Thèse soutenue

Solutions de Sécurité Légers pour les Réseaux LTE/LTE-A

FR  |  
EN
Auteur / Autrice : Soran Hussein
Direction : Lila BoukhatemSteven Martin
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 08/12/2014
Etablissement(s) : Paris 11
Ecole(s) doctorale(s) : Ecole doctorale Informatique de Paris-Sud
Partenaire(s) de recherche : Laboratoire : Laboratoire de recherche en informatique (Orsay, Essonne ; 1998-2020)
Jury : Président / Présidente : Joffroy Beauquier
Examinateurs / Examinatrices : Lila Boukhatem, Steven Martin, Joffroy Beauquier, Hakima Chaouchi, Hassnaa Moustafa, Thi-Mai-Trang Nguyen, Nadjib Ait Saadi
Rapporteurs / Rapporteuses : Hakima Chaouchi, Hassnaa Moustafa

Résumé

FR  |  
EN

Récemment, le 3GPP (3rd Generation Partnership Project) a standardisé les systèmes LTE/LTE-A (Long Term Evolution/LTE-Advanced) qui ont été approuvés par l'UIT (Union Internationale des Télécommunications) comme des réseaux de télécommunications mobiles de 4éme génération. La sécurité est l'une des questions essentielles qui doivent être traitées avec soin pour protéger les informations de l'opérateur et des utilisateurs. Aussi, le 3GPP a normalisé plusieurs algorithmes et protocoles afin de sécuriser les communications entre les différentes entités du réseau. Cependant, l'augmentation du niveau de sécurité dans ces systèmes ne devrait pas leur imposer des contraintes lourdes telles qu’une grande complexité de calcul ou encore une forte consommation d'énergie. En effet, l'efficacité énergétique est devenue récemment un besoin critique pour les opérateurs afin de réduire l’empreinte écologique et les coûts opérationnels de ces systèmes. Les services de sécurité dans les réseaux mobiles tels que l'authentification, la confidentialité et l'intégrité des données sont le plus souvent effectués en utilisant des techniques cryptographiques. Toutefois, la plupart des solutions standardisées déjà adoptées par le 3GPP dépendent des algorithmes de chiffrement qui possèdent une grande complexité, induisant une consommation énergétique plus élevée dans les différentes entités communicantes du réseau. La confidentialité des données, qui se réfère principalement au fait de s'assurer que l'information n'est accessible qu'à ceux dont l'accès est autorisé, est réalisée au niveau de la sous-couche PDCP (Packet Data Convergence Protocol) de la pile protocolaire de LTE/LTE-A par l'un des trois algorithmes normalisés (EEA1, EEA2 et EEA3). Or, chacun des trois algorithmes exige une forte complexité de calcul car ils reposent sur la théorie de chiffrement de Shannon qui utilise les fonctions de confusion et de diffusion sur plusieurs itérations. Dans cette thèse, nous proposons un nouvel algorithme de confidentialité en utilisant le concept de substitution et de diffusion dans lequel le niveau de sécurité requis est atteint en un seul tour. Par conséquent, la complexité de calcul est considérablement réduite ce qui entraîne une réduction de la consommation d'énergie par les fonctions de chiffrement et de déchiffrement. De plus, la même approche est utilisée pour réduire la complexité des algorithmes 3GPP d'intégrité des données (EIA1, EIA2 et EIA3) dont le concept de chiffrement repose sur les mêmes fonctions complexes. Enfin, nous étudions dans cette thèse le problème d'authentification dans le contexte du paradigme D2D (Device to Device communications) introduit dans les systèmes 4G. Le concept D2D se réfère à la communication directe entre deux terminaux mobiles sans passer par le cœur du réseau. Il constitue un moyen prometteur pour améliorer les performances et réduire la consommation d'énergie dans les réseaux LTE/LTE-A. Toutefois, l'authentification et la dérivation de clé entre deux terminaux mobiles dans le contexte D2D n’ont pas fait l’objet d’études. Aussi, nous proposons un nouveau protocole léger d’authentification et de dérivation de clé permettant d’authentifier les terminaux D2D et de dériver les clés nécessaires à la fois pour le cryptage et pour la protection de l'intégrité des données.