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INTRODUCTION
CONTEXT AND ISSUES OF THE STUDY

The hundreds of millions of passenger cars androtbaicles on our roads emphasize our society’'s
reliance on internal combustion engines for thegpartation of goods and people. However, despite
striking reductions in pollutant emissions and foe@hsumption since the 1960s, when the first lagsh
concerning the pollutant emissions of light-duthiedes was passed in the United States, motor hz=hic
remain one of the most important sources of aitugioh in modern urban areas. The effect on human
health is tragic and has been pointed out by ar#&sing number of studies.

On the one hand, this public health issue leadsathikrorities to advocate increasingly drastic pahti
emission standards. On the other hand car manuéasiun view of the need to reduce developmeng tim
in order to remain competitive on a more and maobaized market, argue for moderate policy changes
Current legislation is a compromise between these ¢ompeting factors. An interesting fact is that
standards limit vehicle emissions to a normalizeding cycle. Nothing else is taken into accounmt. |
particular crucial stages in product life cycle mgement, such as raw material extraction, manufagtu
transportation or recycling are not considered. €ar manufacturers, the only focus of research and
development is the vehicle itself.

Among all the technological solutions conducive doreduction in pollutant emissions and fuel
consumption, the engine is known to be the mosteffsctive parameter. In particular, control oé thir
path has become a significant branch of researdidamelopment since the introduction of an incregsi
number of actuators, added to manage the phenore&xad to control of the gas entering the cylisder
Since the gas composition is at the heart of tlmebestion process, managing it appropriately reprsse
cost-effective way to reduce pollutant emissions.

This study addresses the issue of the complexithefir path caused by the fact that actuatorofiea
added to meet additional engine performance reapgings, such as pollutant emissions, fuel efficicsoy
drivability. The proposed solution involves the donation of aphysics-based engine modeldnonlinear
model predictive controlBeyond the originality of such a combination, ftfistinctive feature of the
method resides in the use of the so-cadlrplicit nonlinear model predictive contrparadigmin order to
obtain a real-time implementable controller. Alttge, this thesis presents a combination of methods
taken from physics and mathematics, which attengpfgopose a quasi-systematic air path controlgtesi
approach for turbocharged gasoline engines (fipetew).

STEP 1 STEP 2 STEP 3

Physics-based Nonlinear Explicit

model MPC solution

Figure — Overview of the control design approach mposed in this study
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The present document has been organized in two maits. The first three chapters lead to the
construction of a control-oriented physics-basedi@h@f a turbocharged gasoline engine air path. The
following chapters present the use of this modelam explicit nonlinear model predictive control
framework, i.e. leading to a controller that is gutible with real-time requirements.

Part 1: Conftrol-oriented physics-based model of turbocharged gasoline
engine air path

It is clear that new technologies are urgently eeedo reduce the pollutant emissions and fuel
consumption of internal combustion engines. Howgewbe compromise between emissions, fuel
consumption and market competitiveness is notgdttiirward, and in order to find a suitable tradie-o
extensive simulations are increasingly used eanlyinothe engine development process. In the present
study we propose to investigate how engine comial make state-of-the art engine modelling everemor
attractive in the automotive industry.

Chapter 1 provides an overview of the behaviour of turbogleargasoline engines that serves as an
introduction to the modelling philosophy introdudedthe rest of the chapter. Altogether it introésic
the mean-value engine modelling philosophy as a®lthe zero-dimensional modelling approach that
are used to describe the phenomena occurring thrthey air path. Lastly the quasi-static modelling
approach used to model the compressor and thenturbipresented with an emphasis on the need for
accurate turbocharger look-up tables.

Chapter 2 addresses the issues involved in the constructidine look-up tables that are at the heart
of the quasi-static compressor and turbine sub-tsoda practice, they are usually obtained by
interpolating and extrapolating steady-state meamsants directly provided by the manufacturer of the
component. However, the absence of operating poattsiow turbocharger rotational speeds
considerably complicates this task. The new intimn and extrapolation methodologies presented
here rely on an appropriate combination of physéespirical observations and optimization. This is a
clearly distinctive feature w.r.t. methods reportedhe literature that are usually either phydiesed
and too complex in a control-oriented frameworlporely mathematical and not sufficiently accurate.

Chapter 3 applies the philosophy and developments presemettie first two chapters to two
practical cases of application, both validated veitperimental test bench measurements. The fiest on
concerns the design of a virtual turbocharger imat speed sensor, for test bench applications. Th
second one concerns the design of a complete tuabged gasoline engine air path model. It uses the
modelling approach presented in chapter 1 andutimtharger look-up tables obtained in chapter 2.
Overall both examples tend to confirm the modellwygotheses formulated in chapters 1 and 2. While
the former is currently being implemented in anuistrial framework at Renault SAS, the second one
will be used in part 2, in a nonlinear model pré&déecontrol framework.

The overall modelling philosophy presented in thelsapters is similaio the modelling approach usually
chosen in the automotive industry when considecimggrol application]s As such, since it is beginning to
be well-known by control engineers, it represetis perfect starting point of our approach toward a
systematic air path control design.

! The novel interpolation and extrapolation straegif the compressor and turbine data-maps, pessénchapter 2
and integrated into the zero-dimensional modelimdppophy used in chapter 3, are currently beinglémented in an
industrial tool as part of a partnership betweendrdt SAS and LMS®.
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Part 2: Toward a real-time implementable nonlinear model predictive
conftrol of the air path of a turbocharged gasoline engine

Turbocharged gasoline engine air paths are int@tlgi multi-input multi-output nonlinear systemsithv
active constraints on the inputs. In this framewstkndard linear or even multi-linear control aygmhes
have proved their limitations when considering aeegcontrol over an extensive part of the operating
range. Additionally, the growing penetration of plog-based simulation in the automotive industrytiyo
remains limited to the validation of the controlvka In particular, control design processes thatcdcase
physics-based nonlinear models from the very beéginto synthesize optimal, reliable and real-time
implementable control laws, have long been awdRetb,47,62,100,103,104,114].

Chapter 4 reflects our intention to solve the problem iniitdustrial context, rather than provide a

purely theoretical answer. It therefore proposesramary of the main constraints that have to bertak

into account when designing a control strategyhie &utomotive industrial framework. Far from

claiming that this study provides an exhaustivensngo all these constraints, they mostly serva as

guideline for the study. Finally, before going indietail about our particular application, relevant
contributions in the fields of engine model-basedtl and model predictive control are presented,
with particular stress on the opportunities offebgdhe approach w.r.t. to air path control.

Chapter 5 presents the synthesis of an implicit nonlineadeh@redictive control (NMPC) that uses
the physics-based model developed in chapter 3varidh is extensively used in the automotive
industry, to compute the predictions. Altogethbis ttontrol scheme represents a novel combination i
the field of gasoline engine air path model predéctontrol. We also take advantage of the physics-
based model to introduce a novel thermodynamicébabgective function that maximises the engine
efficiency explicitly. The significant performancebtained in simulation confirm the expectations of
many authors about the use of physics-based emgoudels in nonlinear model predictive control
[46,99] and contribute to opening up a new fieldexearch. Finally, since the design of the colarol
proves to be compatible with the computation oéa-time implementable solution using the explicit
NMPC paradigm, it represents the second step towarliasi-systematic air path control design
approach.

Chapter 6 proposes an alternative approach to the implis#?C law presented in chapter 5, based
on a parameterization of the control incrementgedtary. It can therefore be considered as a
parameterized NMPC approach. The philosophy predeimre is a direct extension to the nonlinear
paradigm of the approach proposed in [133] in adinframework and is motivated by the need to
maintain the level of flexibility of the future ctrol trajectory under tight computational requirerse
The advantage of the approach lies in the encapsulaf the complexity/optimality compromise under
a new set of easy-to-tune parameters. AltogetherNMPC formulation remains easy to implement
and compatible with the use of a physics-based maae an unconventional thermodynamic-based
objective function.

Chapter 7 finally introduces the explicit NMPC framework amal particular a brief background
about multi-parametric programming. The lattertish@ heart of the approach and allows a piecewise
affine approximation of an implicit NMPC law to lmemputed. The method itself draws on the most
recent work in the field of explicit NMPC [53], andtroduces the ability to handle computationally
expensive prediction models as well as parallel pating. In particular, thanks to this distinctive
feature the explicit approximation of the implibiMPC law presented in chapter 5 can be computed.
Once combined with an appropriate method of implaatéon on-board, namely using a binary search
tree to store the piecewise affine explicit conteal, it leads to a drastic reduction in computadio
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requirements w.r.t to implicit NMPC while maintaigi very good tracking performances. Altogether,
this makes it worth considering for a real-time lempentation online and as such, represents the thir
and last step toward a quasi-systematic desigmapprfor the control of the air path of turbocharge

gasoline engines.

Overall, this second part leads to a real-time é@nmntable controller, based on the piecewise
approximation of a given implicit NMPC controlleBy real-time implementable we mean a short and
predictable computational time.

The main contributions of the study are:

* The derivation of a new set of algorithms for théeipolation and extrapolation of compressor
and turbine quasi-steady-state data-maps. Whilgetldata-maps are at the heart of all control-
oriented engine models that include a turbochartier, accuracy of the methodology in the
literature is not satisfying. The novel combinatiof physics, empirical observations and
optimization proposed in this study proved to l&adhore accurate data in the extrapolating zone,
thus enhancing the robustness of the widespreasl-gtaic turbocharger models.

e The implementation of a horizon-1 nonlinear modeldgictive control (NMPC) scheme for the
control of the inlet manifold pressure on a turterged gasoline engine. The distinctive feature of
this scheme is the use of a physics-based engimelnamd a thermodynamic-based objective
function.

* A proposal of a parameterized NMPC law based orspansion of the future control increments
trajectory on a set of orthonormal functions, ngmehguerre polynomials. Altogether, this
unprecedented approach in the nonlinear framewaciithtes the tuning of the closed-loop
performance by encapsulating the complexity/opiitpadompromise in a set of two high level
parameters.

« The computation of a piecewise affine solution ob-@limension multi-parametric nonlinear
programming problem, that produces an explicit fee#t control law which approximates the
behaviour of the horizon-1 NMPC scheme suggestedeatover the entire operating range of a
turbocharged gasoline engine. Along with the usa binary search-tree for the storage of the set
of affine laws and the regions on which they aringel, the methodology considerably reduces
the online computational time w.r.t. to implicit NAC.

Altogether, this dissertation presents the firgpsttoward a systematic approach for the design of
turbocharged gasoline engine air path optimal cbntr
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CONTEXTE ET ENJEUX DE L'"ETUDE

Les centaines de millions de véhicules constitlaparc automobile mondial (tous véhicules) morittan
dépendance de notre société vis-a-vis du motewnibgstion interne pour le transport de biens et de
personnes. Cependant, malgré des progres condelmbtermes d'émissions et de consommation depuis
les années 60, date correspondant a la mise ee placla premiére reglementation concernant les
émissions polluantes des véhicules Iégers aux-Bfaits les véhicules équipés de moteurs a combustio
interne restent I'une des sources les plus imptasade pollution de l'air au sein des centres mdai
modernes. Les effets sur la santé de 'Homme samhatiques et de plus en plus soulignés par lesasiéd

Du point de vue des autorités, cet enjeu sanitaotive le renforcement des normes antipollutiorurRes
constructeurs automobiles, au contraire, la négedsi réduire les temps de développement afin sterre
compétitifs sur un marché de plus en plus mondalsaide en faveur d’'un changement modéré de ces
normes. La législation en vigueur est un compranise ces deux objectifs divergents. Il est ingaasde
noter que ces réglementations limitent les émissibes véhicules sur un cycle de conduite normalisé.
Aucun autre élément n’est pris en compte. En pdi¢ic des étapes cruciales du cycle de vie duytod
telles que I'extraction des matiéres premiérefaligication, le transport ou le recyclage ne s@# prises

en considération. Au regard de la norme, le vébiaeprésente donc le seul axe de recherche et de
développement des constructeurs automobiles.

Parmi toutes les solutions technologiques aboutissane réduction des émissions et de la consommmat
le moteur est le paramétre le plus rentable. Eticpdier, le contréle de la chaine d’'air rassemiohe part
importante de la recherche et du développementisidiaugmentation du nombre d’actionneurs. Ces
actionneurs sont précisément ajoutés pour contiédguhénomenes liés a I'entrée des gaz dansireloyl

En effet, la composition des gaz étant au cceuraeegsus de combustion, contréler I'introductios gez
dans le cylindre représente le moyen le plus agantapour réduire les émissions polluantes.

Cette étude répond au probléme de complexité dedime d’'air, d0 a I'ajout de nouveaux actionnexfirs
d’'atteindre de nouveaux besoins, incluant réducties émissions polluantes et de la consommation, et
confort de conduite. La proposition en elle-ménmeose sur la combinaison d’umodéle moteur basé sur

la physiqueet d’'une stratégie dmontréle prédictif non linéaireAu-dela de la rareté de cette combinaison,
I'originalité de la méthode repose sur l'utilisatia@le I'approche deommande prédictive non linéaire
explicite pour I'implémentation en temps réel du contrél@n® son ensemble, cette thése présente une
combinaison de méthodes tirées de la physique sirdghématiques, qui propose une approche quasi-
systématique pour la synthése du contrdle de lmeh#air des moteurs essence suralimentés (\quiredi
ci-dessous).
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ETAPE 1 ETAPE 2 ETAPE 3

SOEEE Solution

explicite

Modele
physique

prédictive
non linéaire

Figure — Vue d’ensemble de I'approche de synthései @ontrble proposée dans cette étude

Ce document est organisé en deux parties. Lespreimiers chapitres aboutissent a la construction d
modele, basé sur la physique et orienté pour ler@len de la chaine dair d'un moteur essence
suralimenté. Les chapitres suivants présententidation de ce modéle dans un cadre de commande
prédictive non linéaire explicite, c'est-a-dire raeha un contréle temps-réel.

Partie 1: Modéle physique pour le contréle de la chaine d’air des moteurs
essence suralimentés

Il est clair que le besoin de technologies visardéduire les émissions polluantes et la consommates
moteurs est important. Cependant, le compromis eermissions polluantes, consommation et
compeétitivité n’est pas trivial. Sa déterminatist de plus en plus obtenue au travers de la simonjadu
plus t6t dans le processus de développement. Dates &ude, nous proposons d’investiguer comment le
contréle pourrait encore valoriser d’avantages éfferts mener sur la modélisation dans l'industrie
automobile.

Le Chapitre 1 fournit des généralités sur le comportement deteuns essence suralimentés, servant
d’introduction & la philosophie de modélisationgadtée dans le reste du chapitre. Dans son ensemble
il présente I'approche de modélisation dite du motmoyen et la modélisation zéro-dimensionnelle
utilisées pour décrire les phénoménes mis en jag tachaine d’'air. Finalement, un modéle quasi-
statique du compresseur et de la turbine est p§sehune attention particuliere est portée sur le
besoin de cartographies précises.

Le Chapitre 2 répond aux problémes liés a la construction decee®graphies. En pratique, elles
sont souvent obtenues en interpolant et extrapdiestmesures en stabilisé directement fournieepar
fabricant. Cependant, I'absence de points de fonoBment aux bas régimes de rotation du
turbocompresseur, complique considérablement laetdtes nouvelles méthodes d'interpolation et
d’extrapolation présentées ici reposent sur urejustmpromis de physique, d’observations empiriques
et d’'optimisation. Cela constitue un élément didtfrclair au regard des méthodes proposées dans la
littérature, qui sont soit entierement basées ayshysique et trop complexes pour le controle, soit
purement mathématiques et imprécises en extrapolati

Le Chapitre 3 représente la synthése de la philosophie de nsadiéln présentée dans les deux
premiers chapitres autour de deux cas d’applicatmms deux validés expérimentalement. Le premier
repose sur la construction d’'un capteur virtuelrélgime de rotation du turbocompresseur, avec un
exemple d’intégration a un banc d’essai moteurse@nd concerne la synthése compléte du modéle de
chaine d’air d’'un moteur essence suralimenté.ilisetl’approche de modélisation présentée dans le
chapitre 1 et les cartographies compresseur etnturbbtenues au chapitre 2. Ensemble, ces deux
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exemples confirment les hypothéses de modélispii@m@es aux chapitres 1 et 2. Alors que le capteur
virtuel est en train d’étre implémenté industriglent chez Renault SAS, le modéle de la chaine, d’air
quant a lui, sera utilisé dans la partie 2 de tlétdans un cadre de commande prédictive non lsméair

La philosophie générale de modélisation présentées des chapitres est similaire a celle utiliséesda
lindustrie automobilé pour le développement du contrble moteur. Ainsisgu’elle commence a étre
bien connue des équipes responsables du contrémelle représente le parfait point de dépariates
approche vers une synthése systématique du codgdéechaine dair.

Partie 2: Vers un contréle prédictif non linéaire temps-réel de la chaine
d’air des moteurs essences suralimentés

Intrinsequement, la chaine d’air des moteurs esssm@limentés est un systéme non linéaire muitées
multi-sorties, présentant également des actionrgattgés. Dans ce contexte, les approches classitgue
contrdle linéaire ou multi-linéaire ont atteint tedimites, lorsque I'on prend en compte I'ensemiile
champ de fonctionnement du moteur. De plus, la pestssante de la modélisation physique dans
I'industrie automobile reste limitée si on consel&niquement la synthése du contrle en elle-m&ne.
effet, les stratégies de contrble pouvant utilesetype de modéles physiques non linéaires pouhétyser
des lois de contr6le optimales, robustes et impigaides en temps réel sont attendues avec unteiéin
[9,46,47,62,100,103,104,114].

Le Chapitre 4 matérialise notre volonté de résoudre ce problgéams son contexte industriel, au lieu
de fournir une solution purement théorique. Il ms ainsi un apergu des contraintes principales qui
doivent étre prises en compte lorsque I'on congoé stratégie de contrdle pour I'industrie autori@bi
Loin de prétendre que cette étude répond de maeidraustive a toutes ces exigences, elles servent
surtout de fil conducteur a I'étude. Enfin, avaetrdntrer dans les détails de notre cas d’appicakes
contributions les plus significatives dans le damadu contrble moteur dit « model-based » et du
contrdle moteur prédictif, sont présentées et utention particuliére est portée sur les opporémit
offertes pour le contréle de la chaine d’air.

Le Chapitre 5 présente la synthése d’une stratégie de contréigiqiif non linéaire qui utilise, pour

le calcul des prédictions, le modéle moteur phyesidéveloppé dans le chapitre 3 et largement utilisé
dans I'industrie automobile. Dans son ensemblde ctatégie de contrdle représente une association
inédite dans le cadre du contrdle prédictif deHalge d’air des moteurs essence. On profite awssi d
'avantage d’utiliser un modéle physique pour iduime une fonction de codlt inédite, basée sur la
thermodynamique, maximisant explicitement le renele@moteur. Les performances significatives
obtenues en simulation confirment les attentes afabneux auteurs dans la littérature, vis-a-vis de
I'utilisation de modéles moteur physiques dans anire de commande prédictive non linéaire [46,99],
et participe a I'ouverture d’'un nouveau champ deheeche. Finalement, puisque cette stratégie de
contrle a prouvé sa compatibilité avec une impléateon temps-réel utilisant une approche dite de
commande prédictive non linéaire explicite, ce sthéle contrdle représente notre deuxieme étape
vers une approche quasi-systématique de la synthesentrole de la chaine d'air.

2 Les nouvelles stratégies d'interpolation et d’amtiation des cartographies compresseur et turpidsentées dans
le chapitre 2 et intégrées a la stratégie de memié@in zéro dimensionnelle utilisée dans le chap8r sont
actuellement en train d'étre implémentées dansutihindustriel, dans le cadre d'un partenariatrefenault SAS et
LMS®.
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Le Chapitre é propose une approche alternative au schéma debtptédictif non linéaire présenté
au chapitre 5, en se basant sur la paramétrisdola trajectoire des futurs incréments de contrdle
Ainsi, elle entre dans la catégorie dite des contteanprédictives non linéaires paramétrées. La
philosophie présentée ici est une extension dirgeteas non linéaire de I'approche proposée p&[13
dans un cadre linéaire, et est motivée par le hedeimaintenir le niveau de flexibilité de la fudgur
trajectoire de contrble sous contrainte de tempsattmul. En pratique, I'avantage de I'approche sgpo
sur I'encapsulation du compromis complexité/optitBalans un nouveau jeu de parametres faciles a
régler. Dans son ensemble, cette formulation @siple & implémenter et compatible avec I'utilisati
d'un modele basé sur la physique et d'une fonctiten co(it non conventionnelle basé sur la
thermodynamique.

Le Chapitre 7 introduit, pour finir, le cadre de la commandedicéve non linéaire explicite, et en
particulier un bref rappel théorique sur la résolutdes problémes multiparamétriques. Ces derniers
sont au cceur de I'approche et permettent de calonke approximation affine par morceaux d'une loi
de contrdle prédictive non linéaire implicite. Latimode en elle-méme s’inspire des travaux les plus
récents dans le domaine de la commande prédiatindiméaire explicite [53], et introduit le suppo
modeles de prédiction complexes ainsi que le caarallele. En particulier, ces derniers autorigent
calcul de la loi de contrble explicite associéesabéma de contrdle prédictif non linéaire implicite
présenté dans le chapitre 5. Une fois cette approombinée a I'utilisation d’arbres binaires poair |
stockage de la loi de contr6le affine par morceallg, permet une réduction significative du temps d
calcul par rapport au schéma implicite, tout enntesiant d’excellentes performances en poursuite.
Dans leur ensemble, ces résultats permettent dager une implémentation en ligne en temps-réel et
ainsi représentent notre troisieme et derniéresétaps une approche quasi-systématique de la smthé
du contréle de la chaine d'air des moteurs essaumedimentés.

Cette deuxieme partie méne a un contréle tempsaais#} sur I'approximation d’'un contrdle prédictifin
linéaire donné. Par implémentation temps-réel, nentendons présentant un temps de calcul court et
prédictible.
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Les contributions principales de I'étude sont:

e La synthése de nouveaux algorithmes pour l'intefpmh et I'extrapolation des cartographies
guasi-statiques de compresseurs et de turbiness 4lee ces cartographies sont au coeur de tous
les modéles moteurs incluant un turbocompressaurdcision des méthodes disponibles dans la
littérature n'est pas satisfaisante. La nouveloaistion de physique, d'observations empiriques
et de méthodes d’optimisation, proposée dans éaitde, a prouvé fournir de meilleurs résultats
dans la zone extrapolée, améliorant ainsi la relssst des modéles quasi-statiques de
turbocompresseur, trés utilisés.

* L'implémentation d’'une commande prédictive non dimé a horizon-1 pour le contrdle de la
pression collecteur d’'un moteur essence suralimdraéparticularité de ce schéma repose sur
I'utilisation d’'un modéle physique et d’'une fonatiale colt incluant un index de performance
thermodynamique.

« Une commande prédictive non linéaire paramétrééebasr la décomposition de la trajectoire des
futurs incréments de commande, sur un ensembleodetiéns orthonormales, & savoir les
polynémes de Laguerre. Dans son ensemble, cettodmpinédite dans le cadre non linéaire
facilite la calibration de la performance en boud@mée en encapsulant le compromis
complexité/optimalité dans un jeu de deux pararséeshaut niveau.

» Le calcul de la solution affine par morceaux d'uolpeme multiparamétrique non linéaire de
dimension 6. Cette solution correspond a une loi cdatrole explicite approximant le
comportement du schéma prédictif a horizon-1 citdessus, sur I'ensemble du domaine de
fonctionnement d’'un moteur essence suralimentépl@ewa I'utilisation d’'un arbre de recherche
binaire pour le stockage des lois de contrdle effiet des régions sur lesquelles elles sont
définies, la méthode réduit considérablement lgptede calcul en ligne par rapport a I'approche
implicite.

Dans son ensemble, ce travail représente une peidigpe vers une approche quasi-systématique de la
syntheése d’un contrble optimal de la chaine d’as thoteurs essence suralimentés.

19






Control-oriented engine modeling

Journal paper

« El Hadef J., Colin G., Chamaillard Y., and TalonRhysical-based Algorithms for Interpolation
and Extrapolation of Turbocharger Data MafBAE International Journal of Engines 5(2):2012

Conference proceedings

e El Hadef J., Colin G., Chamaillard Y., and Talon Neural Model for Real-Time Engine
Volumetric Efficiency Estimatioi1th Conference on Engines and Vehicles (2013).

e El Hadef J., Janas, P., Colin G., Chamaillard Ya(d &alon V.Geometry-Based Compressor
Data-Maps PredictionSAE World Congress 2013.

« El Hadef J., Colin G., Chamaillard Y., and TalonTMirbocharged S| Engine Models for Control
11th Symposium on Advanced Vehicle Control (IFAZD42).

e El Hadef J., Colin G., Chamaillard Y., and Talon New Physics-Based Turbocharger Data-
Maps Extrapolation Algorithms: Validation on a Skdgnited Engine.lIFAC Workshop on
Engine and Powertrain Control, Simulation and Modp(2012).

Engine nonlinear model predictive control

Conference proceedings

e El Hadef J., Olaru S., Rodriguez-Ayerbe P., Colin Ghamaillard Y., and Talon \Nonlinear
Model Predictive Control of the Air Path of a Tudb@rged Gasoline Engine Using Laguerre
Functions.17th International Conference on System Theornnt®b and Computing (IEEE -
2013).

e El Hadef J., Olaru S., Rodriguez-Ayerbe P., Colin Ghamaillard Y., and Talon MExplicit
Nonlinear Model Predictive Control of the Air Pati a Turbocharged Spark-Ignited Engine
Multi-Conference on Systems and Control (IEEE -201

« El Hadef J., Colin G., Chamaillard Y., Olaru S.,dRguez-Ayerbe P., and Talon Explicit-
ready Nonlinear Model Predictive Control of the Awath of a Turbocharged Spark-Ignited
Engine 7th IFAC Symposium on Advances in Automotive Goh(2013).

Oral Presentation

e El Hadef J.,Quasi-Systematic Engine Air Path Control Strateg@sd®l on Explicit Nonlinear
Model Predictive Control. Graduate Student Workshop Automotive Control Sophia
University, Tokyo, Japan (2013).

21



PATENTS

Registered

*  Fontvieille L., Talon V. and El Hadef Procédé de régulation d'une suralimentation pour
turbocompresseur couplé a une machine électriqudispositif turbocompresseur correspondant
INPI No FR 1258518

e Talon V., El Hadef J., Fontvieille L., Chamaillaxd and Colin G. Procédé de régulation d'une
suralimentation par turbocompresseur couplé a urechime électrique et avec une vanne de
dérivation, et dispositif de suralimentation coesdant INPI No FR 1258519

e Talon V., Bordet N. and El Hadef JEstimations des émissions polluantes des motesenes,
pour une application contrble et sans capteur despion cylindrelNPI No FR 1355008

Submitted

. El Hadef J., Talon V., Olaru S. and ChamaillardContrdéle des systémes VVT des moteurs dans
un objectif de contréle model-based des GMPs.

. El Hadef J., Talon V., Chamaillard Y. and Colin@hservateur polytopique de la pression amont
turbine pour les moteurs essence et diesel.

. El Hadef J., Talon V., Chamaillard Y. and Colin Gbservateur polytopique du régime de
rotation du turbocompresseur pour moteur essenckesel.

22



Control-oriented
physics-based model

of a turbocharged gasoline
engine air path






CONTROL-ORIENTED
GASOLINE ENGINE MODELING

Amongst all advanced control strategies, a nontimeadel predictive control (NMPC) scheme that uses
physics-based prediction model is certainly onéhefmost promising approaches. However, it alsoesar
the drawbacks of requiring a nonlinear model. i, favhile it benefits from the accuracy of a mutikable
and nonlinear description of the system that ionhiically as close as possible to the real systam,
development of such a complex model is often pitiéy besides requiring the knowledge of many
uncertain parameters. These critical issues haten ohotivated the development of alternative cdntro
approaches.

In the automotive industry, simulation has beconstamdard tool in powertrain and internal combustio
engine development. In practice, the design andbredibn of physics-based engine models are now
sufficiently familiar to be included early on iretllevelopment processes of most car manufactimefiect,
when considering the design and analysis of cordystems, models have proved capable of achieving
drastic development cost reductions. However, ti@ye not made their way into the control strategies
themselves and non-model-based approaches rathérally still have the advantage of avoiding tiirise-
consuming modeling phase. Finally, these simpleaamghes also benefit from a continuous optimization
process that has lasted for more than twenty yedosietheless, regarding future pollutant emission
standards and the increasing number of actuatarogern internal combustion engines, non-modeléase
control strategies may well have reached theirtlimi

In this context, this study attempts to combinelibst of both worlds by using a physics-based mibdelis
extensively used by car manufacturers to tackleirtherent modeling issue of NMPC approaches. This
physics-based NMP&cheme can then be used to control the engimeatirin a nonlinear and multivariable
fashion. Among the abundant modeling variationgopsed in the literature, the combination of a mean
value engine model with zero-dimensional modelhefpipes, in which the physical quantities areayed

on the volume, is probably one of the most matuedeting strategies for engine air path control
[42,43,57,59]. For insiders it is straightforwaidce it allows complete engine models to be budtrf a
given library of components. Moreover, the sub-nt®dee interchangeable and usually configurable in
terms of accuracy-complexity trade-off which makesdtogether an obvious candidate when consideaing
NMPC application.

This chapter gives an overview of the mean-valugnenmodeling approach when applied to the air path

a turbocharged gasoline engine. Key ideas aboufuthgtioning of gasoline engines are summed up in
section 1.1. In section 1.2, the philosophy belielmean value engine model is detailed. Finallythe
sub-models required to build the complete air patidel of the engine involved in this thesis areaitied
individually from sections 1.3 to 1.6. For eachtbém, the major nonlinearities are highlighted. The
validation of the methodology on a practical cabapplication is postponed until chapter 3, besiolir
practical applications of this methodology.
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1.1 Overview of turbocharged gasoline engines

In the automotive industry, internal combustioniaag are used to transform the chemical energyaowad
in the fuel into a mechanical power that will prbthee vehicle [65]. The engine spelgd and torque are the
result of the burning of an appropriate air-fuektuie in the cylinders (figure 1.1). The work tréersthat
provides the desired power output directly occatsveen the working fluids (fresh and burnt gased)tae
engine mechanical components (piston).

Pamb Pavc pape Pman
eamb eavc eape eman
- Heat
Air Filter exchanger
/l// Intake manifold
Compressor Throttle

Cylinders

Exhaust manifold

Pavt

gavt

Wastegate

Figure 1.1 — Air path scheme of a 1.2L turbochargedpark-ignited engine. The throttle and the
wastegate control the fresh air mass trapped in theylinders for combustion.

Let us consider the turbocharged spark-ignited rengiir path presented on figure 1.1. At the intake
(Paves Oavc), the compressor increases the press@g,., 0q,c) Of the fresh air, possibly beyond
atmospheric conditiongp{,. > pamp), and a heat exchanger cools dof,., d,p.) the fresh air flow.
Then, a variable flow restriction, namely the thHegt controls the flow entering the inlet manifold
(Pman Oman)- At the outlet of this volume, intake valves cohtthe mass flow rate aspired by the engine
Qeng- At this stage, the air-fuel mixture is ignitedaatime given by the spark advance. The combustion
products, whose composition depends on the airrliti during combustion, leave the cylinders tigloa
set of exhaust valves and enter the exhaust mdriifgl,;, 6,,:). At the outlet of this volume, the amount of
burnt gases which exhaust to the atmosphere thrthggturbine is controlled by a by-pass valve, Hgrae
wastegate. This energy, recovered at the exhatsgsdhe compressor and its outlet boost pregsyye
through a shaftw,). This introduces a mechanical feedback path iretiggne air path.
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From a control-oriented point of view, the air pafta turbocharged gasoline engine model can be age

a multi-variable nonlinear system that presentetao$ saturated input and output signals, disturban
such as the engine speed and the air/fuel rattbeangenous inputs such as the atmospheric pressdre
temperature conditions (figure 1.2). The input algncorrespond to the manipulated variables of the
actuators available to control one or more givegsial quantities taken from the set of output algn
(pressures, temperatures, flow rates). In the aih pf a turbocharged gasoline engine such as ke o
presented on figure 1.1, two actuators, namelytlinettle and the wastegate, are used to control the
pressures and flows through the engine in ordebtain the appropriate quantity of fresh air trappethe
cylinders during combustion.

Air/fuel ratio AFR Atmospheric pressure pgim

P

Gasoline engine
Wastegate u,,,y ————> air path — Airmass flow Qe

» Manifold pressure pan

Throttle uyp, —>» — Manifold temperature 6,,,,

— cic.

\. J
Figure 1.2 — Multi-input/multi-output description o f a turbocharged gasoline engine

The air path of turbocharged spark-ignited engassentially involves a combination of thermo- anigtif
dynamical processes that are highly complex. Féormal description, the reader is referred to [65].
However, when building a prediction model in an MiP&nework, the challenge is no longer in matching
experimental measurements at all costs, but inuciagt only the essential dynamics and nonlinear
behaviors while remaining small enough to be embddd the control law. Precision is still necesdamy

no longer the main constraint. The crucial issut idetermine an appropriate trade-off between racgu
and computational requirements.

Mean value engine models (MVEM) are able to acelyatescribe the non-trivial multiple-input multpl
output phenomena that occur in the engine cylindarorder to provide a relevant input-output
representation [57]. The zero-dimensional modelapproach that consists in suppressing all spatial
dimensions by averaging the physical quantities aneentire volume leads to a minimum set of equati
that can describe the pressure and temperatureriysm@ the engine pipes [57]. The combinationhefse
two approaches to model the complete engine ai ffegure 1.1) can be used to build a low-order
physics-based model that is in perfect agreemettt wiodel-based control strategies such as model
predictive control and the use that is made ofpitesliction model. In this section, we present geéseral
modeling approach, extensively used in the autoraatidustry, and that will later be used to bulhe t
engine air path prediction model that is at thertheithe NMPC control schemes presented in chagier
to 7.
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1.2 Physics-based modeling philosophy

When analyzing the air path of car passenger eagore remarkable thing is that both gasoline aesked
engines involve a similar set of components (pipais, filters, heat exchangers, valve actuators,
turbochargers). This observation argues for theldgment of a modular strategy based on individuak
models that may be combined and are possibly ateochangeable. However, when put into practice, th
assembled collection of accurate sub-models usledigts to unsatisfactory performances of the olveral
model. An additional calibration stage on the ccetglmodel is then required to obtain a relevarglied
accuracy. It usually consists simply in optimizithg value of the most uncertain parameters of eabh
model in order to match experimental measuremés]|

Each component of the air path is either taken as:
* acontrol volume (also known as reservoir), in Whicass and energy conservation equations are
applied or,
» aflow component that determines the transporta$srand energy between the control volumes.

The notion of control volumes is quite intuitivedaecorresponds to the components where mass ictalle
such as pipes and manifolds. The flow componertg dine flow between the control volumes. Examples
of flow components are the valve actuators sucth@ghrottle and the wastegate, the compressottaend
turbine. The engine cylinders are assimilated teokumetric pump that produces exhaust gases and
therefore also falls into this category [57].

Before detailing the equations involved in each ponent, the interactions and exchange between these
components must be clearly stated. As suggestedealtoe control volumes are governed by mass and
energy equations while flow components determirge rttass and energy transport. As a first step, it is
natural to select the pressure and temperaturb,rheasurable physical quantities, as states icdh#ol
volumes. The flow components will then transpos thass flows and temperature of the gas in the air
path. Hence, the complete air path model consistha simple succession of these two sub-elemants:
flow component is followed by a control volume gifsfollowed by another flow component and so forth
(figure 1.3).

Flow Control Flow
component volume component

Figure 1.3 — Example of a succession of control wohes and flow components in a 0D modeling
framework.

In the following sections the components will béailed separately and the equations presented alithg
the associated hypotheses.
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1.3 Control volume

Control volumes are the basic building blocks todeiahe intake and exhaust part; they store mads an
internal energy. Following the zero dimensional elodj philosophy, the thermodynamic states, i.e.
pressure and temperature, are assumed to be uriffdira entire volume. Under the assumptions dfcsta
pressure and no heat or mass transfer through dlis, ihe simplified Euler mass and energy equation
below apply in the volume:

m(t) = My (t) = Mgy, (t) (1.1)
U(t) = Hin(t) - Hout(t) (1.2)

wherem, U and H respectively stand for the mass, the internatggnand the enthalpy of the fluid that
depend on the instamt The indicesin and out respectively stand for the inlet and outlet of tuatrol
volume.

Assuming that the fluid behaves as a perfect gasideal gas law also applies:
p@®)V =m(t) -r-6(t) (2.3)

wherep and 6 are the pressure and temperature in the volunadr = ¢, — ¢, is the specific gas
constantc, andc, respectively stand for the specific heat of the igahe volume at constant pressure and
at constant volume.

Finally, the caloric relations below provide defions of the internal energy and enthalpy flow:

Ut) =m(t) c,6(t) (1.4)
Hin(t) = min(t) - ¢ - Oin (t) (1.5)
Hout(t) = Mgy (L) - Cp- o(t) (1-6)

Some simple algebraic manipulations on the abovataans lead to the well-known adiabatic formulatio
of pressure and temperature state equations icottteol volume:

Adiabatic formulation

P(&) == (11in (6 * 0in () = Tt () - 6(D)) (1.7)

0(t) = - 22 (113, (£) € 03 (8) = 1o (£) - € - O(E) = (1 (£) = e () - €, - (1)) (L.8)

'V p(t)

wherey = ¢, /c, is the ratio of specific heats.

It should be pointed out that the order of the nhadl be directly inherited from the number of dowl
volumes of the engine model since, by definitidre states are exclusively contained in those vodume
However in each of these reservoirs, the questiowtich pressure and temperature states should be
computed still remains.

There is no simple and systematic answer to théstipn, i.e. to determine whether or not the dycarhia
given physical quantity can be neglected or shdaddtaken into account. An attempt to make such a
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decision can be found in [57]. The authors progoselassify the behavior of the physical quantifige
three categories according to their relative dymaffigure 1.4). According to this classificatiorhet
physical quantities which present a settling titmat is much smaller (sign&)) than the variable of main
interest (signalD) should be modeled as purely static variables. Tielfravior can then be described by
algebraic equations. On the other hand, the phygicantities that are much slower (sigi@)) than the
variable of main interest (sign@)) can be considered as constants. If necessagy nihg depend on the

operating point.
I )

Physical
quantities 4

»

v

v

©)

»
»

Time
Figure 1.4 — Physical quantities classification uskto determine whether or not the dynamic of a
given physical value should be taken into accounthe authors in [57] propose to classify the
physical quantities into three categories accordingp their relative dynamic. Signal@ represents the
variable of main interest. The settling time of sigal @ is much smaller and can be modeled as a
purely static variable obtained from algebraic equéions. Signal®) is very slow, compared to signal
@ and can be taken as a constant. If necessary, theyay depend on the operating point.

In the control volumes of an engine air path, thespure is the variable of main interest since the one

to be controlled. Then, depending on the configonabf the engine, the adiabatic formulation used i
(1.7) and (1.8) may result in unnecessary computaticomplexity. In particular, in [60] it is shovhat

an isothermal hypothesis, characterizedds) = 0, can be used without inducing any significant loks
accuracy. Neglecting the temperature dynamics léadse-state control volumes [57], governed by the
simplified set of equations:

[sothermal formulation

P(t) = -0(6) (1 (£) = Mg (£)) (1.9)

6(t) = 6, () (1.10)
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1.4 Valve actuator

There is a wide variety of flow components invohiada turbocharged gasoline engine (figure 1.1). In
particular, the engine cylinders, the compressat #e turbine deserve dedicated models that will be
described in sections 1.5 and 1.6. The throttle thedwastegate, however, both fall in the categdry
isothermal orifices, i.e. whem;;(t) = 6,.(t). This sub-section focuses on the description isftype of
component.

In flow valves the upstream pressgrg and downstream pressug, drive the flow nonlinearly through
the section. Assuming a barotropic fluid that befsaas a perfect gas and a unidimensional and aggntr
steady flow, this nonlinear behavior of the flownd#e described using the Barré de Saint-Venanttiequa

[93]:
Pus 1 2y =
Q) = =" Aoy (W) - 117+ |72 (1 -y ) w.11)
I = max (Z_Zz' pcrit)

where A.¢¢ is the effective area of the orifice and dependslinearly on the actuator positiom.

2

¥
Peric = (— )" is the critical pressure at which the flow reackesic conditions. Indiceas and ds
y+1

respectively stand for upstream and downstream.

Despite the fact that the hypotheses involved is filrmulation are quite restrictive and rathefidifit to
verify in our particular application, the practicedsults are usually sufficiently accurate in aozer
dimensional framework to be used to model valveiaotrs such as throttle, wastegate and, when needed
poppet valves [122]. However, one last issue néedse taken into account. In fact, whep = pgs,
equation (1.11) shows an infinite gradient that Mlanake (1.7) and (1.9) difficult to integrate dethe
fact that they would cease to fulfill the Lipschaanditions [57]. Since this is unacceptable faoatrol-
oriented model, several simple pragmatic approatheggularize (1.11) have been developed [33,57].
They are usually based on smooth polynomial appratibns of (1.11) around a given threshold that
describe the change in the nature of the flow, ftorbulent to laminar. The resulting valve actuatmdel
then shows a very good accuracy with respect tobessch measurements, making it possible to work on
the complete range of actuator openings.

1.5 Engine cylinders

The mass flow in the cylinders pulsates with theropg and closing of the engine valves [33]. Foitay
the MVEM philosophy, these pulsations can be awsdtagver one or more engine cycles, such that only
the mean flow remains. This classical approximatizeets the standard accuracy requirements of #ir pa
control. The following sub-sections successivelgalibe the phenomena involved at the intake arbeat
exhaust of the cylinders.

1.5.1 Inlet mass flow rate

As suggested in section 1.2, the engine cylindezsapproximated as a volumetric pump, in which the
flow essentially depends on the upstream densitl anthe displaced volume [42,43,65]. The classical
modeling philosophy for engine cylinders consistsorrecting the theoretical mass flow rate thatiho
be aspired at intake manifold conditions, by aecion factor.
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This coefficient depends on the engine operatirigtmd is known as the volumetric efficiengy,,;:

_ Pman_, chl'Ne
Qeng - (T'aman 60-N ) X Nvol (112)
whereQ,,, is the engine mass flow raté,,, the total engine displacement aNd= 2 is the number of

revolutions per cycle on a four-cylinder four-steokngine. Sl units apply except for the engine dpée
that should be expressed in revolutions per minute.

The volumetric efficiency encapsulates the engiiétyato aspire the air contained in the intakenifiald
[65] but its theoretical behavior is rather difficto predict since various phenomena have to kentanto
account. These include internal exhaust gas rdation, ram and acoustic effects at the intake eods-
coupling between the cylinders [57]. Values cahegitbe obtained from precise 3-dimension modeling o
the fluid dynamic in the intake or reconstructeshirsteady-state test bench measurements of thecphys
guantities involved in (1.12). The volumetric effiocy is nonlinear and usually directly implemengeda
look-up table or using a low order polynomjal . Relevant inputs to be taken into account arestigine

speed and the inlet manifold pressure and temgeratu

Moot = fuer (Ner2222) (1.13)
For more complex technical definitions, an alteiwgaformulation of the nonlinear functigfy . should be
considered [30,68]. For example, we showed thatataetwork based models can accurately descride th
more complex phenomena involved when considerifgtzocharged spark-ignited engine equipped with
intake and exhaust variable valve timing [39].

1.5.2 Exhaust femperature and mass flow rate

In turbocharged engines, the exhaust enthalpy flate plays an important role by carrying a sub&ant
part of the injected fuel energy [43]. It also mgeEnts the energy that can be recovered by thiméurtr
boosting and thus has a major influence on th&éntmnditions through the mechanical coupling i
COMpressor.

In practice, the exhaust temperatérg, can be computed by estimating the temperatureaser over the
engine. The formulation proposed here uses the gde conditions, i.e. the inlet manifold temperatu
Oman and the engine mass flow radg,,:

quel'LHV

Havt = gman + keCh m

(1.14)
where Qg is the fuel mass flow ratd,HV stands for the lower heating value ang, estimates the
amount of energy that is transferred to the exhgast This quantity depends nonlinearly on many
phenomena such as energy wall losses and blowdowenhaust valve opening. It is therefore usually
desirable to describe it using a look-up table dova order polynomialf,  , of steady-state test bench

measurements assuming that the transient effextsegected (sign&) on figure 1.4):

Kecn = fkech (Ne: Qeng' quel) (1.15)
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Finally, the mass flow rate at the exhaust is etu#ihe sum of).,,, the inlet mass flow rate presented in
section 1.5.1 an@y,,, the fuel mass flow rate. Both are linked by thecatted air-fuel ratio, denoted
AFR, that characterizes the composition of the ait-figture:

AFR = 2ng. (1.16)

Qfuel

If the engine does not operate at stoichiometrid@mns, the air-fuel ratio is taken as an inpistutbance
of the model (figure 1.2). In that particular cate influence of the mixture composition on théaxst
manifold temperature must be carefully taken irdooant in order to maintain the accuracy of the ehod
In practice a nominal engine-out temperature maselisually corrected afterwards by an algebraic
correction function that depends on the air-fudloraA similar approach is also used when modeling
deviations from the nominal model due to the spatkance [57].

1.6 Turbocharger

Compressors and turbines are the two remaining ftomponents in the engine technical definition
involved in this study (figure 1.1). They play aykeole in the coupling of the engine air path, whil
involving highly nonlinear phenomena [42,43,57]tthél be described below.

From a control-oriented point of view, compressod durbine modeling strategies are very similar. In
particular, it is commonly assumed that the dynaptienomena involved inside both components are
much faster than the rate of change of their upsirand downstream boundary conditions. As suggested
in section 1.3, the fluid dynamics can then be wmred as a quasi-static phenomenon, which coraditier
simplifies the modeling approach.

P1us

Orus &

pT,ds
QT,ds

@ TURBINE
Figure 1.5 — Turbocharger side scheme.

The zero dimensional models of the compressor @i involve, in each case, two steps:

e First, assuming no losses, the transfer of energiden the component and the fluid is
determined using a data-map that links the pressat® Il = pc4s/pcus (respectively
[y = prus/Pr.as), the mass flow rat@. (respectivelyQ;) and the turbocharger rotational speed
W,

e Then, the losses occurring during the processadkentinto account using a second data-map that
links the isentropic efficiency of the compressgr(respectivelyy, for the turbine), the rotational
speedw; and either the pressure rafip. (respectivelyll;) or the mass flow rate through the
component). (respectivelyQy) .
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Thus, the modeling strategy consists in charadtgyithe behavior of the turbocharger through aoéé&ur
highly nonlinear look-up tables (figure 1.6).

1.6.1 Compressor

The compressor involved in this study is part @& thmily of fluid dynamic compressors, in oppositim
mechanical superchargers that are directly drivethé engine crankshaft. Under a quasi-static Hygss,
the mass flow rat§. through the compressor is directly read in a getetic experimental data-mgp,,:

Qc = feog, we) (2.17)

where the compression rafiy = p¢ 45/pcys and the turbocharger rotational spegdare the two inputs
of the look-up table.

In practice, the flow is distributed at a given pEratured. 5, which depends on the compressor isentropic
efficiencyn, and is given by the adiabatic equation below:

y_—1
Ocas = Ocus * (1 +%- (nc v — 1)) (1.18)
where 6. s is the compressor upstream fluid temperature htnéngine presented on figure 1.1, it is
assumed to be equal to the atmospheric temperé@ige= 6.

Similarly to the mass flow rate, the isentropida@éncy of the compressay; is read in an experimental
data-mapfc -

Ne = feqn(Qc, @) (1.19)

1.6.2 Turbine

The turbine is commonly assimilated to a flow riesbn and as such, is logically considered asoa fl
component in the MVEM framework (section 1.2). Unthe hypothesis of quasi-static dynamic, the mass
flow rate across the turbir@; is directly read in an experimental data-map dehgt , :

Qr = fro(y, ) (1.20)

where the expansion ratld; = pr,s/prqs and the turbocharger rotational spegdare the input of the
look-up table.

Similarly to the compressor case, the computatiothe outlet flow temperature accounts for lossed a
depends on the isentropic efficiency of the turbjpe

y—1

Oras = Orus| 1 =107 (1 - (H_IT) Y ) (1.21)

wheref 4 is the turbine outlet temperatui; s is equal to the exhaust manifold temperaturegnds
directly read in a fourth experimental quasi-staata-magfr

nr = fra(Ilg, @) (1.22)
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1.6.3 Mechanical behavior

In turbocharged engines, the fact that the compremsd the turbine are mechanically linked induaes
additional dynamic that can usually not be negtketden considering air path control. In particulie
turbocharger rotational speed, has a significant influence on the intake pressurassient response
[33,42,43,57,65] and an additional state is reguicecompute it (1.23).

Neglecting friction, the rotational dynamic of ttirbocharger is well described by the power balance
between the two components and Newton'’s second92jv

e =1+ (Tr(wp) = Te(w,) (1.23)

wherel is the mass moment of inertia of the turbochaegetT; andl. respectively represent the turbine
and compressor torques:

Qccp'(Ocds—Ocus

I (o) = e Cetton) (1.24)
Qr-cp(0Tus—Or,ds

Ir(w,) == al Zt ~Or.as) (1.25)

wherel.and'both depend on the mass flow rate across the coempd@., Q-} and the upstream and
downstream temperaturﬁ{ﬁcrus, Orusi Ocas HT,dS}, all computed from the four turbocharger data-maps
{fC,Q'fC,n'fT,Q'fT,r]} (1.17-1.22). A lower turbocharger rotational spsaturation completes the model in
order to avoid singularity whem, = 0.

1.6.4 Compressor and turbine data-map issues

Modeling the behavior of the compressor and thbiter requires the introduction of an additionatesta
namely the turbocharger rotational spe&d Its computation requires the knowledge of sevphglsical
guantities such as flow rate and isentropic efficiethat are all read in four quasi-static data-sndigure
1.6). These are built from experimental test bemebasurements and are often provided by the
turbocharger manufacturer. It should be mentionededver that they are usually corrected for spetifie
reference pressure and temperature conditionsys et can depend on the manufacturer.

s N
Qc fco fen
n, —» — W,
w, —> fro frm

\ J

Figure 1.6 — Turbocharger rotational sub-model oveview: @, is obtained from the compressor mass
flow rate Q, the pressure ratio across the turbindly, the current turbocharger rotational speedw,
and four quasi-static look-up tablesf; o, fc.,, fr,0, fr.n, Usually partially provided by the
turbocharger manufacturer.
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The fundamental issue with the data-maps that ereidged by the component manufacturer is that they
never cover the entire operating range, but only kiighest rotational speeds. Extrapolating these
experimental data to low speed regions has thée twarried out by the user. Since these areassegira
significant part of the standard operating rangdafinsized engines (see chapter 2), several metieods
been proposed in the literature to extrapolate dhta-maps. However, when considering only those
methods that do not require additional inputs tthenfour manufacturer data maps, none of the paipos
available in the literature lead to sufficientlycacate results [33,57,92].

1.7 Conclusion

This first chapter has introduced the modelinggaophy that will be used to build a prediction moafe
the engine air path in chapter 3 and has underlinechumerous nonlinearities involved in such a ehod
The latter is control-oriented and will be usedr@mious nonlinear model predictive control scherinem
chapters 5to 7.

In order to obtain an accuracy versus complexiageroff compatible with nonlinear model predictive
control requirements, we propose to combine a mesdune engine model with a zero dimensional
modeling of the air path. Both approaches are djr@adely used in the automotive industry and reprg

a significant part of current research into modeddd control. At the heart of the proposal is the
discretization of the air path into two types aéraknts: control volumes and flow components. Wik
former share a single set of equations based ors @muag energy conservation laws, the latter usually
require dedicated sub-models.

Amongst all these flow components, the turbochameved to be the element that requires the most
attention since it introduces a fundamental cogphietween the intake and the exhaust of the engme.
result, it considerably impacts the overall accyratthe model. However, the classical compressar a
turbine modeling strategy is based on a set of fpuasi-static data maps that are provided by the
manufacturer, but need to be extrapolated in otdezover the entire operating range. And so far, no
method in the literature has proved capable of gotilg accurate extrapolation in a systematic manne

This is the aim of the following chapter that, stay from the analysis of turbo-machinery equatjons
introduces a new set of physics-based extrapolati@tegies of these four turbocharger data-maps.
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CHAPTER 2

TURBOCHARGER
DATA-MAPS EXTRAPOLATION

The approach most commonly found in the literataomcerning turbocharger modeling consists in
entering extensive mapping data in four quasi<statik-up tables (1.17), (1.19), (1.20) and (1.22% are
interpolated during the simulation (section 1.6pwéver, while engine mapping usually covers thé&ent
operating range, the experimental data providethbyturbocharger manufacturer usually only cover th
highest turbocharger rotational speeds (figure. 2rilyeneral, the relative speed range, i.e. thedd over
the highest rotational speeds, is roughly 40%. tmeio words, for a maximum turbocharger speed of
200,000 rpm, no measurements below 80,000 rpmarally provided. This can be explained by the fact
that large relative errors are encountered whensomesy low pressure ratios and mass flow rates.
Moreover at such low rotational speeds, the heatster between the turbine and the compressor leEcom
substantial with respect to the enthalpy flow o fhuid. Another important issue is that manufaetsr
data-maps are usually provided in the form of igeesls that are generally poorly discretized (figlifg.
This considerably complicates any interpolation amttapolation initiative to obtain information the
empty zones and argues for physics-based methadsldbhis is in contrast with the most popular mode
used in the literature [70] that is based on a eratitical representation of phenomenological obsiena
rather than on turbo-machinery equations. Howewbile many alternative models exist in the literatu
[7,35,69,74,87,92,127,134], they usually requirehsa detailed knowledge of the components’ geometry
that they disqualify everyone but turbo-machingrgaalists.
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@ Supplier data - efficiency
B Supplier data — mass flow rate
& Turbine operating range

1 15 2 25 3 35 4 0 0.05 0.1 0.15
Pressure ratio Corrected mass flow rate (kg/s)
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Figure 2.1 — Typical compressor and turbine guasitatic experimental data provided by the
manufacturer from [88]. They respectively correspon to a finite set of operating points
(¢, Q¢, we,ne) and (17, Qr, we, ny) for the compressor (left) and the turbine (right).It can be seen
that while these data cover a wide variety of presse ratios I1; -, mass flow ratesQ. » and isentropic
efficienciesn r, this information is available for only a few highturbocharger rotational iso-speeds.
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The data in between these iso-speeds and at low bacharger rotational speeds must then
respectively be interpolated and extrapolated.

This chapter intends to propose a new set of eadatipn models that appropriately combine mathecsati
empirical observations and turbo-machinery thebryarticular, a strong focus is placed on resingjthe
input requirements to the standard experimentalratipey points usually provided by turbocharger
manufacturers. The scope of the new models is talily limited to radial components since they tre
only ones used in the automotive industry. Thesedetso also principally address single stage
turbocharging configurations with fixed geometrybines. However, variable geometry turbines can als
be addressed by treating each position as a fieamgtry turbine. Finally, the robustness of the
methodology is validated on a wide library of coments representative of the variety of componesits s
up on the Renault SAS vehicle line and includesuaiinirty compressors and thirty turbines (incluglin
variable geometry turbines), from different mantdiaers including Garrett, BorgWarner, Mitsubishdan
Bosch Mahle.

The major outcomes are: new empirical models fonm@ssion ratio and turbine flow rate extrapolagion
built in agreement with experimental observatiorey robust and easy-to-implement algorithms, based
the combination of thermo-machinery equations, eicgdiknowledge and local optimization routinesgan

a significant improvement in the consistency ofteftiermo-machine sub-model obtained by creating a
thermodynamic link between the pair of data-mapslired in each of them (section 1.6).
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2.1 Compressor

This section presents a robust interpolation anichpglation strategy for the compressor pressure aad
isentropic efficiency data-maps (section 1.6).Ha developments below, the focus is on the extediool
stage as this represents the most challenging.issue

The first sub-section 2.1.1 details the operatinggiples of the compressor. The second sub-seétibr?

is dedicated to the extrapolation of the pressat® Mata-magf;, (1.17) and successively presents the
theoretical extrapolation model (section 2.1.2tH¢, practical extrapolation methodology (sectich22),
and the associated algorithm (section 2.1.2.3)e\Reilt results obtained for different compressoes ar
presented in section 2.1.2.4. The third sub-se@idr3 concerns the isentropic efficiency data-niap
(1.19) and presents the extrapolation methodolotig\vfing a similar layout.

2.1.1 Thermodynamic considerations

From inlet to outlet, a centrifugal compressorssally composed of four elements: a static inlehsas a
pipe (1), a bladed rotor or impeller, a diffusendaa collector (2) (see left figure 2.2). The biddetor
transfers the energy from the turbocharger shatedfuid, while the diffuser converts the kinetinergy
of the gas into pressure by gradually reducing glas velocity. Finally, the collector delivers the
compressed air to downstream pipes: usually theeragr inlet system or another compressor.

The phenomena taking place in the rotor area asglel@ on the h-S (specific enthalpy — entropy)gdian
below (right figure 2.2). At the inlet, the airas pressurg, and speed;. The rotor accelerates the gas up
to speed’;,. The enthalpy gain frorh to 1b is due to the increase in kinetic energy (statespurep,;,
remains close tp,). Then, the pressure is increased in the diffogaransforming the kinetic energy into
potential energy: the gas velocity decreasds, tavhile the static pressure reachgsat the diffuser outlet.
The total pressurg,, is then almost equal to the static presgyre

Collector

Compressor
casing

Qv

——— Static isopressure
Total isopressure

Figure 2.2 — Left: Side view of a centrifugal compessor,
Right: h-S diagram of a centrifugal compressor.
Py and py, = p, + 0.5 - C,” respectively stand for static and total pressure at, C, is the fluid speed.

39



It is this transfer of energy from the shaft to thed that is actually characterized by the dataprfi. , that
gives the pressure drop across the compressor.oMereas can be seen on figure 2.2, entropy identea
i.e. there are losses during the process. In fattdeal compression would be represented by é&akrt
straight line resulting imMS = 0. These losses are characterized by a second d@dgtaknmown as the
compressor isentropic efficiency data-nfap (figure 2.3).

2.1.2 Extrapolation of the pressure ratio data-map
I, = fc,Q (Qc, w¢)

The first look-up table involved in the compressab-model (1.17) describes the pressure ftias a
function of the mass flow rate through the compregs and the turbocharger rotational spegd(figure
2.3).

Qc —

w¢ >

feo ]_’ I¢

Figure 2.3 — Input/output description of the comprasor pressure ratioll, data-map. Q. stands for
the compressor mass flow rate and, for the turbocharger rotational speed.

The most popular formulation was introduced by darend Kristensen in the 1990s [70] and is in &act
simplification of the model proposed by Winkler Bl3in the 1970s. The compression rafip and
compressor mass flow rafg are respectively expressed in terms of two dinmsss quantities (2.1 and
2.2): the head paramet®rand the dimensionless flow rate

1 2.1
Lp:CP'eC,us'[(Hc) L4 _1]'% ( )
Qc (2.2)

@ =TT -2 ..

Pz D:% - Uc

wherey = ¢, /c, is the ratio of specific heats, andc, respectively stand for the specific heat at canista
pressure and at constant volurélg,,; is the inlet fluid temperature, is the fluid densityl/c = 6”—0 ‘D, - w;
is the blade tip speed afy is the compressor wheel exducer diameter.

The head parametdf is then expressed as a function of the dimensisrilew rated and the inlet Mach
numberM,, using the empirical equation below:

k1+k2'Ma+k3'(b+k4'Ma'(b lth M UC (23)
= w =
ks + ke My — @ C Y R O

where k;,i = {1,...,6} is a set of constants to be fitted on the expemiad data provided by the
manufacturer an® is the fluid gas constant.

When they have been identified, the head paraniétand then the pressure rafig using (2.1) can be
computed for any mass flow rafg. and turbocharger rotational speed The construction of the first
data-mapfc , is then straightforward. The empirical model (28hile easy to implement, is known to
lead to a data-map that is accurate only at medatational speeds. At high rotational speeds iti@aar,
when new fluid characteristics should be taken ounsideration [70], the inadequacy of the conssant
of parameterg; usually results in an inaccurate fit.
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To overcome this issue, Martin et al. introducethim 2000s a methodology in which all manufactise+
speeds are treated separately and a new getooiefficients is fitted at each turbocharger rotadl speed
[87]. The extrapolation of the data-map at low tiot#al speeds is then obtained by using the set of
coefficients corresponding to the lowest iso-sppeaided by the manufacturer. The drawback of this
method, while showing a better fit at high rotatibspeeds, is that the accuracy at lower speedstis
guaranteed since the setigfparameters is kept constant throughout the exaggzbarea. In particular, if
the lowest iso-speed provided by the manufactsréza high, the set of parameters may be inadequate

An alternative expression for the head param@tavas also proposed in the 2000s [42,43] and directl
based on Winkler’'s work [135]:

lP_k1+k2-Ma+k3-Maz+ ky ®+ks My -®+kg M @ (2.4)
B k7+k8'Ma+k9'Ma2_(p

where k;,i = {1,..,9} is a set of constants to be fitted on the expemial data provided by the
manufacturer.

In this approach, the introduction of new paransetlrough the use of second order polynomials ptéee
improve the fit w.r.t. experimental measurementd,48]. However in practice, the calibration of this
model requires the identification of a set of naoefficients which, without any prior knowledge their
optimal values, proved to be intractable. The mautelposed below uses the philosophy proposed by
Martin to overcome this issue.

2.1.2.1 Theoretical extrapolation model

The idea is that if iso-speeds are considered atgdgr the expression (2.4) that proved to be tlostm
accurate can be considerably simplified. In fatanstant turbocharger rotational speed, the f\dach
numberM, becomes constant and a new formulation for the pesameter can be obtained:

_A+B-?

% (2.5)

where A, B and C represent the new set of parameters that neede tiddntified for each of the
manufacturer’s iso-speeds, thus resulting in ao$qtarameter values that depend on the turbocharger
rotational speed.

It should be noted that according to (24)B andC are second-order polynomials that are, at thigesta
only known at a finite set of turbocharger rotatibepeeds (figure 2.4). To compute the pressure irat
the extrapolated zone, i.e. for lower iso-spedusse polynomials ab, must be explicitly defined. Thus,
onced, B andC have been identified at each of the manufactuiedsspeeds, a second step consists in
identifying the parameteisy, By and yy with X = {4, B, C}:

X(we) = ay - o+ By - we + vy (2.6)

Once the parameters in (2.6) have been identifiedexplicit formulation of the second order polgmals
A(wy), B(w;) and C(w;) can be combined with (2.5) in order to compute pihessure ratio for any
compressor mass flow rate and turbocharger rot@tgpeed. The construction of the first data-rfigpis
then straightforward.
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2.5

x 10°

Figure 2.4 — Extrapolation model parametersA, B and C in (2.5), versus turbocharger rotational
speedw,. A second order polynomial is fitted (solid linesjhrough the reference points (colored
circles). In the final algorithm (section 2.1.2.3)the zero velocity point (white circle) must be natd

down for later use.

This new model essentially presents two advanteggesding its accuracy and implementability:
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The second order formulation w.r.t. the turbochargéational speed takes into account the flow

fluctuations across the operating range. Contmdensen and Kristensen’s model, homogeneous
fit performances are obtained for every rotatiogsyzed. In particular, on the thirty compressors

available for this study, this new model providesrenaccurate results than the affine model (2.3)

that is currently widely used in practice. Pradtregults are presented in the following sections.

The 3-parameter model (2.5) is particularly welhpiiéd to the use of manufacturers’ data-maps
that sometimes contain no more than five to sixeexpental operating points for each iso-speed.
Moreover, the calibration requires a simple gradidescent algorithm, while many other
formulations require the use of a global optimatialgorithm in order to overcome local
minima.



2.1.2.2 Extrapolation practical methodology

On figure 2.4, it can be seen that the model (dd®s not perfectly fit the experimental measurement
provided by the manufacturer. This is due to thpadtiyeses that led to the formulation of the sinmgudif
model (2.6) but also more generally to measureraenars that cannot be overcome. As a consequence,
and in order to improve the fit to the experimemniaia points, two practical recommendations aregsed
below. They improve the fitting performances whipeeserving the smoothness and monotonicity
properties of the results:

e« The y-intercept of each second order polynomialcfiom A(w;), B(w;), or C(w;), is
determined using a second order model obtained with classical Levenberg-Marquardt
optimization algorithm [129],

« Then, the interpolation is obtained using a monetpiecewise cubic interpolation [50] based on
cubic Hermite splines. They ensure that a smooth-gdep is obtained while preserving its
monotonicity. This interpolation method benefiterfr the flexibility offered by cubic splines as
well as guaranteeing the monotonicity of the ref38i.

These recommendations have been followed for tieegalation and extrapolation of about thirty press
ratio data-mapg. , and showed an excellent robustness to the widetyasf compressors and operating
points available for this study. A validation exdepf a fully interpolated and extrapolated pressatio
data-mapf; , is provided below. No additional measurementswael iso-speeds than the one provided by
the manufacturer could be carried out during thisls Thus, in order to prove the extrapolationuaacy

of the methodology, the three lowest iso-speeds vescluded from the input data used for the model
calibration. These experimental points, includihg three excluded iso-speeds, are displayed bdtovg a
with the model prediction and confirm the accurafythe model (2.6) both in the interpolated and
extrapolated zones (figure 2.5). Additional validatresults are presented in section 2.1.2.4 below.
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Figure 2.5 — Compression ratidl, versus normalized mass flow rat€). ,.4. For each supplier iso-
speed, the pressure ratio is plotted (solid lines)hd compared to the manufacturer’s points (colored
circles). New iso-speeds, interpolated and extrapiked, are also presented (dash-dot lines).
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2.1.2.3 Final algorithm

The complete methodology to compute the pressuie data-mapfc, can finally be summed up as
below:

Inputs: Experimental operating pointflc, Q;, w.} in the form of a finite number of turbocharger
rotational iso-speeds.

Outputs: Complete extrapolated compressor pressure ratirdapllc = f¢ o (Qc, w,)
1- Compute¥ and® for all the data points provided by the manufaatwsing (2.1) and (2.2).
2- Treating each iso-speed separately, idedtjf andC according to the model defined in (2.5).

3- Determine the best second order polynomials fwfitcA, B andC w.r.t. w; (2.6). Then compute the y-
intercepts of each second order polynomial ApB andC respectively, and add them to the values found
at step 2 with the corresponding zero rotationaksp

4- Interpolated, B andC through the entire operating range using monopi@eewise cubic interpolation.
5- Determing¥ through the whole operating range using the intietpd values ofl, B andC and (2.5).

6- Calculatdl. through the entire operating range inverting (2.1)

2.1.24 Additional examples

One major issue, when developing such a modeb, isake sure that it is robust enough to be appiex
wide variety of experimental data. This sub-secSoms up a few results obtained on different cosgme
data-maps available for this study. In each cdse,three lowest iso-speeds were excluded from the
calibration data set but are displayed below ta@tthe accuracy of the model (2.6).
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2.1.3 Extrapolation of the isentropic efficiency data-map
Nec = fc,n(Qc, w¢)

The second look-up tabjg ,, involved in the compressor sub-model (section fir6yides the compressor
isentropic efficiencyy, as a function of the mass flow rate and the tunboger rotational speed (figure
2.7). It takes into account the losses occurringnduhe compression process (figure 2.2).

Q —
fen > Nc
We >

Figure 2.7 — Input/output description of the comprasor isentropic efficiencyy,. data-map. Q. stands
for the compressor mass flow rate and, for the turbocharger rotational speed.

It is theoretically defined as the ratio of two ploal quantities [134,135] that respectively copey to
the energy that is transferred to the fluid in itieal or isentropic case and the energy transfat ith
observed experimentally (figure 2.2):

b, (2.7)
Ne =

where Ah. ;s corresponds to the isentropic specific enthalpgharge that would occur during an ideal
compression process ahd, is the specific enthalpy exchange that actuallyucs due to the losses. The
two are linked by the following relation:

AhC,is = AhC - Al’lC,losses (28)

whereAh¢ 55 COrresponds to the compressor losses that maiaty 8om blade incidence and viscous
friction (figure 2.2).

Most of the extrapolation strategies in the litaratuse an alternative formulation figs rather than the
physical one above (2.7). For instance, JenseiKenaténsen proposed to use a second order polyhomia
describe the isentropic efficiency of the compresaba given rotational speed [70]. Because of its
phenomenological rather than physical foundatibdid not prove to lead to an accurate estimatiothe
isentropic efficiency for extrapolated operatinging® [87,92]. This motivated many investigations
[35,74,92,127] into more physics-based modelsukaglly go as far as using the detailed geomettief
compressor (blade and flow angles, inducer and @dwheel diameters). In this study, we introduce a
alternative approach based on the thermodynaminitiefi of the isentropic efficiency (2.7) but théwes
not require knowledge of the detailed geometribalracteristics of the compressor.

2.1.3.1 Theoreftical extrapolation model

In order to compute the isentropic efficiency usifZy7), we introduce two separate sub-models for
Ahcis = fean, (Qc, wp) and Ahg = fe an(Qc, w, ). Then, computing the isentropic efficiency at segi
operating poinfQ., w,} will comprise three steps:

«  Computing the isentropic specific enthalpy exchatlyge;; usingfc an,, (),
*  Computing the specific enthalpy excharge: usingf. A, (b) and,
e Computingn. using (2.7) (c).
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a) Isentropic specific enthalpy exchange Ah¢ ;s = f¢an, (Qc, ®¢)

In a general framework, the isentropic specifihalfly exchangéh, ;s is given by:
v-1 2.9
AhC,is = ((Hc) Yy = 1) “Cp ec,us ( )

where the pressure ratifp across the compressor is the only physical vdiaedepends on the operating
point {Q., w,}. Its computation is straightforward since it candbtained using the pressure ratio model
fec,0(Qc, wy) presented in section 2.1.2. Then, the explicitniaation of f¢ ap, (Qc, ;) is straightforward
and is obtained by replacing in (2.9) the tdtpby the pressure ratio data-mgy,. This makes it possible
to compute the isentropic enthalpy exchanfig; for any operating poirftQ., w.}.

A set of experimental values fdh.;; was computed using (2.9) and the pressure rati@sumrements
provided by the manufacturer. These reference satuwe depicted on figure 2.8, along with the model
estimations that were computed using the pressiie data-mapg., obtained in section 2.1.2 (figure
2.5).

Figure 2.8 — Isentropic specific enthalpy exchangkh. ;; versus reduced mass flow rat@ ;.. (2.9).
The isentropic specific enthalpy exchange obtainedgith the model (solid lines) shows a good fit with
the manufacturer’s points used for model fitting (®lored circles).

It can be noticed that the accuracy of the iseitrspecific enthalpy exchange sub-mofiel,, is directly
linked to the accuracy of the pressure ratio mg@gl obtained previously. This distinctive feature loé t
methodology represents a major advantage comparether mean value formulations available in the
literature, since it increases the overall consisteof the compressor model by creating a link leetwthe
pressure ratio and isentropic efficiency data-nthpsit contains. In particular, if one wants tdance the
compressor model by taking into account additieffdcts on the pressure ratio data-maps, suchrge su
phenomena [87], this will implicitly modify the istropic enthalpy exchange sub-model and therehly als
adapt the efficiency data-map.
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b) Specific enthalpy exchange Ah; = fan(Qc, wy)

Assuming no inlet guide vanes, i.e. no inlet prédswffects, turbo-machinery equations provide a
theoretical linear relationship that is valid anstant compressor rotational speed, between thefispe
enthalpy exchang&h and the reduced mass flow r@ig,.q [87,95]:

Ahe =b—a"Qcrea (2.10)

wherea and b are two constants that are fitted on each manufaciso-speed (this results in a set of
parameter values that depend on the turbochartaiamal speed) an@. .4 is the reduced mass flow rate

of the compressor:
Q _ 9C,us . pref i Q (211)
Cred gref pC,us ¢

where,0,.; andp,., are the manufacturer’s reference pressure andetetype during the measurements.

The same philosophy used for the calibration of ghessure ratio model in section 2.1.2 appliesheac
manufacturer iso-speed is treated separately and given rotational speed, values for the model
parameters andb are obtained by regression analysis [36] (figuf).ZReference values for this series of
regression analyses are computed from the expetaingmerating points provided by the manufacturet a
using the theoretical formulation below, that conds (2.7) and (2.9):

¢ Ocus ((HC)VT_1 - 1) (2.12)

0.1

0.06
QC,red
Figure 2.9 — Specific enthalpy exchangéh, versus reduced mass flow rat@. ,.,. The specific
enthalpy exchange model fitting results (2.10) (ddllines) are presented against the manufacturer’s
reference points (2.12) (colored circles). The spéic enthalpy exchange is linear w.r.t. the
compressor reduced mass flow rate.

Since this affine relationship was obtained fronygital-based turbo-machinery equations, in (2.1@) t
trend of the slope and the y-intercepb w.r.t. the compressor rotational speed is known [87,95].

Assuming a constant inlet fluid density, relevanmtdingle stage turbocharger configurationgs expected

to be proportional ta,. In particular, the curve is expected to go thiooggo:a(0) = 0 (figure 2.10).
Similarly, b theoretically evolves as the square of the turbogédr rotational speed and hence also goes
through origob(0) = 0 (figure 2.10).

0.2
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Figure 2.10 — Model parameterst and b versus rotational speedv;. The reference values are
obtained by regression analysis on the manufacturéy data (2.12) (colored circles) and presented
with a second order polynomial fit (solid line).

In practice the parameters and b in (2.10) are usually not sufficiently descripti{@5]. This can be
observed on the example depicted on figure 2.10revitecan be seen that the experimental reference
operating points obtained with (2.12) do not pefefit the theoretical linear trend suggested ahdvor

this reason, the parametersandb can be used during the calibration to fine-tureerttodel prediction to
the manufacturer’s experimental operating pointss Btage is fully described in section 2.1.3.2bel

c) Isentropic efficiency n¢ = f¢,(Q¢, w,)

At this stage, using respectively (2.9) and (2.103, specific enthalpy exchangth. ;; andAh. involved

in the calculation of the isentropic efficiency{2can be computed for any operating pdip¢, w,.}. The
construction of the isentropic efficiency look-ugble f.,, used in the compressor model (1.18) is then
straightforward.

It can be noticed that the methodology directlyeirits its accuracy from a set of hypotheses inwblve
the design of a simplified specific enthalpy exdmah, model (2.10) and from the accuracy of the
experimental measurements provided by the manutactiihe latter are used during the calibratiothef
pressure ratio modg}. , used to computéh.;; as well as for the identification of andb. In order to
increase the robustness of the model calibratinritesative process will be put in place to fineduthe
shape of the isentropic efficiency curve to empiricbservations. In particular, it is the positiohthe
maximum efficiency point that is considered herd presented in the next sub-section.
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2.1.3.2 Extrapolation practical methodology

In the theoretical extrapolation model detailed\ahahe linear regression used to determine theemod
parameters andb in (2.10) is a very uncertain stage. In fact, etreugh an affine relationship is a very
attractive formulation in a data fitting processpractice, the experimental measurements pro\igetie
manufacturer do not present a perfectly lineardrigure 2.9). For instance, on the example prieskm
figure 2.10, the values far andb can vary by about 15% from one set of points totlar during the
regression analysis stage. To obtain this figire régression analysis was performed at each sedspn
all the sets containing more than five points.

Since Ah;; in (2.7) is directly obtained from the pressuréioranodel presented in section 2.1.2, the
parametersz and b represent the only inputs of the extrapolation eidd fine-tune the shape of the

isentropic efficiency curve. In particular, for @aen iso-speedp controls the value of the maximum

efficiency pointn,. through (2.10). Additionally, in [87], it was obsed that the curve connecting the
isentropic maximum efficiency follows a parabolaatthgoes through origo, w.r.t. the turbocharger
rotational speed:

n, =max(nc) = Ky - 0> + Ky - w, (2.13)

whereK;,i = {1,2} is a set of new parameters identified by regresailysis.

—Maximum efficiency parabola

|
j/ | —Maximum efficiency parabola

© Manufacturer points . ! © Manufacturer points
O Model before optimization (L/ 1 O Model before optimization

0 0.5 1 1.5 2 2.t 0 0.5 1 1.5 2 2.5 3
(*)t X 105 @ X 105

Figure 2.11 — Maximum compressor isentropic efficiecy 7. versus rotational speedo,. The

reference maximum efficiency for each iso-speed (gen circles) can be extrapolated using a second
order polynomial that goes through origo (2.13) (da line). One can see that the maximum efficiency
initially obtained with the theoretical model (2.7 (2.9) and (2.10) (white circles) does not follothis
parabola.

This regression analysis requires a set of refergguints. In practice, since the experimental maxim
efficiency point of each iso-speed may not be metliby the manufacturer, it can be estimated bygusi
the second order isentropic efficiency model prepdsy Jensen and Kristensen [70]:

Ne =6, Q& +68,-Qc + 8 (2.14)

where the coefficients;,i = {0,1,2} are identified using regression analysis on eaehufacturer iso-
speed.
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Even though it is shown in [87,92] that this engatimodel (2.14) leads to inaccurate extrapolatidgrsn
still be used as an intermediate interpolation toastimate the maximum efficiency poit of each iso-
speed. An example of the reference maximum effigiguoints is depicted on figure 2.11, along with th
parabola fit (2.13).

Once the equation of the maximum efficiency paral{@l13) has been identified, the valuebofan be
fine-tuned until the corresponding iso-speed cumas its maximum efficiency point on the parabola
(figure 2.12). In practice, in order to start witte best initial value ob at each iso-speed, the regression
analysis (2.10) is performed for all the set of ofanturer operating points containing more thare fiv
points. The best set is the one that leads to timéum sum of squared residuals w.r.t. the maximum
efficiency parabola (2.13). The overall procesejgeated for all the iso-speeds of the isentrofficiency
look-up tablef; ,,. Examples of final results are depicted on figRu¥2.
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—Maximum efficiency parabola | —Maximum efficiency parabola
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! @ Model after optimization 1 @ Model after optimization
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Figure 2.12 — Maximum compressor isentropic efficiecy 77, versus rotational speedo, after
optimization. The reference parabola (2.13) (solitine) is presented as well as the manufacturer’s
points (green circles). After optimization, the maimum efficiency points (purple circles) are now on
the parabola both for the interpolated and extrapohted rotational speeds.

Altogether, it is a four-step process:

» obtain the maximum efficiency points at each iseespby using the second order model (2.14),

» use these reference points to determine the equattithve maximum efficiency parabola (2.13),

e determine at each iso-speed the set of manufattyreints that minimizes the error between the
maximum efficiency point of the isentropic effic@ncurve (2.7) and the maximum efficiency
parabola (2.13) and,

« fine-tune the values df in (2.10) until the maximum efficiency point of #o-speeds lies on the
maximum efficiency parabola (2.13).

This single loop iterative algorithm was used tonpote the isentropic efficiency map of about thirty
compressors and gave a series of results in peafgretement with empirical observations [136,137].
Thanks to the wide variety of manufacturer data-srapd compressor geometries available for thisystud
it also showed a high level of robustness.
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A validation example of a fully interpolated andtrepolated compressor isentropic efficiency datgma
fcn is depicted on figure 2.13 below. As in the pressatio case, no additional measurements at lower
iso-speeds than the ones provided by the manuéctauld be carried out during this study. Moreover
due to the particularly complex shape of the ismitr efficiency data-maps, it was not possiblexcede

any of the iso-speeds during the model calibrasiage. Still, the good accuracy of the methodoloayy

be observed by comparing the manufacturer expetaheperating points to the iso-speeds computed

from (2.7) and the extrapolation methodology présgmbove. Additional validation results are présén
in section 2.1.3.4 below.

Figure 2.13 — Compressor isentropic efficiency. versus reduced mass flow rat@. ,.4. The
extrapolated compressor efficiency (solid lines) hews a good fit with the manufacturer’'s data points
(colored circles) through the entire flow rate ran@. Interpolated and extrapolated iso-speeds are als

displayed (dash-dot lines).
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2.1.3.3 Final algorithm

The complete methodology to compute the compraseatropic efficiency data-maf ,, is summed up in
the algorithm below and illustrated on figure 2thdt provides an overview of the general stagethef
algorithm:

Inputs: Experimental operating point§)., Qq, w,} in the form of a finite number of turbocharger
rotational iso-speeds. The compressor mass fleavdatia-mag .

Outputs: Complete extrapolated compressor isentropic efficy data-map. = f¢,(Qc, @.)

1- Evaluatern . for each manufacturer data iso-speed using a km@dnd order polynomial model using
(2.14)

2- Determine the equation of the maximum efficiepayabola (2.13). One must $et= 0 whenw, = 0.

3- ComputeAh ;s through the whole operating range using the presgatio data-mayf, obtained in
section 2.1.2 and the isentropic specific enthabpghange sub-model (2.9).

4- Calculate the reference points fgt. using the experimental operating poififs, Q., w.} and (2.12).
5- Select a combination of experimental operatiog{s {n., Q., w;} containing three or more points.

6- Identify the values of parametersandb in (2.10) by regression analysis and using the&etference
points determined at step 5. Repeat step 6 forisaespeed of the experimental operating points.

7- Extrapolater andb as second order polynomials w.t.. Take into consideration the fact thaD) =
0andb(0) = 0.

8- Extrapolate\h through the whole operating range using (2.10)thacextrapolated values ofandb.

9- Calculaten. through the entire operating range usitig ;; obtained at step 3 arnth, obtained at step
8 and (2.7).

10- Determinen,. for each extrapolated iso-speed.

11- Compute the residual fgi. obtained at step 10, w.r.t. the maximum efficiepayabola (2.13). It is

equal to the sum of the squared difference betwleeparabola found at step 2 and the values eeal st
step 10. Save it.

12- If other experimental operating point combioasi have not been evaluated, go to step 5. Iffimat,
the combination of points with the smallest residaan,. (saved at step 11) and use it from steps 6 to 10.

Then go directly to 13.

13- For each iso-speed, optimize the valué af order to reduce the residual fgr w.r.t. the parabola
identified at step 2. The initial value was complud¢ step 7.

14- Synthesize the full data-mgp, usingAh. calculated with the values of obtained at step 13 and
(2.10).
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Figure 2.14— Compressor isentropic efficiency data-map extrapaition algorithm overview.

2.1.3.4 Additional examples

A particular focus during the development of thettmdology was to obtain sufficient robustness tiddou
compressor data-maps from a wide range of expetahsets of operating points and for a wide varidty
components. The method was therefore extensivetgdeon a set of about thirty compressors. Relevant
examples of performance are depicted below (figukb) and show a general good agreement with
manufacturer experimental measurements.
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Figure 2.15— Additional extrapolated compressor isentropic efitiency data-mapsf . The fully
extrapolated data-map for compressor isentropic eftiency (colored solid lines) is in good agreement

with the manufacturer’s points (colored circles) fo any rotational speed and flow rate.
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2.2 Turbine

Section 2.2 concerns the extrapolation of the twbihe look-up tables required in a standard tunboger
model (section 1.6). A similar layout to the congm@r case is used here. Section 2.2.1 provideghinsi
into the thermodynamic phenomenon that takes pthgeng the expansion process. The second sub-
section 2.2.2 concerns the extrapolation of thiiterlook-up tables (figure 2.1) and successivegsents

the extrapolation model (section 2.2.2.1), the fizatextrapolation methodology (section 2.2.2.)ng

with the associated algorithm (section 2.2.2.3)efRmnt results obtained for a set of fixed-geomeing
variable geometry turbines are presented in se@i@®.4. The third sub-section 2.2.3 concerns the
extrapolation of the turbine isentropic efficieratgta-maps and follows the same layout.

2.2.1 Thermodynamic considerations

In this study, the turbine is assumed to be exetigidriven by the energy of the cylinder exhausseas
that are expanded toward the ambient pressure. Fletrto outlet, a radial turbine is usually corspd of
four elements: an inlet volute (3), a nozzle withtis or moving blades (3b), a bladed rotor, arstadic
outlet, which is usually a simple pipe (4) (lefydre 2.16).

The physical processes involved during the expansi@ases through the turbine are usually destrilve
an h-S (specific enthalpy — entropy) diagram, gsaied below. In the inlet volute, the pressurgsisand
the speed is equal . The nozzle accelerates the gas upsin At this stage, there is almost no change
in specific enthalpy, i.eh,3, is almost equal td,;. There is mainly a change from potential to kioeti
energy: the pressure loss fraigy, to pys, IS compensated by the increase in speed ffgro C5;,. The
transfer of work actually occurs though the rotesigned to minimize the kinetic energy at the edutl
Then, in the static outlet, the total specific efiply h,, is significantly smaller thah,;, and the static
pressure and gas speed decrease respectivejyataC,.

Collector
A
b
Rotor 4 2
5
- B
o g
2

Turbine
casing

Ay

Static isopressure
— — Total isopressure

Figure 2.16 — Left: Side view of a radial turbine,
Right: h-S diagram of a radial turbine.
Py and po, = p, + 0.5 C,* respectively stand for static and total pressure at, C, is the fluid speed.

56



This process is described by the first data-mathe®fturbine sub-model which gives the flow throuigé
turbine. However, as for the compressor, the péesot ideal due to losses during expansion: the
irreversibility can be seen on the h-S diagramesiantropy is created (figure 2.16). An ideal expams
would indeed be represented by a vertical strdigbtresulting inAS = 0. The losses are described by the
second turbine data-map that gives its isentrofficiency (figure 2.16).

222 Extrapolation of the turbine flow rate data-map
Qr = fT,Q (I, w)

The first look-up tabler o involved in the turbine sub-model (1.6.2) providies mass flow rate through
the turbineQ; as a function of the pressure ratio across theirtefdl; and the turbocharger rotational

speedw; (figure 2.17).
My —
fT,Q —> Qr
Wt >

Figure 2.17 — Input/output description of the turbine mass flow rateQ; data-map.Il; stands for the
pressure ratio across the turbine ando, for the turbocharger rotational speed.

The most popular approach to describe this behawibased on the classical flow restriction model ()
and was initially presented by Jensen and Kristerise1991 [70]. Since then, many authors have
attempted to enhance the formulation in order tprowe the fit w.r.t. to experimental observations
[87,92]. However, there is still no universal défon for the turbine equivalent sectioh ¢, required in
general flow restriction formulations:

Qr = Aeff " Creq (2-15)
wherec, ., is the reduced flow speed which depends on theasut or supersonic flow state (1.11).

Starting with the standard proposal by Jensen amstafsen [70], it is widely admitted in the literee
that A, is a function offl;, the pressure ratio across the turbine. Howevegractice, the theoretical
formulation of this relationship is unknown and affine relationship inll; is usually employed [70].
However, this formulation, while simple, does nivttie experimental trend of the turbine mass flate
Qr [136,137]. In particular, sinc&,..q tends to a constant add,((Il;y) = a - Iy + b tends toto at high
pressure ratiofl;, the affine formulation leads to a turbine massvfrate that would constantly increase
with Il;. This is in no way the theoretical behavior désedi by Bernouilli or Barré de Saint-Venant flow
restriction models [122] which state that beyondriéical pressure ratio, the mass flow rate no &ng
increases: the flow is choked [102]. In the neXt-saction, a new mathematical formulatidyy - (I17) that
matches this experimental flow behavior is propased used to build the turbine mass flow rate dadip-

fro-

Only a few measurements have been carried on &e &mtbine operating range and the associatedtsesu
are hardly ever published. However, it is still gibfe to make three hypotheses about the genetshéu
flow rate behavior involved in (2.15) [7,69,134]:
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Empirical hypothesis on Qr

Hyp.1: Qp(Ily) is strictly monotonic

Hyp.2: &iTl Qr=0

Hyp.3: lim Q@Q; = constant
M+

Due to the shape of,.; in (2.15), the turbine flow rat@; inherits its variation{yp. 1) and limits at the
low and high pressure ratioB¥p. 2 — 3) from those of the equivalent sectidp(Il;). In particular, the
latter should comply with the same series of hyps#is.

2.2.2.1 Theoretical extrapolation model

In order to comply with the empirical observatiofisyp.1 — 3) detailed above, a new turbine flow
restriction model that proved to fit the methodgl@nd that is based on the reduced mass flowQatg,
and the flow Mach numbe, is introduced:

QT,red = Amacn (1) * Cyacn (M) (2.16)
whereA .., IS @ new equivalent section formulation afg,.;, is the reduced flow speed given by:
+1
-{\/Z(_Z )zyy_z if Mg >1 e
R \y+1 e
Crach =3 [V M, ,
Mach \/: T Otherwise.

R 2\2y—2
[ (H(y—%wﬂ ) v
The flow Mach numbeM, is computed using:
2 y-1
Ma= =) (07 1)

and the reduced mass flow ra@e ., normalizes the turbine flow rate w.r.t. refereqmessure and
temperature conditior®,r, Oer):

2.19
0 =9 e‘ref . g - Pr.as ( )
Tored r 0T,us pref

wherepr 4, is the pressure at the turbine outlet.

(2.18)

Finally, using the alternative flow restriction foulation (2.16), the equivalent section definitioelow
proved to describe accurately the behavior of tp@valent section at a constant turbocharger iatati
speed:

AMach(HT) = kl * (1 — e(l_HiT)IQ) (220)

wherek;, i = {1,2} are model parameters identified using regressialyais on each manufacturer iso-

speed (figure 2.18). This results in a set of patamvalues that depend on the turbocharger rogtio
speed.
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Figure 2.18 —k, extrapolation model parameter in (2.20) versus rattional speedw,. Reference
values are displayed (colored circles) along with second order polynomial fit (solid line) A4, Ccan
then be calculated for any rotational speed using2(20).

The turbine mass flow rate model (2.16-2.20) dethdbove fulfills the three hypotheses abdyep. 1 —
3) and leads to a turbine mass flow r&tg that is in perfect agreement with experimentalepbations
[7,69,134]. It can therefore be used to obtain ecumate estimation of the turbine mass flow raté¢him
empty zone of the experimental data-map providethbynanufacturer.

222.2 Extrapolation practical methodology

The interpolation and extrapolation of the turbmass flow rate using (2.16-2.20) requires the kedgé

of the model parameteks andk, over the entire turbocharger rotational speegeain other words, it
requires interpolating and extrapolatikg and k, from the finite set of values obtained by regr@ssi
analysis on the manufacturer iso-speeds (see figydje The idea here is to combine empirical knolgte

and extensive trials on our turbine data-base terdegne an appropriate way to carry out this preces

As suggested before, the mass flow rate throughutfiene @, is expected to become constant beyond a
given critical pressure ratio. This is implicitlyaranteed by the extrapolation model (2.16-2.2@)esit
was explicitly built to fulfil Hyp. 3. However, there is currently no single answerhia literature to the
question whether it actually tends to a criticalsmdlow rate that depends or not on the turbocharge
rotational speed [7,69,134]. It is not in the authantent to provide a general answer to this clexp
question, but it can be noted that the formulapooposed here can fulfill both hypotheses, depaendim

the nature ok, . In particular, ifk, is kept constant in (2.20), thek,,., tends to a unique constant value
and so doe®);. Then,k, usually corresponds to a second order polynomiab,i (figure 2.18). The
turbine mass flow rate trend obtained is then reagent with [7,69,134].

A validation example of a fully interpolated andtrepolated turbine mass flow rate data-nmfap is
depicted on figure 2.19. Again, due to the greahmlexity of carrying out accurate turbine test bdenc
trials, no additional measurements could be doméngluhe study. Hence, the good accuracy of the
methodology can only be justified by the relativasition of the model with the experimental opemtin
points provided by the manufacturer. Additionalidation results are provided in section 2.2.2.4.
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Figure 2.19- Extrapolated reduced flow rateQr .4 versus pressure ratidl;. For each manufacturer
iso-speed, the turbine flow rate extrapolated ovethe whole pressure ratio operating range is
presented (solid line) as well as the reference ps$ that have been used to fit the model (colored
circles). Interpolated and extrapolated iso-speedsre also depicted (dash-dot lines).

2223 Final algorithm

The complete methodology that uses the extrapaolatiodel (2.16-2.20) to compute the turbine mass flo
rate data-mapr , can be summed up as follows:

Inputs: Experimental operating pointfll;, Q;, w,} in the form of a finite number of turbocharger
rotational iso-speeds.

Outputs: Complete extrapolated turbine mass flow rate ded@Qr = fr o (Ilr, w,).

1- Calculated,, ., for every point of the data-map using (2.16-2.20).

2- Identify k, andk, as the best fit td,,,., (each iso-speed must be taken individually) adogrtb 2.20.
3- Replace alk, values by the mean value of the coefficients oleihiat step 2.

4- Identify k, again using (2.20) and a constant valuekfprThen, extrapolat&, using a second order
polynomial w.r.t. the turbine rotational speed.

5- Calculated,, ., for the whole operating range using the extrapadlit andk, values and (2.21).

6- Compute the turbine reduced mass flow te,, with (2.16) and the mass flow rag by inverting
(2.19).

2224 Additional examples

Again, the biggest issue was to guarantee thatodology is robust enough to be applied to awid
range of turbine and manufacturer experimental getsperating points. This was validated by applyin
the methodology (section 2.2.2.3) to interpolaté extrapolate the mass flow rate data-rfigp of thirty
different turbines. Relevant examples of data-napsrovided below:
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Figure 2.20— Additional extrapolated reduced mass flow rate datamaps fr,. The extrapolated
turbine mass flow rate iso-speeds are plotted (sdllines). The manufacturer’s data points (colored

circles) demonstrate the good quality of the model.
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2.2.3 Extrapolation of the isentropic efficiency data-map
Nr = fT,n (7, w)

The fourth look-up table involved in the turbochargsub-model presented in section 1.6 gives the
isentropic efficiency of the turbing; as a function of the pressure rafig across the turbine and the
turbocharger rotational speed, (figure 2.21). It is used to characterize the dgseccurring during the
expansion process (figure 2.16).

[y —

fT,17 l > Nt

W >

Figure 2.21 — Input/output description of the turbine isentropic efficiencyn; data-map.Il; stands
for the pressure ratio across the turbine andv, for the turbocharger rotational speed.

As in the compressor case (2.7), the turbine ispitrefficiencyn; is defined as the ratio of the ideal or
isentropic specific enthalpy exchanggr ;s and the specific enthalpy exchantye, that actually occurs
and accounts for losses:

_ Ang (2.22)
a AhT,is

Nr

On the h-S diagram presented on figure 2.16, itceaseen thalhy ;; andAh, are linked by the relation
below:

AhT,is = AhT + AhT,losses (222)

where Ahr ,55es COrresponds to the losses occurring during expangihich are mainly due to blade
incidence and viscous friction (figure 2.16).

2.2.3.1 Theoreftical extrapolation model

Similarly to the approach used for the compressect{on 2.1.3), it is proposed to use two sub-nwdel
Ahris = fran, (I, ) andAhy = fr 2, (7, ;) in order to compute the turbine isentropic effdgn
in (2.21). Computing the isentropic efficiency ajieen operating poirfll;, .} is based on three steps:

«  Computing the isentropic specific enthalpy exchatlgg;; usingfr an,, (),
»  Computing the specific enthalpy exchaige usingfr a, (b) and,
»  Computingn; using (2.21) (c).

a) Isentropic specific enthalpy exchange Ahy;; = frap, (7, @)
The theoretical isentropic specific enthalpy exgeadefinition is given by [87]:
-1
1 VT (2.23)
AhT,is =|l1- (H_> ' Cp ' QT,us
t

It should be pointed out that it depends only om phessure ratio across the turblbg In particular, it
does not depend on the turbocharger rotationaldspgeand therefore can be directly computed from its
theoretical definition (2.23) for any operating pidill,, w, } (figure 2.22).
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Figure 2.22— Extrapolated isentropic specific enthalpy exchangdh ;. It can be easily computed for
all the manufacturer’s points (colored circles) usig the theoretical expression (2.23) and
extrapolated to any rotational speedsv, and expansion ratiodl; (solid line).

b) Specific enthalpy exchange Ahy = fra, (17, w;)

Since for each experimental operating point, thaufecturer provides a measurement of the presatice r
across the turbingH; as well as the corresponding isentropic efficiepgythe specific enthalpy exchange
Ah; at these operating points can be computed frortheiaretical definition (2.24). This makes it pddsi
to create a given reference set of operating ptfiatiscan be used to calibrate the extrapolatiodety ,
presented in this sub-section.

1 %1 (2.24)

ahr=(1= ()" )6 Orus e

T

As in the compressor case (2.10), simplified tummechinery equations provide at constant rotational

speed a theoretical affine formulation for the sfie@nthalpy exchang@h; w.r.t. the reduced turbine
mass flow rat@r ,o4:

AhT =a- QT,T’Ed + b (225)

whereQr .4 is either obtained from the turbine mass flow @dta-mapfr , obtained in section 2.2.2 or
from the manufacturer’s experimental operating sofaee section 2.2.3.2 below for further detailsand

b are two constants that can be identified usingassjon analysis on the reference set of operatiigts
obtained with (2.24). Again, each iso-speed mudrdmted separately, which results in a set ofrpater
values that depend on the turbocharger rotatiqgpesd.

An example of this fitting process is illustrated figure 2.23, where the reference points obtaiinech
quasi-static measurements provided by the manufactare depicted along with the affine model
estimation (2.22). This shows that the affine etioluexpressed in (2.25) is verified experimentalie
associated set of model parametgi®,) andb(w,) is provided on figure 2.24.
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Figure 2.23— Specific enthalpy exchang@h; versus reduced flow rateQ; ,..,. From the supplier’s
data, one can obtain the reference values for spécienthalpy exchange (colored circles) and observe
that it follows an affine trend (solid lines).

Since this theoretical formulation was obtainedrfrohysics-based turbo-machinery equations, thel toén
the model parameters and b w.r.t. the turbocharger rotational speed is known [87]:aand b are
respectively affine and quadratic as. In particular, this means that at a standsdil € 0), the specific
enthalpy exchangéh; is a horizontal straight line, i.e. curvesand b both go through origoa(0) = 0
and b(0) = 0.
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Figure 2.24— Extrapolated model parametersa and b in (2.25) versus rotational speed,. They are
obtained by regression analysis on the referenceesyific enthalpy exchange (2.24) (colored circles).

As for the compressor, the practical example itatsd on figure 2.23 shows that these definitioay mot
be sufficiently descriptive. In particular, the regsion analysis used to obtaifw,) in (2.25) suffers from
the same accuracy issue as with the compress@riifi)(and the natural trend efis closer to a parabola
in w, than a straight line going through origo. This @mpl observation, extensively tested on the yhirt
turbines available for this study, led to the ué@ second order polynomial to describe the evoitutf

a(wy).
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c) Isentropic efficiency n; = fr, (I, w,)
Once the specific enthalpy exchange sub-model J2I#25 been calibrated on the manufacturer’s
experimental operating points, the isentropic &fficy n, can be computed for any operating point
{Il7, w } using (2.21). Then, the construction of the tuehigentropic efficiency data-mgp,, that is used
in the turbine model (1.21) is straightforward.

As for the compressor, it can be noticed that tfieiency data-mayfr, directly inherits a significant part
of its accuracy from the mass flow rate data-magesiit is used in the specific enthalpy exchande su
model in (2.25). This represents a particularlyiditive feature of the methodology that tendsniréase
the overall consistency of the extrapolated datpsna

2232 Extrapolation practical methodology

The similarities with the methodology used to obtdie compressor isentropic efficiency map (section
2.1.3) mean that the same issues are encountergdrticular, the weakest point of the methodolbgy
in the linear regression (2.25) used to identifyand b. Unlike the compressor case, no empirical
knowledge about the curve shape proved to provisigfeciently relevant accuracy criterion that ablle
used in an iterative scheme to fix the parametéregaobtained by regression analysis, as was done i
section 2.1.3.2. However, it was observed thatefvalues extracted from the mass flow rate datafing
(section 2.2.2) were used fd@;,.q in (2.25), instead of the experimental values fwled by the
manufacturer, this naturally tends to IineMpp(QT_red). As such, it proved, through extensive tests en th
turbines available for this study, to improve tletedmination of a robust set of values for slapend the
y-interceptb of the curve (figure 2.25).
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Figure 2.25— Comparison of the use of supplier's data-map flowate and extrapolated flow rate.
The specific enthalpy exchangéh is plotted versus the manufacturer’'s reduced madtow rate
Qrreqa (Oreen circles) as well as versus the extrapolatedduced mass flow rate (purple circles). The
absolute value of the residual obtained for a staradd linear fitting is also presented.

A validation example of a fully interpolated andrepolated turbine isentropic efficiency data-nfap is
depicted on figure 2.26. Again, no additional meament campaign was carried out in the extrapolated
area but the accuracy of the fit w.r.t the expentak measurements provided by the manufacturers
confirms the physical foundation of the extrapaatimodel. Additional extrapolated data-maps are
provided in section 2.2.3.4.
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Figure 2.26— Extrapolated isentropic efficiencyn,. The turbine isentropic efficiency is extrapolated

over the entire expansion ratio rangdl; (solid lines) and compared to the reference valugsovided

in the initial data-map (colored circles). Additioral interpolated and extrapolated iso-speeds are as
depicted (dash-dot lines).

2.2.3.3 Final algorithm
The complete methodology to compute the turbinetisgic efficiency data-maf;,, is summed up in the
algorithm below:

Inputs: Experimental operating point§r, 17, w.} in the form of a finite number of turbocharger
rotational iso-speeds. The turbine mass flow rata-thapfr ;.

Outputs: Complete extrapolated compressor isentropic efficy data-magr = fr, (Ily, w,)
1- Computehh; ;; for all the operating pointdl;, w.} of the extrapolation range using (2.23).

2- ComputeAh; for all the experimental operating poitts;, [11, w.} provided by the manufacturer using
the theoretical equation (2.24).

3- Identify a and b the parameters of the model presented in (2.2&3tihg all iso-speeds separately.
Qrreq Should be obtained froify ;.

4- Interpolate and extrapolate thendb values obtained at step 3 using a parabola thes fwough origo

in w;.

5- ComputeAh, for all the operating pointfll;, w,} of the extrapolation range using the extrapolated
values ofa andb and (2.25).

6- Compute the isentropic efficiengy as the ratio oAh ;s obtained at step N\h; obtained at step 5 and
the theoretical definition (2.21).

2234 Additional examples

As previously suggested, a particular focus dutimg development of the methodology was to obtain
sufficient robustness to interpolate and extrajgothe data-maps encountered in the automotive tindus
The method was therefore extensively tested on af$hirty turbines representative of a car mantifeer
library. Relevant examples of performance are degibelow:
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Figure 2.27— Extrapolated isentropic efficiency data-mapfr,. A complete extrapolated data-map is
presented (lines). The results are in general go@ajreement with the supplier’s data points (colored

circles) which were used to fit the model.
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2.3 Conclusion

Chapter 1 emphasized that the turbocharger subinimdiee cornerstone of mean value engine models,
since it represents a mechanical coupling betwkerintake and the exhaust of turbocharged engaies’
path.

The challenging objective of this study was to ioya the extrapolation performances of current nasho
while ensuring that any new proposals would s#lildased exclusively on a finite number of experiaen
operating points similar to those provided by turbachine manufacturers. This aim reflects the orist
need to obtain an accurate mean value engine nezabl in the development process, before the first
engine test bench trials even.

Starting from recent analyses of turbo-machineryuagiqns [87,95], innovative physics-based
methodologies for the extrapolation of the four poessor and turbine data-maps involved in a zero-
dimensional turbocharger model have been derivedi(g 1.6). When the methods found in the litexatu
were not satisfactory in terms of robustness oumy, they have either been improved or completely
rewritten.In fine, a similar treatment is obtained for the compressal the turbine, notably based on the
linear trend of the enthalpy exchange and on thetioa between the ideal and actual behavior of the
turbomachines. These new proposals consistenyyaelan original compromise between mathematics,
empirical knowledge and physics that focuses onimaing the robustness of the methodology. In
particular, the four methods (2.1.1), (2.1.3), (22and (2.2.3) presented in this chapter all aas®@n
efficient theoretical extrapolation modeand a robust practical extrapolation algorithmt,thagether,

provide much more robustness and accuracy thaea@umyalent method that can currently be found & th
literature.

In the end, all the methodologies proposed in¢hipter fulfill the initial objective so that, irrartice, no
dedicated test bench measurements are needed rapaate the four data-maps required in the
turbocharger sub-model presented in section 1.6urBocharger rotational speed virtual sensor and a
complete turbocharged spark-ignited engine modelpaesented in the following chapter. In both cases
steady-state and transient validation trials cbaotg to confirming the accuracy of the extrapoladath-
maps obtained with these methods.

3 The actual operating range of turbo-machines isallys tighter than the extrapolation range presgritere. In
particular, phenomena such as surge usually ling bperating range and result in unpredictablédcnarger
behavior, e.g. unstable flow [7,69,136,137]. Sitloese areas are usually well-known, additional waitgs can be
added directly in the control strategy, thus avugdihe need to take them into account during theapalation. It is
this hypothesis that has been followed during ttigly. Still, if needed, an alternative approactuldoconsist in
afterwards correcting the extrapolated data-mapairdd at this stage by using a dedicated surgeshipd, 123].
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APPLICATION TO
TURBOCHARGED GASOLINE ENGINES

In most standard gasoline engines, the sensorguoafion usually only provides measurements for the
ambient air temperature and the intake manifoldsqare. On turbocharged engines, boost pressure and
temperature measurements are usually added bueasumements are made in the exhaust manifold due to
the harsh conditions that are encountered. Simjléol reasons of safety and cost reduction, tunboger
rotational speed sensors that usually requirerdyithe casing are rarely put in place. Howeveprarctice,

this physical value is usually at the heart of¢hatrol and on-board diagnosis strategies. The letye of

this physical quantity is of such crucial importarfor car manufacturers that the development dtiair
sensors has been the object of numerous patesdsrithe past few years [1,58].

As underlined in chapter 1, another important emgjé for the automotive industry is the use oltation
models in control applications. In fact, the auttin® industry is still at present structured arouvah-
model based control strategies and any additidifiait® required to build a control-oriented modetiuce
the chances of a model-based strategy becomingvatamdard. The cornerstone of the present stutty is
combine a mean value engine model with zero dimeasimodeling in order to facilitate the constranti
of a physics-based nonlinear model that is comjeatifth the nonlinear model predictive framework.

This chapter addresses both issues with two pedaticamples of applications of the methodologied an
developments presented in chapters 1 and 2. licpiar, section 4.1 presents a turbocharger ratatio
speed open-loop estimator whose accuracy is direcHerited from the physics-based extrapolation
methodology presented in chapter 2. Its steadg-stiadl transient validation on a practical indukt@ese of
application is also presented. Then, a completé&r@enriented gasoline engine air path model idttand
calibrated following the philosophy presented iraers 1 and 2. Validation on both steady-state and
transient experimental measurements are presangatiion 4.2.

The major outcomes are: the design and experimeatalation of an industrial turbocharger rotatibna
speed virtual sensor that addresses both gasaithdiasel engines; a control-oriented turbochaggepline
engine model that combines a mean value engine Inadka zero dimensional air path model. This
control-oriented physics-based model is especifdbigned to be used in nonlinear model predictorerol
laws (see chapters 5 and 6) that can be implemémtezil time following the so-called explicit appch
(see chapter 7).
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3.1 Open-loop estimation of the turbocharger rotational
speed w;

On most mass-produced turbocharged engines, mdbe afensors are traditionally installed at thaket
Thus, in industrial engine management systemdutis@charger rotational speed is commonly estimbyed
inverting the compressor sub-model, i.e. essenttal flow data-magf;, (figure 3.1). This data-map is
usually provided by the manufacturer but it needse extrapolated and inverted to lower rotaticpaeds
in order to cover the entire operating range ofathgine.

Qc —

fCQ_l > We
[, — '

Figure 3.1 — Input/output description of the turbodarger rotational speedw, open-loop estimator.
Q. stands for the compressor mass flow rate and, for the pressure ratio across the component.

Chapter 2 presented a new set of physics-baseddutigies to extrapolate turbocharger data-maps fro
manufacturer quasi-static experimental measureminggrticular, assuming that the resulting corapoe
pressure ratio data-mafy, benefits from more accuracy, it is proposed to iiséo estimate the
turbocharger rotational speeg}. What follows therefore also contributes to vaiiog the extrapolation
strategy of the pressure ratio data-rfiap presented in chapter 2.

3.1.1 Estimation formulation

The open-loop estimator proposed in this studyresctly based on the inverted compressor flow dadgs
fco obtained using the methodologies presented intehdsee section 2.1.2):

Wy = fC,Q_l(HC' QC,red) (3.1)

wherew;, is the turbocharger rotational speHd,is the compression ratio across the compressoQang
is the compressor reduced mass flow rate (2.11).

Assuming that compression actually occurs,Iig> 1, it can be seen that the compressor mass flow data
map obtained with the algorithm presented in sactid? is bijective (figure 2.12). Then, under this
hypothesis on the pressure rdiig, verified for relevant turbocharger rotational eggw,, the inversion of
fco is straightforward (figure 3.2).
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Figure 3.2 — Inverted compressor mass flow rate datmap w, = fC,Q_l(QC,Ted, HC) .

The physical inputs of the estimator are the upstreompressor pressysg,., the boosting pressugg,,
and the compressor mass flow r@te(figure 1.1). In practice, they can either be mead or estimated by
the engine management system. In the experimealidation stage that will follow, all the estimaioputs
were measured using appropriate sensors, in asdavdid the risk of input estimation error. In pautar,
Q. is provided by an air flow meter that is locatgdtneam the compressor.

3.1.2 Steady-state performances

The first stage of the validation process involtles estimation of the turbocharger rotational spegét
standstill conditions. Experimental test bench ltesare depicted on figure 3.3 and show an exdellen
agreement between the open-loop estimations andnéasurements through the entire operating range.
Figure 3.4 highlights that the absolute estimagaior remains below 5,000 rpm for more than 98%hef
219 operating points presented here. At low turbogér rotational speeds, the estimator tends terund
estimate the actual rotational speed, while ahtgbest speeds the estimation error is more honsamgesty
distributed.

In practice, the measurements (respectively estmst of the pressure{;;avc,papc} and of the compressor
mass flow rateQ. are uncertain. In particular, the turbochargeatiohal speedv, estimations will be
directly impacted by this uncertainty and it ispsfmary importance that the open-loop estimatorukho
guarantee a certain level of robustness in thoedittons. Thus, to conclude the validation of theady-
state performances of the open-loop estimatoratisstal analysis of the effect of these distudesnis
presented on figure 3.5. The results of 1,000strialcluding the uncertainty of the sensors inftren of a
gaussian distribution, are depicted along withdtamdard deviation obtained on each sample. Thdtses
show that the standard deviation on the turbocharmgational speed, remains below 5,000 rpm, while it
is maximum at the lowest and highest rotationakdpe
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Figure 3.3 — Steady-state performances validatiorf the open-loop estimation using an inverted
compressor pressure ratio data—map‘C,Q‘l, initially extrapolated using the methodology preseted in

chapter 2. Dashed lines represent a +/- 5,000 rprstamation error: 98% of the operating points fall
within this tolerance interval.
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Figure 3.4 — Absolute estimation error versus turboharger rotational speed measurements for
steady-state operating points. The compressor pras® ratio data-map f; o, extrapolated using the

methodology presented in chapter 2, is inverted andsed for the estimation in (3.1). The graph
shows a homogenous distribution of the estimatiorr®r over the rotational speed range.
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Figure 3.5 — Statistical analysis of the influencef sensor uncertainty on the open



3.1.3  Transient performances

The second validation stage consists in predidtiegturbocharger rotational speed in real time durihg
slow transients on an experimental test bench. clioke used at this stage consists in engine tostee
changes that result in intake manifold presspyg, and engine speed¥, transients (figure 3.6). It
represents a sample of typical operating conditafribe test bench application considered for shisly.

Inlet manifold pressure p_ [rpm]
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Figure 3.6 — Transient validation cycle: vehicle tansient measurements of intake manifold pressure
Pman @nd engine speedv,,.

The objective of this type of trial is to assesamindustrial framework whether a virtual sensmuld be
used to either diagnose the test bench turbochesgional speed sensor, or replace it in safgbgsrision
processes. Experimental test bench results aretddmn figure 3.7. They show a general good ageeem
with the experimental measurements that were oddafrom a turbocharger rotational speed sensor. In
particular, the standstill phase of the cycle aomdithe steady-state accuracy observed in thequesub-
section.
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Figure 3.7 — Transient performances of the open-lgoestimation of the turbocharger rotational
speedw, on a test bench application. The inputs of the maa are all measured (upstream and

downstream compressor pressure and compressor madsw rate). The rotational speed is predicted
with less than 6% of relative error.

Figure 3.8 shows in greater detail how the rotatiospeedw, is estimated during the transient. In
particular, while the estimation remains accuraiend) flow transients, the sudden increase in spded
timet = 720s shows a significant estimation error, with a patkoughly -18,000 rpm. Since a static map
is used for the estimation, this underlines thestexice of a neglected dynamic between the inputstan
turbocharger rotational speed.
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Figure 3.8 — Transient open-loop estimation error bthe turbocharger rotational speed on a test
bench application.

The overall accuracy obtained using a quasi-stita-map confirms that the actual time constanthef
physical phenomena related to the compressor ftevgmall w.r.t. the turbocharger inertia [42,43927, In
particular, it confirms that the compressor quésady state modeling hypothesis made in chapter 1 i
mostly relevant (section 1.6.1). Conversely, thek laf accuracy observed on fast transients higtsigie
limits of this widespread hypothesis.

3.1.4 Conclusion

This section has presented the performances open-lmop estimator of the turbocharger rotatiopaiesl,
based on the extrapolated compressor pressure datzemapf;, (section 1.6.1). The accuracy of the
estimation is then directly inherited from the a@amy of this data-map. In this study, it was oladifirom
standard manufacturer experimental quasi-steadgunements using the new physics-based methodology
presented in chapter 2. Compared to a potentiabedidoop approach this open-loop estimation
methodology (3.1) fundamentally benefits from itaicity of implementation.

The estimator shows good performances both in gisi@te and slow transient conditions from low ighh
rotational speeds. Combined with its very low cotafianal requirements, this makes it a perfect hatd
for the diagnosis or the replacement of turbocharggtional speed sensors on automotive applicgtio
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Since the estimation is based exclusively on cosgmepressures and flow rate measurements, it swidre
both fixed and variable geometry turbine configrad of gasoline and diesel engines.

Finally, the level of accuracy involved in this ogleop estimation also implicitly contributes tondioming

the accuracy of the extrapolation methodology presk in section 2.1.2. It confirms the quasi-steady
modeling hypothesis that will be used to implemertero-dimensional compressor sub-model in the next
section but also underlines its limits when considefast transients.
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3.2 Modeling a turbocharged gasoline engine

A preliminary requirement before applying a modaséd control strategy is generally to implement-a s
called control-oriented model of the system. Tlsigarticularly true when considering nonlinear ntode
predictive control approaches since obtaining tbelinear model is usually considered as a majareiss
[33,46,61,62,119]. We already suggested in chapténat the automotive industry shows a very good
maturity on this topic and that the combinationraafnean value engine model and a zero-dimensional ai
path model could be particularly relevant to faaté this stage.

In this section, starting from the turbochargedotine engine philosophy presented in chapter 1 taed
turbocharger data-map construction methodologygmtesl in chapter 2, a nonlinear physics-based nafdel
the turbocharged gasoline engine involved in thigls (figure 1.1) is implemented and validated. sThi
model is intended to be used in the implicit andliek nonlinear model predictive control laws peeged
from chapters 5to 7.

3.2.1 Discretization of the air path

It is well-known that when building a control-orted model, the objective is twofold: capturing the
essential dynamics of the system, and keeping tampaitational requirements in order to allow itd-teae
implementation. In practice, these are two compgetinjectives. In fact, while the latter requiresimizing

the number of states of the model, the former reguin exhaustive description of the dynamics lahal
physical phenomena involved in the system. In orderovercome this issue, the engine modeling
philosophy presented in chapter 1 provides a ditti@ opportunity to control this trade-off thartksthe air
path discretization stage (see section 1.2). Ih eaatrol volume, only the relevant dynamics atained,
resulting in a minimum set of state equations describes the air path dynamic (see section 1.3).

er Intake
manifold

Heat (OFa Throttle
exchonger

Compressor
manifold

_/-\_
v

Qeng

Pman, Oman Cylinders

Legend
9 Exhaust Qeng

manifold +0Qryer

Control
volume

Flow
component

Pavt gavt

Figure 3.9 — Discretization of the air path of a tabocharged gasoline engine (figure 1.1). Three
control volumes (in green) are considered. In eaabf them, only the pressurep is computed as a state
of the model. The temperature® are assumed to be quasi-static and can therefore ldescribed by
algebraic equations. A fourth state, namely the tusocharger rotational speedw,, is required to
describe the complete dynamic of the air path.
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In the particular case of a turbocharged gasolimgine, four states are required to describe thespre
dynamic in three control volumes (the heat exchanagd both inlet and exhaust manifolds), as wethas
rotational dynamic of the turbocharger (chapter Al. are well-known as relevant dynamics when
considering the air path control, while the tempees in the control volume are commonly assumdaketo
quasi-static and modeled using algebraic equatiwnguasi-static maps [60]. Such an engine air path
discretization leads to the model structure shawfigure 3.9.

It should be mentioned that the actuator dynamitdéle having a significant influence on the airtpg3],
are neglected in the formulation proposed abovés iBhmotivated by the fact that adding these dyinam
to the model results in a significant number ofiaddal states: usually one or two for each valeiator.

In a modeling framework, this shortage can eastlypwercome by using the input measurements instead
the command signals. In the control framework thi#itfollow from chapter 5 to 8, this assumptioniiide
validated only if the controller can still hit tiperformance target.

3.2.2 Model formulation

Altogether, the model is governed by four nonlinddferential equations that govern the dynamidhef
four states: boosting pressure, intake and exhaastifold pressures and turbocharger rotational dpee
respectively denotepy,e, Pman, Pave @Ndw, (figure 1.1). The model inputs are: the throtteoingu,p,,

the wastegate opening,,, the engine speed, , and the ambient pressure and temperdggs,, 0amp)-

In continuous time, the set of equations is givgn b

pa'pe = #:e ’ (QC ’ gapc — Qtnr (uthr) ’ gape)
Pman = %' Oman * (chr (uthr) - Qeng)
4 (3.2)

. Oave * (Qeng + quel —0Qr - ng (uwg))

Pavt Vot

. 1
\ Wt :I_'(FT_FC)
where
« vy is the ratio of specific heats andhe specific gas constant,

*  Vaper Vinan @andVy,, are all known and respectively stand for: the mmubetween the compressor
and the throttle including the heat exchangervitlame of the intake manifold, and the exhaust
manifold volume,

*  Qur and Q,,, are respectively the throttle and wastegate fldvegh obtained from the flow
expansion equation (1.11) that involves the actsapmsition,

* Q. Qr, I, andT; respectively stand for the compressor and turlfime rates and torques
(section 1.6),

e [ isthe turbocharger mass moment of inertia and,
*  Bapcr Oape = Oman @NdO,,,, are computed using (1.18) and (1.14).

The model was discretized at a sampling time ofriliseconds using Euler’s forward differentiation
method and implemented on Matlab®.
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3.2.3 Model calibration

Despite the intrinsically physical nature of thedabproposed in this study, it is not possible &vén
access to all the parameters of the equationsghrphysics or geometry. Hence it is necessarydntify
the remaining ones from experimental input-outathdThis stage is usually seen as calibratingribeel
(4.2).

3.2.3.1 Data set

In this study, an engine test bench and a vehieleewsed to acquire respectively steady-staterandi¢ént
data. In both cases, the complete set of pressmegsemperatures, as well as the turbochargeriongat
speed, were recorded following the sensor confiqumgresented on figure 1.1. The input signalshef
model were also measured, except for the actuatigpof the wastegate, for which no sensor was
available. Altogether, the steady-state data setasms 186 points which cover the entire operatamge

of the engine (figure 3.10). In the vehicle transie engine speed varies from about 2,000 rpmQ605,
rpm while throttle and wastegate openings are feXglored (figure 3.11 and 3.12).

Quasi-steady experimental compressor and turbinesanements provided by the turbocharger
manufacturer were used as input for the interpmtaind extrapolation strategies presented in ch&pte
The four data-mapg: o, fcy, fro andfr, implemented in the turbocharger sub-model (seclié) are
respectively presented on figures 2.5, 2.13, 2rtb2a26.
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Figure 3.10— Steady-state test bench operating points availabfer the study. Engine speedV, and
intake manifold pressurep,,., are used to characterize the 186 steady-state opé&ing points.
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Figure 3.11- Validation cycle #1 - Vehicle transient measuremes of intake manifold pressurep,,an
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Figure 3.12— Validation cycle #2 - Vehicle transient measuremes of intake manifold pressurep,,,an
and engine speed,.
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3.2.3.2 Methodology

An automated identification process for the idécuifion of turbocharged engine models based on firs
principles is not an easy task due to the sevenénearities in the equations involved in the modielfact,
when the model differential equations (3.2) arevetblto evaluate the prediction error, it may become
impossible to solve them numerically if for exampfer some reasons, the model states become
unreasonable [13] Moreover, internal combustioniragnodel identification usually also suffers from
multiple local minima that require complex globgtimization algorithm. These problems make the
identification process reasonably difficult and remtly argue in favor of a manual model calibration
procedure even though attempts towards fully autechprocedures remain a current research topic [14]

The modular description of the system presentedealfiigure 3.9) is well-adapted to manually caltera
one-by-one each component sub-model (e.g. compresdoe actuators and cylinders) using steadyestat
experimental measurements (figure 3.10). Howewdiaily, this usually leads to poor performancéshe
assembled model with respect to the experimentasarements even though each sub-model proves to be
accurate. In fact, the accuracy can be signifigamtiproved if the parameters are retuned using the
complete engine model [14]. The parameter valuewimdd previously are then used as a warm
initialization of the optimization routine. Finallysince the objective of a control-oriented modela
accurately capture the dynamic of the plant, asien validation procedure usually completes the
calibration stage.

Component steady-
state pre-calibration

l

Complete model
steady-state calibration

l

Complete model
tfransient validation

Figure 3.13 — Overview of the three-step physics-bad model calibration methodology.

For this particular application, the optimal paréene were identified using a least-square algorithm
initialized through prior knowledge based on théeagive experience of the different participantshie
study. The optimal parameter value minimizes the sf squared residuals over the 186 steady-state
experimental samples (figure 3.10) while remairimgs nominal physical range, if such a range tsxis

3.2.4  Steady-state performances

The steady-state performances of the model arenelotaby simulating the 186 steady-state operating
points available in the experimental data-set (8g8.10) and the estimation error is analyzed brhal
relevant physical values. For a turbocharged gasddingine, they include the four states of the rnode
{Paper Pmans Pave» @}, the temperature in each control voluffg,e, O,an, 04y} and the engine mass flow
rate Q.,4. As the engine test bench available for this stditinot include any turbocharger rotational
speed sensors, no comparison with the model oetput be carried out. Moreover, as stated befde, t
wastegate actual position could not be measuretherengine. Hence, since the model (3.2) does not
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contain any actuator model, it is necessary tanegé this input during validation. This is achievey
minimizing the estimation error with the compressoitlet pressure experimental measurement (figure
1.1).

Pressure simulation results for the three contoblimes of the model (3.2) are presented along thith
experimental test bench measurements on figurés 3.1

e The boosting pressure shows no error at high lahds to the wastegate position estimation
procedure described above. However, at low loadgnwhe wastegate sensitivity is too low,
relative errors of about 5% appear.

e The other two pressures, ., andp,,; of the model are accurately estimated at highdaautl the
relative error remains below 5%. At low loads fleast accurate estimation is the exhaust
manifold pressure,,; , for which the relative error locally reaches 17%

To obtain an explanation for this phenomenon, ibisresting to have a look at how the exhaust folhi
temperaturdd,,, and the engine flow rat.,, are predicted. Figure 3.14 highlights the low tieéaerror
that is achieved on the engine mass flow @tg,. The temperature simulation performances are ptede
in figure 3.16 and show that in most cases, the&aiures are predicted with less than 5% relativer.
Altogether, it shows that the enthalpy flow in tehaust manifold is accurately predicted and that t
exhaust manifold pressure error spotted on figutd 8an probably be attributed to the turbochasgibr
model: the sum of the turbine and wastegate mass fatesQr andQ,,, that exit from the exhaust
manifold is too big.

Starting from this point, it becomes highly comptexunderstand in greater detail in which parthef $ub-
model the error is created. In fact, the differefmmween the experimental measurements and the
simulation results is a global error which can ligube attributed to three different phenomena:spul
effects, thermal effects, and the extrapolationhodblogy that was used to build the data-maps (see
chapter 2). The first two phenomena are only iniffitaken into account through the calibration gess

that actually tends to minimize this global modglerror, in opposition to determining the true eabf

the model physical parameters. As a result, theanging part of the global error that can be attelouto
each phenomenon cannot be quantified.

a) Engine mass flow rate Q.,, estimation
Engine mass flow rate eng [ka/s] | +/- 5%
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Test bench measureme

Figure 3.14 — Engine mass flow rat@.,, estimation performances in steady-state operating

conditions. A perfect model would give a 45-degrestraight line. Dashed lines show the variation
zones specified in the title.
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b) Pressure estimation {pu,., Pman, Pave)
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Figure 3.15 — Pressure estimation performances ineady-state operating conditions.
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c) Temperature estimation {6,,, an, fave }
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Figure 3.16 — Temperature estimation performancesisteady-state operating conditions.
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3.2.5 Transient performances

The dynamic properties of the model were investigaising a transient acquired on an actual vehicle.

Again, no turbocharger rotational speed measuremastavailable during the trials. The objectiveehisr
to validate the overall accuracy of the model pres®stimation in opposition to the validation ofleort
horizon dynamic. This type of trial would indeedjué&e a dedicated set of test bench trials suatasmtor
step transients. On figure 3.17 and 3.18, the thoa¢rol volume pressure simulations are compavate

experimental measurements for the two differentesy¢#1) and (#2) (figure 3.11 and 3.12). They show

that the pressure dynamics are mostly well prediote the overall cycle. This is a good indicatattthe

control volume sub-model parameters and the turdooeh inertia are appropriate since they govern the

time constants of the model.
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Figure 3.17— Validation cycle #1: transient pressure estimatiovalidation of the physics-based

model (3.2).
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Figure 3.18 — Validation cycle #2: transient presse estimation validation of the physics-based
model (3.2).

3.2.6 Conclusion

The model presented in this section consist indtmbination of the widespread mean value engine
modeling and zero-dimensional air path modelingaaghes. This philosophy makes it possible to baild
simplified model of the engine in which the compisenbetween accuracy and complexity is explicitly
chosen (chapter 1). In practice, this section shihat such a model can be calibrated from a stdrskd

of steady-state test bench measurements that am@@oplace in car manufacturer development processes
Moreover, once discretized and implemented, a mininset of nonlinear differential equations already
shows accurate steady-state and transient pretligdformances. This makes it a perfect candid&ienw
considering control-oriented applications such@dinear model predictive control [33,119].
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3.3 Conclusion

Starting from the methodologies presented in chiafdtend 2, two practical cases of application Hzaen
presented in this chapter.

The first one proposes to directly use the extragdl compressor data-maps obtained in chapteoier

to estimate the turbocharger rotational speed dh horbocharged gasoline and diesel engines. This
estimator is based on a simple open-loop struchaedemonstrated a very high level of accuracyndur
experimental test bench trials. These performahage been confirmed in an industrial framework omd
several engine technical definitions. As a reshig industrial implementation of this virtual senso
replace physical sensors is under way at RenadilSSAltogether, this example also provides evideot

the predictive capacity of the data-maps extrapdlaising the new methodologies presented in ch@pter
It confirms the benefit of using a physics-basegrapch and underlines the growing importance of
turbocharger data-maps in modern engine applicaition

Other evidence of the accuracy of the compressdrtabine data-maps obtained using a physics-based
approach (chapter 2) can also be found in sectidnvéhere a complete air path model of a turboddrg
gasoline engine is implemented, calibrated anddasdid on experimental steady-state and transient
measurements. Altogether, the compromise that tairdd between computational requirements and
accuracy makes it a perfect physics-based nonlicaarol-oriented model.

*kk

Besides presenting a wide range of potential agiiins, these chapters also show a general modeling
philosophy that can be followed when consideringlime@ar control-oriented engine models. At the hear
of this strategy are the mean value engine modelimi) zero-dimensional air path modeling approaches
presented in chapter 1. While the online computalicequirements are currently still prohibitive in
regards of current on board hardware, the modedhitpsophy is already a perfect candidate for model
based control approaches that are mainly basedfloreaomputation. As such, it represents ourtfatep
toward a systematic control design approach fdrdacinarged gasoline engines (figure 3.19).

Such a control strategy is presented in the sepamtof the manuscript, namely an explicit nonlinea
model predictive control approach of the air péth.

STEP 1

Physics-based Nonlinear Explicit

model MPC solution

Figure 3.19— Overview of the control design approach proposed ithis study.
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OPPORTUNITIES AND CHALLENGES FOR
ENGINE MODEL PREDICTIVE CONTROL

In the past few years, the increasing impact ofheouic considerations on engineering processes along
with tighter environmental standards have led mdércombustion engines to operate closer to their
physical boundaries. In particular, the controtlté air path has become more and more complexalue t
the introduction of innovative and more complexiardayouts (figure 4.1), that now result in muttput
multi-output constrained nonlinear systems with dmed inputs. In the presence of such challenging
system, many traditional industrial control desigtrategies have difficulties in matching higher
performance and cost objectives. This could madivar manufacturers to introduce innovative control
strategies that break with current approaches bupractice, the risk induced by a technological
breakthrough usually favours minor changes. Inigaer, engine control development methodologies
based on heuristic experimental test bench trmhicue to play a major role despite their prolveitcost.
However, driven by the objective of remaining cotitpe in an increasingly globalised market, car
manufacturers remain open to new proposals.

Motivated by the idea that any relevant new propdasaengine control should not only tackle the
mathematical issues but solve the problem in ithstrial context, this chapter starts by presentihme
numerous industrial constraints that have to berntdakto account when developing a new engine cbntro
strategy (section 4.1). They cover both hardward aoftware aspects but also provide general
requirements that are important for the way corig@ractised by equipment manufacturers themselnes
the second part of this chapter (section 4.2)nibst relevant contributions in advanced enginerobmill

be summed up with an emphasis on linear and nailieegine model predictive control which, for
practical cases of application, will be detailedhia following chapters.

EURO Il EURO V
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Pollutant emission — | | | | ' >
standards in the EU ! ' ! '
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' electronics {EGR  commonrail | i

Technological L | ] | : . : >

breakthroughs | ' [ ' |
furbocharger  microprocessor-based direct drive valves
control

variable-geometry
turbocharger

Figure 4.1 — Pollutant emission standards in Europgersus technological breakthroughs in internal
combustion engine actuators since the 1980s.
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4.1 Engine control research meets industrial constraints

The need for engine control did not wait for theéioad developments to find an answer. The firstieag
controllers in car passenger vehicles, for examplre purely mechanical. The compressor pop-offeval
used in turbocharged engines is one example thains in modern engines. Later, electronic contrits
(ECU) were introduced and enlarged the range osipiisies for controlling the engines. Rather than
stopping to think about what new directions develept could take, car manufacturers jumped at the
opportunity to simplify what had become complex hmdsms. An electronic actuator along with a
positioning data-map calibrated on a test bench ates to replace a complex mechanical system. Since
then, the evolution of industrial engine contro mostly been incremental, with more and more lopk-
tables added to control an increasing number afadots. The ever more stringent pollutant emission
standards (figure 4.1) have therefore mainly resuinh an increasing number of operating conditions
stored in these data-maps. Today, the completeat@ttategy of an engine represents thousandagég

describing the various tuning parameters and melbgies that have been implemented since the first
ECU.

4.1.1 Engine control development process

Over the years, each car manufacturer and tieraamemotive supplier has developed and optimized a
specific control development process that fitsrtineleds and resources. However, from a high-leviit p
of view, they all show a similar outline. It usyafitarts with steady-state test bench trials anditextes a
few months later with the release of the softwardte market. In between the different stages, ridest

in the following sub-sections, numerous iterationds slow down what appears to be a very expensive
process (figure 4.2).

[ Steady-state calibration ‘ (a)
g Al )
Functional testing J
v
Functional N
iteration e (e
Integration U/ ()
[ Calibration | (d)
\ 4
[ Certification and release ‘ (e)

Figure 4.2 — General outline of the car manufactune’ engine control development process.

a) Steady-state engine calibration

When the engine is first started on the test beacpre-control phase that consists in mapping &mtua
positions at a coarse grid of engine speed andgoads is initiated. The actuator positions areedained
such that the first trade-offs on the steady-stahavior of the engine are established at thisyearl
development stage. In the worst case, this reqamesxhaustive sweep of all the actuator positimrisan
appropriate experimental design usually allowsa s exploration of the space. In all cases, iteasmts
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a long and expensive experimental stage sincege |zart of the engine operating range must be exglo
This phase is usually performed by insiders wheetathorough and quasi-intuitive knowledge of inéér
combustion engine behavior. In the end, it alsovides a large experimental data-base that can for
example be used to calibrate engine models sutifeamne presented in part 1 of the manuscript.

b) Control functional development and testing

In previous years and along with the growing comipyeof engine technical definitions, the enginetol
architecture became modular. The core controlegisats now divided into functions (e.g. air andlfue
paths) and sub-functions (e.g. after-treatment,aegh gas recirculation, fuel injection) that uspall
correspond to actual sub-systems of the enginargig.3). Theoretically, each of these functionsuir-
functions can be individually replaced without impag the rest of the control strategy. However, in
practice, the interactions between the functiores 3 complex that a dedicated validation process is
required after each update. This modular strugsiempleted by a high-level decision making stygte
that delivers the set points (SP) to each sub-obetr(figure 4.3).

Car manufacturers entrust this complex task torengbntrol teams composed of control engineers and
internal combustion engine specialists. The prin@hjgctive of the engine control strategy is tochahe
steady-state trade-offs determined in the pre-cbmthase (a). The transient behavior of the enggne
driven by the same functions but is tuned latethia development process. The control strategy must
therefore provide enough flexibility to allow theéxgine to match the driving and pollutant emission
standards when required. Usually this feature takesorm of a sufficient number of tuning paramete
whose optimal values can be determined using amopppte combination of test bench and vehicle
experimental trials. Finally the last control demhent strategy constraint at this stage lies énfélat that

the performances must be sustained throughoutifdétarie of a large fleet of vehicles. In practithe
variability induced by the fact that the componenit present differences in manufacturing and \aitje

in different ways, requires the control strategghow a certain level of robustness.

Air path control

SP
—>[ Actuator control ]
S

P
—>[ Actuator control ]

Sp Intake throttle

\ 4

Wastegate

Exhaust gas recirculation -r---»

High-order Fuel path control
decision making

Driver | Set point (SP) stage Sp Fuel injection
request
Fuel consumption

Pollutant emissions
Drivability
Safety

SP

Figure 4.3 — General hierarchical architecture of he control engine software.
The control is divided into a set of functions andub-functions that can theoretically be replaced
individually. A higher level controller provides the set points (SP) and constraints of each
sub-controller based on the set point provided byhte driver.
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When the control strategy has been defined in tven fof functional specifications, an individual
functional testing stage is performed. Each fumatiity is progressively tested in simulation, orgiee
test benches and finally in a vehicle. The deveat®palidate the behavior of each sub-controllet,diso
verify that the different control loops still dedithe expected performances once put togethercditteol
strategy robustness to different ambient conditiang altitudes is usually also evaluated at ttagest In
practice, this experimental validation is performtstatively with the design of the control lawd(fire
4.2). High-level code such as Mat@bor Simulink® is typically compiled and integratéato rapid
prototyping solutions that can bypass the stand&@d). This allows a fast evaluation of the control
strategy, throughout its development process.

It should be pointed out that a substantial paraaddemic research currently focuses on providag n
proposals for the design of one or more of thesetfonal blocks.

c) Software development and integration
When the function specification has been writterftveare developers specify, code and test the ekksir
sub-controller in the embedded software environmé&hese tasks are increasingly performed by a third
party and/or achieved using auto-coding tools.

In practice, since subsequent re-entry into thensoé development process is extremely time-consgmi
and costly, the structure of the control is usufilbzen at this stage of the development processy O
modifications of the tuning parameter values al@nad in the following steps. The key validationtetia
for the software that is delivered at the end &f #iage concern the memory and computationaldtiits
of the ECU.

The final software is usually first integrated in angine simulation environment in which a so-chlle
Software in the Loop (SiL) validation is performeékhe code is then tested and validated on engste te
benches and on a vehicle.

d) Calibration
This phase consists in determining an appropriateevfor all the steady-state and transient tuning
parameters suggested above. The ultimate objeafithis stage is to achieve a target trade-off keetw
pollutant emissions, fuel consumption and drivépilinder emission legislation constraints. Effitiand
intuitive tuning tools are required in order to ifdate this process, usually performed by testdben
technicians. In particular, new tools must be wmetgrated into the existing industrial calibration
environment and methodologies.

If no calibration matches the target trade-off, tmtroller is classified as unacceptable and thiiree
software development cycle, starting from the amntunctional development stage is restarted (fgur
4.2). This induces severe delays in the developmerttess and must be avoided at all costs.

e) Cerlification and release
The certification of the software essentially camse performing and documenting a given set of
experimental tests that depend on the vehicle @adsits geographical region of market releaseallin
once the control strategy and the software hava bekdated, it is released on the market, i.eadieet of
engines with a relative variability.
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4.1.2 Industrial engine control requirements

This industrial control development process imphesertain number of requirements. Control stratgi
that do not respect these requirements are lesly ltk be industrialized. In the following sub-deons,
only the main issues that are also related toati pontrol development are described. Furtherildetad
other specific requirements about the automotideistry can be found in [33,71,119].

a) Sensor set

The first question that arises when designing drotier often concerns the measurements and estinsat
that are available on the system for the contmaitagyy, i.e. what physical quantities are known waitth
what accuracy. In the automotive industry, the sesst can typically be chosen before the actuatrob
development process starts.

In practice, this decision is the result of prisokledge acquired on previous projects but is algbly
motivated by the target cost of the engine. Itl$® a&hosen with diagnosis in mind, which generallso
makes the addition of new sensors more complefadiy beyond the extra cost of the sensor itdadf risk
of malfunction of the new sensor will also requieg¢hinking part of the on-board diagnosis strategy.

b) Transferability

Motivated by substantial cost reductions, the stathdpractice in the automotive industry consists in
maximizing the use of a given control strategy.sThésults in applying generic control architecture,
functions and sub-functions to several engine tieethlefinitions. While in practice, the completentrol
software cannot be recycled, the objective remtinmaximize the number of functions or sub-funcgion
that can be reused. As a result, a new controtegfyais not likely to be carried through the entire
development process described above (figure 4.2)cdénnot be applied to a sufficiently wide clads
engines.

c) Tuning

Basically, the control system development processtion 4.1.1) can be split between design phases a
calibration stages (figure 4.2). As suggested leefibris the responsibility of the group of engireea/ho
design the control strategy to ensure that therobtaw will contain a set of tuning parametersttha
facilitate the task of the calibrators. In partamil parameters that are not physically meaningfuaro
absence of tuning parameters in the control lawessmt two important drawbacks when considering the
adoption of a new control strategy.

This major constraint, when considering advanceatrob strategies, is motivated by the fact thatr¢he
exists no exhaustive metrics that could be takémaegcount by the control law to describe suchgbias
the drivability of a vehicle. A practical exampléthis situation is the fact that a given engingyisically
used to propel a wide range of vehicles. Henceptatian to the different technical definitions (reas
performances) can only be achieved by taking ictmant the actual drivability of the different veleis.
Altogether, since manual calibration stages basedxperimental trials cannot be avoided they shbeld
made as intuitive as possible.
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d) Computational resources

The amount of memory and the computational cagegsilare usually very limited in passenger car ECUs
in which the engine control software runs. Depegdin the engine target and on the car manufacturer,
figures such as 100 MHz and 6 MB of flash memormyuith be considered. In fact, the extreme conditions
in which they are have to operate and the sigmficanstraints on their reliability have slowed dothe
introduction of up to date hardware in the autor®tndustry. Moreover, since ECUs are used to obntr
many features in the vehicle, they are usually ineédsaded. That is why in practice, the footproftnew
control strategies should be as small as possible.

Finally, even if floating point arithmetic is becorg the new standard in many fields of application,
including the automotive industry, some car manwifaes still use ECUs based on fixed point arithieet
Similarly, the fact that the transition from 16-lbit 32-bit ECUs is not completed, should be taken i
account when designing a control strategy for dastrial automotive application.

96



4.2 State of the art in engine air path model predictive
control

Current production engine control strategies atainbd from a long iterative development process it
essentially based on heuristic experimental teatibend vehicle trials (section 4.1). The evolutafn
these strategies, mostly based on single-inputesimgtput controller designs, is driven by an imeaital
engineering approach that started with the advén¢lectronic control units. More recently, several
advanced engine control strategies have led to ifisignt pollutant emission reductions
[12,21,33,43,46,62,80,100] and have opened up arrfiajd for both academic and industrial autometiv
research. In particular, a unanimously voted sofuto the increasing complexity of internal comirst
engines, namely the model-based control approahbken the focus of most of the academic research
and industrial developments in the past few yeb9% [

For all the stakeholders, the objective is twofoltandling the increasing complexity of modern
combustion engines but also reducing the time astirequired to develop engine control strategies.

4.2.1 Engine model-based control approaches

The air path of combustion engines has been thieculft many examples of applications of model-base
control strategies [19,21,71,114]. Because diesgines are so popular (higher efficiency, bettew lo
speed torque, lower fuel consumption) and alsoeset a bigger challenge in terms of pollutant simis
reductions, most of these studies are based orldiagines. For example, [126] presents an overatw
several controller approaches for the combinedrobof an exhaust gas recirculation (EGR) loop and
variable geometry turbine (VGT) on a diesel engifdgain schedule multi-input multi-output contralle
combined with a nonlinear feed-forward is presentefll2]. It is used for the control of the burntss
fraction and air fuel ratio in diesel engines egeip with VGT. Many robust controllers of the aitpaf
diesel engines have also been proposed, includiagro[10,17]. It consists in a nonlinear controligth
guaranteed robustness. The demonstration is ddlgsitased on the construction of a Lyapunov cdntro
function obtained from an input-output linearizati®ther robust approaches were proposed in [16] an
[8], both based on the definition of a linear pagten varying (LPV) model. Finally among many othéns
[46], the authors propose a nonlinear controllesebaon flatness polynomials for the control of a
turbocharged diesel engine.

In the meantime, model-based control of the aih pdtgasoline engines has been less popular. kn fac
since at stoichiometric conditions the three-wayalyat achieves almost perfect conversion of the
pollutants, the problem is usually considered &gesio[14]. In practice, a few papers still preseievant
model-based approaches that usually propose amnatiie to the current industrial calibration
methodologies. In [14] an overall model-based adnstrategy for the control of gasoline engines is
described. It presents the high level control stmecas well as the different loops classicallyoired in

the control software. In [91], the author suggestaulti-variable control approach based on a mednev
engine model (MVEM) for a gasoline engine. Theth includes an EGR loop, variable valve timing
(VVT) and tumble valves.

All these strategies show performance improvemanterms of pollutant emissions, fuel consumption
and/or overall tuning efforts. They usually bendfadm a multiple-input multiple-output philosophyth
most of them suffer from the same drawbacks:
e They cannot directly incorporate performance sjeatibns,
e They cannot handle input or state constraints,
* They have been designed to solve a specific proklbite relying on knowledge that disqualifies
everyone but a small group of specialists.
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From a conceptual point of view, obtaining a colhstoategy that is devoid of complexity is the paimy
objective. Model-based control may not be the @diution to this end, but among all advanced cdntro
strategies, the past few years have shown an siageiterest in model predictive control (MPC),ighh
can be considered the best example of this cophibbsophy. In particular, MPC has been appliedaon
new range of faster applications such that it ngwears to be suitable for the control of modern
combustion engines [33].

42.2 Engine model predictive control

The air path of internal combustion engines shoareplex and coupled dynamics with bounded inputs.
The inputs can either be physically bounded, Iite @dpening of a valve which is limited to a givamge

of openings, or constrained by the purpose of angidamage to the engine (e.g. avoiding turbocharge
over-speeding). In practice, in order to achieve dhniving performances requested by the driver, the
reference physical quantities’ output(e.g. engine torque and speed,) must follow a given trajectory
ySP built under pollutant emission and fuel consumptamnstraints. This is a classical multi-objective
problem for which optimal performancés along a given trajectory = [k, k + N] can be obtained by
solving the discrete finite horizon optimal contpsbblem below:

S§* =min, S, y,u,0,y%%) (4.1)

s.t
S =YV 3(x (D), (D), u(i), 0, y5") (4.2)
x(k +1) = f(x(k),u(k), o) 4.3)
y(k) = g(x(k),u(k),0) (4.4)
u<u(k)<u (4.5)

wheres is a given objective function to be minimizgfljs called cost functionx is a vector of relevant
states that describe the air path dynanjicandg represent a discretized model of the enginis, a vector
of exogenous inputs and andu respectively stand for the lower and upper bouwmshe manipulated
variables.

future »
Actuatorpositions ¢ |input
| | 3 | | | constraints
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Figure 4.4 — Principle of the model predictive combl approach.
An iterative finite-time open loop optimization isused to compute the optimal actuator positions
w.r.t. the value of a given objective functiors over the prediction horizonH,, .
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In practice, solving such an optimization probleirectly is not possible, even though attempts iis th
direction exist [114]. There are several explamaidor this, among which the fact that this problem
usually falls in the category of high-dimensionatianon-convex optimization problems. This usuadigds

to prohibitive computational requirements with respto actual engine control units. An alternative
methodology to solve this problem is the so-caitemtiel predictive control approach [27,28,89]. Nibtat
MPC does not solve the general optimal control jgrmb(4.1) to (4.5) but leads to an approximate timhu
using the receding horizon principle (figure 4.4)his considerably reduces the computational
requirements but still, in its simplest form, leads prohibitive computational load.

The approach was invented in the late 1950s andiedpwith success in the early 1980s to control
multiple-input multiple-output complex linear plantvith bounded inputs and constrained variables [9]
The first MPC industrial algorithms such as IDCOMefntification and COMmand) and DMC (Dynamic
Matrix Control, Shell® Qil) were developed for umstrained MPC based on quadratic performance
indices [32,110,111]. They were followed by algomits dedicated to quadratic programs (QP), such as
QDMC (Quadratic Dynamic Matrix Control), for solgrconstrained MPC problems [9] in the late 1980s.
Later, an extensive theoretical effort was devdtedhe analysis of such systems with the objectifze
providing conditions that would guarantee feadipiind closed-loop stability, as well as making lexp

the intuitive relation that exists between MPC #ndar quadratic regulation.

The first attempts to apply linear MPC to the cohtf internal combustion engines started in thdyea
2000s. In [115], a multivariable Generalized PrédggcControl (GPC) was used for the air-managemént

a turbocharged diesel engine. This control schehosved significant performance improvements with
respect to a standard control scheme based onldediodependent Pl controller with anti-windup. éay
later, in [113], a linear model predictive contmhs used for the simultaneous control of boostqures
and EGR rate of a turbocharged diesel engine. &t time, the benefits in terms of performances were
clear but the real-time implementation of the colfér was to remain an open question for the foifawv
two years. Finally in 2007, [47] presented a rgaktimplementable predictive controller for a readrld
diesel engine. The approach was based on the ocatitiee set strategy presented in [45] and combined
with a multi-linear engine model.

42.3 Engine explicit model predictive confirol

A relevant alternative to address the real-timelémg@ntation issue was presented the same yeaf8j [1
and proposed to combine a multi-linear diesel engnodel with the so-callegikplicit MPCapproach [10-
12]. The latter consists in computing a piecewime control law that approximates the implicit K@P
solution on a polytopic partitioning of the exteddstate space (further details are provided ini@eet.3
below). In practice, the main drawback of this a&gmh is straightforward and consists in the offline
computational efforts required to approximate timglicit MPC solution in am-dimensional state space.
The idea itself, i.e. using linear programming $otving optimal control problems, was first propdse
the early sixties by Zadeh and Whalen [138] andPbgpoi [107]. Since then, only a few authors have
investigated the idea of combining MPC and lineaogpamming [20,109], and even fewer have
investigated the possibility of combining them imengine control framework. The last relevant examp
is an engine explicit MPC scheme implemented aiadard modern ECU in 2008 [119].

Model predictive control can indeed be seen asd-ferward approach and as such its performanees ar
directly inherited from the model accuracy. In marar, the drawbacks of using poor models for feed
forward applications are well-known. In [34] itssimmed up as follows: if the model informationas t
poor, it might be better not to use it at all. &t} all these strategies show various enhancermretdésms

of performance but a common perspective is the faeghore accurate engine models in order to imerov
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long-horizon predictions. Nonlinear model predietzontrol, by its ability to handle more complexdats
that can provide a more accurate description opthesics, is one way to address this issue.

42.4 Engine nonlinear model predictive control

Since its invention in the 1960s, linear MPC hasobee an increasingly popular control technique ihat
now used in more and more industries [52,108]. H@memany systems such as internal combustion
engines show an intrinsic nonlinearity that habedaken into account in order to meet high peréoroe
requirements, product quality specifications armdpctivity demands. The linear paradigm cannoturapt
the process dynamics with sufficient accuracy amdyractice, a methodology to cope with nonlingarit
must be put in place. Such an example is proviagefil®], where the authors compare two different
approaches to handle the nonlinearities of a turéaed diesel engine air path, namely a multi-lirsead

a fully nonlinear MPC scheme. The conclusions efstudy suggest that, while both philosophies tead
attractive tracking performances, the fully nonéineontrol scheme shows a better potential, whiobley
be revealed if the tuning effort were increased.nlany industries, this inadequacy of linear control
strategy to meet high performances has motivatednbestigation of nonlinear model predictive cohtr
(NMPC) strategies.

In the NMPC framework, nonlinear models, multi-tmenodels or models that are linearized in reaétim
[29,31] are used to compute the optimal contrget@ry, in opposition to MPC where a single linear
model describes the system behaviour. While bofiragzhes share a similar philosophy (figure 4.4),
NMPC schemes are usually a lot more complex intjpecln fact, MPC problems usually fall into the
category of linear or quadratic programming and emavex. Moreover, a wide variety of efficient
numerical solvers and toolboxes are already aVailabthe literature [63]. On the other hand, NMPC
suffers from the challenge of guaranteeing a glaiodution to the optimization problem since conwgxi
properties of the cost function to be optimized asgally lost. In practice, it is necessary to eaghat a
close-to-global solution can be found within thalt&me requirements. Further details about théolam
formulation are provided in section 5.2.

The key properties of NMPC can be summed up agvisl[4]:
 NMPC consists in minimizing a given objective fupnatover a given temporal horizon,
 NMPC allows the direct use of a nonlinear modehefsystem,
« NMPC makes it possible to take explicitly into agnbstate and input constraints,
* In NMPC, the predicted behaviour is usually diffgrérom the closed-loop behaviour,
» In standard NMPC, solving online an open-loop ojgtation problem is typically required and,
* In NMPC, the system states must be measured onatsiil at each time step.

In 2006, the first applications of NMPC to an imt&rcombustion engine were presented in [62], ificivh

a third-order physics-based nonlinear model washtoad with quasi-infinite horizon NMPC to control
the air path of a turbocharged diesel engine. Tetasdors, namely a variable geometry turbine and an
exhaust gas recirculation valve, were simultangouashtrolled to track an air-fuel ratio and EGRerat
trajectories. This first attempt showed an enhamcenof the performances with respect to two other
control strategies: a linear state feedback cdetrahd an input-output linearization based corgtategy.
However, the real-time implementation of each aalgr was not addressed.

The online computational requirements issue ofiMPC was first addressed in [46] and [29-31hwit
the control of the air path of a gasoline enginethe former, the optimization problem was solvethg a
direct multiple shooting approach in which the intediate states are treated as unknown variables,
together with the control trajectory parameters[28,31], the nonlinear engine model was linearized
real time around the current operating point, engtthe use of a standard MPC scheme within a nealti
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framework. While the nonlinearity issues are adskdsin different ways, both studies show that NMPC
can lead to significant improvement in gasolineieagontrol. A third approach was presented in 2009
[104] for the control of a turbocharged diesel eegair path. The proposal combines a linear pagmet
varying model with the online active-set strateggsented in [45]. Again, the conclusion highlightee
fact that the NMPC scheme shows better trackinfopeances than a standard linear MPC in the two
standard variables of fresh air mass flow and bprestsure.

General fast nonlinear model predictive controhtthddresses the online computational requirements
issue, has been an expanding field of researcheipast few years. One of the approaches that eherg
besides explicit NMPC which was indeed never aggieinternal combustion engines, involves recastin
the primary optimization problem. This consistsrataining only the main degrees of freedom while
minimizing the number of parameters. The approachsually known as parameterized NMPC and has
been successfully applied to the control of thepath of turbocharged diesel engines since 2004 (@3.

In practice, the nonlinear model is used as a biaokfor the computation of the optimal solution &y
predictive controller that explicitly takes intocawint input constraints. The optimization routiseaduced

to a low dimensional optimization problem that lead a minimum computational time footprint. The
tracking performances, when compared to those mddaivith existing ECUs, show a great improvement
and thus motivate further investigations. In paitc, the use of a physics-based nonlinear modbéra
than an eighth-order data-based model is suggbsgtdte authors.

4.3 Explicit model predictive control

Solving a nonlinear optimization problem onlinekisown to be computationally overwhelming. This
truism, either right or wrong, has traditionallynited the use of MPC in an industrial frameworkstow
processes such as chemical plants [4,52,108,110 Hibdtvever, in practice, several approaches hase al
provided a real-time solution for the control ofeimal combustion engines (section 4.2). Amongehes
approaches, computing the explicit solution of tdimization problem offline circumvented this issu
[11,18,103].

u=K1x+h1 u=K2x+h3

-

u=Kzx + hs

|
X2

Figure 4.5 — Principle of the explicit model preditive control approach in a 2-dimension extended
state space. The behavior of the implicit MPC lawsi approximated by a piecewise affine control law,
defined on a set of a polytopic regions.
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The explicit MPC approach consists in approximatihg solution of the implicit MPC problem by a
piecewise affine control law, defined on a polyladartition of the extended state space (figubg. & he
latter usually includes the states of the moded, gbt points and a set of relevant exogenous inputs
practice, this approximation can be as close asilplesto the optimal solution of the problem ane th
explicit state feedback law that is obtained simgllyninates the need to execute a numerical opditicia
algorithm in real time [11,16,18]. On the other thait is also well-known that the curse of dimemnsility
represents its primary drawback, since the menmegyired to embed the numerous linear control lsaws ¢
quickly become prohibitive for high dimension syste However, generally speaking, the numerous
benefits of an explicit solution make further intigations worthwhile. In fact, besides its low
computational footprint, explicit MPC also allowsrifiability of the implementation, a crucial prapefor
the certification of safety-critical applicatioritalso leads to low complexity software since ¢oee of the
strategy consists of a simple look-up table. Finadlhen considering NMPC the prospects are evelnehig
since computational efficiency and verifiabilitpigs are indeed more critical.

In a general framework, the main reasons that ratgtithe development of explicit NMPC can be summed
up as follows [53]:

» Significant reduction in online computations by g the computation of the solution of the
optimization problem in real time,

» Significant reduction in software complexity sindke embedded code only contains the
determination of the appropriate polyhedral andeh&luation of the associated piecewise affine
function,

e Formal analysis of performance, sub-optimality atability of the approximated law can be
performed since an explicit representation in threnfof a state feedback law is available,

e The robust formulation of the explicit NMPC law a#ly does not lead to increased online
computation with respect to standard formulationcsi the basic form of the controller is
conserved and,

» All the appealing properties of NMPC (section 4)2idcluding the ability to combine a nonlinear
model of the system with a physics-based performapecification index, are preserved.
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4.4 Conclusion

Section 4.1 highlighted the most important consteathat have to be taken into account in ordeiie a
new control strategy a chance of being adoptechbyautomotive industry. They concern hardware and
software limitations but also the general practiofsar manufacturers. Model-based control is one
approach now unanimously voted in by academicsraastrialists as a solution to handle growing aegi
complexity. Recent practical examples in fast eadiiMPC confirm that predictive approaches repreaent
relevant alternative to handle the intrinsic noadirities of internal combustion engines. In patsicuthe
possibilities of incorporating performance speeifions, and handling input and state constraintgiviaite
further investigations into the nonlinear paradigm.

Concerning the real-time implementation itself, aygproach seemed to make a sufficiently significant
difference to become the new standard, and a oentainber of other appealing theoretical approaches
have not yet been applied to engine control. Thisii example the case when considering the cortipnta

of the explicit solution of a NMPC scheme in anieegcontrol framework, for which no practical exdenp
exists in the literature.

*kk

Chapters 1 to 3 introduced a control-oriented amgbigs-based engine model that directly benefidsfr
the knowledge and data already available in theraative industry. The following chapters will ugast
engine model in an NMPC framework and provide inginto the unprecedented combination of a
physics-based engine model and an explicit NMPCGcaa.
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NONLINEAR MODEL PREDICTIVE
CONTROL OF THE AIRPATH OF A
TURBOCHARGED GASOLINE ENGINE

The importance of simulation in combustion engirgedopment nowadays is undisputed and all original
equipment manufacturers now include the developmah engine simulator in the earliest stageseif t
development process. In particular, this meanswien reaching the stage of designing and caliyai
control strategy for a new engine, a physics-basadinear model is already available. These models,
which are always calibrated using standard testleneasurements, are usually built using commercial
software mainly based on first principles. Two &fm currently dominate the automotive system
modelling market: GT Power® developed by Gamma meldyies, and AMESIim® developed by LMS.
They both allow building and calibrating throughuser-friendly interface and zero dimensional engine
models that roughly follow the philosophy presenited¢hapter 1. They are also highly compatible with
widespread control development tools such as M@&tkatd Simulink®.

For the past few years, car manufacturers haveedtém integrate this new type of tool into theirsting
development processes. While initially they weréyarsed to facilitate the decision process in thdiest
stages of development, physics-based models hawe proved sufficiently robust and accurate to
completely replace selected experimental validalbops. However, even if developments in the next f
years enlarge the range of possibilities by comallg reducing the computation time, there is st
evidence that these engine models will penetratgralodevelopment at earlier stages, and replaee th
current simple validation tools. In fact, most aeait model-based control proposals currently rely o
specific analytic models that require a dedicatqueemental identification process [25].

In this chapter and the following, it is proposedsystematically build NMPC schemes that are baseal
physics-based model such as those already widelg g car manufacturers and presented in chapter 3.
This unconventional approach is the result of thelgination of three considerations. First, the labdé
computing power is exponentially increasing whitewate control-oriented physics-based models can
already run faster than real-time on any standasktdp computers (chapters 1 to 3). Secondly, while
NMPC has already proved able to improve the coqtesformances of modern combustion engines, most
expectations concern the used of physics-basedcficdmodels (chapter 4). Finally, promising saus

for real-time implementations of MPC and NMPC lalieady exist and have been successively applied in
an engine control framework (chapter 4).

The main outcomes in this chapter are: a practiasé of application of multi-input NMPC for the path
of a turbocharged gasoline engine, that benefis fthe nonlinear physical engine model widely uised
the automotive industry; a new thermodynamic objecfunction that implicitly maximises the engine
cycle efficiency; and design and calibration recandations for the computation of an explicit saunti
and its implementation in real time.
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Section 5.1 presents the general objectives focdimérol of the air path of turbocharged gasolingiees.
Section 5.2 serves as an introduction to the NMR@héwork and the associated problem formulation.
Finally sections 5.3 and 5.4 present the NMPC lad the performances obtained for a practical cése o
application, namely the control of the air patladtirbocharged gasoline engine (figure 1.1).

5.1 Control objectives in furbocharged gasoline engines

5.1.1 Engine torque production

Along with port injection gasoline engines, there aow more and more direct injection systems @n th
automotive market. Both types of engines usuallgnlmime stoichiometric combustion with an optimal
spark advance. The latter provides the maximumutrtpat avoids damaging knocking [65]. The Otto
cycle then describes the idealized behavior ofaylender pressure and volume during the well-known
four-stroke cycle. Such a pressure-volumé/{ diagram is depicted on figure 5.1 below. Theardpop
represents the work produced by the engine duhiegcycle, while the bottom loop represents the work
consumed by the engine to suck up the air fromirttake manifold, namely the pumping losses [65]e Th
losses and more generally the engine cycle effigiatefined as the ratio of the upper area on thed to
area, are then directly linked to the differencéwieen the exhaust manifold and the intake manifold
pressure, respectivety,,: andpman-

Pressure A

pavt 1

Pman {---

>
Volume
Figure 5.1 — Theoretical pressure-volume diagram side the cylinder of a standard four-stroke
internal combustion engine. The upper loop represdn the work produced by the engine while the
bottom loop represents the work consumed by the e to suck up the air from the intake
manifold.

In these conditions, i.e. at stoichiometry and ropti spark advance, the torque produced by a given
gasoline engine is controlled by the air mass féawtering its cylinder®,,,. At a given engine speed,,

the latter directly depends on the intake manifaléssurep,,,,,,. Thus, from the air path control point of
view, the torque of the engine is controlled byyiag this pressure in the intake manifalg,,,,. With
traditional fixed variable valve timing, a statiwok-up table calibrated on an engine test bencttise
4.1.1) is usually used to convert the torque séttpoesulting from the driver request through thees
pedal, into an achievable corresponding intake folzhpressure set poimtS”,,,. The objective of the air
path controller is then to determine the positioha given set of actuators that will achieve hisssure

set pointpsh,,. The general construction of such engine set pmajéctories under emission and fuel
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consumption constraints is beyond the scope of digsertation but further details can be found in
[30,126].

51.2 Pollutant emission considerations

On European gasoline engines, an appropriate petent system systematically ensures that the
pollutant emissions remain below the regulatoryele¥n fact, while stoichiometric combustion mainly
produces hydrocarbon (HC), carbon monoxide (CO) ritdgen oxides (NOx), a very narrow air-fuel
ratio window allows the so-called three-way catilgsconvert these three pollutants almost compylete
into carbon dioxide (C¢ and water (see figure 5.2). If it exceeds pohtitamission standards, the
particulate matter (PM) exhausted by the enginecaptured by an additional element, namely the
particulate filter. The complete post-treatmenteysis then known as a four-way catalyst. Thankbdése
widespread technologies, pollutant emissions ofksjgmited engines are usually considered as aesblv
problem if the air/fuel ratio can be kept withiretbptimal conversion area (figure 5.2).

Conversion
efficiency A

100% -

NOx

>
1.0 Air-fuel equivalence ratio

Figure 5.2 — Conversion efficiency diagram of a thee-way catalyst
(after light-off and at stationary behavior).

5.1.3  Application to turbocharged gasoline engines

In turbocharged spark-ignited engines, the thrqiid¢ée opening upstream the intake manifolg. and the
wastegate position at the exhausf,, make it possible to vary the pressuggs. and pp., in a
coordinated way. This combination of actuatorsiimspse and reliable but can significantly reduce the
engine efficiency due to two phenomena. Firstlyit paads are achieved by closing the throttle, i.e.
producing pumping losses (figure 5.1). Secondlg, ititroduction of an additional flow restriction thie
exhaust, namely the turbine, tends to increasexhaust manifold pressugg,;, i.e. the work consumed
by the engine to suck up the air from the intakgufe 5.1). Since both tend to reduce the averagkeb
specific fuel consumption of turbocharged gasokngines, the actual primary objective of the aithpa
control loop is not to determine any actuator posgu,,, andu,, that will achieve the pressure set point
psP . but to determine among a wide range of solutitims,actuator positions,,, andu,,, that will also
minimize engine losses.
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This multi-input{uthr, uwg} and multi-objective control problem is usually idied into two single-input
single objective problems [30,94]. The wastegatenamu,,, is used to achieve an additional compressor
downstream pressure set pojfﬁ,‘,fc while an appropriate throttle opening,, ensures that the intake
manifold pressure set poipf%,, corresponding to the driver's engine torque retjiseachieved. Then, a
widely used method to reduce the pumping lossés isse the same set points for both problems [80].
other words, the compressor downstream pressuwendoy the wastegate should also roughly follow th
intake manifold pressure set point trajectory,;ig = p3F . This can be explained by the fact that such
an approach maximises the throttle openipg by minimizing the pressure drop between the twatrod
volumes (figure 3.9), and intuitively reduces thee wf the turbocharger. The wastegate openingeis th
assumed to be maximised, thus reducing the flowicgen at the exhaust and the related engineckss
This is a typical manifestation of the way engirantcol theory has been used in the past few years:
empirical observations translated into rules ofntbuand other tricks, often based on strong hypethes
However, faced with increasing engine complexitlyis ttype of control strategy usually becomes
intractable and explains the growing interest efroanufacturers for model based control approadhas.
instance, the rule of thumb which consists in using similar set point trajectorigpsh., pi, } falls apart
when considering additional actuators such as birigalve timing. In fact, the engine torque theases

to be given by the intake manifold pressgrg,, which becomes an additional degree of freedom to
maximise the engine cycle efficiency (figure 5.1).

In contrast, an NMPC scheme based on an accurgteeephysics-based model would enable the physical
behaviour of the engine to be explicitly taken iatttount. For instance, the maximum engine effijen
criteria deduced from thg-V diagram (figure 5.1), i.e. minimizing the pressgep between the inlet and
outlet manifold, can be taken directly into accoimthe objective function that is being minimizéithe
main advantage of this approach is that, as lonthaselated physics phenomena can be modelled, the
philosophy can easily be extended to other techdiefinitions. For instance, if engine pollutantissions

are modelled, they can be minimized in a similashfan. An example of an application of a
thermodynamic-based performance index is fully iteetan section 5.3.

5.1.4 Car manufacturer specifications

In this study, the specifications for the intakenif@d pressurep,,,, tracking are directly provided by a
car manufacturer (figure 5.3).

pman A

....... max : 150 mbar

max : +/- 2%

/* max : 150 mbar

....... max : 150 mbar

t

Figure 5.3 — Overview of standard car manufactureintake manifold pressure set point tracking
specifications for a turbocharged gasoline engine.
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They are essentially motivated by the level of aloility to be attained on a given engine and addres
limits on the overshoots encountered for “smallt &big” set point changes (respectively a maximum
value of 50 mbar and 150 mbar), tracking errorrpa ramp-type signal (150 mbar maximum) as well as
a maximum steady-state error (2% of the set paihte). They are summed up on figure 5.3.

Standard car manufacturer specifications also addigsues such as upper limits on the turbocharger
rotational speed, and the engine exhaust temperatlyg, both motivated by major safety and reliability
requirements. While NMPC schemes are particularyi-adapted to handle such state constraints, this
also requires sufficiently accurate predictionghese physical values. Since for the model predeinte
chapter 3, the prediction accuracy cannot be gteednat such a safety level, the control schemes
presented in this chapter and the following aveichsadditional constraints.
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5.2 Theoretical aspects of nonlinear model predictive control

The general MPC framework involves the solutionaofinite horizon open-loop optimization control
problem. The states are updated at each sampling &nd a new optimization problem is solved
repeatedly following the receding horizon approddtis optimization problem can be explicitly sulijex
system dynamics as well as input and state contgrdi this section, the main aspects related NP
are reviewed. The first sub-section starts with fivenulation of the NMPC optimization problem in a
general discrete time framework. Then the mostvegle properties of NMPC are detailed along with
theoretical considerations such as stability angustness. Finally, before going into detail abdé t
control of the air path of a turbocharged gasoéingine in section 5.3, considerations for the cdatmn

of the explicit solution of the NMPC law are proeidtl

5.2.1 Problem formulation

The system to be controlled is assumed to be desthy a discrete-time model:
x(k+1) = f(x(k),u(k), o) (5.1)

wherek is the discrete time index(k) € R™ denotes the system states andk) € R™ represents the
input variablesf is a nonlinear function parameterized by a veofogxogenous inputs. The state and
input control variables respectively remainXimndU, compact subsets & andR™:

xeEX,uelU (5.2)
Given the current system statg and the vector of exogenous inputsat time instantk, solving the

NMPC problem consists in determining the optimattee of input variables:* with respect to a given
objective functions. Thus, the discretized NMPC problem that is adsir@ss given by:

§*=8W") =min ) S(x,y,u,0) (5.3)

s.t.
§ = B0 (@), y(@), u), 0(D) (5.4)
x(k + 1) = f(x(k),u(k),a(i)) (5.5)
y (k) = g (), k), o(D) (5.6)
x<x(k)<x,u<ulk)<u (5.7)
x(k) = xq (5.8)

where H, = [k,k + N,| is the so-called prediction horizon at tirkeand J denotes the so-called cost
function. f andg are nonlinear functions describing the discrateetsystem dynamics. It is assumed that
they satisfy necessary regularity assumptions dhioty smoothness and continuity. Finallyx, u andu
respectively stand for lower and upper bounds endfates and the control variables, and respegtivel
defineX andU.

The cornerstone in NMPC is the nonlinear mofiglg}, used to evaluate the set of admissible future
control trajectories. It should be pointed out ttiet formulation of the NMPC problem proposed above
does not take into account the model uncertairitidaced by the modelling hypothesis, the unknown
disturbances that can be encountered on a practisal of application, or the measurement errotsatia
normally occur. This is very unrealistic from a g@ieal point of view and the question of predictitig

real behaviour of the NMPC scheme once on boarsd #énises. This raises the more general issue of the
stability and robustness of NMPC laws, which isfiteus of much current research.
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522 Issues of the stability and robustness of NMPC laws
5.2.2.1 Nominal stability

NMPC stability properties are notably inheritedrfréthe choice of the cost function and predictionZum
and are intrinsically linked to the system predictmodelf, g}. In practice, the fundamental issue is to
decide whether or not the use of a finite horizal lwad to stability of the closed-loop system.fhtt,
while requiring significantly smaller computationalsources, finite horizon optimal control probleans
also known to provide an open-loop control trajectbat usually differs from the closed-loop tragy of
the nonlinear system since new information is olgidiat each sampling time [4,27,28,89,110,111].

Different approaches to achieve closed-loop stgbiti the case of a finite horizon cost functiore ar
available, all motivated by drastic computationafjuirements. They usually lead to NMPC laws with
guaranteed stability, i.e. the stability is achidwedependently of the value of the calibrationgpaeters.
The most popular methods include: adding a termaust and/or terminal equality constraints to the
standard set up, determining terminal set consgaan any relevant combination of these. Note #hag
with guaranteeing stability, this type of strategyl usually lead to issues related to the feagipibf the
optimization problem as well as to an increasehm ¢computational requirements. Still, both issues a
usually improved with respect to the infinite-hanizoptimization case [4].

Finally, when dealing with stability consideratiprene should also take into account that in NMPC,
obtaining a suboptimal solution is usually suffiti¢o guarantee the stability of the closed-looptem
[4,24,67,90,118]. This property is often used tordase the on board computational requirementiheof t
implicit solution, as well as to explain the inhetreobustness of some industrial cases of appbicati

5222 Robustness

Over the years, practical industrial cases of apfitn have proven the inherent practical robustroés
NMPC laws, which probably explains the growing plapity of the method [3,52,53,56,108]. The formal
treatment of this inherent robustness of NMPC lears be found in [22,84,89,117].

On the other hand, when combining short predictionizons with state and terminal constraints, for

example, robustness issues can appear [55]. To witpethis, a wide range of NMPC schemes that

explicitly take into account modeling uncertaintasd unknown disturbances has been designed. st lea
three main types of approach can be distinguishiesb]: stochastic approaches based on a probabilist

description of the uncertainties, mechanisms toicaateady-state errors based on the estimation of
disturbances, and min-max reformulation of the m@hoptimization problem. *

The latter is probably the most intuitive sincaiinply consists in taking into account, at eachetistep,
the worst case uncertainty (or disturbance) ougieén set. The minimization problem (5.3) is then
transformed into a min-max optimization problemammopen-loop fashion, it guarantees a certairl lefve
performance whatever scenario is actually encoedtebut usually leads to poor performances and
obvious issues of feasibility. This min-max formtida usually avoids the use of any of the stability
constraints described in section 5.2.2.1 [15,23,26fvo key drawbacks explain the inherent
conservativeness of the method: worst scenarids avibw probability of occurring have the same wagig
as more realistic nominal cases, and no advarsagden of the feedback effect induced by thedice
horizon strategy. A closed-loop formulation of th@&n-max approach that partially overcomes this
drawback also exists [83,85,86]. It usually leagnldelss conservative performances but shares the sam
challenges w.r.t. the increasing computational dewify when compared to a standard NMPC
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formulation (5.3) to (5.8) [53].

5.2.3 Computation and on-board exploitation of an explicit
solution

When considering the on-board computational timeaigeneral framework, a sensible approach has
proved to be computing offline an approximate sohutof the MPC (respectively NMPC) optimization
problem under the form of an explicit control lase¢tion 4.2). However, in practice, the methodolmgy
not straightforward and several considerations Haviee taken into account in the earliest stagethef
development, in order to keep under control botHinef and online computational requirements.
Additionally, major characteristics of the tradd-bétween accuracy and complexity of the final &ipl
MPC (respectively NMPC) law are directly inheritey the implicit MPC (respectively NMPC) design. It
is therefore of primary importance to take intoaot the potential offline and online numericaluiss
summed up below, in the very first stages of thglict MPC (respectively NMPC) scheme design.

Offline, the computation of an explicit approximatgution to the NMPC problem (5.3) to (5.8) coftssia
the resolution of a multi-parametric nonlinear peyg (mp-NLP). Although the approach intrinsically
suffers from the related curse of dimensionalitkdid to the order of the problem, the drawback lman
overcome in three ways: better computing capaddljtefficient algorithms for solving mp-NLP, andkth
use of a low-order implicit NMPC scheme, i.e. wathminimum number of states. For the first, computin
power naturally increases from year to year andtwhaurrently intractable will soon become fastsye
and cheap - one has only to look back on how coatipmial capabilities have increased since starximg
one’s studies or on a career. Secondly, concertlirgconstruction of an efficient algorithm for the
computation of the explicit solution, this studyeatpts to provide a relevant answer that is detaite
chapter 7. Finally, the constraint of computing éxplicit solution from a low-order NMPC law typiba
corresponds to the considerations that have tamkentinto account when designing the initial imiplic
NMPC scheme. A practical example for the constonctf an explicit-ready NMPC scheme is provided in
section 5.3.

Online, the exploitation of such an explicit NMP&M also induces its own set of constraints andlreg
two computational stages:
« determining the active regioh i.e. the polyhedral in which the system is cutiseperforming
(figure 4.5) and,
» computing the approximate optimal actuator posgjamsually of the fornii* = K;x + h; from
the controller parametef%;, h;} corresponding to the active polyhedial
In practice, the latter is usually not consideredé time-consuming since piecewise affine corlrals
are usually favoured. The computation of the optticeatrol then involves simple matrix algebra thait
require only a few additions and multiplicationsowver, determining the active region among thal tot
number of polyhedrals in the partition can becomigcal when a large number of regions are requted
achieve good enough performances with the exptioiitrol law. Additionally, in such cases, memory
requirements can also become an issue since sthB@4¥s usually carry no more than 8 to 16 megatbits
Read Only Memory (section 4.1.2).

Altogether, assuming that the computational cajissilavailable on-board are given, both the oéfland
online computational issues described above reaguinémizing the number of parameters of the mp-NLP
to be solved. They include the number of statethefmodel, the number of set point trajectoriebeo
followed, and the number of exogenous inputs totdken into account. The implicit NMPC scheme
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presented in section 5.3 explicitly takes this fatd account in order to enable the computatioramf
explicit solution of the NMPC problem in chapter 7.

5.3 NMPC of the air path of a turbocharged gasoline engine

5.3.1 Problem formulation

The air path NMPC scheme proposed in this chaptbased on the physics-based engine model presented
in chapter 3. The problem fits into the formulatiohan NMPC optimal control problem such as (5®) t
(5-8) if we respectively define the state vectothe vector of inputa and the vector of exogenous inputs

o as below:

T
x = (pape: Pmans Pavt, wt) (5.9)
u = (uthr, uwg) (5.10)
o = (N, prSnPan' Pambs 8amp) (5.11)

As suggested before (section 5.1.4), no other cainsthan saturation of the mechanical actuasotaken
into account:

0<u<100% (5.12)

In this study, the prediction model is given by Widespread physics-based nonlinear model presamed
validated in chapter 3. It combines a mean-valygnenmodel and a zero-dimensional modelling ofaine
path, and considerably facilitates the calibratipocess while being sufficiently accurate for cohtr
oriented purposes. The right-hand side in (5.5hén given by the set of equations (3.2). For abntr
design purposes, the equations are discretizedsaimgpling time ofAt = 1 ms, using Euler’'s forward
differentiation method:

yr
pgz-;el = pétcpe + er. (QC ' gapc — Qtnr (uthr) ' gape) - At

p‘ll%-lt-l:‘}l = p!ﬂfmn + %' Oman * (chr (Uthr) — Qeng) - At

{ (5.13)

yr
pg;tl = pgvt + E. eavt ' (Qeng + quel —Qr — ng (uwg)) - At

Wf = wf 7 (Tp = T¢) - At

5.3.2  Algorithm

The optimization problem defined from (5.3) to (bi8addressed using the sequential approach kaswn
direct single shooting [66,75,116]. The discretizeat of equations (5.13) is solved using numerical
simulations when evaluating the objective functi®rand the vector of control inputs is treated as
unknown. This is motivated by the fact that segaéndpproaches, in opposition to simultaneous
approaches, use separate ordinary differentialtequéODE) and optimization solvers. Then during th
optimization problem, the model is only used adaxchbox to evaluate the objective functién This
crucial feature enables any type of engine modddaaused, in particular those designed on dedicated
software (GT Power®, AMESIm®) by specialists of etngomotive industry. Additionally, the sequence of
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simulate-optimize iterations is driven by a simpflest-region reflective algorithm implemented in
Matlab®. The gradients are computed using thedfidifference method.

The optimization solver, when initialized at thenteg of the control variable space (5.12), convergea
close-to-global solution within 20 iterations. Thisnstitutes a cold start, in opposition to warmrtst
approaches in which the iterative method is inité&d using the solution obtained in the previoostistep.
This cold start increases the number of iterati@ugliired to reach the optimal solution but is aessary
feature regarding the computation of an expliciuson in chapter 7. Indeed, in the multi-paraneetri
framework that will be put in place, there will be such thing as a previous time step.

5.3.3 Cadlibration of the NMPC scheme

The calibration of the NMPC scheme (5.3)-(5.8) folated above involves three stages that are deétiale
the sub-sections below (figure 5.4). First, an appate cost functiorf, with respect to the performance
objectives, must be defined. Then, the predictionzion H,, along with an appropriate parameterization of
the control trajectory. can be determined by means of parametric anaysifr experience.

u-trajectory Prediction horizon

Cost function J parameterization H,

Figure 5.4 — Three calibration parameters of an imficit NMPC scheme.

5.3.3.1 Cost function g

As detailed before, the physics-based NMPC approaaiived in this study, takes thermodynamic criter
such as the engine cycle efficiency explicitly iamcount in the cost functigh (section 5.1.3). In practice,
besides the first classical quadratic term thaumssstracking of the intake manifold pressure sentp
Pk, @ second termy,:/Pman is added in order to minimize the pressure raéitween the intake and
exhaust manifolds. As indicated on figure 5.1, mizing such a performance index naturally maximizes
the engine cycle efficiency by reducing the areahef bottom loop of the Otto cycle. Altogether, the
unprecedented thermodynamic cost function thaséslun this study is given by:

Jd= a(pfrﬁzn - pman)z + ﬁ ;::_::n (514)
where the weighting factors andp are used to scale and penalize each term of thi-objective cost
function.

In practice, if the weighting factar is small compared tg8, the intake manifold pressugg,,,, will not
reach its desired valugs’,,. In fact it would become more favourable to mirkeithe second term
Davt/Pman than to achieve the required intake manifold presset pointp;”.,. With an appropriate
choice ofa andg, the engine cycle efficiency will be maximized ymthen the intake manifold pressure
tracking erromsr . — p.an i sufficiently small. Based on the author’s exgece, an initial guess far
andp can usually be obtained using a prediction horidgr(section 5.3.3.3) equal to the settling time of
the system and a classical piecewise constantefutomtrol trajectory:. If the problem is intractable for
computational considerations, one can first redhedlexibility of the control trajectory so thatdoes not
change at each time step. See section 5.3.3.2 etdurther details.
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This thermodynamic cost function formulatighavoids the use of any methods to formulate an NMPC
with guaranteed stability (see section 5.2.2). Tasign choice is principally due to the paramaégion

of the optimization problem i which makes the definition of any terminal costntinal penalty term or
terminal constraints intractable in this particulanlinear paradigm. However, the closed-loop &tglin

the sense of boundedness of state space trajejtriensured by the intrinsic dissipative propsrtf the
engine as well as the physical bounds on the iopuitrol variables (5.12).

5.3.3.2 u-frajectory parameterization

Most of the time, in industrial engine control dpations, the command of an actuator can only be
changed at a given sampling tilie. and remains constant in between these samplisgvals. To cope
with this, the unknown optimal control trajectomy must be described by a finite number of decision
variables so that a finite-dimensional optimizatmoblem can be solved using numerical optimizatidn
piecewise constant input signglwith a regular sampling interval that matchesehgine control set point
changes, is usually used to fulfill these constgain

In practice, the parameterization of the futuretamrirajectoryu will influence the controller closed-loop
performances as well as the general computati@gglirements to compute the optimal actuator pastio
On the one hand, it should be flexible enough ty hienefit from the control horizoH,, that is chosen, as
well as approximate as well as possible the optimagéctory of the original problem. On the othand,
even in the explicit NMPC paradigm, the optimizatfiroblem must remain implementable, i.e. capable o
coping with the associated hardware and softwarmpotational issues (section 5.2.3). Altogether, the
right compromise should provide w&trajectory parameterization that contains a minimoumber of
parameters. It also has to minimize the computatioequirements, the numerical sensitivity andr|ate
facilitate the computation of the explicit solutifs8].

Based on this practical point of view, it is ustalrestrict the input variables from changing athea
sampling instant on the prediction horizon. Usudilgxibility is given at the beginning of the pietion
horizon by keeping the input variables constargrafite so-called control horizdi, = [k, k + N.] and
until the end of the prediction horizdi), (figure 5.5). There is no theoretical limit in shapproach or in
the distribution of the degrees of freedom over phediction horizon. In fact, linear MPC laws wigh
constant input over the prediction horizon wereeadly implemented successfully on industrial
applications in the 1990s [108]. Horizon-1 modedgictive control schemes are another popular exampl
that uses this philosophy [64].

In this study, regarding the good computationaktélfiies available for tuning, a parametric anaytbat
consists in varying the number of control changesvall as their distribution over a sensible prédic
horizonH, has been used. Keeping in mind that the objedsite minimize the number of optimization
parameters of the problem, a horizon-1 NMPC schproged able to provide enough flexibility to track
the realistic vehicle driving cycles presented igares 3.11 and 3.12, as well as handling suddepadset
step changes. Since there are two manipulatedblasianamely the throttle and the wastegate positio
U anduy,4, a horizon-1 NMPC scheme requires solving a 4+patar optimization problem at each
sampling time.
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Figure 5.5 — Principle of the effect of a reductionn the control horizon H, on the number of
optimization parameters in (5.3) considering a sinlg input system. The overall optimization problem
complexity is usually reduced by reducing the numheof degrees of freedom in the future control
trajectory, i.e. H, . However, the closed-loop performance of the conit is usually also reduced.

In practice, the optimal parameterization also delgeon the prediction horizai, that is used in (5.3):
long prediction horizons usually require more flekiy, without which, NMPC performances
considerably decrease. The evaluation of the diffepossibilities for the:-trajectory parameterization
should indeed be made along with the determinatibrthe prediction horizonH,, following the
recommendations presented in the following subisect

5.3.3.3 Prediction horizon H,

From a theoretical point of view, it would be prefiele to use an infinite prediction horizon in arde
guarantee the intrinsic stability properties of tmntrol law. Since such an optimal control problem
usually intractable in terms of computational tinfimjite horizons are usually favored. However, in
practice, it is wrong to say that the repeatedtemiwf a moving finite dimension problem is equésa to

the optimal solution of the infinite dimension pledn. Intuitively, the difference increases when lgrggth

of the prediction horizon decreases, but practeoglerience shows that an appropriate choice of the
prediction horizon usually approximates the behawid the closed-loop infinite horizon NMPC
sufficiently well, in a receding horizon framewdrk30,108,110,111,126].

In practice, when wishing to use a finite horizég one should still decide between using a constadt
given prediction horizon or considering it as aefrariable of the optimization problem, which isiaky
far more computationally challenging. Consequergkcept in rare cases of application [44,49,101§, t
prediction horizonH, is finite, constant and considered as a simplénguparameter. In our particular
discrete framework, it is also assumed to be agant multiple of the control sampling time,.
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A rough estimate of a relevant prediction horizam wisually be made in agreement with the dynamic
behavior of the system [3,27,28,56,89]. In the azfsa turbocharged gasoline engine, the settlimg tof

the system is linked to the operating point. Intipatar, as suggested in chapter 1, the pressansignts

are highly dependent on the engine spS¥gdnd on the turbocharger rotational speegdsFor the 1.2L
turbocharged gasoline engine depicted on figure th& physics-based model presented in chapter 3
showed that it varies roughly from 80 ms at lowiaagpeed to 300 ms at high loads.

Again, a parametric analysis of the effect of thediction horizon on the control performances bably

the easiest way to determine the most appropredteewv.r.t inlet manifold tracking specificatiorse€tion
5.1.4). Such an approach led to selecting a piieditiorizonH, of 200 ms that proved capable of tracking
realistic vehicle transients (figure 3.11 and 3.42)well as handling sudden set point step chafiges.is

in agreement with previous applications of the NM§@Beme to downsized turbocharged gasoline engines
[31].

5.4 Simulation performances

Before computing the explicit solution of an im@icNMPC law, one should first ensure that the
performances of the implicit scheme meet the spatibns imposed by the car manufacturer (section
5.1.4). On this particular case of applicationytimelude tracking performance criteria in ordeathieve

the torque requested by the driver as soon aslpessiut also considerations about drivability thed
difficult to take into account in simulation. Irrgetice, we will first focus on verifying the geaér
behavior of the controller on successive set petep changes (section 5.4.1) and compare it to the
expected behavior based on extensive knowledgheobptimal behavior in such trivial cases. Nexg th
implicit NMPC scheme will be validated on realistiehicle transients (section 5.4.2) and we willdode

on the performances of the implicit NMPC approach.

All the simulations were performed on an enginewator running at a sampling period of 0.5 ms and
based on the modeling philosophy presented in endptCompared to the prediction model described in
chapter 3, additional throttle and wastegate firster models were added to simulate the time respoh
both actuators. The sampling time of the air pathtml| At. is 10 ms, in accordance with the car
manufacturer specifications.

5.4.1 Preliminary validation on set point step changes

Figure 5.6 illustrates representative closed-loepfgmances obtained under a sequence of successive
positive and negative 300 to 400 mbar steps, fatbly a positive and a negative 1,100 mbar stepgeha

on the intake manifold pressure set pgifft,,. The engine speed is kept constant at 2,000 remmiddle

load. Figure 5.7 shows a similar set point trajgctd 5,000 rpm.

For both engine speeds the implicit NMPC schemeciest the car manufacturer specifications with no
overshoot, a steady-state error below the 2% land a quasi-optimal settling time. In fact, at eaeh
point step change, one can see that the throttletewastegate are immediately actuated, leadiramnt
optimal settling time w.r.t the engine. In standBiecontrol approaches, this type of behavior caly be
obtained by the addition of a feed-forward actibaring negative set point steps, the throttle iwraly
used to quickly reach the set point, overcomingttiteocharger inertia. While the boost pressure tard
turbocharger rotational speed slowly drop to mizenthe pumping losses, the throttle is progresgivel
opened again. This phenomenon can particularlydsereed after the 1,100 mbar negative step change a
time t = 2.5 s, and clearly demonstrates the benefia multi-variable control approach.

Altogether, the implicit NMPC scheme shows a veopd) general behavior w.r.t. the car manufacturer
specifications (section 5.1.4) while requiring agenable calibration effort (section 5.3.3). Inqpice, the
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opening of the two actuators is maximized, whicuees pumping losses due to the throttle and the
blockage effect due to the turbine. This maximittes engine efficiency and proves the validity of th
thermodynamic objective function (5.14) proposethia study.

In the next sub-section, the NMPC scheme is evaduan a realistic vehicle transient, including a
continuous change of the engine speed.

Inlet manifold pressure [bar]

Set point
— Simulation
— ~ +/- 100 mbal
1
35 4
Time [s]
Compressor downstream pressure [bar]
2 I I I I I I I
15F- - SRR N R S TN [ IR .
B S S SRS
0 0.5 1 15 2 25 3 3.5 4
Time [s]

Throttle opening [%0]

0 0.5 1 15 2 25 3 3.5 4
Time [s]
Wastegate opening [%]

B implicit NMPC

0 0.5 1 15 2 25 3 35 4
Time [s]
Figure 5.6 — Set point step validation graphs of #gnimplicit NMPC scheme at constant engine speed
(2,000 rpm).
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Inlet manifold pressure [bar]

Set point
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Time [s]
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Time [s]
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Figure 5.7 — Set point step validation graphs of #nimplicit NMPC scheme at constant engine speed
(5,000 rpm).
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5472 Validation on realistic vehicle transients

In this sub-section, the performances of the inifghd1PC scheme are evaluated on two engine spawtis a
intake manifold pressure set point transients (6g8.11 and 3.12). Both cycles represent samples of
driving sequence recorded on a vehicle equippel thvé turbocharged gasoline engine presented arefig
1.1. The engine speed varies from 2,500 rpm toG@én while the intake manifold pressure set point
psF  varies from 200 mbar (low load) to 1,700 mbar khigad). The cycle includes areas where the
sensitivity of the wastegate is very low and sehpohange dynamics that require sudden opening and
closing of the actuators.

Inlet manifold pressure___[bar]

man

[

Set point
— Simulation
— = +/- 100 mbal

Time [s]
Compressor downstream pressué[’gan[;h)ar]
? | | | | | |
o Y A ] Pastiin N R R 1T
s St e ams
0 5 10 15 20 25 30 35

Time [s]
Throttle opening y [%]

0 5 10 15 20 25 30 35
Time [s]
Wastegate openingvbl[%]

I [T il

E implicit NMPC
‘ ‘

0 5 10 15 20 25 30 35
Time [s]
Figure 5.8 — Validation cycle #1: performance of th implicit NMPC scheme on a realistic intake
manifold pressure set point transientps’ .. Note that the engine speed¥, varies continuously
between 2,500 rpm and 5,000 rpm (figure 3.11).
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Figures 5.8 and 5.9 respectively depict the peréoees that were obtained by simulating the behafior
the implicit NMPC scheme on the engine simulatat fhcluded the actuators’ dynamics. Both show the
ability of the controller to follow realistic intak manifold set point changes’, under continuous
changes in engine spedy, i.e. conditions that are similar to real driviogcumstances. In practice, the
implicit NMPC scheme shows an average error thaamnes below 20 mbar. This is in perfect agreement
w.r.t the car manufacturer specifications describeskection 5.1.4, and similar to what is obtaibgdbther
advanced control strategies in the literature §,%62,99,100,119].

Inlet manifold pressure p_ [bar]
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Time [s]
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I
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Figure 5.9 — Validation cycle #2: performance of th implicit NMPC scheme on a realistic intake
manifold pressure set point transientps” ... Note that the engine speedl, varies continuously
between 3,000 rpm and 5,000 rpm (figure 3.12).
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5.5 Conclusion

This chapter has introduced a general implicit NM&Beme and applied it to the control of the intake
manifold pressure in a turbocharged gasoline endim® distinctive features of the control law mbst
particularly underlined. First, particular care teen taken to ensure that the implicit NMPC scheare
compute a real-time implementable solution, follogvithe explicit NMPC paradigm. The actual
computation and validation of the resulting piecanaffine controller is presented in chapter 7 08dly,
besides being based on a nonlinear physics-base@lnthe implicit NMPC scheme presented in this
chapter directly includes a thermodynamic indextdgcin the objective function of the optimization
problem. It thus confirms the expectations of salverevious authors concerning the benefits of
combining physics-based engine models with NMPC449,7,62,100,103,104,114]. Finally, the
combination of these features turns this generpliagit NMPC into a novel solution for the contrdl the

air path of combustion engines.

The performances of the controller were validatedimulation on standard set point step changesgls

as on realistic vehicle transients that were aeguion an actual vehicle equipped with the engine
considered in this study (figure 1.1). In all cagbe performances were in perfect agreement wathdard

car manufacturer specifications and were similastemdard results available in the literature. étjehe
benefit of the approach does not concern fuel aopsion or pollutant emission reductions but theetim
and effort that are required to obtain a contralett matches these specifications. Altogethes, ¢thapter
confirms the ability of NMPC approaches to hantile physics-based engine models already widely used
in the automotive industry and thus representsseaond step toward a systematic control desigroagjr

for the air path of turbocharged gasoline engifigsie 5.10).

STEP 2

Physics-based Nonlinear Explicit

model MPC solution

Figure 5.10— Overview of the control design approach proposed ithis study.

In section 5.3.3, it is emphasized that the pararizzition of the control trajectory remains an open
guestion when seeking to maximize the performamdebe implicit scheme under tight computational
constraints. Therefore, before moving on to the matation of the explicit solution of the NMPC scheem

in chapter 7, the following chapter provides areralative approach, based on a set of orthonormal
functions, to parameterize the input control trigec Rather than simply reducing the control honizn
order to reduce computational requirements, it pitlvide more flexibility while maintaining the onadl
complexity of the optimization problem.
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ALTERNATIVE IMPLICIT NMPC SCHEME
BASED ON FUTURE CONTROL
PARAMETERIZATION

Most practical applications of MPC and NMPC are dohson a discrete scheme
[27,28,52,78,106,111,112,131]. This was indeeddhse in the previous chapter where the use of the
discrete framework was motivated by the fact thastandard combustion engines, the actuators’ipnsit
can only be changed at a given sampling tiag In practice, it took a significant part of theeoall
calibration effort to determine how often the atbwsl position should be allowed to change on the
prediction horizon (section 5.3.3.2). The decisi@sts on a compromise between two competing
objectives. On the one hand, the parameterizatidheofuture control trajectory must be parsimosion
order to facilitate the optimization process, buattbe other hand, it has to offer enough flexipilib
approximate very closely the optimal control trégeg of the original problem.

In the linear framework, MPC schemes using a comstgput over the prediction horizon were already
successfully implemented in the 1990s [53,108}hmnonlinear practical case of application preszbim
chapter 5, a horizon-1 NMPC was sufficient to colnthe air path of a turbocharged gasoline engitie.
each time step, it requires solving a four-paramepimization problem in order to obtain the opim
throttle and wastegate positions. The resultingmaational requirements are particularly reasonainiee

a least squares solver and 20 iterations are mirffi¢co obtain the appropriate actuator positiofise
performances of this discrete NMPC scheme werelatdd on set point step changes as well as omstieal
vehicle transients. In each case, it matched stdnchr manufacturer tracking specifications (sectot);
however in practice, it is well-known that reducithg@ control horizon may moderate the performandes
the closed-loop system [4,27,28,132,133]. It issbarch for an alternative constructive methodolmgy
increase the control horizon while maintaining tbemputational requirements that motivates the
developments presented in this chapter.

The philosophy consists in the parameterizatiorthef future control trajectory by means of a set of
orthonormal functions. This is an extension of tliecrete MPC schemes introduced in [131-133] to the
nonlinear framework. This approach, while being egen provides a sufficiently parsimonious
representation of the control trajectory for it iemain computationally efficient. To achieve thike
method uses a set of pre-chosen orthonormal basiéns, namely Laguerre polynomials [128], to
decompose the future control increments trajectbrythis chapter, along with the formulation of the
resulting NMPC scheme, foreseen in the originatlytfi32,133], a practical case of application foe t
control of the air path of a turbocharged gasoéngine is presented. The performances are compared
the horizon-1 NMPC scheme presented in chapter Sainpoint step changes and realistic vehicle
transients. Particular attention is paid to thébcation methodology required with the unfamiliasulting
NMPC formulation.

The main outcomes of this chapter are: the thexaleibormulation of a discrete NMPC control scheifme t
uses the set of Laguerre functions to parametéhizefuture control trajectory; a calibration proaes
proposal for the particular case of combustion eegi and a practical comparative study of the
performances with respect to a horizon-1 NMPC sehem

123



Section 6.1 starts by a brief background aboutomdbhmal expansions, Laguerre polynomials and their
application to the expansion of the future conttmdjectory. Finally in section 6.1.4, practical
implementation considerations are provided in otdefacilitate the use of the function. Then, satt6.2
provides a practical case of application, namedy ¢hntrol of the air path of the turbocharged gasol
engine presented and modeled in chapter 3. Fimalgection 6.3, simulation results are provided and
compared to the standard horizon-1 implicit NMP@&esoe introduced in chapter 5.

6.1 Parameterization of the future control trajectory using
Laguerre polynomials

6.1.1 Overview of orthonormal expansions

Assuming thatl;,i € {1,2,...} is an orthonormal and complete set of real fumstiover the interval
[0, +co[, any arbitrary functiorf(t) can be formally expanded on this set and expresséerms of a
series expansion [79]:

fO=X5C-L® (6.1)

S.t.
INAGHAGEES! (6.2)
F2um-ymde=1 i#j (6.3)

whereC; represents a set of scalar coefficients that weigbh function.

This is a classical framework for function expansisimilar to the Fourier expansion. The lattewil-
known in numerical analysis, for the approximatimihfunctions in differential and integral equations
[130].

Now, assuming thaf(t) is not arbitrary but falls in the category of mewise continuous functions
satisfying:

L7F@ - f© dt < +oo (6.4)

f(t) can be approximated to any given tolerance0 using a truncated expansion of a finite numef
terms such that:

f@®) =3, G Li(®) (6.5)
with

J2U® =St G L) dt < e (6.6)

In summary, a truncated expansionMfterms (6.5) can be used to closely approximate megewise
continuous functiorf (t). In a general framework, this philosophy can fearaple be used to represent
linear systems. In this chapter, we will use itapproximate the optimal future control increments
trajectory. The next sub-section provides insigiib ithe set of orthonormal functiofisthat was chosen
for the expansion, namely the set of Laguerre potyials [128,133].
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6.1.2 Presentation of Laguerre polynomials

Among other orthonormal functions such as Legendadynomials [37] that have already been
successfully used in an MPC framework, the set afuerre functions (6.7) offers the advantage of
programming simplicity. Indeed, it can be computsthg a simple matrix difference equation [132,133]

L) =[L(k) LK) - Iy ] (6.7)
whereN corresponds to the number of Laguerre functiaasthie number of levels of the decomposition.

In the discrete-time framework that will follow, gaerre functions are usually defined by their nfar.
In particular, it is well-known that the z-transfefrthe m-th Laguerre polynomig), takes the simple form
below:

Z(ly) = YD [ ™ 6.8)

z—a zZ—a

wherea € [0; 1[ is a dimensionless parameter called scaling factor

The effect of the scaling factaron the temporal shape of the Laguerre functiotuistrated on figure 6.1.

It should be noted that Laguerre functions all @vge to zero after a time that depends on thenggali
factor a. As the value of the scaling factor increases,cihevergence speed decreases and the trajectory
becomes smoother. In the particular case whete0, the set of Laguerre polynomials becomes a set of
pulses, respectively a = {1,2, ... N}.

Finally, as suggested above, the discrete valuesagfierre polynomials are computed very easily gisin
the matrix difference equation below:

a 0 0 0 7
b a 0 0
—ab b a 0
Lik+1) = 2b ab b o | L(k) (6.9)
0
L (—1)N2aN2p (DN 3aV3p b a |
whereb = 1 — a? and the initial condition is given by:
LO)=vVb-[1 —a a* .. (DN 1g17 (6.10)

6.1.3 Application to the expansion of the future control
increments frajectory

In a receding control framework, Laguerre polyndmiaave proved to be suitable for parameterizing a
future control trajectory when considering lineand invariant systems with closed-loop stability [B31-
133]. Assuming that, in this particular case, thatwl signalu converges to a constant after a set point
change, its derivative converges to zero. Therns ipossible to expand the derivative of the control
trajectory on the set of Laguerre functions, sitieelatter naturally converge to zero (figure 6.1).
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Assuming that the control trajectory shows a similehavior in a discrete time framework, an analsgo
approach consists in approximating the controldément trajectorAu of a single actuator, by series with
a finite number of terms:

Au(k) = Xh=1Cn - lm (k) (6.11)
s.t.

u(k) = ulk — 1) + Au(k) (6.12)
whereN is the number of termk, used to describe the control trajectory:Nagncreases, the degrees of
freedom of the control trajectory increasg, = [C;, C, .. Cy]T is the vector of weights to be
identified.

1% Laguerre function

time instant k
2" | aguerre function

1 1
15 20 25 30
time instant k
Control increment trajectory withlcz C2 =1

o
o]

o
o))

1) + LK)

©
N

0.2

time instant k

Figure 6.1 — The first two levels of expansion ohe Laguerre polynomials are plotted for various
values of the scaling factor¢ = 0,a = 0.3, a = 0.6, a = 0.9 ). On the bottom graphs, the control
increments trajectory (6.11) is plotted forC; = C, = 1. As the value of the scaling factor increases,

the control horizon increases and the trajectory beomes smoother. Whem = 0, the set of Laguerre
polynomials becomes a set of pulses, respectivetyla= 1 and k = 2.
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In practice the problem of finding the optimal amhtsignalu” over a given prediction horizaW, in the
NMPC framework (5.3)-(5.8) is converted into detatimg an optimal vector oN weights C,,,. This
philosophy is illustrated on figure 6.1, where tutrol increments trajectodyu, resulting from a 2-level
Laguerre expansion with, = C, = 1, is depicted on the bottom plot. The effect of $haling factom on
the control trajectory, i.e. at each time instanthe sum ofN termsc,, - L, (k), is similar to what was
observed on each Laguerre function in section 6.1.2

6.1.4 Practical implementation considerations

In order to facilitate the use of Laguerre polynalsiin the receding horizon framework, the complete
future control trajectoryu can be described in the form of a single vectat tontains the control
incrementsiu over the prediction horizoN, (figure 4.4).

Given the vector of parametei§, =[C; C, .. Cy]T and using (6.11), the vector of control
increments for a single actuator can easily beioddsfrom the matrix equation below:
Au(k)
Mulk +D ) _y e (6.13)
pu(k + N,)

where each column of the matiix contains theV, successive values of tmeth Laguerre polynomials
(k). TheN levels of expansion are then organized side by sidthat the dimension hfis N, X N:

l1(k) lz(k) lN(k)
Lk+1) Lk+1) - Iyk+1

. . . (6.14)
L(k+N,) Llk+N,) - Ly(k+N,)
Similarly, the sequence of control signals over ghediction horizon is directly given by the matrix
equation below:
u(k)
wlk ¥ 1 ) _ g6+ utk— 1) (6.15)
u(k +N,)
wherel;, corresponds on each column to the cumulated suheaokspective column i (6.14):

/ L (k) L, (k) Iy (k) \
b4 D) B bk +0) - B lyGe+ D) | (6.16)

]LZ = | H H H
N. . N. . N .
T2 b+ B2 Lk+D) - X2 vk + l)/
Note that whena = 0, L(k) becomes a set of pulses and the use of Laguetymagmoials for the
parameterization of the control signal is then egjleint to the traditional NMPC approach (sectiai 2).
used in chapter 5. Conversely, for non-zero valass; increases, the control horizon increases in the
sense of temporal spectrum (figure 6.1).
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6.1.5 Laguerre-based NMPC problem formulation

The general constrained nonlinear optimization [gnwbassociated to this parameterization differsyonl
slightly from the formulation introduced in chap&rnotably because control input incremaatsimply
replaces the control input in (5.3) to (5.8). The discrete formulation of ailtiinput parameterized
NMPC problem is given by:

§*=8(Au") = min, S(x,y,u,0) (6.17)
S.t.
§ =3 9@, ¥, 0) (6.18)
x(k+1) = f(x(k),u(k),o) (6.19)
y(k) = g(x(k),u(k),0) (6.20)
u(k) = ulk — 1) + Au(k) (6.21)
x<x(k) <x,u<ulk) <u,Au<dulk) <Au (6.22)
x(k) = xq (6.23)
u(k—1) =y, (6.24)

whereH, = [k,k + Np] is the prediction horizon amtiu(k) is given by (6.11). Togethef, andg stand

for the nonlinear model that describes the disdiate dynamic of the systenx, X, u, u, Au and Au
respectively stand for lower and upper bounds ersthtes, control variables and control increments.

Combining (6.15) and (6.22), the constraints on ah®litude of the inputs can be rewritten in a more
practical way. In fact, for each input, the followgisystem of inequalities applies:

—LyCp <uk—1)—u (6.25)

When needed, a similar system of inequalities e&e into account the constraints on the input€ ot
change. It is obtained be combining (6.13) and26.2

{ L-C, < Au (6.26)

—L-Cp < —Au

The distinctive feature of using Laguerre functiansa predictive framework is the fact that with an
increase in the number of term§ the orthonormal expansion will converge to thdirogl control
trajectory dictated by the objective function. Thisnnot be said of other arbitrary sets of expdaknt
functions, assembled without taking orthogonalitipiaccount..

6.2 Application to the control of the air path

6.2.1 Problem formulation

The application to the control of the air path ditbocharged gasoline engine is straightforwandesihe
overall air path control problem formulation rem@ianchanged (section 5.1). Like the NMPC scheme
presented in chapter 5, the objective is to tratknket pressure manifold set point by means of vatve
actuators: the throttle and the wastegate (se&ibh Again, the physics-based engine model derimed
chapter 3 is used to compute the state and outjatigtions. For the sake of completeness, the main
characteristics of this NMPC problem are recapi@ddelow.

The vector of states contains the four states of the model (6.27)ntleelel outputs are the inlet manifold
pressurep,,,, and the pressure upstream the turbppg. (6.28). Both actuators (6.29) are saturated
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between closed and fully open. A vector of exogsnoputse takes into account the ambient conditions
{Pamp Oamp }» the engine spedd, and inlet manifold pressure set paiif,,, (6.30):

X = (pape' Pmans Pavt, wt)T (6.27)
Y = (Pman Pavt) (6.28)
u = (Ugpr Ung) (6.29)
6 = (Ne, Diians Pamb» Oamp) (6.30)

Finally, the outputs of the model,,, andp,, are used to compute an objective functi®nthat
maximizes the engine cycle efficiency (section %83¥ides ensuring an accurate inlet manifold pressu
tracking, analogously to chapter 5:

H av
s=%2, (a(pf,:;n ~ Pman)® + B (p’jn—a;)> (6.31)
where @ and § are used to scale and penalize each term of the faoction and should be chosen
appropriately (section 5.3.3.1).

At this stage, all that remains is a reasonablécehfor: the number of tern¥ in the expansion (6.11); the
prediction horizorH,, ; and the scaling facter in (6.9) and (6.10). The following sub-sectionspectively
describe the influence of each of these degreégefiom and conclude with recommendations in craer
determine an appropriate set of parameters. Tla timing is determined in agreement with the fients
performances of the closed-loop and presentedctinges. 3.

6.2.2 Calibration of the NMPC scheme

Based on the experience obtained on this partie@dample, the final number of terms in the expamaio
(section 6.2.3), the prediction horizéf) (section 6.2.4) and the scaling factoi(section 6.2.5) can be
adjusted in that order, starting from the firsenpiretations obtained from a parametric analysia typical
step response such as the one achieved above. EiQuexen for insiders, the final tuning has to be
performed by trial-and-error on transients, repnéesive of the real operating conditions of theseld-loop
system (section 6.3).

Number of terms in Prediction horizon

Cost function g the expansion N H,

Scaling factor a

Figure 6.2 — Four calibration parameters of the NMRC scheme based on the expansion of the future
control increments trajectory on a set ofV Laguerre functions.

6.2.2.1 Number of terms N in the expansion

Similarly to what was observed in [131-133], in@ieg the number of term¥ in the expansion (6.11)
tends to increase the maximum flexibility of theufe control trajectory. Along with this increase i
flexibility, the trajectories are smoother (figuel), resulting in a less aggressive controllere Timin
drawback is that the computational requirementotee the optimization problem also increase With

The effect of a change i can be observed on the closed-loop system resporisiet manifold set point
step changes. Two constant engine speed casesesanfed on figure 6.3 below. On the left, while th

129



engine speed is kept constant at 2,000 rpm, tle¢ inanifold pressure set poimi’,, is moved from 0.6
bar (low load) to 1.6 bar (high load). On the righ,,, is changed from 0.9 bar to 1.6 bar while the eagin
speedV, remains constant at 5,000 rpm. In accordance wiiigit was already observed on the effect of the
engine speed on the engine dynamics (chapteréjirtie response at 5,000 rpm is substantially emall

During this first stage of the tuning methodologye prediction horizort, and the scaling factar are
kept constant. A rough estimate of their optimdugais typically sufficient to be representative tbé
overall controller behavior. In this study, testsrevperformed using = 0.5 andH,, = 200 ms. The latter
was chosen in agreement with the settling timénefsystem (section 5.3.3.3).

Finally, figure 6.3 shows that using only one Lagegolynomial to build the control trajectory tentb
considerably slow down the system at both engireedg. Then fronN =2 to N =5, increasing the
number of terms does not significantly influence 8tep response of the closed-loop. Since the pyima
objective remains to minimize the computationaluissments (section 5.2.3), a 2-level expansiontzan
chosen in this study. This leads to determininggaath sampling time, two parameters for each amtuat
i.e. solving a 4-dimension optimization problem. thms case, the computational requirements remain
acceptable since the problem can be solved usisignple trust-region reflective algorithm method, as
implemented in Matlab®. The algorithm convergeshinit20 iterations when initialized dtu(k) = 0,k €
[1.8,].
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Figure 6.3 — Influence of the number of terms useth the expansion at 2,000 rpm (left) and 5,000
rpm (right). From N = 2 to N = 5 the control law presents similar performances.
H, =200ms anda = 0.5.

Altogether, the minimum number of ternd to be used in the expansion (6.11) should be gimen
agreement with the maximum acceptable time respoiides system. Above this boundary, the decision i
driven by the computational capabilities availabdesolve the optimization problem. In any case, an
increase in the number of terms in the expansidhle@d to the convergence of the control trajegctior
the optimal trajectory dictated by the objectivadtion.
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6.2.2.2 Prediction horizon H,

As in standard NMPC approaches [27,28], the pridtidtorizonH,, should be chosen in agreement with
the settling time of the system. As suggested lefor the case of a turbocharged gasoline engiee, t
latter can vary from about 80 ms to 300 ms. OnrégbL4 below, the performances of the parameterized
NMPC scheme are depicted for different lengthshef prediction horizon: 100, 200, 300 and 500 ms.
Again, two engine rotational speells were evaluated, namely 2,000 rpm and 5,000 rpih,tla@ same
inlet manifold pressure set point step as befopresented. In both cases, the scaling facteas 0.5 and,

in agreement with section 6.2.2M = 2.

It should be pointed out that, in our particulase®af application, the influence &f, on the response of
the closed-loop system depends on the engine ontdtspeedV,. Indeed, at low rotational speeds (left
figure 6.4), it is clear that the settling timetb& engine is not affected by the prediction horitlaat is
chosen. However, at 5000 rpm, i.e. a typically heglgine rotational speed, the settling time ofdygtem
depends nonlinearly on the prediction horizon (riggure 6.4). In particular, using a predictiorrizon of
100 ms considerably accelerates the engine respdrikefor prediction horizons greater than 200 ths,
influence rapidly decreases. This can be explalnetthe fact that, at 5,000 rpm, 200 ms is typicgligater
than the settling time of the system. Then, simeedontrol incrementdu are equal to zero beyond this
time interval, there is no significant difference
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Figure 6.4 — Influence of the prediction horizonH,, on the step response of the engine at 2,000 rpm
(left) and 5,000 rpm (right). At 2,000 pm, the respnse of the system is independent of the prediction
horizon. On the contrary, at 5,000 rpm, the settlig time of the system depends nonlinearly on the

prediction horizon. N = 2 anda = 0.5.

The prediction horizort, is a tuning parameter because the NMPC formulatoh7)-(6.24) has an
embedded integral action. Hence, the following th8cal consideration must be taken into account
concerning the determination of an appropriate ezalhe prediction horizon must be sufficiently karg
include the range within the Laguerre functionsagefigure 6.1). A reasoned choice of the predictio
horizon should also take into account the dynarfithe system at high rotational speeds. Here alt fo
prediction horizons lead to acceptable performamgétsrespect to the car manufacturer specificatidro
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facilitate the comparison with the horizon-1 NMP¢hame presented in chapter 5, as well as providing
sufficient level of stability to the closed-loopssgm,H,, = 200 ms was chosen for the rest of the study.

6.2.2.3 Scaling factor a

While the number of Laguerre functions in the exgam has been shown to influence the flexibilitytod
control trajectory and the prediction horizon toimhainfluence the dynamic at high engine speels, t
scaling factor will allow tuning of the final dynaerand level of stability of the closed-loop systérhis is
actually a similar philosophy to the change in ¢batrol horizonH, in a standard NMPC scheme (section
5.3.3.2).

Figure 6.5 below presents the closed loop respofskee system to an inlet manifold pressure sehtpoi
step change. Different values of the scaling faaterevaluated, from 0.2 to 0.8. Once again, tvegsare
presented: 2,000 rpm and 5,000 rpm. In agreemetfit thie previous sub-sectiond, = 2 and H,, =
200 ms.

At low rotational speeds, the influence of the isgpfactor on the settling time of the system isonibut

still nonlinear: a bigger change is observed betwee= 0.2 anda = 0.5 than betweern = 0.5 and

a = 0.8. At high rotational speeds, the same nonlineacefis observed but the scaling factor has much
more influence on the shape of the closed-looparsp In both cases, the smaller the scaling fattier
faster the controller due to a more aggressiverabtmgjectory (figure 6.5).
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Figure 6.5 — Influence of the scaling factoa on the step response of the engine at 2,000 rpraff)
and 5,000 pm (right). It can be noticed that the sding factor has a nonlinear effect on the step
response, larger at 5,000 rpm than at 2,000 ronN = 2 and H, = 200 ms.

To conclude these calibration recommendationss idted that once again, a reasonable choice of the
scaling factom must be done in agreement with the fastest ertinamic.

A final point to note is that in the case of diffitmulti-input systems, the closed-loop performaoan be
fine-tuned by selecting an appropriate pair of petrs{a, N} for each input. For instance, a larger
scaling factor along with fewer terms in the expamscorresponds to a future control trajectory wath
lower decay rate.
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6.3 Simulation performances

6.3.1 Transient performances

Figures 6.6 and 6.7 depict the transient performmsuaf the NMPC law based on the parameterization of
the future control increments trajectory on a $aVe= 2 Laguerre functions (section 6.2.2.1). In the final
set of calibration parameters, the prediction fwris H, = 200 ms (section 6.2.2.2) and the scaling factor
(section 6.2.2.3) was set at= 0.7 in accordance with the transient performancesiddaon the
validation cycles. These cycles represent samgles driving sequence recorded on a vehicle equipped
with the engine (figure 1.1). The engine speedegacontinuously between 2,500 rpm and 5,000 rpnewhi
the intake manifold pressure set paiif,,, varies from 200 mbar (low load) to roughly 1,70Bam(high
load) (figures 3.11 and 3.12). The cycle includesaa where the sensitivity of the wastegate is l@ny

and set point change dynamics that require suddeatar opening and closing.

In both situations, it can be seen that the cldseg-leads to tracking performances in agreemetit gar
manufacturer specifications (section 5.1.4). Irt,flee inlet manifold trajectory shows no staticoerand
during transients, remains within a +/- 100 mbéeremce interval.

Our preliminary conclusion to this work is thatoglether, the calibration effort that is requiredune this
Laguerre functions-based NMPC scheme remains guntiar to what is required when calibrating a more
standard NMPC design, or more precisely to what prasented in chapter 5. In fact, once the objectiv
function has been defined, instead of the two @brand prediction horizons (figure 5.4), only three
parameters need to be tuned here, namely,, anda (figure 6.2). Moreover in practice, they all caary
clear physical sense in terms of closed-loop behatviat considerably facilitates the calibratioaget
(section 6.2.2).

As for computational requirements, both approaeihesquivalent in terms of the number of paraméters
the general optimization problem (4.1)-(4.5) sohiadan NMPC framework. Indeed, using a 2-level
Laguerre function expansion, i.&. = 2, requires solving a 4-dimension problem at eantetstep (2
parameters; andC, in (6.17)-(6.24), need to be determined for eactuaor). This is similar to the
NMPC scheme presented in chapter 5, based on aoheti formulation (figures 5.8 and 5.9).
Additionally, both led to sufficiently good trackjrperformances within 20 iterations, in our palacicase
of application.
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Figure 6.6 — Validation cycle #1: Inlet manifold pessurep,,., tracking performances on a realistic
driving cycle. The controller is parameterized asdllows: N = 2, H, = 200 ms anda = 0.7.
The bottom plot respectively displays the correspaiting compressor downstream pressure and
actuator openings.

134



Inlet manifold pressure [bar]

Set point
— Simulation
~— = +/-100 mba

Time [s]
Compressor downstream pressure [bar]

Time [s]
Wastegate opening [%]

0 5 10 15
Time [s]

Figure 6.7 — Validation cycle #2: Inlet manifold pessurep,, ., tracking performances on a realistic
driving cycle. The controller is parameterized asdllows: N = 2, H, = 200 ms anda = 0.7.

The bottom plot respectively displays the correspatting compressor downstream pressure and
actuator openings.
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6.3.2 Performance analysis w.r.t. horizon-1 NMPC

When figures 5.8 and 5.9 that depict the perforraaraf the horizon-1 NMPC case (detailed in chapfer
are compared to the transient performances of #yriérre-based NMPC law presented on figures 6.6 and
6.7, it can be seen that, even though both situsitioe acceptable w.r.t the time scale, the NMP@rse
presented in this chapter leads to an actuatottipoisig that fluctuates significantly less. Thisnche
explained by the fact that whereas a satisfactppraimation of the optimal future control law &ajory

of the orignial problem (4.1)-(4.5) requires a Ergumber of forward shift operators, the increase i
flexibility over the prediction horizon provided hlge approach presented in this chapter directhefiis

the NMPC scheme.

In practice, for a given number of teridisn the Laguerre-based NMPC framework, the flekipibver the
prediction horizonH,, can be increased by tuning the scaling factoffigure 6.1). However, if the
flexibility increases with, it also tends to slow down the closed-loop respdffigure 6.5) since the future
control increments trajectory becomes smootherlesgl aggressive (figure 6.1). The final behaviothef
closed-loop is indeed the result of a compromidevéen stability and time response when determiaimg
appropriate value of the scaling factor. The adsgatw.r.t. the standard NMPC scheme is that in this
approach this compromise is encapsulated in a gup@rameter that controls the phenomena in a
monotonic fashion (figure 6.5).

6.4 Conclusion

Without appropriate tuning, the computation requieats involved in implicit NMPC laws are known to
be prohibitive due to the need to solve a usuatipHdimensional non-convex optimization problemegv

in simulation, the computation can quickly becomeetconsuming or even prohibitive when considering
the use of a physics-based prediction model. Ipteha, this issue was overcome by reducing thérabn
horizon, i.e. by reducing the degrees of freedonthef future control trajectory. This is a well-know
common and straightforward approach to decreasauhwer of parameters of the optimization problem.
However in practice, it suffers from a major draekiareducing the number of actuator positions & th
future control trajectory may reduce the perforneanof the closed-loop system in terms of settlinmgt
stability and robustness when a large number ofdod shift operators are needed to approximate the
optimal future control trajectory. An alternativersatile and parsimonious parameterization of titeré
control trajectory has therefore been investigatedi a proposal is made in this chapter.

The parameterized NMPC formulation proposed in tthiapter is a direct extension to the nonlinear
framework of the approach introduced by [131-138maintains the computational requirements while
offering a new range of trade-offs between the remif inputs of the optimization problem and the
flexibility of the future control trajectory. Thedéa is based on the expansion of the future control
increments trajectory on a set of orthonormal fiomg, namely Laguerre polynomials (section 6.11.2).
the nonlinear framework in which it is applied stiinovative control scheme presents several adgast
One of them is that it allows a lot more flexihjlin the control trajectory, while maintaining egailient
computational requirements. In particular, the coonpse between stability and speed of the closeg-lo
system can be entirely controlled using the scdtiotpr that characterizes this approach.

Along with the NMPC scheme presented in chaptéhi§,parameterized NMPC scheme aims to provide a
set of relevant alternatives for the design of expteady engine NMPC laws. In both cases, the
adaptability and the minimization of the computatibrequirements open up a very good perspective fo
the computation of the explicit solution to theasated constrained nonlinear optimization problem.
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CHAPTER 7

EXPLICIT NMPC OF THE AIRPATH OF A
TURBOCHARGED GASOLINE ENGINE
BASED ON A PIECEWISE AFFINE
APPROXIMATION

The main emphasis in this chapter is to make thed fitep toward a systematic approach for the desfig
the control of the air path of turbocharged gasolengines. After building a physics-based model
essentially calibrated from standard steady-stdé hench trials in chapter 3, and after obtairgreat
control performances from a standard implicit NM&@proach in chapter 5, the ultimate task lies & th
implementation of this implicit control scheme igat time. This usually requires solving online atd
each sampling instant, a computationally overwhegmmonlinear optimization problem.

Among other approaches to deal with real-time im@etation, many authors have highlighted the fact
that this optimization problem can be posed paraoady, with the measured extended state vegtas
the parameter. Determined exclusively offline, sudution to the associated multi-parametric nomine
problem provides a piecewise affine approximatibthe optimal control law, mapped on a given set of
hyper-rectangles covering the parameter spaceréfigul). Then online, the computation of the actuat
positions depends on the evaluation of an expfigiiction of statex rather than the solution of an
optimization problem.

The main outcomes of this chapter are: the modifinaof an existing explicit NMPC synthesis [53,72]
order to use a computationally expensive predictimmtlel and unconventional objective functions; and
practical physics-based nonlinear case of apptinatif the explicit NMPC paradigm in an unprecedénte
6-dimension parameter space.

X1

X2
Figure 7.1 — Principle of the explicit nonlinear malel predictive control strategy presented in this

chapter. It should be compared with the explicit MRC approach (figure 4.5) that uses a polytopic
partitioning.
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Section 7.1 starts the general multi-parametrigg@mming framework involved in the computation o t
explicit solution of MPC and NMPC problems. Sectiadh2 and 7.3 present the general methodologiés tha
are respectively used to: compute an explicit lemmfa given implicit NMPC scheme, and evaluate the
resulting piecewise affine control law on-boardndfly, a practical case of application is preserited
sections 7.4 and 7.5, namely the control of theaih of a turbocharged gasoline engine.

7.1 Multi-parametric nonlinear programming (mp-NLP)

The growing interest in parametric programming fe tcontrol community in the past few years is
motivated by the possibility to reformulate certaistimal control problems as parametric progrante T
fact that NMPC is one of them motivates the bretkground presented below.

Multi-parametric programming is one way to addrpasameter variations in mathematical programs. It
consists in characterizing the solution to the pbfor a full range of parameter values. By natiire
involves solving repeatedly the original problend @herefore usually leads to significant computadio
requirements. The general appellatiowlti-parametric programming, also denoted mp-NLP, refers
problems depending on several parameters. A verygd gammary of the results related to multi-paraimetr
programming can be found in [48] and an emphasithein relation to explicit model predictive cornitis
presented in [53].

Consider a general nonlinear mathematical progpmmameterized by a vecter
§*(x) = min,, J(u, x) (7.2)
s.t. gu,x)<0 (7.2)

whereu € R’ corresponds to optimization parametaerg R™ a given set of parametefs,R° X R" — R
a cost function ang: RS x R™ +— R? the problem constraints.

Let X be a closed polytopic set of parameters such ¥hat{x € R", Ax < b}. Assuming that the
minimum exists in (7.1)-(7.2), multi-parametric gramming consists in characterizing the solutiartie
setX. As detailed in [2], the solution to such a prablis a triple denoted:

(X570, U" (@) (7.3)

where X, is the set of feasible parameters &fdis the optimal value function that associates @ohe
parameterx € X, the optimal value of the original problem (7.1)2)7 Similarly, U* associates to each
parameterx € X, the set of optimizers of the original problem {#(7.2).

In a general framework, the components of the camds functiong (u, x) that fulfill (7.2) at equality are
calledactiveconstraints, in opposition fnactiveconstraints.

Let us assume thaf; is closed and thas” is finite for all x € X;. For a given parametex, if u is a
feasible point of the problem (7.1)-(7.2), we dendt(u, x), the set of indices of active constraints:

Alu,x) 2{ie{1,2,..,q}gu,x) =0} (7.4)

Then, the optimal active set*(x) is the set of indices of the components of thestramts that are active
for anyu € U*(x):

A*(x) 2 {i]i € A(u,x),Vu € U*(x)} (7.5)
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Finally, the set of parameters for which the optiaaive set is equal te is called critical regiorCR 4
and defined such that:

CR, £ {x € X|A" = A} (7.6)

In practice, when considering a strictly convex dpagic functionf and linear constraintg, the critical
regions defined in (7.6) are polyhedrons. Additibnau® is unique, piecewise affine and continuous.
These appealing properties of the optimizer pdytiekplain the growing interest in explicit MPC.
However, in the nonlinear paradigm adopted in #tisdy, the exact solution of a multi-parametric
programming problem such as (7.1)-(7.2) cannot dind and a suboptimal approximation of the
optimizer functionu*(x) is usually used [53].

7.2 Explicit NMPC law synthesis, using mp-NLP

Similarly to the explicit MPC philosophy (sectior3¥, the objective pursued in this chapter is tostauct
a piecewise approximation to the optimal controk la*(x) presented in chapter 3, by solving the
associated mp-NLP on the parameter spgace

In practice, determining the explicit exact solatiof the multi-parametric programming problem i th
general nonlinear case imposes limits on the pmlefinition (section 7.1) that are not compatibi¢h

the use of a physics-based nonlinear model (ch&tand the use of a non-quadratic objective famcti
(chapter 5), both at the heart of this study. dadtof pursuing this objective, we favor a gensaluition
and propose a suboptimal approach, based on thespphy presented in [53,72,125], to determine an
approximate solution of the resulting mp-NLP.

In the NMPC paradigm, an appealing idea to achikigis to define the constituent functions piecesa
hierarchical set of hyper-rectangles coveridfigure 7.1). The resulting hyper-rectangular piarting
then replaces the polytopic partitioning of thegmaeter space used in the explicit MPC framewodu(g
4.5) but the use of a piecewise affine (PWA) fumttremains. As detailed below in section 7.3, this
philosophy leads to a remarkably short online eatadm time, even for a large number of constituent
functions pieces [53,125]. If convexity holds, &/A approximation is computed using only the vexic
of the hyper-rectangles. If this property is noaiganteed, the computation uses a combination adicesr
and interior points.

The cornerstone of the approach consists in quamiifthe accuracy of the approximation by the
difference between the optimal value functi®hand the sub-optimal objective function val§ie rather
than between the exact and the approximated snl{%8,72,125]. In fact, it should be noted that the
difference between the optimal actuator positidrand the result of the PWA approximatid#h= Kx + h

is not taken into account during the synthesisiefaxplicit NMPC law.

The complete synthesis algorithm to compute thdi@kplMPC is exclusively used offline. It is preged
in detail from sections 7.2.1 to 7.2.5 and comprieair crucial sub-stages:

« splitting a given hyper-rectangle of the paramsjece (section 7.2.1),

« generating a set of reference poidtsto compute the affine approximation in a given dyp
rectanglej and a set of validation poings/ that includes interior-points (section 7.2.2),

» computing the affine approximatidtjx + h; from the set of reference poirdd (section 7.2.3)
and then,

e evaluating the accuracy of the affine approximationterms of objective function deviation, on
the set of validation point®’/ (section 7.2.4).
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7.2.1 Procedure 1: splitting rule

Let X denote the complete parameter space to be expldteal partition of a given hyper-rectangle
X; € X € R" is obtained by splitting the hyper-rectangle tiglouts centerﬂ{; by hyper-planes, on all
parameter space axes. As a result of the splistiey, 2™ new hyper-rectangles are generated (figure 7.2).

7.2.2  Procedure 2: set of points generation

For a given hyper-rectanglg, we denote bw/ = {01’ Gﬁ, 6,{,6} the set of itaVy = 2™ vertices. This

first set of points is used to compute an approtiznaof the optimal control law and thus represemts
reference set of points.

We also denot®’ = {cp{cpé cpfv(p} the union of all the vertices of the hyper-rectanghat would be

created by using the splitting rule detailed ab(eztion 7.2.1). This set of, vertices is used to validate
the approximated control law and represents thidatibn set of points. Note tha@f c &/ (figure 7.2).

X; . .
} ¢} 02 = @3
| o )
i 0, =0 (@ * ®
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P 8, 94 ®;
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O reference ¢ validation

Figure 7.2 — lllustration of the splitting rule (section 7.2.1) in a 2-dimension parameter space,
i.e.n = 2. The hyper-rectangleX; is split through its center@’, on the two parameter space axes.
This generates2™ new hyper-rectangles. The reference and validatiosets of points generated using

procedure 2 (section 7.2.2) are also displayed; has2™ vertices®’ = {9{ eg, 91]\/9} (black circles)
which are used to compute the approximated contrdaw (section 7.3.3). The control law is then
validated on the set of pointsb/ = {(p{ (pé, ...,(p{;,w}, displayed using green diamonds.

They correspond to the vertices of th&™ new hyper-rectangles.
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7.2.3 Procedure 3. computing an affine approximated
conftrol law Uy, = Kjx + hy

Consider any hyper-rectanglg and its vertice®’ = {9{9% B{Ve} as defined above. The parameters

K; andh; of the approximated solution are obtained by limegression analysis on the vectoruof the
solutions at theéVy vertices ofX; of the problem (7.1)-(7.2).

The advantage of this method w.r.t. minimizing #stimated error bounél — S* at all the vertice®’, as
presented in [53,72,125], is that it requires lesmputational time by avoiding running the predioti
model iteratively. However, as suggested before, dlror on the estimated error bound remains the
ultimate criterion to validate the approximated tcohlaw (section 7.2.5).

7.2.4 Procedure 4: error bounds approximation

Consider a hyper-rectanglg and its associated validation set of poitts The estimated error bourdg
of the error bound; is taken as the maximum estimated error boundrwdteon the,, validation points
o/

o = MaX;e15 n,) (S‘(p{ - S;{) (7.7)

wheres is the sub-optimal objective function value, obéal with the approximated affine control law.

7.2.5 Explicit law synthesis algorithm

Consider a given hyper-rectangte € X € R". A, denotes the vector of lengths of the hyper-redéang
along the dimensior. Assume that the maximal tolerange> 0 of the objective function approximation
error is given as well as the vector of the minirhgper-rectangle allowed\, > 0. The PWA affine

approximation can be computed using the algoritieiov:
Input: The first hyper-rectangl&, which represents the entire parameter space &xplered. The

maximum approximation tolerangeand the vector of minimal allowed lengths of thypér-rectangle
A,. We assumé, > A,.

Output:  Final  partition H={X1,X2,...,XNX} and associated PWA control law

iy = {fiy,, Uy, - Uy, | Wheretly, = K;7x + by,

1. Initialize the partition to the first hyper-rectdegi.e.Il = X,. Move the hyper-rectanglg, to List 1:
the list of hyper-rectangles to be explored.

2. Compute@® the set of vertices df, as defined in procedure 2.
3. Compute the solutiony (87) to problem (7.1)-(7.2) for each vertéx {1,2, ..., Ng} of X,, i.e. every
point of @°.
4. while List 1is not emptydo
5. Select the first unexplored hyper-rectanglein List 1. Thanks to previous calculations, its set of
vertices®’ and the associated solutim‘g}.(ﬂ{) to (7.1)-(7.2) are already available. This is aise
case for the corresponding value of the objectivetion vaIue'Sé‘l- .

L

6. Compute the approximated affine control law in thger-rectangleX;, i.e. ﬁXj = Kij+hj as
detailed in procedure 3.
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7. Split the hyper-rectangleX; as detailed in procedure 1. Store the hyper-rgttany,, k €
{1,2, ...,2"} obtained in2 : a temporary list of hyper-rectangles.

8. Compute the vertices of each hyper-rectangle coediainList 2 in order to obtainb’ as defined in
procedure 2. This list will provide the validatieat of points ofX;.

9. Compute the solution}j(cp{) to problem (7.1)-(7.2) at each vertex containeth@validation se®’.
Store the corresponding values of the objectivetion values™ ;.

L

10. Enhancelist 2 by storing the solutiom;}k(cp{.‘) obtained at step 9, for each hyper-rectaigleDo
the same for the set of vertic@% of each hyper-rectangle and the correspondingctiagefunction
valueé‘g,ic .

11. Compute the approximate objective functLé(g{ at each vertex contained @/, using the affine

control Iawﬁxj = K]-Tx + h; obtained at step 6.

12. Compute the estimated error boufydn X;, using the set of poind’ as detailed in procedure 4, the
approximate solutiod computed at step 11 and the original solutione/&lufrom step 9.

13. Remove the hyper-rectangte from List 1.

14. if §, < € then

15. Save the hyper-rectanglg;, its vertices ® and the approximated affine control law
ﬁx,- = K]-Tx + h; obtained at step 6. Mark; as validated w.r.t the error bound criterioand the
sensitivity levelA,.

16. else

17 if ZA,> A, then

18. Add the hyper-rectangles contained.int 2 at the top ofist 1. ClearList 2.

19. else

20. Save the hyper-rectangle(;, its vertices ® and the approximated affine control law

ﬁXj = Kij + h; obtained in step 6. MaiX; as validated w.r.t the sensitivity levig] only.

21. endif

22. endif

23.end while

7.2.6 Concluding remarks

Let's now summarize the important properties of thethodology presented above and dedicated to
computing the explicit solution of an implicit NMPC

The algorithm itself (section 7.2.5), guaranteest th PWA feedback control law with a finite optimal
number of hyper-rectangular regions is obtained:

« The maximum number of elements in the parametecesfais a quantitative index of the
exploration. It is controlled by the vector of mmim lengths along; of the hyper-rectangle,
denoted,, at step 20 and,

e The effective number of elements is implicitly caried at step 14 by a pre-imposed qualitative
criterion on the approximated objective functioamely the error boung
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In the adaptive method proposed here, the splittipgration is used exclusively when the nonlinear
characteristics of the dynamics impose it. Thispprty intuitively guarantees that the number of dryp
rectangles in the final partitiol will be minimized. However, minimizing the numbafrhyper-rectangles
does not only depend on the quantitative and s indexes but is also directly impacted by the
splitting rule that is chosen. For instance, dplittthe hyper-rectangles on selected parametetesmpess
instead of on all of them (procedure 1) may redheenumber of constituent functions pieces of thalf
explicit controller. In fact, it actually intuitive guarantees that one obtains a partition withegifewer or

an equal number of constituent functions piecesnewer more. The implementation of such an approach
needs further investigation, since determining Whparameter space axes should be selected is not
straightforward. In practice, it is usually basedtbe analysis of the estimated error boufidsven though
alternatives exist [51,76,77,121].

Finally, it should be mentioned that some compatetily expensive stages can be parallelized inraxle
benefit from the multi-core architectures of mosmputers, from personal computers to clusters. In
particular, the time required to achieve steps &né 11 is almost directly divided by the number of
vertices that can be evaluated in parallel.

7.3 Online evaluation of a piecewise controller

The algorithm presented in the previous sectioddda a PWA approximation of the solution of an mp-
NLP, also known as explicit solution. However, fitosld be taken into account that one of the main
drawbacks in the explicit framework is that the pbemwity of this PWA representation may be largereve
for low order systems (usually the partition shdia@usands of regions). It therefore needs to bebawed
with an efficient method to evaluate online thigqawise function defined on a partition of the
dimension parameter space.

7.3.1 About the direct approach

By direct approach we mean evaluating each regi@sequential manner to determine whether orheot t
current parameter belongs to that region. It is well-known that thjgproach, while simple to implement
is computationally demanding. In some cases, ithingyen exceed the computational requirements to
compute the optimization problem itself. In the nfexv years, massively parallel computing architezs$
could considerably reduce the requirements of #tiaightforward approach but w.r.t the hardware
evolution in the automotive industry (section 4)12ich an approach will probably impractical feveral
more generations of electronic control units.

7.3.2 Explicit NMPC based on binary search tree

Because the lack of hardware is not solely a probdé the automotive industry, a few computationally
more efficient alternatives have been developdterpast few years [124,125].

The approach in the literature that appears tchbemost appealing when considering hyper-rectangula
partitioning of the parameter spa&e(section 7.2) is to organize the set of affinetomnlaws ﬁX]. =
Kij+hj in a binary search tree. In fact, at each leveh dinary tree, it is possible to exclude a
significant fraction of the remaining candidate io&g according to the sign of a given hyperplane cu
C]-Tx + d;. The major advantage of this approach is thaeitefiits from a logarithmic complexity in the
number of region®/. For instance, the search among tens of thousafndgper-rectangles will require,
once on-board, evaluating less than 20 hyperplans, ¢.e. solving online 20 matrix inequalities to
determine the current region. As suggested betbi®makes it possible to considerably reduce tiime
computation time with respect to direct approackesn considering parallel implementation [53].
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Several algorithms that build such binary seareedrare available in the literature [125]. It ukual
requires extensive computations to obtain a bathrmeary search tree that can be evaluated more
efficiently. However, since such computations asaelcompletely offline, they can benefit from pofuér
computing architectures. For instance, on stan@&tD personal computer configurations, only a few
hours are required to compute a balanced binargls#e@e for over 20,000 regions.

7.3.3 Implementation online of the explicit NMPC |law

In this study, the binary search tree that dessrthe hyper-rectangular partitioning obtained bipgishe
algorithm presented in section 7.2, is built usthg multi-parametric toolbox (MPT) [63]. The tre® i
stored in a tabl¢,,... of n + 3 columns while the PWA control law requires a tatléf rows andn + 1
columns per actuatar, denoted belowpy ;. M is the number of regions in thedimension parameter
space partition.

Finally, obtaining online the suboptimal actuatositionsii to be applied in the next time step involves a
2-step procedure [73] :

» Searching the binary tregfg... to determine the current hyper-rectangjjéfigure 7.3) and,

» Evaluating the corresponding affine functi@ﬂ = Kij + h;j from tablefpy 4 (figure 7.3).

Current parameter x

e N
Explicit NMPC
online evaluation

Searching the binary

(al search tree
Current
hyper-rectangle X;
Evaluatin
(b) 9

y; = K" x + h

_ |

l

Approximated optimal
actuator position
ly,

Figure 7.3 — Online computation 2-step methodologyf an explicit NMPC law,
stored in a binary search tree.

The tablef;,.. that contains the binary tree associates to eadh and leaf the correspondinglimension
vectorch and the scalar valug;. Both are obtained during the construction of tifee (section 7.3.2).
Starting at the root node and then at each noéehyperplane cuthx + d; is evaluated. Then, the child
node is chosen in accordance with the sign ofa@kession and the step is repeated until reachiegf
node. The index of the line containing the child@pi.e. the new values of andd;, is contained in
columnsn + 2 or n + 3, depending on the sign of the current hyperplaue At the leaf nodg, the
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control is directly given by evaluating the corresding affine relatiorti,. = Kij +h; WhereKjT andh;
J
are obtained from the tabfgy, ;, that contains the affine control law of each oegi

At each node the arithmetic operations requireeMaduate the hyperplane cut arenultiplications,n + 1
additions and 1 comparison. Assuming a partitiotMopolyhedrons, a rough estimate of the search tree
depth D is usually given byD = 1.7 log, M. Finally, at a leaf node, the number of arithmefgerations
required to compute the approximated optimal punsiﬁxj of each actuator are multiplications and

n + 1 additions.

7.4 Application to the control of the air path of a
turbocharged gasoline engine

This section presents a practical case of appbicafior the computation of the explicit solution thie
NMPC scheme. In particular, the NMPC schemes ptedein chapter 5, used for the control of the air
path of a turbocharged gasoline engine, can belgifopmulated as an mp-NLP (section 7.4.1). Thée, t
application of the methods presented in sectioBsand 7.3 is straightforward. Details for the pesbl
formulation (section 7.4.1) and the performancethefresulting PWA control law performances (settio
7.4.2) are provided in the following sub-sections.

7.4.1 Implicit NMPC problem formulation

For the sake of completeness, the air path NMP@dtation presented in chapter 5 is briefly summed u
below:

§*=8W") =min, ) S(x,y,u,0) (7.8)

s.t.
5 =30 9@, y0),u@), o) (7.9)
x(k+1) = f(x(k),u(k),o) (7.10)
y(k) = g(x(k), u(k),0) (7.11)
u<u(k)<u (7.12)
x(k) = x, (7.13)

where H, = [k, k + N,| is the so-called prediction horizon at tirkef and g are nonlinear functions
describing the discrete-time system dynamics ansedbaon the physics-based modeling philosophy
presented in section 3.2. Finallyandu respectively stand for lower and upper boundshendontrol
variables and respectively define a compact sutfsRt". The states, control inputs and exogenous inputs
are given by:

T
X = (pape' Pman» Pavt» wt) (7.14)
u = (uthr, uwg) (7.15)
o = (N, p?f”lfln' Pambs Oamp) (7.16)

Wherepg,e, Pman @aNdpgy,: respectively stand for the boosting pressurejriteke manifold pressure and
the pressure upstream the turbine (figure luil)represents the turbocharger rotational spagds the
engine speedp,,,and f,,, respectively represent the ambient pressure amgeatureps’ . is the

intake manifold pressure set point. Finally,,, andu,, respectively correspond to the throttle and
wastegate positions that are constrained betwesedland fully open:

0<u<100% (7.17)

The cost functioryy to be minimized contains two terms, one of whishaithermodynamic performance
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index that maximizes the engine cycle efficiency:

J = a®3hn — Pman)? + B 225 (7.18)

Pman

where the weighting factors andp are used to scale and penalize each term of this-objective cost
function.

7.4.2 mp-NLP formulation

Let ¥ be the 6-parameter vector defined such that:
~ T
X = (pape' Pmans Pavt) D¢, p‘gﬁm' Ne) (7-19)

Then, (7.8)-(7.18) define an mp-NLP since it isSNItP in u parameterized by the 6-dimension vector
The latter represents the axes on which the paesrapaicef will be partitioned, i.e. the four states of the
physics-based model presented in chaptépage,pman, pavt,wt}, the set point to be trackeg,,, and
here, one relevant exogenous input i.e. the engitetional speedv,, known to have a significant
influence on the air path dynamic (chapter 5). Igemeral framework, this construction motivates the
minimization of the number of states suggestedeictian 5.2.3, before designing the implicit NMPC
scheme. Similarly, it can be seen that if possitile,number of set point trajectories should beimmized
when designing the implicit NMPC scheme since thynecessarily all included in the resulting mpPNL
formulation. It should also be noted that the amb@nditions can also be added to the parametgone
%, as can all exogenous inputs. In practice, thigldvincrease the dimension of the problem fromaest

to 8 states. Here we avoid such a formulation depoto minimize both offline and online computatibn
requirements. This is motivated by the fact tha tar manufacturers’ approach usually consists in
calibrating additional corrections to the contiolarder to take into account measured disturbaseels as
the ambient conditions (section 4.1).

7.4.3 Explicit controller

When computed using the algorithm presented iri@e@t2, this mp-NLP formulation leads to a paotiti

of 26,411 hyper-rectangles stored in a binary $eaeef;,.. that requires approximately 475 kilobytes of
read-only memory. That represents about 6% ofdted tead-only memory available in a current stadida
Engine Control Unit (ECU). Each tabfgy 4 ¢nr and fowawg, that respectively contains the 26,411 affine
control laws for the throttle and the wastegatguies about 370 kilobytes of read-only memory, so
another additional total of 9% of the ECU memorybbth cases, the number of elements in each imble
in agreement with current 16- or 32-bit ECUs (smt#.1.2) that can respectively handle table'6f- 1
and23? — 1 elements.

Altogether, the memory required to store the theddes represents a significant part of the totamwry
available on current ECUs. However, other similgplieit control schemes, computed using the same
methodology but based on a larger maximal tolerambex &, (section 7.2.5) contained significantly fewer
elements. For instance, on the same case of afipficae. the control of the air path of a turbagied
gasoline engine, an explicit NMPC law based on witjpm of 3,917 hyper-rectangles was presented in
[38,41] where it led to sensible performances.

The explicit NMPC law presented in this chapteb&sed on an extreme partitioning of the parameter
space, w.r.t. the computational resources availtdyl¢he study. If there is one reason which castify
why we relaxed the ECU memory constraints preseimiedection 4.1.2, it is the pure curiosity of
discovering the optimum performances of our phiiisg on this particular case of application.
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7.5 Simulation performances

In this study, the cycles on which the control sube are evaluated were acquired on an actual eehicl
equipped with the engine, and thus represent retexagine operating conditions. As detailed in isect
5.4, the performances of the implicit NMPC schernéha origin of the explicit NMPC law presented in
this chapter, are in perfect agreement with themanufacturer’'s specifications introduced in settol.4
and that also apply to this PWA control law.

7.5.1 Performances of the explicit NMPC law

First, by storing the PWA control law in a binagasch tree (section 7.3), the average computational
required to obtain the sub-optimal actuator pasiii@ﬁthr, ﬁwg) is divided by a significant factor 10,000,
w.r.t. the time required to obtain the optimal attu positions(uthr,uwg) from the implicit NMPC
scheme presented in chapter 5. These figures weegned on a Core™ i7 CPU x8 cores without any
specific Matlab® code optimization. Additionallyye average number of arithmetic operations invohated
each time step is in agreement with current hardveiandards with roughly 300 multiplications, 300
additions and 17 comparisons to search the birmagy and evaluate the PWA control of each actuator.
Altogether, the implementation of this control law an embedded solution becomes worth considering.

The control structure that corresponds to thetstiplication of the PWA solution, computed usihg t
synthesis algorithm presented in section 7.2, jsated on figure 7.4 below.

[papc’ pman’ pavt ’ NE ’ wt]

|
Turbocharged

Uiy gasoline
N | thr ) ;
engine Pman
g
ﬁ
Piman

Figure 7.4 — Explicit NMPC implementation scheme.tlconsists in directly applying the PWA control
law obtained with the synthesis algorithm presenteéh section 7.2 and stored in a binary search tree
(section 7.3).

The performances that were obtained on our refergpbicle transient cycle are depicted on figurés 7
and 7.6 below. It can be seen that the dynamiopaegnces observed on the implicit NMPC scheme are
very well approximated most of the time. Additidgakven if the comparison may not be relevantesinc
the two closed-loop systems are not exactly ailstmae operating point, the steady-state optimalksmtu
positions seem to be well preserved. Consequehtymaximization of the engine cycle efficiencyl@).

is expected to be maintained with the explicit NM&Beme.

However, since no integral action is involved ie tAWA control scheme presented so far, a steatly-sta
tracking error is present. For instance, betweean@ 7 seconds on figure 7.5, the closed-loop system
shows a significant performance drop w.r.t. theliaipNMPC performances (figure 5.8). In particuléne
quasi-constant quasi-steady-state error of aboumillibars that can be observed is unacceptablé wit
regard to the air path control objectives (sechdt).

One way to eliminate this offset error is to intnod an integral action directly in the parametoatool
design by adding in (7.19) an additional integtatesto the parameter vectorHowever, while appealing
from a theoretical point of view, this philosophig@increases the number of parameters of thetirgul
mp-NLP that needs to be solved (section 7.4.2heltefore contributes to generating overwhelmirfinef
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computational requirements. A more practical apginda overcome this issue, also motivated by thezine
for tuning knobs in industrial engine controllesegtion 4.1), is presented in the following suktisec

Inlet manifold pressure, p, [bar]

I

Set point
— Simulation
~ = +/- 100 mba

Time [s]

Time [s]
Throttle opening Y [%]

0 5 10 15 20 25 30 35
Time [s]

Wastegate openingvbl[%]

o )
I Explicit NMPC

0 5 10 15 20 25 30 35
Time [s]

Figure 7.5 — Validation cycle #1: inlet manifold pessure tracking performances for the explicit
NMPC scheme. The overall dynamic performances of thimplicit MPC scheme (figure 5.8) are well
captured.
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Figure 7.6 — Validation cycle #2: inlet manifold pessure tracking performances for the explicit
NMPC scheme. The overall dynamic performances of thimplicit MPC scheme (figure 5.9) are well
captured.
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7.5.2 Explicit NMPC law with integral action

In order to circumvent the steady-state error olexkion figures 7.5 and 7.6, we propose to enhdree t
initial explicit NMPC law (section 7.5.1) by addingt the end of the synthesis, an integral term per
actuator (figure 7.7), i.e.:

e\ _ o7 Kiny
(ﬁ:;v;) - K] x+ hj + (Kiwg) f(prfl};ln — Pman) (7.20)

whereKi,,, andKi,, are constant through the entire engine operaéinge and calibrated using a trial-
and-error calibration method. This is made possibénks to the very good initial performances af th
explicit NMPC scheme (figures 7.5 and 7.6).

In practice, the integral actions are expectedeaaficiently slow not to interfere significantlyith the
explicit control law during transients [38]. Additially, in order to compensate for the typical gnéd-
windup effect, anti-windup integral controllers wemplemented. The new control structure is degicte
figure 7.7 below.

[papc' Pman> Pavt » Ne ’ wt]

Explicit NMPC Turbocharged
gasoline
engine Pman

Slow integrator

K ithr

Slow integrator

Kivg

Figure 7.7 — Explicit NMPC implementation scheme vth the addition of two slow integral actions,
one for each actuator.

Figures 7.8 and 7.9 depict the final performandesaioed with the complete controller, i.e. PWA ésipl
NMPC plus additional anti-windup integral action4d). One can see that the steady-state erromissal
perfectly compensated by the slow integral actiobdth cases. It can also be seen the integrateation
is small w.r.t. the output of the PWA part in (7)20his underlines the fact that most of the tragkis
ensured by the explicit NMPC.

Between 8 and 10 seconds on figure 7.9, one cacentbiat the controller suffers from a sudden cleaniy
set point and the resulting intake manifold pressyy,,, is slightly late w.r.t. its set point trajectopy’,,.
This was already observed on the initial explicMIRC scheme (figure 7.6) and can be attributed ¢o th
PWA approximation error. However, when reachingtthge of the set point trajectory, at about 9 sesond
on figure 7.9, the pressure trajectgry,, suffers from a serious overshoot that was not releseon the
explicit NMPC law without integral action. Basicallwhat happens here is that the integral actions
computed previously during thei” . climb are no longer appropriate and in particulae, wastegate is
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too closed. By the time the slow wastegate integrataches a more appropriate value, in order to
compensate the current PWA control law error, sgsi@ady-state error still remains.

Finally, the distinctive feature of this practicakthod is that, besides suppressing the steady-stedr
that is encountered, it also provides the contrallgh a tuning knob. This feature is crucial wheming
for an industrial implementation of the controllas presented in chapter 4, since it allows theeddoop
dynamic to be to a certain extent modified aftedvan particular, all other methodologies that riegjthe
use of an augmented parameter ve@tdi7.19) would require computing a substantial pdrthe PWA
approximation again.
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0 5 10 15 20 25 30 35
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Figure 7.8 — Validation cycle #1: inlet manifold pessure tracking performances for the explicit
NMPC plus integrator scheme.
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Figure 7.9 — Validation cycle #2: inlet manifold pessure tracking performances for the explicit
NMPC plus integrator scheme.
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7.6 Conclusion

This chapter has explained how, starting from tieNQP formulation of an implicit NMPC scheme, a
step toward real-time implementation can be achide#owing the explicit NMPC philosophy [53]. The
approach proposed here consists in approximatiagmp-NLP problem solution on a hyper-rectangular
partition of the extended state space. It has drextansively on the most recent results in thed figf
explicit NMPC [53,72,73,125] and the main contribat consists in the practical adaptation of the
philosophy to the use of a computationally expemgirediction model. In fact, while being easily
parallelized, the algorithm proposed in this statbo minimizes the use of the prediction model.

This chapter has also focused on the exploitatioim® of the resulting PWA control law. Here, the
approach suggested is a direct application of thil@gophy presented in [125], where a binary senah

is used to organize a set of affine control lawsp alefined on hyper-rectangles. Its applicatioroim
framework is straightforward and altogether it cimites to drastically reducing the online compotzl
requirements w.r.t. implicit NMPC schemes (sectidB). In particular online, the evaluation of the
approximated control law runs in a bounded loganithtime.

Finally, the overall approach has been applieduiopsactical example of application, namely thetoain

of the air path of a turbocharged gasoline engseetions 7.4 and 7.5). Starting from the implicMRC
scheme presented in chapter 5 that uses a phyasesttengine prediction model, the entire synthafsis
6-dimension explicit NMPC law has been achievede Bhle fact of presenting validation results on a
realistic driving cycle, i.e. covering an extenspart of the actual engine operating range, prdhes
validity of the overall methodology and the fachtlht can overcome ordinary computational issues.
Indeed, while the explosion of massively parallehitectures such as clusters will considerablyuced
computational times in the next few years, the mdriaw presented in this chapter was computedvim t
months using a standard 8-core CPU. Taking intowaucthe fact that the multiplication of cores atho
directly divides the computational time, using dwmputational resources of a car manufacturer would
reduce this figure to a question of days or even.|&his also makes the approach worth considéniag
industrial framework. It therefore represents thiedtand last step of our proposal for a systendittrol
design approach of the control of the air pattudidcharged gasoline engines (figure 7.10).

STEP 3

Physics-based Nonlinear Explicit

model MPC solution

Figure 7.10— Overview of the control design approach proposed ithis study.

*%k%

Before concluding on the overall study, it is ofdyr to point out that the major theoretical lintitan of
this PWA approach lies in the generation of a aintaw that can be discontinuous, unfeasible and
potentially destabilizing. In fact, while the exgptiNMPC law presented in this chapter mostly ressin
good practical performances (figures 7.5, 7.6,ah@ 7.9), there is no systematic procedure to prioatit
will satisfy the basic requirements of feasibil{®.g. there is no guarantee to fulfill the inpuhsaints)

153



and continuity of the control law. It is the devaheent of an alternative constructive methodology to
guarantee these properties, while maintaining #s énline calculation time, that distinguisheseavn
approach that is being developed and applied tadh&ol of the air path of turbocharged gasolingiee.
In practice, it is based on the use of a barycemierpolation [120] of the control law within the/per-
rectangles, in opposition to the affine approximatproposed in this chapter. Figure 7.11 below aspi
the very promising preliminary results obtainechgsthis new approach and highlight the versatdityhe
overall philosophy introduced in this study to hiznainy type of approximation (section 7.2.3).
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Figure 7.11 — Extract of the validation cycle #1: @mparison of the tracking performances and
actuator set points obtained with a PWA approximaton and a barycentric interpolation of the
implicit NMPC law. While both approximations are defined on the same set of hyper-rectangles, the
use of a barycentric interpolation shows actuatoret point trajectories that are perfectly smooth and
lead to better tracking performances. Note that thavhole validation cycle could not be simulated
because, at this stage, the control law has not yleten computed on the entire engine operating range
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..AND DIRECTIONS FOR FUTURE WORK

The first part of this study concerned the desifa physics-based control-oriented turbochargedneng
model. The philosophy that is proposed combineseanmvalue engine model and zero-dimensional
models to describe the phenomena involved in theath. Both approaches are widely known in the
automotive industry, which represent a major featfrthe overall work w.r.t. its industrial context

When considering turbocharged engine models, thgpoessor and turbine sub-models play a key role in
the accuracy and reliability of the prediction fesuMore precisely, when considering control-otézh
models, for which computational requirements aghhthe performance of the model is directly inteeri
from a set of four static data-maps, systematicallit from experimental test bench trials. Theserm
thesis has proposed a new set of interpolatioreatrdpolation algorithms. Altogether, they aim twlgess
the accuracy issues encountered in the literatunenwcurve-fitting methods are used, and the
computational requirements issues that charactemipglels that use a detailed description of the
thermodynamic and fluid mechanics phenomena ingbineeach turbo-machine. The result is a similar
methodology to obtain the compressor and turbina-deps, notably based on the relation between the
ideal and actual behaviour of the components. Thegovation of this link in the results presentedhis
study considerably contributes to the overall cstesicy of the method.

The benefits of these results go far beyond thedrmork of this study even if the data-maps arehat t
heart of the control-oriented physics-based modedgnted in section 3.2 and used throughout part 2:

* The compressor pressure ratio versus mass flondestemap has enabled the construction of an
open-loop turbocharger rotational speed estimatd®emault SAS (section 3.1). In an industrial
context, this estimation structure directly bersefitom its simplicity of implementation and
proved experimentally to lead to great performartbesks to the new extrapolation strategy of
the data-maps.

e The complete interpolation and extrapolation metiogly for the compressor and turbine data-
maps is being implemented in an industrial toolthe framework of a partnership between
Renault SAS and LMS®.

* Finally, the extrapolation models developed in thisdy also are at the heart of patented
applications including for example electric turbogmunding.

The second part of the thesis addressed the carittiok air path of a turbocharged engine by medise
nonlinear model predictive control (NMPC) paradighine latter is known to be particularly suitable to
handle the multi-input multi-output constrained Imo@ar nature that characterizes modern combustion
engines, while standard multi-linear methods entaudifficulties in handling the entire engine ogiimg
range [46,96]. This issue is even more crucial esirdue to increasing complexity, control design is
becoming a bottleneck in terms of development time cost for all car manufacturers.

When considering NMPC, two critical issues neetiéaconsidered. The first one is the constructioarof
appropriate nonlinear model of the system, whichhes result of a compromise between accuracy and
computational requirements. The second one lighdrfact that solving online the optimization preril
that is at the heart of predictive control, usud#gds to prohibitive sampling time requirementhe T
present thesis proposes two implicit control scheitimat address the first issue by using the control
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oriented physics-based model developed in part thefmanuscript. This choice is motivated by the
versatility of the modelling philosophy as wellitssability to obtain an accurate model using cstindard
automotive test bench trials. Additionally both ttoh schemes benefit from the physics-based natfire
the model by explicitly minimizing a thermodynangerformance index, besides ensuring inlet manifold
pressure tracking. The approaches differ in the thay describe the future control trajectory durthg
prediction. In fact, while the first one is basadahorizon-1 predictive control scheme, the secomalis
based on the parameterization of the control ttajgcby means of orthonormal functions, namely
Laguerre polynomials, and thus belongs to the cayegf parameterized NMPC. Both approaches show
accurate tracking performances in realistic engdperating conditions but significant computational
requirements, as suggested above.

Indeed, the issue related to the real-time impld¢atem of NMPC laws needs to be addressed by other
means. In the present thesis the problem is taakdétg the explicit NMPC paradigm. In practice, sub
optimal actuator positions are obtained online égreshing a binary tree and computing a simple affin
relation. In this particular case of applicatianhas consisted in determining the piecewise afiiation

of a 6-dimension multi-parametric nonlinear prognaimy problem. The offline computational
requirements related to such a high dimensionablpro were tackled by means of a new parallelized
algorithm compatible with the horizon-1 NMPC sched®ived in this study. Thus, all the benefits of
using a physics-based prediction model and minimgiza thermodynamic performance index are
maintained, while leading to a remarkable dropriline computational requirements.

Altogether, three important conclusions can be dréom this study:

e Physics-based models based on the combination ofean value engine model and zero-
dimensional models are suitable for use in an enbiPC framework. They have the advantage
of being widespread in the automotive industryjuding dedicated design software, and can be
obtained in a straightforward fashion from standstehdy-state test bench trials. Additionally, the
NMPC framework includes a performance index sucth@agngine efficiency.

» The expansion of the future control incrementsetrgry on the set of Laguerre polynomials
encapsulates the compromise between complexityafity in an easy-to-tune set of high level
parameters. This formulation shows great versatilitith respect to current and future
computational requirements since for instancefimeng the parameters will make it possible to
adapt the complexity/optimality compromise to neavdware capabilities.

e The computation of a real-time implementable cdlgrdhat approximates the behaviour of such
an implicit engine NMPC can be obtained by solvinguulti-parametric nonlinear programming
problem offline. An algorithm able to handle timepensive prediction models such as physics-
based engine models and that benefits from theosiqul of massively parallel architectures is
fully detailed in the present thesis.

Toward a quasi-systematic engine air path control design approach

Since the very beginning, the emphasis has beeeglan facilitating the design of engine air pathtool
laws, in the context of increasing requirements deglelopment time reduction that characterize the
modern automotive industry. In particular, incrgdynstringent pollutant emission standards havegehbl

car manufacturers to considerably complicate thbrtieal definition of internal combustion engin&sis
increasing complexity makes the design of a corst@tegy longer and more difficult if no new meatho
are put in place. For a few years now, model-basmirol has aimed to provide an answer to this
challenging issue. However, in practice, it is marquestion of model-based contdavelopmentwhich
uses simulation intensively to validate the confes, than actual model-based control that includes
physics in the control law. Only some precise cadespplications use such an approach but they have
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usually required a dedicated research and develoipstage, which prevents them from being applied to
other problems in a systematic fashion.

This study aims to provide the beginning of an arste car manufacturers’ need to develop engine air
path control laws much faster. The proposal is tdasethe NMPC framework, which was selected for it
natural optimality and versatility, and can be suedrap in three steps (figure below):

« STEP 1: Obtaining a representation of the phenomena toondrolled. Physics-based models, in
contrast to mathematical representations, willvalfaster calibration and more robustness over
the entire operating range.

» STEP 2: Deriving an implicit nonlinear model predictivehgtne that achieves the performances
dictated by the specifications. This representapnstep, in which an objective function must be
designed in agreement with physics and mathemalicpractice, the nonlinear framework
remains highly adaptable and facilitates the design

» STEP 3: Computing the explicit solution of the optimizatiproblem. This leads to a real-time
implementable controller, i.e. proving fast anddiceable computational time.

STEP 1 STEP 2 STEP 3

Physics-based Nonlinear Explicit

model MPC solution

Figure — Overview of the control design approach mposed in this study

The major strength of the proposal concerns itsatdity. Indeed, any step in the scheme can be
adequately replaced by an alternative approachinghthe same inputs and the same outputs. Thdaqshys
based model presented in chapter 3, can be replacedpurely mathematical model such as a neural
model. The horizon-1 NMPC scheme introduced in tdrap can be substituted by a more complex
formulation if the available computational resowt®come greater. It can also be replaced by otigeof
formulations known as fast NMPC, known to be fastgr which may still remain incompatible with real-
time computational requirements. Finally, the pweise affine approximation defined on a set of hyper
rectangles, used in chapter 7, can be replaced asiy other partitioning geometry, or any altenetype

of approximation.

On the particular example of the air path of adaharged gasoline engine, the overall approacts lead
drastic drop in computational requirements, whichdm a real-time implementation on-board worth
considering at Renault SAS.
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Perspectives

The following short-term work directions have bedantified to improve and complement the methods
developed in this study:

A natural extension of the modelling philosophysemted in chapter 1 is the development of new
flow restriction sub-models that can describe thenqomena involved in more complex technical

definitions, including for instance, exhaust gasirilation and multi-stage turbocharging. The

case of variable valve timing is currently beinglia$sed using neural models in [39].

The next steps to follow concerning the interpolatnd extrapolation strategy detailed in chapter
2 is the validation of the extrapolated data-mapserperimental test benches. Additionally, a
precise description of the phenomena involved énstirge zone would be advantageous since it is
increasingly used during transient conditions. Maegearch investigations are currently being
conducted, and new results should soon be avai[8hl82]. Finally the consideration of simple
geometrical characteristics of the turbo-machinas potentially increase the robustness and
accuracy of the methodology. In particular, an apph to build compressor data-maps from only
three standard geometrical features has been gegeland published in [40]. The method is
directly based on the extrapolation model presemeathapter 2 and a feedback would certainly
improve the results presented in this document.

For the design of implicit NMPC, the parameteriaatiof the future control trajectory showed
interesting properties in terms of versatility amthnagement of the complexity/optimality
compromise. Further investigations should followimnilar direction in order to confirm that a
better compromise between performance and compuottirequirements is achieved in a
systematic way.

The explicit paradigm is a relatively young field cesearch in model predictive control
approaches, particularly when considering the neali case. In the short-term, research must
focus on reducing the memory required to storepteeewise affine law and the regions on which
it is defined. This is indeed a crucial featureareling the implementation on mass production
automotive electronic control units. Many soluticedst in the literature but simple additional
features to the algorithm presented in chapter ¥ mlaeady lead to significant memory
reductions. For instance, they include a physice8alefinition of the error bound, i.e. being able
to validate or invalidate a hyper-rectangle on itedon that is more physical than the simple
value of the objective function.

Additionally, the following long-term work directits have been identified to ensure the durabilityhef
proposal presented in this study:
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First, the overall methodology can intuitively betended to the case of diesel engines, which
account for a significant part of the world’s vdbifleet. The development of a library of control-

oriented sub-models, able to describe both gasalimkediesel engine technical definitions is an
important step toward an industrial applicatioriref methodology.

Concerning the interpolation and extrapolationhaf tompressor and turbine data-maps, rewriting
the algorithms so that they do not require any nbargocharger iso-speeds as in chapter 2, would
make it possible to replace the manufacturer’s atpeg points by actual steady-state engine test
bench measurements. The actual operating conditbtie turbocharger could then be taken into
account, including for instance the heat transteuaing between the compressor and the turbine.
These new methodologies could be directly integratethe library of components suggested



above in order to obtain the compressor and turbowrol-oriented sub-models directly from
standard test bench trials.

e For the implicit NMPC law, one should consider thatsome cases, the optimization problem
that needs to be solved may be non-convex and skeoeral local minima, which considerably
complicates the determination of a sufficiently dosolution. Either recasting the problem or
using a global optimization algorithm are two geheaolutions that would need to be integrated in
the methodology in order to enable the synthesia dflack-box-like NMPC algorithm. The
impact of such an approach on the offline compaiteti time of the explicit solution would then
need further investigations.

e Finally, the overall methodology, including the @&gip synthesis algorithm, could be
implemented in an industrial tool that would enedate the three stages of the methodology
(figure above). This would enable car manufactuterdbuild quasi-optimal control laws in a
straightforward fashion, with a clear benefit cognfnom their current efforts to obtain accurate
engine models. Initially, w.r.t. current memory u@gments, the latter would be used to evaluate
the maximum potential of different technical defioims, early in the development process. Then,
on a longer-term perspective, the increasing coatjoutal capabilities and memory available on
electronic control units should enable such conals to be implemented in mass production
engines in order to speed up the integration of temlkinologies, in favor of pollutant emission
and fuel consumption reductions.

*k%

It is a fact that memory requirements are the Aehiheel of explicit NMPC when considering on-board
implementation. Several different directions of wavill need to be investigated in order to increése
credibility of the explicit NMPC framework w.r.thé automotive industry or to a larger extent thetad
community. In the next few years the explicit NMR@mmunity will probably be working in two
directions. First, developing advanced strategiestdre the regions and the control laws on boEnd.use

of binary search trees has opened up this fiel@gdarch, but alternative representations may pmgese
better results. The second direction concerns thetisn of the multi-parametric programming itself.
Indeed, alternative approximations to piecewisénaftould considerably reduce the number of regions
required to approximate the solution. In particukppealing approaches using barycentric interjpolat
are already available in the literature, for theeéir framework. The practical extension to the inealr
framework, on the particular example of the contothe air path of a turbocharged engine, proedset
promising (figure 7.11) and in-depth results wil keported in future communications.
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..ET PERSPECTIVES FUTURES

La premiere partie de cette étude porte sur laamiun d'un modéle de moteur essence suralimenté,
orienté pour le controle et basé sur la physigaephilosophie qui est proposée dans cette étudeiaam
modele moyen de moteur et une approche de modeéfisaéro dimensionnelle pour décrire les
phénomeénes impliqués dans la chaine d'air. Les dpproches sont largement utilisées dans l'industri
automobile, ce qui représente un élément majeurgpgort au contexte industriel de ces travaux.

Lorsque I'on considére le cas des moteurs essamatingentés, la modélisation du compresseur etade |
turbine jouent un rdle clé sur la précision etdaustesse des résultats de simulation. Plus préeigé
pour les modéles orientés contréle nécessitantmps de calcul le plus court possible, la perfocaadu
modele découle directement d'un jeu de quatre geafhies statiques, systématiquement construites a
partir d’essais expérimentaux. Cette étude propmsenouvel ensemble d'algorithmes destinés a
I'interpolation et I'extrapolation de ces cartognags. lls entendent améliorer les résultats erapgtation
obtenus dans la littérature lorsque des modelebémmatiques sont utilisés, et réduire le temps dmilca
par rapport aux modeles utilisant une descriptiétmiiée des phénoménes thermodynamiques et de
mécaniques des fluides mis en jeu. Une méthodolsigiaire est proposée pour le compresseur et la
turbine, basée notamment sur la relation entrefeportement idéal et réel de chacun de ces comgosan
L'utilisation de ce lien physique dans les moddgdessentés dans cette étude contribue considératiéme

la robustesse de la méthode.

Bien que les cartographies soient au cceur du madéleur présenté en section 3.2 et utilisé todbag
de la partie 2, les bénéfices de ces développementdien au-dela du cadre de cette étude:

e La cartographie qui donne le rapport de compressanfonction du débit traversant le
compresseur permet l'implémentation d'un capteurtugl du régime de rotation du
turbocompresseur chez Renault SAS (section 3.1)sDa contexte industriel, cet estimateur en
boucle ouverte bénéficie avant tout de sa simplicét a également démontré une grande
précision, obtenue grace aux nouvelles stratégisrdpolation.

e Dans le cadre d'un partenariat entre Renault SASLMB®, la méthodologie compléte
d’interpolation et d’extrapolation des cartographtki compresseur et de la turbine est en train
d’étre implémentée dans un outil industriel.

« Finalement, les modéles d'extrapolation dévelopgess cette étude sont également au coeur
d’'applications brevetées, incluant notamment ddstompresseurs a assistance électrique.

La seconde partie de la thése répond au problemeodudle de la chaine d’air des moteurs essence
suralimentés, au moyen d’'une approche de commargdicfive non linéaire. Cette derniére est connue
pour sa capacité a controler des systemes mulgesit multi-sorties, contraints et non linéairets ue

les moteurs a combustion interne modernes. Au abatrles méthodes classiques multi-linéaires neoitr
leurs limites a contrdler le moteur sur la totatigé ses points de fonctionnement [46,96]. Ce problést
d’autant plus crucial que la complexité croissatée moteurs fait de la synthése du contréle, un freur

la réduction des colts et temps de développementalestructeurs automobiles.
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Concernant la commande prédictive non linéaire xdéifficultés importantes doivent étre prises en
compte. La premiére repose sur la construction dhodéle non linéaire du systéeme, fruit d'un juste
compromis entre précision et temps de calcul. Laorsde concerne la résolution du probléme
d’'optimisation caractérisant la commande prédictvette thése propose deux schémas de contrble
implicite qui solutionnent la premiére difficulté eitilisant directement le modele moteur dévelogags

la partie 1. Ce choix est motivé a la fois padéaibilité de la philosophie de modélisation, aigae par sa
capacité a obtenir un modeéle précis par le seus$ higssais expérimentaux classiques dans l'ingustr
automobile. De plus, ces deux stratégies de canh@héficient de la physique contenue dans le ractel
minimisant explicitement un critere de performarm@sé sur la thermodynamique et en assurant par
ailleurs le contrdle de la pression collecteur. Beproches difféerent dans leur description de taréu
trajectoire de contréle sur I'horizon de prédicti@m effet, alors que la premiére est basée swchéma
prédictif & horizon-1, la deuxiéme repose sur lepettrisation de la trajectoire de contrdle au moge
fonctions orthonormales: les polyndmes de Lagudbette derniére entre ainsi dans la catégorie des
commandes prédictives non linéaires paramétréesdeax approches montrent de bonnes performances
en poursuite, dans des conditions réelles d'utiisamais requiérent des moyens de calcul sigrifica

En effet, le probléeme lié a I'implémentation en fEméel d'une stratégie de controle prédictif naadire

se doit d’étre résolu par d’autres moyens. Dandresux, on utilise pour cela le cadre de la conuea
prédictive non linéaire explicite. En pratique, ymesition sous-optimale des actionneurs est obtenue
ligne en parcourant un arbre de recherche binaiie gn calculant une simple relation affine. Daa<as
particulier d’application, cela a nécessité la déteation d’'une solution affine par morceau d’upigéme
non linéaire multi-paramétrique de dimension 6. imegortants calculs hors ligne associés a la résolu
d'un probléeme de si grande dimension ont été peaisun nouvel algorithme supportant le calcul
parallele et compatible avec le schéma prédictibézon-1 synthétisé dans cette étude. Ainsi, less
bénéfices de ['utilisation d'un modéle de prédiatiphysique et de la minimisation d'un critére
thermodynamique sont conservés, tout en menang adgluction considérable du temps de calcul erlign

Dans son ensemble, I'étude méne a trois conclusiopsrtantes:

» Les modéles physiques basés sur la combinaisorodeles moteur moyens et de modélisations
zéro dimensionnelles sont compatibles avec le cddreommande prédictive non linéaire. lls
présentent I'avantage d’étre largement utiliséssdamdustrie automobile et peuvent étre obtenus
de facon systématique a partir d’essais expérimaraa stabilisé. Le cadre prédictif non linéaire
permet, quant a lui, de prendre en compte degesitde performance tels que le rendement du
moteur.

e La décomposition de la future trajectoire des in@Bts de commande sur un jeu de polynémes
de Laguerre encapsule le compromis complexité/@litiéndans un jeu de paramétres de haut
niveau, simples a calibrer. Cette formulation menin grand potentiel d’adaptabilité au moyen
de calcul, puisque le simple réglage des parame&gouvoir permettre d’adapter le compromis
a de nouveaux moyens de calcul.

* Le calcul d’'un contrble temps-réel approximantdenportement d'une telle commande prédictive
non linéaire implicite peut étre obtenu en résalvam probléme multiparamétrique non linéaire
hors ligne. Un algorithme compatible avec les mesléde prédiction complexes tels que des
modeles moteurs physiques, et capable de profitatédeloppement des architectures de calcul
paralléle est détaillé dans ce mémaoire.
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Vers une approche quasi-systématique de la synthése du contréle de la chaine d'air des
moteurs

Des le début, I'objectif a été de faciliter la ception des lois de contrble de la chaine d'air meteurs,
dans un contexte ou l'industrie automobile moderrésente des exigences de plus en plus fortesset de
temps de développement de plus en plus courts.aBicyier, les normes anti-pollution de plus enospl
strictes ont obligé les constructeurs automobilesrsidérablement complexifier la définition teahue de
leurs moteurs. Cette complexité croissante rengyfghése du contrdle plus longue et plus diffigie
aucune nouvelle méthode n’est mise en place. Dapuegjues années maintenant, les lois de contréle
« model-based » entendent répondre a ce chall@egendant, en pratique, il est d’avantage questiom
développement « model-based », utilisant la sirargbour la validation des lois de controle, pluybie

de réelles stratégies de contréle « model-basadtegrant de la physique. Seuls quelques cas précis
d’'application utilisent une telle approche, cepemndds sont souvent le résultat d’'un processus de
conception qui les empéche d’étre systématiqueapgsitqués.

Cette étude entend fournir le début d’'une répomsbesoin des constructeurs automobiles de développe
des stratégies de contréle de la chaine d'air lmegu@lus rapidement. La proposition repose sur la
commande prédictive non linéaire choisie pour sptinmlité et sa flexibilité naturelle, et peut étre
résumée en trois étapes (voir figure ci-dessous):

« [Etape 1: Obtenir une représentation du phénoméxenérbler. Les modéles physiques, en
opposition aux modéles mathématiques, permettemtcalibration plus rapide et une meilleure
robustesse sur I'ensemble des points de fonctioanem

« Etape 2: Synthétiser une commande prédictive m@aiie implicite qui atteint les performances
prévues dans le cahier des charges. Dans cete @@pure, une fonction de colt en accord avec
la physique et les mathématiques doit étre chdisiepratique, la flexibilité du cadre non linéaire
facilite la synthése.

« Etape 3: Calculer la solution explicite du probledieptimisation. Cela conduit & un contrdleur
implémentable en temps réel, c'est-a-dire présérdata fois un temps de calcul court et
prévisible.

ETAPE 1 ETAPE 2 ETAPE 3

Commande
prédictive
non linéaire

Solution
explicite

Modele

physique

Figure — Vue d’ensemble de I'approche de synthesa @ontréle proposée dans cette étude

L'avantage majeur de la proposition repose sutesabilité. En effet, chacune des étapes du schged

étre adéquatement remplacée par une approcheaditernpartageant les mémes entrées et les mémes
sorties. Le modéle physique présenté dans le chaBitpeut étre remplacé par un modéle purement
mathématique tel que modéles neuronaux. La commpnétiictive non linéaire a horizon-1 introduite
dans le chapitre 5 peut étre substituée par umaulation plus complexe si les moyens de calcul sont
augmentés. Elle pourrait également étre remplaaééuyme des formulations de commande prédictive no
linéaire dite «rapide », connues pour étre moimsomophages mais pouvant néanmoins rester
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incompatibles avec les contraintes du calcul tendgs. Enfin, I'approximation linéaire par morceaux
définie sur un ensemble d’hyper-rectangles, udlisé& chapitre 7, peut étre remplacée par toute autr
géométrie de découpage ou tout autre type d’apmation.

Dans le cas particulier du contréle de la chairar di’'un moteur essence suralimenté, I'ensemble de
'approche a mené a une réduction de temps de Icalaffisamment grande pour envisager une
implémentation en temps réel chez Renault SAS.

A court terme, les développements suivants peramgtide compléter et d’améliorer les méthodes
présentées dans cette étude:

L'extension naturelle de la philosophie de modélisaprésentée dans le chapitre 1 concerne le
développement de nouveaux modéles de composantsigciire les phénoménes impliqués dans
des définitions techniques de moteur plus comple@efa inclut notamment la recirculation des
gaz brllés (EGR) et les systémes de suralimentatiatiiples. Des développements sur la
modeélisation de I'effet des soupapes a levée viersdnt d’ores et déja en cours [39].

La validation expérimentale des cartographies smm& la prochaine étape concernant les
stratégies d'interpolation et d’extrapolation préges dans le chapitre 2. De plus, une description
précise des phénomenes mis en jeu dans la zonenggage sera d’autant plus profitable qu’elle
est de plus en plus utilisée lors des phases toinesi. De nombreux travaux sont actuellement
menés et de nouveaux résultats seront bient6t milsles [81,82]. Enfin, la prise en compte des
grandeurs principales de la géométrie des turboimashpeut potentiellement augmenter la
robustesse et la précision de la méthode. En pheticune approche consistant a construire les
cartographies compresseur uniquement par le baisals caractéristiques géométriques a été
développée et présentée dans [40]. Grace a cettedet utilisant les modéles d’extrapolation
présentés au chapitre 2, la prise en compte desniafions obtenues améliorerait encore les
résultats présentés dans ce mémoire.

Pour la synthese de la commande prédictive noail@émplicite, la paramétrisation de la future
trajectoire de contréle a montré des propriété&rassantes en termes d’adaptabilité et de gestion
du compromis complexité/optimalité. D'autres caapglication permettront de confirmer qu'un
meilleur rapport performance/temps de calcul p&et@btenu de maniére systématique.

La commande explicite, et en particulier son pehdan linéaire, sont des champs de recherche
relativement jeunes. A court-termes, les dévelomrgsndevraient porter sur la réduction de la
mémoire nécessaire pour stocker en ligne la Iéglire par morceaux et les régions sur lesquelles
elle est définie. Cela représente, en effet, umélé crucial au regard d’'une implémentation sur
des calculateurs de série. Plusieurs solutiongegislans la littérature, mais une optimisation de
I'algorithme présenté dans le chapitre 7 devrajia g@uvoir mener a une réduction significative
de la quantité de données a embarquer. Cela ipaiutxemple I'utilisation d’une définition basée
sur la physique du critere d’erreur, c'est-a-dii&reé capable de valider ou invalider une région
donnée en se basant sur un critere plus physigréacmgimple valeur de la fonction de co(t.

A plus long termes, les perspectives de développenialessous permettront d’assurer la pérennité de
méthode présentée dans cette étude:
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Intuitivement, la méthode dans son ensemble daivpio étre étendue au cas des moteurs diesel,
qui représentent un part significative du parc enatoile mondial. Ainsi le développement d’'une
librairie de modéles de composants orientés cantiddpables de décrire a la fois les moteurs
essence ou diesel, est une étape importante éhirarcvue d’'une application industrielle de la
méthodologie.



e Concernant l'interpolation et I'extrapolation desrtographies du compresseur et de la turbine,
réécrire les algorithmes pour se soustraire duibed® travailler par iso-vitesse de rotation du
turbocompresseur, permettrait de remplacer les&msfournies par le fabricant par des mesures
en stabilisé obtenues sur banc d'essais moteur.cbasditions réelles de fonctionnement du
turbocompresseur pourraient dés lors étre mieusepren compte, et inclure par exemple les
transferts thermiques entre le compresseur etrlingt Ces nouvelles méthodologies pourront
directement étre intégrées a la librairie de coraptsssuggérée ci-dessus, et permettre ainsi la
construction de modéles de compresseurs et denésrla partir des mesures sur banc d'essais
moteur.

e Concernant I'étape de synthése de la commandectisednon linéaire implicite, il faudra prendre
en compte que, dans certains cas, le problemeintigption peut étre non convexe et présenter
de nombreux minimums locaux, compliquant ainsi @¥rablement la détermination d’'une
solution. Reformuler le probléme ou utiliser degoaithmes d’optimisation globaux représentent
deux méthodes générales a intégrer a cette étepmadiere a rendre la synthése systématique.
L'impact d’'une telle approche sur le temps de dalars ligne de la solution explicite devra
également étre étudié en profondeur.

* Finalement, la méthode dans son ensemble, incliaigorithme de construction de la loi
explicite, pourrait étre implémentée dans un omilustriel, encapsulant les trois étapes de la
méthode (voir figure ci-dessus). Pour les consturst automobiles, cela permettrait de construire
des lois de contrble quasi-optimales de manieregsyaique, en mettant a profit les importants
efforts consentis sur les aspects modélisationsempremier temps, a la vue de la quantité de
mémoire actuellement requise, I'outil pourrait étidlisé pour comparer différentes solutions
techniques, en amont dans le processus de déveleppe Ensuite, a plus long termes,
'augmentation des capacités de calcul hors ligrdeda mémoire disponible dans les calculateurs
devrait permettre I'implémentation de ces lois datdle dans les véhicules de série, accélérant
ainsi I'intégration de nouvelles briques technotpgis favorisant la baisse d’émissions polluantes
et de la consommation de carburant.

*kk

Il est clairement établi que ces aspects liés guiantité de mémoire nécessaire, représentent de tal
d'Achille des approches de commande prédictive finéaire explicite lorsque l'on considére des
applications embarquées. Différentes directiongraeail devront étre étudiées de sorte a augmdater
crédibilité du cadre général de la commande prgdicton linéaire explicite vis-a-vis de l'industrie
automobile et, a plus grande échelle, de la commténdu contréle. Ainsi, les prochaines années werro
probablement les recherche sur la commande préglintn linéaire explicite, partir dans deux direcs

de travail. Premiérement, une des directions cowecéz développement de méthodes avancées pour le
stockage de la solution explicite. L'utilisatioradbres de recherche binaires a ouvert la voie, diaigres
approches pourraient encore améliorer les résultatsleuxiéme voie de travail concerne la résofutla
probléeme multiparamétrique en elle-méme. En efiiels alternatives a une approximation affine par
morceaux devraient pouvoir considérablement rédeireombre de régions requises, modifiant ainsi le
compromis entre temps de calcul en ligne et mémegioer I'instant intrinséque a la méthodologie. En
effet, les méthodes d’approximation barycentriqueppsées dans la littérature dans des cas lingaires
semblent trés attractives. En particulier, I'apgiion pratique au cas non linéaire du contréleadehine
d’'air des moteurs essence suralimentés s’avergéimnetteuse (figure 7.11). Des résultats compglats
sujet seront bient6t publiés.
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Jamil EL HADEF

Approche quasi-systématique du contréle de la chaine d’air des
moteurs suralimentés, basée sur la commande prédictive non linéaire
explicite

Résumé

Les centaines de millions de véhicules du parcraoibde mondial nous rappellent a quel point notreiété
dépend du moteur & combustion interne. Malgré dagres significatifs en termes d’émissions polleargt de
consommation, les moteurs essence et diesel demdumge des principales sources de pollution @ Kles
centres urbains modernes. Ce constat motive legitdst a renforcer les normes anti-pollution, cqndent a

complexifier la définition technique des moteurs1 Barticulier, un nombre croissant d’actionneurg [fa

aujourd’hui, du contr6le de la chaine d’air, unlidraye majeur.

Dans un marché de plus en plus mondialisé et ¢énips de développement de moteurs se doit d'étpuds
en plus court, ces travaux entendent proposer ah#ion aux problemes liés a cette augmentatioriad
complexité. La proposition repose sur une appraahmdrois étapes et combine : modélisation physidug
moteur, contrdle prédictif non linéaire et prograation multiparamétrique. Le cas du contréle deHaime
d’air d’'un moteur essence suralimenté sert deofilducteur au document.

D

Dans son ensemble, les développements présentésuicissent une approche quasi-systématique our |

synthése du contrble de la chaine des moteursaessaralimentés. Intuitivement, le raisonnement pl@ivoir
étre étendu a d’autres boucles de controle et@desmoteurs diesel.

Mots clés : modélisation moteur, turbocompresseur, commande prédictive non linéaire explicite.

Quasi-systematic control design approach for turbocharged engines air
path, based on explicit nonlinear model predictive control

Abstract

The hundreds of millions of passenger cars and etfgicles on our roads emphasize our societyianme¢ on
internal combustion engines. Despite striking pesgrin terms of pollutant emissions and fuel comgiom,
gasoline and diesel engines remain one of the myxtrtant sources of air pollution in modern urtzaeas.
This leads the authorities to lay down increasirdylystic pollutant emission standards, which emegr more
complex engine technical definitions. In particuldue to an increasing number of actuators in #st few
years, the air path of internal combustion engimgsesents one of the biggest challenges of ergpng&ol
design.

The present thesis addresses this issue of inogeasgine complexity with respect to the continuaduction
in development time, dictated by a more and morapatitive globalized market. The proposal consista
three-step approach that combines physics-baseitieengodeling, nonlinear model predictive controlda
multi-parametric nonlinear programming. The latezds to an explicit piecewise affine feedback wraw,
compatible with a real-time implementation. The gmeed approach is applied to the particular casthe
control of the air path of a turbocharged gasadingine.

Overall, the developments presented in this th@wigide a quasi-systematic approach for the syrglwshe
control of the air path of turbocharged gasolingimes. Intuitively, this approach can be extendeather
control loops in both gasoline and diesel engines.

AN

Keywords: mean value engine model, turbocharger maps, explicit nonlinear model predictive control.
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