous edge point. 

- dirdiff: their absolute difference given by,     

 (7.4) 

 (7.5) 

 
The corner detection algorithm is shown in Figure 7.12.  

 

Fig.7.12. Corner detection algorithm. 

Corners that are highly repeatable versus various deformations are those who 

have dirdiff above two. Therefore, the edge pixels whose dirdiff is greater or equal to 

two are tested first. In both directions of each of these pixels, we test the existence of 

two real straight edges SE1 and SE2 of length greater than three pixels for example. If 

the test succeeded, the current pixel is classified as a corner. All the pixels belonging 

to a detected straight edge are marked and will not be tested as corners. After testing 

the pixel with dirdiff larger than two, the edge pixels whose dirdiff is equal to one are 

tested next for a corner presence. 

A corner is classified as strong corner if it has a dirdiff greater or equal to two and 

its two straight edges lengths are long enough (more than 3 percent of the total edge 

points on their contour). Otherwise, it is classified as a week corner. Figure 7.13 

shows the edge image of the z character and its detected corners as solid points. The 
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total number of edge points is 330 pixels. From Table 7.1, points A, D, F and I are 

strong corners and have been tested first and reported as corners since their dirdiff is 

equal to two. As shown in Table1, each corner corresponds to two straight edges SE1 

and SE2. Each of these SEs is characterized by its length: Length (number of pixels) 

and its direction: dir (mean of pixels directions). 

 

Fig.7.13. Edge image of the z character and its ECs. 

Table 7.1. Corners Information of the z character. 

Corners cdir,pdir,dirdiff Straight Edges  Classification 

SE1,SE2 Directions 

dir1-dir2 

Lengths 

Length1,le

ngth2 

A 7,5,2 AB,AL 0-1.3 71,81 Strong 

B 1,0,1 BC,BA 1.3-4 3,71 Week 

C 2,1,1 CD,CB 1.9-4.6 20,3 Week 

D 5,3,2 DE,DC 5.5-5.8 17,20 Strong 

E 4,5,1 ED,EF 1.2-4 17,49 Week 

F 1,3,2 FE,FG 0.1-1.3 49,83 Strong 

G 3,2,1 GH,GF 4-5.3 63,83 Week 

H 6,5,1 HG,HI 7.9-5.9 63,21 Week 

I 1,7,2 IJ,IH 1.5-1.9 15,21 Strong 

J 1,0,1 JK,JI 0-5.3 39,15 Week 

K 6,7,1 KJ,KL 4.1-5.6 39,3 Week 

L 5,6,1 LK,LA 2.3-5.3 3,81 Week 

 

7.2.2.    Why ECs? 

We have focused in our research on detecting edge points that can have a strong 

immunity with respect to local and global warping introduced by Yahoo and other 

schemes. The Yahoo word image has a size of 290x80 pixels [150]. After applying 
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the corner detection on a set containing 100 random samples collected from Yahoo 

scheme, we have concluded with these observations:  

Observation 1: Some new week corners can appear (type I). 

Observation 2: Some week corners can disappear (type II). 

Observation 3: Rarely Strong corners disappear or new ones appear (type III). 

Observation 4: Above 95% of the connections between two characters contain at least 

one corner: Connection Corner (type IV). 

Observation 5: The border that splits two connect characters is not necessarily a 

straight line. It corresponds usually to a sequence of non collinear 

straight segments. 

Observation 6: When there is more than one Connection Corner (CC) on border 

between two characters, the maximal absolute difference between their abscissas is 

less than ten pixels.  

The corners of types I and II are introduced due to the local warping that deforms 

the character and also due to the affine deformation applied to it. Type III corners can 

disappear only due to the merging of the two characters. It is shown in Figure 7.14 

that the strong corners located to the left and to the right of the contour of the digit 

four are disappeared due to the connections to its neighboring characters.  

Figure 7.14 (a) shows the edge image with the detected ECs, as solid points, of 

the Yahoo text shown in Figure 7.1 (b). Figure 7.14 (b) shows the edge images of the 

matched characters/digits. We can see also the corners of types I and II when we 

compare the corners on the contours of the deformed characters and the original 

characters shown in Figure 7.14 (a) and (b) respectively. In Figure 7.14 (b), the strong 

corners are shown on the characters/digits contours. On the other hand, Figure 7.14 

(a) shows the connection corners (CCs) on the warped word image contour. Notice 

that from the first five circled CCs from the left located on the connection between the 

characters G and L of the deformed word in Figure 7.14 (a), we can draw the border 

that can split them correctly. It is clear that this border is formed by a set of 

consecutive straight segments each one of them is composed of two CCs. 
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Fig.7.14. (a) Connection corners on the deformed characters contours. (b) Strong corners on the 

original characters contours. 

Based on these observations, we have built an intelligent algorithm that can 

segment and recognize simultaneously each character of a Yahoo word image using 

its detected ECs.   

7.3.    Proposed scheme: Simultaneous Segmentation-Recognition  

The proposed scheme consists of a simultaneous segmentation and recognition of 

the characters/digits in a deformed word image. Initially, a training set is formed. It 

contains the images of the characters/digits used by the Yahoo scheme to form the 

warped word image. The ECs of each training image are detected as shown for the 

characters G, L and C and for the digit 4 in Figure 7.14 (b). Then a test image, 

containing the deformed word image, is fed to the algorithm in an attempt to 

recognize correctly the characters/digits in it. 

The segmentation consists of selecting a part from the input word image by 

setting a left and right border in an attempt to localize the target character. The 

recognition is used to match the segmented part with the characters/digits training set 

and outputs a matching percentage. 

Figure 7.15 shows the proposed attack on a deformed word image composed of 

two characters: G and 3. The attack is characterized by five phases: 

 Fix the left border (in red) and move the right border (in blue) across the ECs 

from left to right. These borders are straight lines passing through one EC. 

This is called "Segmentation trial". 
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 For each segmentation trial, the image part located between the left and right 

borders is matched to the training characters/digits. This operation outputs a 

matching percentage. Five segmentation trials are shown in Figure 7.15 (b). 

 When all segmentation trials are considered or when the right border passes 

through the most right EC, we search for the trial having the highest matching 

percentage and select its right border for further testing to form the optimal 

multi-line (sequence of segments) right border. At any EC, the number of 

generated straight line right borders is much less than that of multi-line right 

borders. Therefore, to reduce the number of right borders to be tested, we 

consider first the straight line right borders formed at every EC in the image 

than we select only the one that achieve the highest matching percentage. It 

will be used as a foundation base to form the optimal multi line right border. 

In Figure 7.15 (b), the fourth trial is considered corresponding to highest 

matching percentage. In fact, this line is used to localize the region of 

connection between two consecutive characters. 

 The EC of the selected straight line right border will localize all neighboring 

ECs with abscissas absolute difference less than or equal to ten pixels as 

revealed in Figure 7.16 (a) for all ECs located inside the black box. These 

located ECs will enter the test to form the optimal multi-line right border.  

This border is a sequence of segments passing by the ECs that are considered 

as CCs, according to Observation 5. Among all possible borders that pass 

through these ECs, the optimal one is the one that corresponds to the highest 

matching percentage. In this step, all training characters/digits are taken for 

matching. In Figure 7.16 (a), the optimal right border composed of four 

consecutive segments is shown and the recognition rate achieved is about 56% 

corresponding to the character "G".   

 The optimal right border becomes the left border for the segmentation process 

of the next character/digit as shown in Figure 7.16 (b). The whole process will 

be repeated until each character in the word image will be segmented and 

recognized. 

The idea of the proposed algorithm is shown in Figure 7.17 and it will be fully 

detailed throughout this chapter. The optimal segmentation is the one corresponding 

to the highest matching percentage obtained by the recognition stage. Initially, the 
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segmentation starts by taking the input deformed word image. Each segmented part, 

like for example the one located between borders LB-RB1 in Figure 7.18, enters the 

recognition phase to match the training characters. This phase will output a matching 

percentage. Then a new segmented part is generated, like the one located between 

borders LB-RB2 in Figure 7.18, and a new matching percentage is generated. The 

combined process segmentation/recognition will be repeated until the resulting 

segmented part becomes the whole input image. Then, the optimal multi line right 

border is formed to segment the optimal segmented part having the highest matching 

percentage. This part is then removed from the input word image and the whole 

segmentation-recognition process restarts again on the remaining image until all the 

characters/digits are recognized. 

 

Fig.7.15. Search for the best straight line right border segmenting 2 deformed connected 

characters. (a) deformed image and its ECs. (b) various segmented parts and its corresponding 

recognized character with the matching percentage. 

 

Fig.7.16. Optimal segmentation using multi line right borders. (a) Three different segmentation 

trials using three multi line right borders with the corresponding matching percentage. (b) The 

remaining part to recognize by the same procedure. 
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Fig.7.17. The overall algorithm.  

 

 

Fig.7.18. Segmenting and recognizing the first character of a part of the deformed GLC4GZ word 

image.  

Figure 7.18 shows the segmentation and recognition process of the character G of 

the deformed word from Figure 7.1 (b). The left border LB is in black to the left. The 

other four borders are four straight line right borders RBs selected from hundreds of 

right borders. Each LB-RB couple corresponds to a segmentation trial and the 

segmented image's part located between them is matched to the characters/digits 

training set. RB3 is the selected straight line right border that corresponds to the 

highest matching percentage among all straight line right borders as shown in Table 

7.2. If the optimal right border is kept as a straight line passing by one EC as shown in 

Figure 7.19 (a), the segmented part will not correspond adequately to the G character. 
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Thus, the straight right border adjustment to a multi-line border is needed. It 

represents the fourth phase of the proposed attack. The goal is to increase the 

matching percentage, to give accurate segmentation of the desired character as it is 

shown in Figure 7.19 (b) and to draw the optimal left border of the next letter L. Table 

7.2 shows the matching percentage and the matched training character/digit for each 

segmented part.  

 

Fig.7.19. The segmentation of the "G" character of Figure 7.18. (a) selected straight line right 

border. (b) optimal multi-line right border. 

Table 7.2. Matching percentage of various segmented image parts. 

Segmented 

Part between 

Matched 

Character 

Matching 

Percentage  

LB-RB1 D 22% 

LB-RB2 C 26% 

LB-RB3 C 33% 

LB-RB4 G 23% 

LB-RBopt G 36% 

 

Next we will explain each function of the algorithm alone and how they can 

corporate to attack the Yahoo scheme. 

7.3.1.    Segmentation 

Based on Observation 4, above 95% of the connection edge points between two 

merged characters are corners called Connection Corners (CCs). Since the objective 

of any attacking scheme is to have a success rate above 0.01% [2, 3], we can 

speculate that the intermediate border, that splits correctly two connected characters, 

passes probably by a CC. In addition, using Observations 5 and 6, we can define a 

border as a segment or sequence of segments that passes through one or more CCs. 
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The segmentation's aim is to find the LB and RB that define adequately each 

character's borders in conjunction with the character recognition function. The first 

character segmentation starts by fixing the LB as a vertical straight line passing by the 

most left EC while moving RB through the ECs from the most left to the most right 

one. At every EC and for proper segmentation, the RB is set as M straight lines: One 

vertical line and M-1 straight lines with slope deviations -45<∆θ<+45. In Figure 7.20, 

the corresponding straight lines for the EC(32,35) are shown for M=5. This set is 

called "M Borders Set" (MBS). Then, the best straight line RB corresponding to the 

segmented part with the highest matching percentage is adjusted to a multi-line RB for 

more segmentation precision. For this purpose, a set called "Combination Borders 

Set" (CBS) is formed using only the EC of the best straight line RB and its 

neighboring ones. The optimal multi-line RB is adjusted to one of the CBS set. At this 

level, we should distinguish between: 

 Definition1: M borders set (MBS) where each border is a straight line. 

 Definition2: Combination borders set (CBS) where each border is a sequence 

of segments (multi-line). 

7.3.1.1.    Character’s borders identification: M-Borders Set (MBS) 

When starting the segmentation of the first character, it is intuitive to set the LB to 

be a vertical line passing through the first left corner. This is obvious since the ECs of 

the first character are all to the right of this LB. The construction of the RB is not that 

intuitive since it is located between two possibly connected characters where usually a 

border is a sequence of segments passing through one or more ECs. In addition, we 

don't know a priori which ECs are the CCs. Therefore, in order to set the adequate RB, 

the ECs set is ordered from left to right, then every EC is considered as a CC and the 

corresponding MBS is formed. The current EC used in this purpose is called CCor. 

For each RB, we try to recognize the character, using its ECs, located between LB and 

RB. The straight RB, from one of the MBSs, that corresponds to the best recognized 

character with the highest matching percentage is considered. Adjustments must be 

performed to obtain the optimal multi-line RBopt. Then for the recognition of the next 

character, we set the LB as the RBopt of the previously recognized character. This 

process will iterate until the RBopt passes through the last EC to the right of the 

image. 
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Due to deformations introduced to each character and especially rotation, some 

CCs are translated from their original positions. For example, the two most right 

strong corners of the G character shown in Figure 7.14 (b) have almost the same 

abscissa. However, their corresponding ones on the deformed word image of Figure 

7.14 (a) have not. Therefore, we cannot set the RB only as a line passing by a CC. A 

good choice to overcome the variations in the ECs positions is to set RB also as an 

oblique straight line with a given slope. Some Yahoo CAPTCHAs are cosine distorted 

[18]. According to Observation 6, the maximal absolute difference between the 

abscissas of two CCs belonging to the same RB is less than ten pixels. Knowing that 

the height of the characters in a Yahoo scheme varies between 15 to 80 pixels [21], 

the maximum rotation introduced, corresponding to the ten pixels maximal difference 

between two CCs, is . Therefore we take M lines with slope 

deviations -45<∆θ<+45 as stated before. As a result and at every EC, a set of M 

straight line borders, called "MBS" (M Borders Set), with M different slopes (with 

slope deviation ∆θ) is formed. Figure 7.20 shows the MBS corresponding to the point 

(32, 35) set as CCor for M = 5 and ∆θ = 22.5o.  

However, the straight RB is not adequate because it passes only through one CC 

and does not represent a good choice of LB for the upcoming character. Therefore, a 

more accurate multiline RB segmentation procedure is used for which the CBS set is 

introduced.    

 

Fig. 7.20. The MBS (M=5) drawn in grey at EC (32,35). 

 7.3.1.2.    RB adjustment: Combination Borders Set (CBS) 

After detecting the best straight RB from the MBS set, we form a new set of 

borders passing through its corresponding current corner (CCor) and its neighboring 

ECs. We must define: 
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 Definition 3: Neighboring corner: an EC is classified as a neighboring corner 

to a CCor if it is located below it and the absolute difference between their 

abscissas does not exceed ten pixels according to Observation 6. 

For the CCor, the borders formed by a combination of all its neighboring corners 

are called Combination Borders Set (CBS). Assume that n is the number of 

neighboring CCs, ordered by their ordinates, relative to a given CCor. All borders 

formed using CCor and its neighboring corners should have CCor as the first top 

corner. A border is composed of K corners (1≤K≤n+1). The border passes through 

CCor and K-1 of its neighboring corners and it is composed of K+1 segments. The 

first segment is a vertical segment starting from top image border and passing through 

the first top CCor. The second segment connect CCor to its nearest neighboring 

corner. The remaining segments connect the successive neighboring corners from top 

to bottom. The last segment is a vertical segment passing through the last neighboring 

corner and ending on the bottom image border. Thus, the number of borders, 

composed of K corners, is a combination  since all the borders must pass through 

CCor.   

The total number of possible borders nB, in this CBS set, formed by a CCor and its n 

neighboring corners is given by 

 
(7.6) 

The main idea behind introducing the MBS set first is to minimize the number of 

candidate borders to test. After detecting the best straight line RB from the MBS set, 

the multi-line RBopt search starts by forming the CBS set corresponding only to the 

EC in the best vertical line RB. Then, the obtained RB is adjusted to obtain the RBopt 

from the CBS corresponding to the highest Matching Percentage. This way, we can 

minimize the number of CBSs generated. The RB adjustment is also shown in Figure 

7.22. 

Figure 7.21 shows the corners coordinates located on the contour of the first two 

characters G-L from the Yahoo word image in Figure 7.1 (b). 
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Fig. 7.21. Corner coordinates of G-L characters. 

In Figure 7.22, we have drawn through the point CCor (29,30) three borders. The grey 

border is a straight border passing through only CCor while the red and blue are 

multi-lines borders passing through CCor and its neighboring corners. This CCor has 

n=13 neighboring corners. Therefore we obtain nB=8192 total number of possible 

borders. The drawn borders are only three possibilities of nB borders that are drawn 

starting by CCor. In addition, the matched character and the corresponding 

recognition percentage are also shown for each border. 

 

Fig. 7.22. Three borders, from the CBS, drawn to split the G-L characters. 

7.3.1.3.    The algorithm: ECs based segmentation 

The segmentation algorithm is shown in Figure 7.23 using first the FBS. The 

variables used are defined as follows: 

- IsFirstCharRec: Boolean variable used to check if the first character in the Yahoo 

word is recognized. 

- LB: array of points (CCs) corresponding to the Left Border. 

- SetLB: Boolean variable used to flag when LB should be set. 
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- RB: array of points (CCs) corresponding to the Right Border. 

- RBopt: optimal RB. 

- CCor: Current Corner. 

- SL: Straight Line. 

- CShape: array of ECs that form the Current Shape. 

- M: input parameter equivalent to the number of straight lines per MBS. 

- Δθ: input parameter equivalent to the slope deviation. 

- b: temporary border. 

 

Fig.7.23. ECs based segmentation algorithm. 
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Our algorithm result on segmenting the characters in the word image in Figure 

7.20 shows that the vertical border (border RB3 in Figure 7.18) from the MBS formed 

at EC(32,35) is the best straight RB corresponding to highest recognition percentage. 

Then, the CBSs are formed corresponding to this EC. From these CBSs, the multi-line 

RBopt will be selected to be the red border shown in Figure 7.22. 

7.3.2.    Recognition 

After setting the LB, the search starts to select the multi-line RBopt that is always 

achieved by a recognition process. Therefore, the cooperation between segmentation 

and recognition is required and the optimal segmentation is achieved by the best 

recognition.  

7.3.2.1. EC properties used for recognition 

Three parameters are used for recognizing the ECs: 

 The directions and the lengths of its two straight edges (SEs). 

 The numbers of crossed edges from both sides of the EC's angle. 

 The bin index or quadrant index. 

7.3.2.1.1. Directions and lengths of the two SEs 

 Each EC is an intersection of two non collinear SEs as explained in the algorithm 

shown in Figure 7.12. The SE direction is the average of its edge pixels directions. In 

addition, the SE length is the number of these pixels. Therefore, an EC is 

characterized by the directions and lengths of the two adjacent SEs. 

7.3.2.1.2. Number of crossed edges 
Knowing the SEs directions at a given EC, we can calculate the EC's angle and 

form the bisector line. We can also select two additional lines passing through the EC 

and having a slope ±45o with respect to the bisector line. These line are labeled and 

drawn at EC(11,31) in Figure 7.24. The number of crossed edges by each line and 

from both sides of the angle is recorded. For each segmented part of a test image 

limited by a LB and RB, only the crossed edges located between the LB and the RB are 

taken into consideration as shown in Figure 7.24. Figure 7.24 shows the segmented 

part from the test image shown in Figure 7.21 where the RB is the red one. It is 

matched to the training image presented in Figure 7.25 (b). Line 2 is the angle 

bisector at EC(11,31). From the acute angle's facing side, the number of crossed edges 
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is equal to two for the three lines. From the opposite side, the number of crossed 

edges is equal to one. Note that the numbers of crossed edges from the two sides is 

not necessary equal at every EC. Using the number of crossed edges will eliminate a 

lot of false matches.  

7.3.2.1.3. Bin index 
In the segmented part image from the test image and the training image, two 

perpendicular lines, drawn in black in Figure 7.25, passing by the image center point 

are drawn. They partition each image into four bins or quadrants (Quad) indexed from 

one to four. Every EC records the index of the corresponding bin.  

 

Fig. 7.24. Segmented part from the test image with the three lines drawn at EC(11,31).  

 

Fig.7.25. (a) Segmented part from the test image with quadrants (b) Training edge image relative 

to the G character with quadrants. 

7.3.2.2.    Most likely matched ECs "MLMC" 

Two ECs, one from the training image and the other from the segmented part 

image, are said to be MLMC if: 
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 The two ECs and their two directly linked ones have the same straight edges 

directions.  

 They have the same numbers of crossed edges. 

 They belong to the same bin. 

After segmenting an image part from a test image, it will be matched to all 

training images. The MLMCs are searched first. The SEs lengths are not considered 

due to the difference that can occur due to scaling as shown in Figure 7.25. Also, the 

appearance and disappearance of some ECs can modify the SE length of the directly 

linked EC. On the other hand, taking the direction average of pixels belonging to the 

same SE as its final direction is a good way to overcome the encountered noisy 

directions. For example in Figure 7.25 (b), the SE between the two ECs (26,20) and 

(24,61) has some noisy directions directly above EC(24,61). However, the final SE 

direction is around 1.9 which is the true direction starting form (24,61).   

The ECs (5,28)-(6,31) and (32,46)-(50,69) marked in yellow in Figure 7.25 (a) 

and (b) are the MLMC that form the base for detecting other matched ECs. Note that 

the usage of the numbers of crossed edges has eliminated a lot of false matches. For 

example, EC(11,23) could be matched to EC(35,12) or EC(5,28) could be matched to 

EC(26,20) without taking into consideration the numbers of crossing edges. 

7.3.2.3.    Matched ECs 

Due to the introduced deformations in each character's image, some ECs can have 

a variation in their bin index especially when they are located near the borders 

between two bins. To overcome these deformations, two MLMC matching conditions 

are followed but with some relaxations. These conditions are called relaxed matching 

conditions: 

 They belong to the same bin with a certain deviation r from the corresponding 

bin is allowed. r represents a percentage of the bin width (0<r<20%).  

 They should have the same number of crossed edges except for the lines that 

cross the left or right borders. 

Due to global warping, some ECs can transfer from a bin to another. Therefore, 

any bin of the segmented part image can be extended r% of its size in vertical or 
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horizontal direction. By this relaxation, matched ECs (6, 36) and (27, 73) marked in 

light blue in Figure 7.25 (a) and (c), respectively, belong to the same bin.  

Due to the merging of successive characters/digits, some edge parts can 

disappear. In Figure 7.25 (b) for example, the circled edge parts between ECs (37,39) 

and (38,43) and between ECs (39,50) and (34,50) have been disappeared. This fact 

can lead to an incorrect number of crossed edges of some ECs. Therefore, we don't 

take into consideration the numbers of crossed edges for the lines that cross the left or 

right borders. 

Every two ECs from both the training image and the segmented part image, that 

succeeded to pass the relaxed matching conditions, are subject for further testing. We 

have searched for parameters that can distinguish together an EC from another. Two 

parameters are introduced for every EC: the SEs directions and the position with 

respect to the MLMCs. Those two parameters are influenced by the image 

deformations which make the use of a sharp decision technique to match them is very 

difficult. Therefore, a fuzzy logic-based scheme is proposed for matching the ECs that 

have already pass the relaxed matching conditions.  

7.3.2.4.    Proposed Fuzzy system 

Our proposed fuzzy system will give the matching percentage of the two studied 

ECs, one from the training image and the other from the segmented part image. 

Therefore, it is important to introduce some parameters that can be used in matching 

corresponding ECs and filter out false matches. These parameters cannot be fully 

invariant since the deformation made on the image's characters is random. However, 

the robustness of these parameters and the introduction of an efficient fuzzy system 

can compensate the randomness and make them powerful keys for correct matching. 

By experiments, we have observed two ECs properties that are less influenced by 

the deformation. The first parameter is the angle difference between corresponding 

vectors in the training and segmented part image. 

Definition 4: Corresponding Vectors: A vector formed by a training MLMC 

and a training EC and another vector formed by a test MLMC and a test EC are said 

to be corresponding vectors if their MLMCs and ECs are corresponding. 
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In Figure 7.26, three corresponding vectors out of many are shown: (5,28)-(11,23) 

corresponding to (6,31)-(21,13), (5,28)-(6,36) corresponding to (6,31)-(27,73) and 

(5,28)-(28,38) corresponding to (6,31)-(43,46). It can be seen clearly that these 

vectors have different magnitudes due to deformation and variation in scaling level 

but they have nearly the same angles. Therefore, the vector angle difference 

"VecAngDiff" between corresponding vectors can be selected as first parameter for 

matching ECs. This parameter reflects the amount of deviation of an EC from its 

original position due to the deformation introduced to the image.  

 

Fig.7.26. Vector angle difference of two matched ECs. 

Using VecAngDiff parameter reduces the searching space for possible matches. 

However when used alone, we have observed that some false matches still appear. To 

further reduce these false matches, a second parameter is introduced. It is the 

difference between corresponding average adjacent SEs directions relative to an EC. 

It is called “CorAngDiff”. For example in Figure 7.27, the corresponding adjacent 

SEs, from both corner side, of two matched ECs (11,23) and (21,13) are shown. It can 

be seen that the corresponding average SEs (ASE) directions are almost the same. 

Therefore, "CorAngDiff"is set as the average of the differences between 

corresponding ASEs. It reflects the resemblance between the directions of the edges 

adjacent to two matched ECs 

These two parameters are used by the fuzzy system to output the matching 

percentage. The overall process involves two stages as shown in Figure 7.28. The first 

one is the preprocessing stage which output the two parameters, the vector angle 

difference VecAngDiff and the corner angle difference CorAngDiff relative to the two 

ECs under consideration. The second stage represents the fuzzification process which 
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starts by setting membership functions for VecAngDiff and CorAngDiff in order to 

obtain the matching percentage. 

 

Fig. 7.27. Adjacent SEs directions of two matched ECs. 

 

Fig. 7.28. Proposed fuzzy system. 

7.3.2.4.1.    Preprocessing: VecAngDiff and CorAngDiff 
This section explains how to obtain the two parameters, VecAngDiff and 

CorAngDiff, which are used by the fuzzy system to estimate the matching percentage 

of the two ECs under investigation. These parameters can be classified as geometric 

features that characterize an EC. The geometric features are more robust to noise than 

grey level features (Kalti et al and Fonseca et al in section 7.3).         

To illustrate the first parameter, consider two matched ECs one from the training 

image and the other from the segmented part of a test image. In each image, we form 

the corresponding vectors. For illustration, consider ECs (6,36) and (7,56) shown in 

Figure 7.26. Since we have two MLMCs, we obtain two couple of corresponding 

vectors: (5,28)-(6,36) and (6,31)-(7,56) which correspond to the first MLMC and 

(32,46)-(6,36) and (50,69)-(7,56) which correspond to the second MLMC. The angles 

difference in degree of every two corresponding vectors relative to the two matched 

ECs is taken. The average of these differences is set as VecAngDiff. This variable 

reflects the amount of shifting in position of an EC. However, alone it could not lead 

to the correct match especially when the MLMCs are also shifted due to the 

deformation. Therefore we have introduced the second parameter the CorAngDiff. 

For the second parameter, some definitions must be known first:  
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Definition 5: Test Direction Average: From one side of a test EC, the Test 

Direction Average is the average direction of two successive SEs. 

Definition 6: Training Direction Average: From one side of a training EC, the 

Training Direction Average is the average direction of two or more successive SEs 

leading to the smallest difference with respect to the corresponding Test Direction 

Average. 

Based on the first three observations from Section 4.3, some new corners could 

appear and some corners could disappear. In addition, due to the stretching introduced 

to the training image, usually some corners disappear in the test image. Therefore, 

when calculating the "Training Direction Average", we take the average direction of 

an unspecified number of successive SEs that leads to the smallest difference with 

respect to the corresponding Test Direction Average. 

At an EC of the segmented part image and from the two sides we calculate the 

Test Direction Averages. In addition, for the matched EC in the training image and 

also from the two sides we calculate the Training Direction Averages. Therefore, the 

CorAngDiff is the average of the differences between corresponding Training and 

Test Direction Averages. For example in Figure 7.26, the two ECs (11,23) and (21,13) 

are matched. We record for each side of the test EC (11,23) the test direction average 

of the two successive SEs. Thus, for the right side, we consider the SEs (11,23)-

(27,27) and (27,27)-(32,35) and for the left side we consider the SEs (11,23)-(5,28) 

and (5,28)-(5,33). On the other hand for the training EC (21,13), to obtain the nearest 

directions to the test direction averages for EC (11,23), we should record: 

- For the right side the training average direction of four successive SEs: (21,13)-

(38,8), (38,8)-(61,12), (61,12)-(64,9) and (64,9)-(64,30) 

- For the left side, the training average direction of two successive SEs (21,13)-

(6,31), and (6,31)-(7,56).  

The edge parts formed by the SEs to the left and to the right of EC (21,13) 

correspond actually to those formed by two SEs to the left and to the right of EC 

(11,23). Note that ECs (38,8) and (61,12) in the training image have disappeared in 

the segmented part image due to warping. 
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7.3.2.4.2.    Fuzzification 
The fuzzification process starts by setting membership functions for its two inputs 

and one output numerical variables (Alshennawi et al and Fonseca et al. in section 

7.1.3). A membership function can have different shapes [196, 197]: triangular, 

trapezoidal, Gaussian, bell-shaped, etc. The triangular shape should be a start 

membership function to any fuzzy problem since it gives one of the best performances 

[196] and it can be upgraded to more advanced function when the results are not quite 

good. Therefore, three triangular membership functions, shown in Figure 7.29, are 

used for the numerical variables VectAngDiff (expressed in degree) and CorAngDiff 

(expressed in Freeman code [96]). The corresponding fuzzy sets are "H", "M" and "L" 

which stand for high, medium, and low, respectively. Moreover, we have used two 

Gaussian membership functions to represent the fuzzy sets "Like" and "Alike" 

introduced for the output variable MatchingScore as revealed in Figure 7.30 (c). The 

Gaussian function is characterized by its smoothness that is needed to output the 

matching score in our case. Note that many triangular membership functions for 

VectAngDiff and CorAngDiff have been tested corresponding to different fuzzy sets. 

However, the selected fuzzy sets and their member functions shown in Figure 7.30 

have achieved one of the best matching performances. These particular fuzzy sets are 

selected since the experimental results based on them achieve high matching 

percentage.    

7.3.2.4.3.    Fuzzy Laws 
After fuzzification, the input numerical variables VectAngDiff and CorAngDiff are 

transformed to linguistic variables. Fuzzy laws are logical operations that set the 

linguistic output variable MatchingScore according to the values of the input 

linguistic variables. MatchingScore has two memberships "Like" and "Alike". The 

fuzzy laws are as follows: 

 if VectAngDiff  is "L" and CorAngDiff is also "L" than MatchingScore will be 

"Like". 

 if VectAngDiff  is "M" and CorAngDiff is "L" than MatchingScore will be 

"Like". 

 Otherwise MatchingScore will be "Alike". 

Table 7.3 summarizes the fuzzy laws. 
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Table 7.3. Fuzzy laws. 

  VectAngDiff 

  L M H 

 

CorAngDiff 

L Like Like Alike 

M Alike Alike Alike 

H Alike Alike Alike 

   

7.3.2.4.4.    Defuzzification 
Defuzzification is the process that evaluates numerically the linguistic output variable 

(Alshennawi et al. in section 7.1.3). After applying the fuzzy laws, the linguistic 

output variable MatchingScore has two partial memberships between zero and one to 

the sets "Like" and "Alike". For exam ple, a MatchingScore could have 0.65 for 

"Like" and 0.4 for "Alike" as shown in Figure 7.30. Then, the inverse of the two 

Gaussian member functions for "Like" and "Alike" respectively, are used to get the 

Like percentage "LikePerc" and the Alike percentage "AlikePerc" as numerical 

values. 

Therefore, the system's numerical output, called MatchingPercentage, can be derived 

as expressed in Eq (7.7), 

 
(7.7) 

 
After Defuzzification, each EC from the segmented part image will have matching 

percentages with their matched ECs from the training image. The matched training 

EC that corresponds to the highest matching percentage is selected. Thus, couples of 

matched ECs are formed. Table 7.4 presents the matched couples and their matching 

percentage for the images shown in Figure 7.25. Note that the MLMC are given a 

100% matching percentage. 
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Fig.7.29. The three membership functions: (a) for VectAngDiff, (b) for CorAngDiff and (c) for 

MatchingScore. 

 

Fig. 7.30. Calculating the LikePerc and AlikePerc by inverse member functions. 
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7.3.2.5.    Verification 

Verification step is very important for a correct recognition of a segmented part 

image. After constructing the couples of matched ECs including the MLMC, the idea 

is to check the correctness of their edge linking order taking into consideration the 

probability of appearance or disappearance of some corners.  

Starting by any couple from the MLMC set in each image, the two ECs from any 

matched couple should have the same linking order taking into consideration the order 

of matched ECs only. For example for Figure 7.25, one MLMC couple is (5,28)-

(6,31). In Figure 7.25 (a), the EC (5,33) is the first linked EC with respect to EC(5,28) 

in the direction 6. Also in Figure 7.26 (b), the EC (7,56) is the first linked EC with 

respect to EC(6,31) in the direction 6. Therefore, the matched couple (5,33)-(7,56) is 

verified. One can easily verify all the remaining matched couples presented in Table 

7.4. Note that the ECs (38,8) and (61,12) and others don't enter in the order 

calculation since these ECs have no match. These ECs are considered as Type I or 

Type II that are introduced due to the image deformation. 

7.3.2.6.    Overall matching percentage  

The fuzzy system outputs the matching percentage of every matched ECs couple 

from the training and segmented part images. The issue is to calculate the overall 

matching percentage between the two images. Usually while recognizing a training 

character/digit image, the recognition of an EC having large SEs lengths gives more 

percentage than the recognition of an EC having small SEs lengths. Therefore in the 

training image, each matched EC is weighted by the sum of the lengths of its two 

adjacent SEs. The unmatched ECs have a zero matching percentage. Thus, the 

training character/digit contour can be seen as a set of weighted ECs where the sum of 

their SEs length corresponds to its total number of edge points. Thus, the overall 

matching percentage is the weighted average of the ECs matching percentages. This 

measure reflects the recognition percentage between a segmented part image and one 

of the training images. Finally, the training character image that corresponds to the 

highest matching percentage is the recognized character/digit for the segmented part 

from the test image.  
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Table 7.4. Matched couples for the images shown in Figure 7.25. 

Test ECs Training ECs Matching Percentage Matching Type 

(5,28) (6,31) 100% MLMC 

(5,33) (7,56) 83% Matched ECs 

(6,36) (27,73) 24% Matched ECs 

(11,23) (21,13) 48% Matched ECs 

(13,38) (24,61) 59% Matched ECs 

(14,27) (35,12) 26% Matched ECs 

(19,27) (62,24) 55% Matched ECs 

(27,27) (64,9) 24% Matched ECs 

(28,38) (43,46) 87% Matched ECs 

(30,48) (48,71) 71% Matched ECs 

(32,46) (50,69) 100% MLMC 

(32,44) (50,51) 65% Matched ECs 

 

Figure 7.31 shows the recognition algorithm to generate the overall matching 

percentage. The variables used in this algorithm are: 

- nbptsM: number of edge points matched in the training image, initially cleared. 

- nbptsT: total number of edge points in the training image. 
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Fig.7.31. Recognition algorithm. 

7.4.    Experimental results 

7.4.1. First experiment: Recognition under warping 

In this experiment, we have used one deformed character. The studied parameter 

is the level of deformation which is the level of warping. To generate a huge database, 

we have formed our own program that generates images of one deformed character. 

The warping, as mentioned in [49,169], is composed from three main functions. The 

first one is the generation of a random displacement at every image's pixel. The 
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second one is convolving the random displacement field with a Gaussian filter (low 

pass filter) with standard deviation Sigma. The third one is the generation of the 

deformed image by interpolation. 

The warping level is controlled by two parameters: the standard deviation Sigma 

of the Gaussian filter and the magnitude Alpha of the random displacement field. 

Figures 7.32 and 7.33 show the effect of these two parameters on the G character 

image. 

 

Fig.7.32. (a) Original image, (b) deformed image: Sigma=3 and Alpha=1, (c) deformed image: 

Sigma=3 and Alpha=20. 

 

 

Fig.7.33. (a) Original image, (b) deformed image: Sigma=5 and Alpha=35, (c) deformed image: 

Sigma=7 and Alpha=75. 

For low values of Sigma as in Figure 7.32, the warping is called local warping 

that produces small ripples, waves and elastic deformations along the pixels of the 

character [49]. For high values of Sigma as in Figure 7.33, the warping is global 

which produces elastic deformations at the character level. In addition, the 

deformation level is proportional to the parameter Alpha since it is the magnitude of 

the random displacement field generated at every pixel. 

Our original database is composed of 19 characters. We have followed the 

observation in [144] that shows that Yahoo scheme uses 10 upper cases, and 12 lower 

cases and 7 digits with probability of appearance in 1000 random samples.  
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The recognition percentage shown in Figure 7.34, is obtained using our proposed 

fuzzy system based recognition algorithm on a database of 1000 random deformed 

characters generated for every pair of Sigma and Alpha. 

When Sigma increases, the recognition percentage increases for the same values 

of Alpha. The reason for that is when Sigma increases the deformation transfers from 

local to global which smoothes the deformation on the characters contours. For 

example in Figure 7.35 (b) and (c), two deformed images of character '2' 

corresponding to two different values of Sigma are shown. It is clear that for Sigma=3 

(local deformation) in Figure 7.35 (b), the contour is highly deformed and a lot of 

noisy ECs appear. Whereas for Sigma=7 (global deformation) shown in Figure 7.35 

(c), the deformation is relatively small.  

 

Fig.7.34. Recognition percentage versus Alpha and for different values of Sigma. 

 

Fig.7.35. Deformation levels at different values of Sigma. 
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7.4.2. Second experiment: Segmentation/Recognition of connected characters 

In this experiment, we try to show the efficiency of the suggested technique to 

segment and recognize two deformed and connected characters. Therefore, we have 

formed a database which is composed of 1000 samples, each of them contains two 

connected characters. For all the images in this database, we have fixed the two 

parameters Sigma and Alpha. On the other hand, we have introduced a new parameter 

dist that reflects the distance between the two connected characters. For negative 

values of dist, the two characters are connected. Thus, in this experiment, we have 

fixed the warping level for all images and made the connection level as the only 

variable. Figure 7.36 shows the recognition percentage of the algorithm at different 

connection levels for different values of dist. It is clear that as the characters become 

more connected, thus higher negative values of dist, the ability to correctly recognize 

the characters will be smaller as expected.  

 

Fig.7.36. Recognition percentage at different values of dist.  

In addition, Figure 7.37 shows the segmentation of the characters in three 

different sample images taken from the generated database. The border in blue 

between the characters passes at least by one connection corner. 
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Fig.7.37. (a) Two connected characters. (b) Segmentation using connection corners (CCs). 

7.4.3. Third experiment: Breaking Yahoo CAPTCHA scheme 

In this experiment, a database of 1000 samples is created where each sample is a 

composed of six deformed connected characters generated following the Yahoo 

scheme explained previously. The obtained recognition percentage is 57.3% which is 

higher than 54.7 % recognition percentage obtained in [144] using a Yahoo database 

of 1000 samples. 

In addition, a step by step Segmentation/Recognition of a Yahoo CAPTCHA 

sample image is provided in Figure 7.38. 



232 
 

 

Fig.7.38. (a) A CAPTCHA sample word image. (b) Segmentation/Recognition steps.           
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Conclusion and Future Works 
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In this thesis, a novel corner detector is introduced based on image edges. It can 

outperform existing interest point detectors especially in repeatability. The edge 

detection constructs the starting phase. Then a suggested straight edge detector 

examines all the formed contours in the input image and detects the edge parts that 

can be considered as straight edges. These straight edges are straight lines that exist 

frequently at the borders of various objects in real scenes especially human made 

environments like buildings, cars, doors… The importance of detecting these straight 

edges remains in their role of detecting edge corner points. The intersection of two 

non collinear straight edges of appropriate length (greater than a threshold) is reported 

as a corner. The newly proposed detector has good results against some image 

transformation especially affine transformation. It detects almost scale invariant 

corners without using scale space representation. Thus, selecting only corners located 

at edges with high gradient norm and whose adjacent segments are long enough gives 

its more immunity against affine transformation especially scale variation. Its novelty 

is due to its simplicity using only image edges. 

Experimental results show that our proposed EBCD is a very interesting corner 

detector compared to other existing algorithms. We have proposed a 2D object 

recognition application using these corners and the recognition was fluent even in the 

presence of different shapes. On the other hand, several applications can be built 

using this detector and the corner points. 3D reconstruction or 3D modeling of 

polyhedral objects can be based on exploring its corner points with its geometric 

distribution within the object. Localization of an autonomous robot can be specified 

by using 3D corners as reference points in a stereovision system and that can lead to a 

SLAM application. Polygonal approximation of an object's contour can be addressed 

using a number of these corners as vertices of the approximating polygon. 

Based on the edge corners, a new polygonal approximation technique is proposed. 

By fixing an entry parameter as a stopping criterion, Compression Ratio CR or 

weighted sum error WE, the algorithm starts per contour by removing iteratively the 

corners that introduce the minimal possible ISEV to the global ISE measure. At the 

end, the remained corners, called DCs, form the vertices of the polygon that can best 

approximate the current contour. The experimental results have shown good results in 

comparison with other existing methods. In our opinion, this is due to the efficient 

straight edge detector that explores all the contour corners efficiently and then to the 
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iterative polygonal approximation algorithm that removes, at each iteration, the corner 

corresponding to the smallest LISEV and at the same time updates and reexamines the 

LISEV of already removed corners. By this way, we can ensure that the remained 

corners form the polygon that best fit their contour.  

As a first application on DCs, a novel technique for image registration using 

dominant corners located on image edge is presented. First, it was shown 

experimentally that these DCs have very good repeatability versus affine 

transformation. Therefore, the suggested image registration is applicable to images 

where the introduced deformation can be modeled by an affine transformation. Then 

primitives are formed by grouping every four DCs: consecutive and nearest. The ratio 

of the areas of two triangles formed in every primitive construct the first invariant 

measure used to match a couple of primitives in a source and target images. In 

addition, the angle directions difference of the two adjacent straight edges relative to a 

DC form the second invariant measure of this DC. Therefore, two primitives, one 

from the source image and the other from the sensed image, are matched using the 

three tests: 

 matching of the primitive area ratio R. 

 matching the four DCs angle directions difference. 

 matching of the affine models formed by the four triplets in the first primitive 

and the corresponding four triplets in the second primitive. 

This scheme eliminates a lot of false matching and makes the difference high between 

the number of votes for the correct model and other false ones. The suggested 

algorithm can be used in image registration where the time interval between 

sequences of images is relatively small. 

Finally, a simultaneous segmentation-recognition algorithm for an efficient attack 

on a Yahoo CAPTCHA is proposed. The goal from breaking these CAPTCHAs is not 

to be hackers but to explore the weaknesses in their design. The suggested algorithm 

is based on new proposed kinds of edge corners: week corners, strong corners and 

connection corners. For segmenting each character in the image, left and right borders 

are introduced. These borders pass necessary by at least one connection corner and the 

image part in between is the segmented image part. This part then enters into 
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recognition. If it is recognized as a character/digit from the training database, the 

overall algorithm restarts and tries to segment and recognize the following 

characters/digits in the image. To come up with the random deformation introduced to 

each character in the image, we have introduced a fuzzy system for recognizing the 

characters using their edge corners. The experimental results show the flexibility of 

this system to recognize connected and deformed characters at different levels. The 

obtained success rate on the generated Yahoo database is very good and exceeds the 

required 0.01% to classify a successful attack. In addition, the introduced algorithm 

can be very useful to do some improvement on schemes using the connection 

characters principle like MSN or Google CAPTCHAs in order to be more robust 

against attackers. 

For future works, the first attempt is to study the repeatability of the detected DCs 

by the edge detector (EBCD) versus projective transformation. If the obtained 

repeatability is acceptable then we can generalize our image registration application to 

more general cases. As an example, our algorithm can be applicable in the case where 

the time interval between the two studied images is not small. In this case, the 

projective transformation is the best transformation that can model the real 

deformation that relates the two images.   

More than one robotic application should be developed next: 

The first one is the shape recognition application based on the edge corners that 

developed for a more complicated application like object recognition where more than 

one contour could exist. In this application, matching individual corners is not enough 

since it will generate a lot of false matches. Therefore, we will introduce a new 

matching strategy based on a group matching per contour. Each contour in a training 

image is matched to a contour in a test image using the distribution of the matched 

corners taking especially into consideration the possibility of appearance or 

disappearance of some week edge corners. 

The second one is the road surveillance by a drone's camera to remove the global 

motion of the camera and estimate the local moving targets motion. This can be done 

by testing and analyzing the suggested image registration application on acquired 

images sequence. 
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The third one is the communication in a human-robot interaction using images 

containing commands or info. For example, a robot can help in fetching some items 

identified by a key number or a key word or maybe a key character. Thus, a person 

presents to the robot the handwritten key acquired as an image by the robot that in his 

turn should recognize the written characters and fetch the corresponding item. 
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