Thèse soutenue

Simulations gros grains de systèmes complexes et forces d’interactions : du microscopique au mésoscopique

FR  |  
EN
Auteur / Autrice : Sébastien Trément
Direction : Bernard Rousseau
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 24/09/2014
Etablissement(s) : Paris 11
Ecole(s) doctorale(s) : Ecole doctorale Chimie de Paris-Sud (Orsay, Essonne ; 2006-2015)
Partenaire(s) de recherche : Laboratoire : Institut de chimie physique (Orsay, Essonne ; 2000-....)
Entreprise : Manufacture française des pneumatiques Michelin
Jury : Président / Présidente : Marie Jardat
Examinateurs / Examinatrices : Bernard Rousseau, Marie Jardat, Jörg Baschnagel, Guillaume Galliéro, Emmanuel Trizac, Benoît Schnell, Marc Couty
Rapporteurs / Rapporteuses : Jörg Baschnagel, Guillaume Galliéro

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Un fondu de polymères est un liquide complexe constitué de chaînes macromoléculaires. Ces chaînes présentent la particularité d'offrir une distribution de temps caractéristiques extrêmement importante. L'ensemble de ces différentes échelles représente donc un défi pour la simulation numérique de polymères longs et sont bien au-delà des capacités des ordinateurs actuels. Un thème actuel de recherche porte donc sur le développement de modèles mésoscopiques (modèle gros grains). La construction d'un tel modèle consiste à éliminer les degrés de liberté rapide en regroupant un certain nombre d'atomes en un monomère. Ce monomère est représenté par une sphère molle évoluant dans un bain thermique créé par les degrés de liberté rapides éliminés au cours du processus de nivellement. La dynamique des particules créées est donc stochastique. La dynamique particulaire dissipative qui intègre ces idées est une combinaison de dynamique moléculaire, de Lattice Gas Automata ainsi que de dynamique Brownienne. Le champ de force DPD est constitué d'une interaction molle et d'un thermostat (force dissipative et bruit) et les paramètres de ce champ de force sont généralement calibrés sur des données expérimentales (compressibilité et diffusion). Cette approche est difficilement applicable aux mélanges de polymères. Pour surmonter cette difficulté, l'intégralité du champ de force DPD est construit à partir d'une dynamique moléculaire pour des corps purs ainsi que pour des mélanges. Nous montrons également que pour calculer correctement la force dissipative, la dynamique moléculaire doit être altérée en contraignant la position des monomères. Les coefficients de transport sont calculés par DPD et comparés à ceux obtenus par dynamique moléculaire. Ce travail s'achève par une étude de la transferabilité du champ de force du monomère vers toute une chaîne de polymères.