La sécurité des données stockées dans un environnement cloud, basée sur des mécanismes cryptographiques
Auteur / Autrice : | Nesrine Kaaniche |
Direction : | Maryline Laurent |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique et réseaux |
Date : | Soutenance le 15/12/2014 |
Etablissement(s) : | Evry, Institut national des télécommunications |
Ecole(s) doctorale(s) : | École doctorale Informatique, télécommunications et électronique de Paris (1992-...) |
Partenaire(s) de recherche : | Université : Université Pierre et Marie Curie (Paris ; 1971-2017) |
Laboratoire : Département Réseaux et Services de Télécommunications - Services répartis- Architectures- MOdélisation- Validation- Administration des Réseaux |
Mots clés
Mots clés contrôlés
Résumé
Au cours de la dernière décennie, avec la standardisation d’Internet, le développement des réseaux à haut débit, le paiement à l’usage et la quête sociétale de la mobilité, le monde informatique a vu se populariser un nouveau paradigme, le Cloud. Le recours au cloud est de plus en plus remarquable compte tenu de plusieurs facteurs, notamment ses architectures rentables, prenant en charge la transmission, le stockage et le calcul intensif de données. Cependant, ces services de stockage prometteurs soulèvent la question de la protection des données et de la conformité aux réglementations, considérablement due à la perte de maîtrise et de gouvernance. Cette dissertation vise à surmonter ce dilemme, tout en tenant compte de deux préoccupations de sécurité des données, à savoir la confidentialité des données et l’intégrité des données. En premier lieu, nous nous concentrons sur la confidentialité des données, un enjeu assez considérable étant donné le partage de données flexible au sein d’un groupe dynamique d’utilisateurs. Cet enjeu exige, par conséquence, un partage efficace des clés entre les membres du groupe. Pour répondre à cette préoccupation, nous avons, d’une part, proposé une nouvelle méthode reposant sur l’utilisation de la cryptographie basée sur l’identité (IBC), où chaque client agit comme une entité génératrice de clés privées. Ainsi, il génère ses propres éléments publics et s’en sert pour le calcul de sa clé privée correspondante. Grâce aux propriétés d’IBC, cette contribution a démontré sa résistance face aux accès non autorisés aux données au cours du processus de partage, tout en tenant compte de deux modèles de sécurité, à savoir un serveur de stockage honnête mais curieux et un utilisateur malveillant. D’autre part, nous définissons CloudaSec, une solution à base de clé publique, qui propose la séparation de la gestion des clés et les techniques de chiffrement, sur deux couches. En effet, CloudaSec permet un déploiement flexible d’un scénario de partage de données ainsi que des garanties de sécurité solides pour les données externalisées sur les serveurs du cloud. Les résultats expérimentaux, sous OpenStack Swift, ont prouvé l’efficacité de CloudaSec, en tenant compte de l’impact des opérations cryptographiques sur le terminal du client. En deuxième lieu, nous abordons la problématique de la preuve de possession de données (PDP). En fait, le client du cloud doit avoir un moyen efficace lui permettant d’effectuer des vérifications périodiques d’intégrité à distance, sans garder les données localement. La preuve de possession se base sur trois aspects : le niveau de sécurité, la vérification publique, et les performances. Cet enjeu est amplifié par des contraintes de stockage et de calcul du terminal client et de la taille des données externalisées. Afin de satisfaire à cette exigence de sécurité, nous définissons d’abord un nouveau protocole PDP, sans apport de connaissance, qui fournit des garanties déterministes de vérification d’intégrité, en s’appuyant sur l’unicité de la division euclidienne. Ces garanties sont considérées comme intéressantes par rapport à plusieurs schémas proposés, présentant des approches probabilistes. Ensuite, nous proposons SHoPS, un protocole de preuve de possession de données capable de traiter les trois relations d’ensembles homomorphiques. SHoPS permet ainsi au client non seulement d’obtenir une preuve de la possession du serveur distant, mais aussi de vérifier que le fichier, en question, est bien réparti sur plusieurs périphériques de stockage permettant d’atteindre un certain niveau de la tolérance aux pannes. En effet, nous présentons l’ensemble des propriétés homomorphiques, qui étend la malléabilité du procédé aux propriétés d’union, intersection et inclusion