Thèse soutenue

Modélisation et simulation multi échelle des effets de taille et des couplages électromécaniques dans les nanostructures

FR  |  
EN
Auteur / Autrice : Minh Tuan Hoang
Direction : Julien Yvonnet
Type : Thèse de doctorat
Discipline(s) : Structures et Matériaux
Date : Soutenance le 17/10/2014
Etablissement(s) : Paris Est
Ecole(s) doctorale(s) : École doctorale Sciences, Ingénierie et Environnement (Champs-sur-Marne, Seine-et-Marne ; 2010-2015)
Partenaire(s) de recherche : Laboratoire : Laboratoire de Modélisation et Simulation Multi-Échelle - MSME
Jury : Président / Présidente : Mireille Mouis
Examinateurs / Examinatrices : Julien Yvonnet, Gilberte Chambaud, Alexander Mitrushchenkov
Rapporteurs / Rapporteuses : Philippe D'Arco, Djimédo Kondo

Résumé

FR  |  
EN

Les nanostructures, et en particulier les nanofils semi-conducteurs, ont suscité ces dernières années un très grand intérêt pour de nombreuses applications comme les systèmes de récupération d'énergie ou les capteurs de très haute précision. Dans de telles structures des expérimentations et des calculs théoriques ab-initio ont mis en évidence des effets de taille, pouvant modifier significativement les propriétés électromécaniques pour des diamètres de fils en dessous de 10 nm. L'objectif de ce travail de thèse est de proposer des modélisations multi échelle des nanostructures électromécaniques, telles que les nanofils ioniques et des nanocomposites stratifiés, permettant de reproduire les effets de taille associés à l'échelle nanométrique dans un cadre continu, en se basant sur des calculs ab-initio pour identifier et valider les modèles. Dans une première partie, les effets de surface dans des nanofils piézoélectriques isolés homogènes sont modélisés. Une approche multi échelle est développée, incluant une modélisation continue des nanofils en prenant en compte une énergie de surface supplémentaire dans un cadre piézoélectrique, dont les paramètres associés sont identifiés par calculs ab-initio. Pour cela, une procédure basée sur un modèle de films minces est développée, permettant au travers de calculs ab-initio sur des films d'épaisseurs successives d'isoler l'énergie volumique et de surface, et d'en déduire les coefficients élastiques et piézoélectriques de surface. Les équations du modèle continu sont ensuite résolues par une méthode d'éléments finis incluant des éléments de surface adaptés. Le modèle multi échelle continu est comparé à des calculs ab-initio impliquant des modèles atomistiques complets de nanofils de différents diamètres (de 0,6 à 3,9 nm) pour valider les effets de taille des propriétés électromécaniques. Dans une deuxième partie, des modèles multi échelles sont construits en vue de modéliser les effets de taille pour des nanostructures hétérogènes. Ces structures incluent des nanofils revêtus, ou des nanocomposites stratifiés. Pour les nanofils avec hétérogénéités radiales, l'approche précédemment développée est étendue au cas des surfaces revêtues, et le modèle continu fait intervenir une énergie de surface incluant les effets du revêtement. Pour les nanocomposites stratifiés AlN/GaN, les effets de taille observés par calculs ab-initio sont dus à des effets d'interface et induisent des propriétés élastiques dépendantes des épaisseurs des couches. Un modèle de matériau homogénéisé continu est proposé, incluant un modèle d'interface imparfaite, permettant d'inclure les effets de taille, identifié par calculs ab-initio. Dans une dernière partie, des applications à des systèmes de nanogénérateurs à base de nanofils sont proposées, faisant intervenir des ensembles de nanofils alignés dans une matrice polymère et surmontés par une feuille de graphène. Les approches précédemment développées sont utilisées pour modéliser ces structures par éléments finis