Thèse soutenue

Profondeur, dimension et résolutions en algèbre commutative : quelques aspects effectifs
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Claire Tête
Direction : Lionel Ducos
Type : Thèse de doctorat
Discipline(s) : Mathématiques et leurs interactions
Date : Soutenance le 21/10/2014
Etablissement(s) : Poitiers
Ecole(s) doctorale(s) : École doctorale Sciences et ingénierie pour l'information, mathématiques (Limoges ; 2009-2018)
Partenaire(s) de recherche : Laboratoire : Laboratoire de mathématiques et applications - LMA (Poitiers)
faculte : Université de Poitiers. UFR des sciences fondamentales et appliquées
Jury : Président / Présidente : Karim Belabas
Examinateurs / Examinatrices : Lionel Ducos, Marc A. A. van Leeuwen, Laurent Busé, Jean-Pierre Jouanolou
Rapporteurs / Rapporteuses : Thierry Coquand, Marc Chardin

Résumé

FR  |  
EN

Cette thèse d'algèbre commutative porte principalement sur la théorie de la profondeur. Nous nous efforçons d'en fournir une approche épurée d'hypothèse noethérienne dans l'espoir d'échapper aux idéaux premiers et ceci afin de manier des objets élémentaires et explicites. Parmi ces objets, figurent les complexes algébriques de Koszul et de Cech dont nous étudions les propriétés cohomologiques grâce à des résultats simples portant sur la cohomologie du totalisé d'un bicomplexe. Dans le cadre de la cohomologie de Cech, nous avons établi la longue suite exacte de Mayer-Vietoris avec un traitement reposant uniquement sur le maniement des éléments. Une autre notion importante est celle de dimension de Krull. Sa caractérisation en termes de monoïdes bords permet de montrer de manière expéditive le théorème d'annulation de Grothendieck en cohomologie de Cech. Nous fournissons également un algorithme permettant de compléter un polynôme homogène en un h.s.o.p.. La profondeur est intimement liée à la théorie des résolutions libres/projectives finies, en témoigne le théorème de Ferrand-Vasconcelos dont nous rapportons une généralisation due à Jouanolou. Par ailleurs, nous revenons sur des résultats faisant intervenir la profondeur des idéaux caractéristiques d'une résolution libre finie. Nous revisitons, dans un cas particulier, une construction due à Tate permettant d'expliciter une résolution projective totalement effective de l'idéal d'un point lisse d'une hypersurface. Enfin, nous abordons la théorie de la régularité en dimension 1 via l'étude des idéaux inversibles et fournissons un algorithme implémenté en Magma calculant l'anneau des entiers d'un corps de nombres.