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Contexte de la thèse

L'un des dé�s majeurs de ce XXIème siècle est le changement climatique et ses con-
séquences sociales, économiques et environnementales. L'attention portée au réchau�e-
ment global et à l'augmentation des concentrations en gaz à e�et de serre (GES) dans
l'atmosphère, principalement le dioxyde de carbone (CO2), le méthane (CH4), et l'oxyde
nitreux (N2O), a conduit à s'interroger sur le rôle des sols en tant que source ou puits de
carbone (C). Les sols seuls constituent le plus grand réservoir de carbone organique de
l'écosystème terrestre, approximativement trois fois le stock de la biomasse continentale
et deux fois celui de l'atmosphère.

Le stock de carbone du sol étant fortement dépendant du mode d'usage des terres ou
des pratiques culturales, une modi�cation de ceux-ci peut conduire à des changements
importants des stocks des horizons de surface (entre 0 et 30 cm de profondeur), dans
le sens d'une diminution ou d'une augmentation. La question de la comptabilisation
des stocks de carbone dans les sols agricoles et forestiers fait l'objet de nombreuses
discussions, à la fois dans le cadre des négociations internationales sur le climat sous
l'égide des Nations-Unies, mais aussi dans le cadre des marchés volontaires, en plein
essor.

Dans ce contexte, il devient nécessaire de pouvoir comptabiliser précisément les stocks
de carbone et leur évolution dans le temps. Les méthodes actuelles, basées sur des cam-
pagnes d'échantillonnage associées à des méthodes analytiques de laboratoires longues
et couteuses, constituent un frein pour le développement de ces actions en faveur de la
séquestration de carbone dans les sols.

La spectroscopie proche-infrarouge (SPIR), technique connue depuis plus de 40 ans
pour mesurer la qualité et la composition des produits agricoles et alimentaires, présente
un potentiel indéniable pour remplacer les campagnes de mesure couteuses. Cependant,
alors qu'elle est depuis plusieurs décennies utilisée en routine dans l'industrie laitière ou
céréalière, ou en ligne - en agro-alimentaire et plus récemment pour le tri des déchets-, elle
reste, en ce qui concerne le sol, encore du domaine de la recherche. Si la quanti�cation
de di�érents constituants ou certaines fonctions (teneur pondérale en carbone organique
et inorganique, en azote, capacité d'échange cationique, granulométrie) a fait l'objet de
nombreuses publications, plusieurs verrous méthodologiques et technologiques doivent
être levés pour en faire une méthode d'analyse de routine pour la comptabilité des crédits
C.

Principes et limites de la SPIR appliquée aux sols

La loi de Beer-Lambert constitue le cadre théorique qui régit les principes analytiques
de la spectroscopie proche-infrarouge. Elle établit le lien linéaire entre l'absorbance de
la lumière et la concentration c d'un élément chimique constituant le milieu analysé, son
coe�cient d'extinction ε(λ) et le trajet l parcouru par la lumière dans le milieu:

A(λ) = − log
IT (λ)

I0(λ)
= ε(λ) · c · l

Cependant, cette loi ne s'applique que dans le cas de milieux translucides faiblement
concentrés (donc peu absorbants). Dans le cas des sols, qui sont des milieux particulaires
hétérogènes, l'interaction de la lumière avec la matière est beaucoup plus complexe. La
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lumière n'est plus simplement transmise ou absorbée mais elle est également di�usée dès
qu'elle rencontre une particule et que l'indice de réfraction change. Le chemin optique de
la lumière est fortement dévié et rallongé. Cela impacte directement la qualité du signal
d'absorbance qui n'est plus linéairement reliée à la concentration de la variable d'intérêt
du fait d'e�ets additifs et multiplicatifs se superpose au signal (cf. �gure 1).

I0

IT

Sensor Sensor Sensor

Source

I0

Source

I0

Source

IT

A(λ) = µa(λ) . l . fm(λ, µs(λ)) + fa(µs(λ),λ,l)

b. Multiplicative effecta. Beer-Lambert Law c. Additive effect

Figure 1: Représentation des e�ets additifs et multiplicatifs de la di�usion sur le signal d'absorbance.
µa est le coe�cient d'absorbance et µs est le coe�cient de di�usion. λ est la longueur d'onde.

L'analyse multivariée en spectroscopie proche infrarouge consiste à trouver un modèle
capable de relier les spectres d'absorbance à une variable d'intérêt, la concentration par
exemple. Les modèles sont principalement construits à partir de méthodes d'analyse
multivariées linéaires, du fait de la loi de Beer-Lambert. La méthode la plus couramment
utilisée étant la régression PLS.

Dans le cas des sols, et plus généralement des milieux très di�usants, les modèles
chimiométriques construits à partir de spectres d'absorbance dont la linéarité avec la
concentration est remise en cause du fait de la di�usion, ne sont pas toujours de qualité
optimale, ni robustes.

Des prétraitements mathématiques sont généralement appliqués sur les spectres pour
limiter l'impact de la di�usion et rétablir, dans une certaine mesure, cette linéarité. Mais
ces prétraitements ne su�sent pas toujours.

Objectifs de la thèse

Dans cette thèse, nous proposons une démarche alternative aux prétraitements math-
ématiques en nous focalisant sur la première étape de la méthode analytique par spec-
troscopie proche infrarouge: la formation du signal.

L'objectif est de mesurer un signal d'absorbance de qualité optimale, c'est à dire, le
moins impacté possible par les phénomènes de di�usion de la lumière. L'hypothèse que
nous posons est que la qualité du modèle de prédiction du carbone du sol est fortement
liée à la qualité du signal d'absorbance à partir duquel il est construit.

Ainsi, nous avons apporté des réponses originales aux questions scienti�ques suivantes:

1. Comment réduire l'e�et de la di�usion sur le signal spectroscopique ?

2. Comment, à partir de ces signaux, modéliser l'absorbance chimique du milieu?
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PoLiS, une méthode optique pour réduire l'impact de la

di�usion sur le signal spectroscopique

Principes théoriques de la correction par polarisation

Le dispositif de mesure optique développé ici, et dénommé PoLiS, utilise les pro-
priétés ondulatoires et les principes de polarisation de la lumière pour sélectionner la
part du signal qui aura été moins di�usée par le milieu. Lorsqu'un �ux lumineux inci-
dent, linéairement polarisé, interagit avec le milieu, il perd progressivement, mais assez
rapidement, son état de polarisation initial. Ainsi, au moyen d'un analyseur placé de-
vant le détecteur, il est possible de mesurer les deux composantes de ce �ux : celle qui a
conservé son état de polarisation initial, I‖(λ) et celle qui l'a perdue I⊥,Ω(λ) (cf. �gure
2).

Low scattering conditions

linearly

polarized

light

unpolarized

light

Multiple scattering conditions

linearly

polarized

light

unpolarized

light

unpolarized

light

Polarizer PolarizerAnalyzer Analyzer

linearly

polarized

light

I0 I0Ill I

Figure 2: Principe de la mesure des deux composantes I‖(λ) et I⊥(λ) de la lumière réémise par le milieu
au moyen d'un polariseur et d'un analyseur

Ce principe de mesure nous a permis de calculer la ré�ectance totale réémise par le
milieu en faisant la somme de composantes parallèle et perpendiculaire de la lumière:

RBS(λ) = R‖(λ) +R⊥(λ)

En faisant la di�érence de ces deux composantes, nous avons mesuré une ré�ectance
corrigée des e�ets de la di�usion:

RSS(λ) = R‖(λ)−R⊥(λ)

Principes théoriques de la modélisation de l'absorbance

Les deux types de signaux mesurés par le dispositif optique PoLiS ont été implémentés
dans la fonction d'absorption et de rémission A(R, T ) proposée par Dahm et Dahm dans
leur cadre théorique de la couche représentative (Representative Layer Theory).

A(R, T ) =
(1−R)2 − T 2

R
=
a

r
· (2− a− 2r)

Cette fonction relie la ré�ectance R et la transmittance T mesurées sur un échantillon,
à la fraction absorbée (a) et réémise (r) d'une couche hypothétique de faible épaisseur
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mais représentative de l'échantillon. Dahm et Dahm stipulent que l'absorbance calculée
à partir de a, la fraction de lumière absorbée par cette couche représentative, est une
bonne approximation de la vraie absorbance (selon la loi de Beer-Lambert) :

A = −log(1− a)

Nous nous sommes placés dans ce cadre théorique pour résoudre la fonction A(R,T)
en posant les hypothèses suivantes :

- La ré�ectance R totale de l'échantillon peut être approximée parRBS(λ), la ré�ectance
totale mesurée avec le dispositif PoLiS;

- La fraction réémise (r) par la couche représentative théorique peut être approximée
par RSS(λ), la part du signal n'ayant subi que peu de di�usion par le milieu étudié.

La résolution de cette équation nous a permis de proposer une expression de l'absorbance
de milieux di�usants, fonction des mesures permises par le dispositif PoLiS, RBS(λ) et
RSS(λ):

AbsPo(λ) = − log

(
RSS(λ) +

√
(1−RSS(λ))2 − RSS(λ)

RBS(λ)
(1−RBS(λ))2

)

Cette absorbance, obtenue par la méthode de mesure PoLiS est, en théorie, moins
impactée par la di�usion et plus linéairement reliée à la concentration.

Matériel et méthodes

Instrumentation

Le dispositif PoLiS était constitué d'une source lumineuse, d'un polariseur linéaire,
d'un analyseur linéaire et d'un spectromètre opérant dans la gamme spectrale 350 -
800 nm, soit le visible - très proche infrarouge (Figure 3). Des lentilles permettaient la
collimation de la lumière et la collection du signal réémis.

Sample

Broadband Light

         Source

Polarizer

Analyzer

Spectrometer Fiber

Fiber

Lens

Lens

Acquisition

Figure 3 : schéma du dispositif optique PoLiS.

xiv



Échantillons

Trois types d'échantillons ont été mesurés par la méthode:

- Des échantillons liquides, mélangeant du lait, dont les micelles et particules de gras
jouent le rôle de di�useur, avec du colorant alimentaire, E141, l'absorbant dont on
connait la concentration;

- Des échantillons poudreux, mélangeant du sable de Fontainebleau (di�useur) avec
le même colorant E141 en poudre à di�érentes concentrations;

- 52 échantillons de sols, provenant de la région du Vercors dont la variable d'intérêt
est le carbone organique total. Chaque échantillon a été préparé selon trois tailles
de particules di�érentes: grossiers (agrégats <5mm), tamisés à 2 mm et broyés à
0.2 mm.

Analyse multivariée

Sur les échantillons de sol, des modèles PLS de prédiction de la teneur en carbone
organique ont été construits à partir du spectre de ré�ectance totale RBS(λ), du spectre
d'Absorbance classique {−logRBS(λ)} et à partir des spectres d'absorbance obtenus avec
la méthode PoLiS AbsPo(λ). Pour évaluer la plus-value de la méthode PoliS par rapport
aux prétraitements mathématiques, les spectres ont été prétraités par SNV (Standard
Normal Variate), MSC (Multiplicative Scatter Correction et OPLECm (Modi�ed Optical
Pathlength estimation and correction), qui sont classiquement appliqués pour réduire
l'impact de la di�usion sur les signaux spectroscopiques.

Résultats

Diminution de l'e�et de la di�usion sur les spectres

L'analyse des spectres d'absorbance obtenus avec la méthode PoLiS a montré, dans
un premier temps, que la réduction de l'e�et de la di�usion sur le signal se traduisait
par signatures spectrales plus marquées. La �gure 4 illustre ce résultat sur les poudres
mélangeant du sable et un colorant.
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Figure 4: Absorbance totale AbsBS(λ) (a.) et absorbance PoLiS AbsPo(λ) (b.) mesurées sur des
échantillons pulvérulents mixant du sable et du colorant E141 à di�érentes concentrations en g.L−1.
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Nous avons pu observer que la ligne de base était réduite et que les pics d'absorption
étaient beaucoup plus �ns et marqués.

Amélioration de la linéarité entre l'absorbance et la concentration

Les spectres d'absorbance mesurés à partir de la méthode PoLiS présentent une
meilleure linéarité, à une longueur d'onde λ donnée, avec la concentration de l'absorbant.
La �gure 5 montre que cela est vrai quelque soit le milieu: liquide, poudreux et même
pour les sols.
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Figure 5: Absorbance totale AbsBS(λ) et absorbance PoLiS AbsPo(λ) mesurée à la longueur d'onde λ
en fonction de la concentration de l'absorbant. Sur le milieu liquide (a. et b.) et sur les poudres (c. et
d.), à λ = 405nm et λ = 630nm en fonction de la concentration en colorant E141 en g.L−1 et sur les sols
(e. et f.), à λ = 600nm, en fonction de la teneur en carbone organique en g.kg−1. R est le coe�cient de
Pearson.

Les propriétés des spectres d'absorbance modélisés par la méthode PoLiS se rap-
prochent de celles de l'absorbance de la loi de Beer-Lambert: la quantité de lumière
absorbée par le milieu est linéairement proportionnel à la concentration.
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Amélioration des prédictions

Les modèles construits à partir des spectres d'absorbance PoLiS AbsPo(λ) se sont
avérés être toujours de meilleure qualité que ceux construits à partir de la ré�ectance
RBS(λ) ou de l'absorbance totale AbsBS(λ), même lorsque ces derniers ont été prétraités.
Nous avons pu observer également que les prétraitements n'avaient aucun e�et positif sur
l'absorbance PoLiS. La �gure 6 présente les indicateurs de qualité de tous les modèles
construits dans cette étude, le coe�cient de détermination R2 et l'erreur standard de
cross-validation (SECV). Les modèles ont été construits sur les trois types préparation
des sols: grossiers, tamisés et broyés.
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Figure 6: Qualité des prédictions ré�ectance totale, absorbance totale et absorbance PoLiS, Prétraite-
ments none: aucun, SNV: standard Normal Variate, MSC: multiple scatter correction, OPLEC: optical
pathlength estimation and correction, R2 co�cient de détermination, SECV erreur standard de cross
validation

Ces résultats nous ont permis de con�rmer que (i) l'absorbance PoLiS était de meilleure
qualité et présentait un meilleur potentiel pour l'étalonnage, (ii) que ce signal atteignait
une qualité optimale qui ne peut être améliorée par des prétraitements mathématiques
et (iii) que ce signal est moins impacté par la taille des particules.
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Conclusions

Les travaux menés dans cette thèse ont montré qu'il est possible, en mettant en oeu-
vre une architecture optique dédiée, d'améliorer signi�cativement la qualité des signa-
tures spectrales mesurées sur des milieux di�usants tels quel les sols. Il a été également
con�rmé que l'amélioration de la qualité des spectres, notamment par le biais d'une
meilleure linéarité avec la concentration, avait un impact positif sur la qualité des mod-
èles chimiométriques. Le potentiel de cette méthode est important, tant pour améliorer
la caractérisation des sols par spectroscopie proche-infrarouge, mais pour permettre une
meilleure compréhension des interactions lumière-matière se produisant dans les milieux
hautement di�usants.
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General Introduction

1.1 Overview and objectives

Concerns about global warming and increasing concentrations of atmospheric green-

house gas (CO2, CH4 and N2O) have led to questions on the role of soils as a source

or sink of carbon (C). Soil is the largest surface carbon pool, almost three times the

quantity stored in the terrestrial biomass and twice the amount stored in the atmosphere

(Eswaran et al., 2000; Bernoux et al., 2006). Carbon sequestration in soil is a real win-

win strategy: it restores degraded soils, increases the production of biomass, puri�es

surface and ground waters, and reduces the rate of enrichment of atmospheric CO2 by

o�setting emissions due to fossil fuels (Lal, 2004b). From an economic perspective, as

carbon sequestration in soil has become relevant to reduce the amount of greenhouse gas

emissions, policymakers have made carbon trading markets emerge (Lal, 2004a; Gehl,

2007). It is therefore of utmost importance to assess soil carbon stocks and �uxes in

terrestrial systems to understand the global dynamics of carbon.

Collecting soil at su�ciently high spatial and temporal resolution to meet soil C

veri�cation needs, and analyzing them using traditional laboratory-based methods, may

be prohibitively expensive (Smith, 2004). Thus, new methods are required to rapidly

and accurately measure soil C at �eld- and landscape-scales to improve �eld, regional

and global soil C stock and �ux estimates (Gehl, 2007).

Visible and Near Infrared Spectroscopy (Vis�NIRS) has become an extremely im-

portant analytical technique over the past 50 years as evidenced by the high number of

di�erent applications and products analyzed by NIRS (Williams & Norris, 2001). And, a

little later than for agricultural and food products, NIRS has been naturally considered

as a potential and credible substitute for the traditional analytical methods used for soil

properties assessment (Reeves III, 2009; Stenberg et al., 2010; Bellon-Maurel & McBrat-

ney, 2011). A new community of research targeting NIR as a rapid tool for soil analysis,

either in the laboratory or in the �eld, has emerged among the soil science community.

NIR-scientists have progressively joined the soil community because studying a complex

and heterogeneous material like soils entails new NIR-related research opportunities, in

2



General Introduction

�elds like instrumentation, light�matter interactions, chemometrics or sampling strate-

gies (Bellon-Maurel, 2009). Bridging the two communities (Soil and NIR) is probably

the best strategy to reach the Grail : a portable low-cost NIR sensor providing precise

information about (many) soil properties.

Contributing to this common endeavor is the core objective of this thesis. Thus, our

approach is based on the following sub-objectives:

1. Analyzing the challenges Vis-NIR spectroscopy applied to soils faces in order to

identify the key factors in�uencing the quality of the measurement and the possible

paths of improvement;

2. Designing an original optical setup dedicated to measure a spectroscopic signal of

optimal quality and to model the chemical absorbance of scattering materials;

3. Testing the feasibility and assessing the added value of the proposed method to

predict total organic carbon content of soils.

1.2 Outline of the thesis

Each sub-objective is addressed by a chapter of the thesis referring to a scienti�c

publication (Art I - IV, listed p vii), forming the spine of this manuscript.

Chapter 2 reviews the major issues that NIR applied to soil is facing and o�ers a

panorama of the mathematical solutions implemented by soil scientists. Light scattering

is the main source of problems as it impacts directly the quality of the signal and thus, the

reliability of the calibration model. Hence, developing new optical methods to increase

the signal quality is a new research path that has to be invested. This chapter is the

reproduction of Art. I published in the book series Advances in Agronomy in 2014.

Following the conclusions drawn by the review paper, we present the scienti�c issues

addressed in this thesis.

3
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Chapter 3 and chapter 4 develop an original approach to circumvent the issue

of light scattering impacting a spectroscopic signal to model the absorbance of highly

scattering materials.

First, chapter 3 focuses on the design of an optical setup, based on light polarization

spectroscopy. The output of the method is a re�ectance signal freed from multiscattering.

Reproducing Art. II, published in Applied Spectroscopy in 2014, the chapter presents

the theory which underlies the method and which is then experimentally validated on

simple model media.

Next, in chapter 4, the theoretical framework of the Representative Layer Theory

is used to propose a model of the chemical absorbance of the sample. Again, theory and

experimental validation of the approach are presented trough the reproduction of Art.

III, published in Analytica Chimica Acta in 2014.

To close the loop, in chapter 5, we test the feasibility of the method, hereafter

named PoLiS, to predict Total Organic Carbon content of soils. The performances of

the method are compared to the classical calibration strategy, based on mathematically

preprocessed spectra. Chapter 5 is the reproduction of Art. IV submitted in Soil and

Tillage Research in October 2014.

In chapter 6, which is ending this manuscript, the main contributions of this work

are discussed and put into perspective with future research and development ideas that

this thesis has brought to light.
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Preamble

In this chapter, with the objective of being both pedagogical and practical, we re-

view and discuss why the basic theoretical concepts underpinning NIR spectroscopy and

linear chemometric modeling may be questioned in the speci�c context of soil: (i) light

scattering due to soil particles causes departure in the assumed linear relationship be-

tween the spectrum and the carbon content and (ii) the other classical linear regression

assumptions (constant residual variance, normal error distribution . . . ) are also put into

question.

With reference to these speci�c issues, the di�erent chemometric methods presented

as possible solutions to perform better calibration models are discussed. We focus on

classical linear methods associated with various preprocessing, local methods and �nally

non linear methods.

Based on the concluding remarks of this chapter, the scienti�c issues addressed in

this research are presented.

6



Major issues of NIR spectroscopy in Soil Science

Major Issues of Diffuse Reflectance NIR Spectroscopy in the

Specific Context of Soil Carbon Content Estimation: A Review
1

2.1 Introduction

Soil carbon sequestration is one possible way of reducing greenhouse gas emissions

in the atmosphere (Lal, 2004a). However, to evaluate the real bene�ts o�ered by these

methods (new agricultural practices, reforestation . . . ), large scale estimations of the

carbon stock in the soils are necessary. Therefore, chemical analysis of a large amount of

samples must be performed and this requires rapid, precise and low-cost analytical tools

(Morgan et al., 2009; Reeves III, 2009; Kuang et al., 2012).

Near infrared spectroscopy (NIRS) entails acquiring and processing spectra on mate-

rials in the 700 nm - 2500 nm wavelength range. This technology enables rapid analysis

and is optimized for chemical compound determination. Today it is widely used for the

characterization of organic materials such as agricultural and food products or for petro-

chemicals and pharmaceuticals (Williams & Norris, 2001). For several years there has

been a growing interest in NIRS among soil scientists (Bellon-Maurel, 2009), which is now

commonly used to measure di�erent physical and chemical parameters of soils, including

carbon content. In this �eld, the potential of this technology is very high. It o�ers rapid

cost-e�ective acquisition requiring a minimum sample preparation and measurement can

be performed directly in the �eld. However, prediction model accuracy is insu�cient

for NIRS to replace routine laboratory analysis and/or to make in-situ measurements,

whatever the type of soil (Reeves III, 2009).

Several recent review papers (Bellon-Maurel & McBratney, 2011; Stenberg et al.,

2010; Reeves III, 2009; Cécillon et al., 2009) have detailed the latest improvements made

by the community but also highlighted the research avenues that need to be pursued

if NIRS is to become a reference technique for the measurement of soil carbon content.

1Alexia Gobrecht, Jean-Michel Roger, Véronique Bellon-Maurel, Major Issues of Di�use Re�ectance

NIR Spectroscopy in the Speci�c Context of Soil Carbon Content Estimation: A Review, In: Donald L.
Sparks, Editor(s), Advances in Agronomy, Academic Press, 2014, Volume 123, Pages 145-175
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One of the biggest issues that needs to be addressed concerns the calibration process:

how does the mathematical method or the sample selection in�uence the model quality?

In most cases, there is not a lot of thoughts put into the choice of the mathematical

method, which is often made empirically (test and try). This is especially due to the

fact that analytical devices used generally include software that allows users to quickly

and easily apply most of the multivariate analysis methods, without being aware of the

underlying theories. This reduces the relevance of the calibration.

It is therefore essential to return to fundamental laws governing spectrum formation

and in particular to understand light/matter interaction in order to optimize calibration.

The aim of this paper is to review the basic theoretical assumptions underpinning

NIRS and classical linear chemometric modeling and to confront them with the actual

phenomena during light/matter interaction. In the speci�c context of soil carbon content

measurement, there is an enormous gap between reality and theory. Our objective is

not to quantify this gap but to evaluate its impact on the metrological quality of the

measurement. This will be of signi�cant pedagogical and practical use.

The �rst part of this paper presents the theoretical concepts supporting NIRS and

linear chemometrics and introduces the assumptions that have to be ful�lled to build

a linear model. Then, the question of NIRS compliance with these assumptions in soil

related application to evaluate the resulting metrological quality of the prediction is ad-

dressed. Finally, the mathematical solutions that the authors have proposed to overcome

these model quality issues are reviewed and discussed.

2.2 Theoretical concepts underlying multivariate cali-

bration based on Near infrared spectra

2.2.1 Spectroscopy and Beer - Lambert's law in di�use media

Beer's law is the cornerstone of quantitative analysis with Near Infrared Spectroscopy.

The �rst assumption based on Beer's law in spectroscopy is that there is a relationship
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between spectrometric response and the concentration of an analyte in a sample. It

assumes that the ratio (IT (λ)/I0(λ)) of the transmitted intensity IT (λ) and the incident

beam intensity I0(λ) is equivalent to:

T (λ) =
IT (λ)

I0(λ)
= 10−ε(λ)·c·l (2.1)

where T (λ) is the transmittance at wavelength λ, ε(λ) is the molar extinction coe�-

cient (in L ·mol−1 · cm−1), c is the concentration (in mol ·L−1), and l is the path length

(in cm) (Workman & Springsteen, 1998).

Absorbance is a more standard form used in spectrometry, where the logarithm is

applied to linearize the relationship between spectrophotometer response and concentra-

tion:

A(λ) = − log
IT (λ)

I0(λ)
= ε(λ) · c · l (2.2)

ε(λ) · c characterizes the absorption capacity of the analyzed sample and may be

replaced by the absorption coe�cient:

µa(λ) = ε(λ) · c (2.3)

µa(λ) is the probability per length unit that has a photon of wavelength λ to be

absorbed by the material with which it interacts. If the purpose of the measurement is

to determine the concentration of a compound, the absorption coe�cient of the material

becomes the key parameter, because it is related to concentration (Dahm & Dahm, 2001).

This law is fundamental to spectroscopy but is strictly applicable only to transmission

measurements on low concentrated transparent materials. If the sample is turbid, par-

ticulate or solid, another phenomenon, called scattering, occurs along with absorption.

The scatter e�ect characterizes photon path changing phenomenon when it encounters a

particle or when the refractive index changes (Ciani et al., 2005). The photons may not

only be absorbed or transmitted, but they can also be re�ected, refracted or di�racted.
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Beer�Lambert's law is also frequently applied to di�use re�ectance measurement of light

scattering media, replacing IT (λ) by IR(λ), the intensity of the remitted radiation (Dahm

& Dahm, 2001).

Through analogy with the absorption coe�cient µa(λ), µs(λ) is the scattering proba-

bility of a photon per length unit. The analytical expression of the scattering coe�cient

µs is not straightforward, because the changes of direction of the photons depend not

only on the size and shape of the particles, but also on their wavelength, the direction

of the incident light and changes of refractive indices. Scattering has a direct impact

on absorbance because the more photons are scattered, the more likely they are to be

absorbed by the medium as the optical path-length increases (Dahm & Dahm, 2001).

I0

IT

Sensor Sensor Sensor

Source

I0

Source

I0

Source

IT

A(λ) = µa(λ) . l . fm(λ, µs(λ)) + fa(µs(λ),λ,l)

b. Multiplicative effecta. Beer-Lambert Law c. Additive effect

Figure 2.1: Representation of additive and multiplicative e�ects in di�use material

Figure 2.1 illustrates and decomposes the e�ects of scattering on the absorbance

signal. Figure 2.1.a shows the Beer-Lambert law when a transmittance measurement

in applied on low concentrated homogeneous samples. The increase in the optical path

length traveled by the photons in a scattering medium re�ects a multiplicative e�ect on

the absorbance Aλ (2.1.b). It can be characterized by a function fm , which depends on

the physical properties of the medium and the wavelength.

In addition to a multiplicative e�ect, light scattering occurring in the analyzed mate-

rial is responsible for an additive e�ect on the absorbance value. Theoretical models like

Beer-Lambert or Kubelka-Munk (Kubelka & Munk, 1931) assume that all the scattered
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light is collected. But optical instruments are built in such a way that only a fraction

1/α of light is detected.

Imeasured(λ) = 1/α · IR(λ) (2.4)

Ameasured(λ) = −log (Imeasured(λ)/I0(λ))) (2.5)

= log α + log (I0(λ)/IR(λ)) (2.6)

= fa + A(λ) (2.7)

The additive term log α = fa is closely related to the scattering properties of the

material and depends on the wavelength and the thickness l of the sample. Thus,

log α = fa(µs(λ), λ, l), which depends on the con�guration of the measuring system,

is sample speci�c, implying inter-sample variability resulting in baseline drifts of the

ideal absorption spectrum. The observed absorbance in the case of scattering samples, is

no longer a linear function of concentration. Based on the above, we propose an expres-

sion of the absorbance. It integrates multiplicative and additive e�ects due to radiation

scattering by the medium:

A(λ) = µa(λ) · l · fm(λ, µs(λ)) + fa(µs(λ), λ, l) (2.8)

with fm(λ, µs(λ)) the multiplicative function and fa(µs(λ), λ, l) the additive function

resulting in a departure from the linear relationship between the absorbance spectrum

A(λ) and the concentration c of the analyte of interest.

When a medium is complex and scatters, the useful part of the information of the

signal (in our case, µa(λ), which is related to the concentration) is relatively small com-

pared to what we can call useless information, which is due to scattering e�ect. Moreover,

in addition to scattering, other factors, such as interactions between chemicals, may be

responsible for nonlinearities (Bertran et al., 1999). As the relationship between the spec-

trum and the concentration is not linear, it requires complex mathematical treatments to
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extract useful information. This is the purpose of multivariate analysis in chemometrics.

2.2.2 NIRS and Linear Multivariate Calibration Methods

The assumptions of linear multivariate calibration methods

Multivariate calibration in near infrared spectroscopy, consists in �nding a model f ,

that is able to relate a property y of a sample set to signal intensities or absorbance, x,

measured on these samples at several wavelengths.

Considering the theoretical Beer-Lambert law lying behind near infrared spectroscopy

(section 2.2.1), it was usually assumed that the function f , with y = f(x), was linear,

which largely contributed to the development of linear multivariate calibration methods

adapted to spectral data (Martens et al., 2003).

When the data are centered or when it is assumed that there is no intercept, the

model can be written as:

y = xTb + e (2.9)

With b the model coe�cient to be estimated and the residual e, representing the

deviation of the measurement y from its value ŷ predicted by xTb.

From a classical statistical point of view, one supposes that the model exists. The

aim of the regression is to estimate the best model coe�cient b. Several methods exist,

the simplest and most popular one being the Ordinary Least Squares (OLS) method.

In order to use the OLS estimator, the following basic assumptions must hold (Massart

et al., 1998):

- H1: Condition of linearity: the relation between x and y is linear in the parameter;

- H2: Condition of no-multicollinearity : The regressors xi must all be linearly inde-

pendent;

- H3: The number of observations is greater than the number of independent vari-

ables;

12



Major issues of NIR spectroscopy in Soil Science

- H4: Condition of homoscedasticity: The residuals ei all have the same variance

var(ei) = σ2;

- H5: Condition of normality: For each individual i the residual ei is normally dis-

tributed with mean zero, N(0, σ). Consequently, it is assumed that for each speci�c

xi, the probability distribution function of yi is also normal;

The hypothesis H1, H2 and H3 have to be ful�lled in order for the OLS method to

give meaningful results. The hypothesis H4 and H5 concern the residuals and mainly

condition the quality of the estimates. These assumptions can only be tested once the

regression has been performed.

If the assumptions hold, the estimated OLS parameter are the best one from the point

of view of their statistical properties (convergent, non biased and of minimal variance).

They are called BLUE (Best Linear Unbiaised Estimators) (Allen, 1997). Unfortunately,

this is rarely the case in NIR Spectroscopy, which requires other approaches.

Chemometric approach of Multiple linear regression

The hypothesis H1 is assumed to be met because the Beer-Lambert's law underlies

the relationship between x and y and which is supposed to be linear but we showed in

section 2.2.1 that is was false. Moreover, in spectroscopy, the spectral variable space (X)

is multidimensional, suggesting the existence among this space of a subspace where the

relationship can be linear. However, the hypothesis H2 is systematically violated: the

predictors x, composed by the absorbance measured at di�erent wavelengths, are highly

correlated with each other. Consequently, the variance of the model parameters can

be very large (Bertrand & Dufour, 2006). Furthermore, assumption H3 is not satis�ed

when spectral data are used as predictor variables: the number of predictor variables

are generally more important than the number of available individuals. This poses a

problem for computing the OLS regression coe�cients bOLS (equation 2.10) because a

matrix inversion is required (X′X) and which is not possible if H2 et H3 are not ful�lled.
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(dimensionality problem and ill-condition of X′X) (Næs et al., 2002).

bOLS = (X′X)−1X′y (2.10)

In chemometrics, the approach of multiple linear regression is a little bit di�erent from

that of classical statistics. In classical statistics, one assumes a priori that the model

exist and the objective is to �nd the best model parameter. In chemometrics, the model

is built from the available data (a calibration set (X, y)), and then tested, if possible on

an independent set or by cross validation (Geladi et al., 1999). Model quality is assessed

by comparing the predicted values to the measured values of the test set. If the model

satis�es validation criterion, it can then be used for predicting a new sample. During the

model building step, i.e. estimating the model coe�cients, the pre-listed assumptions

are generally not tested and this whatever the estimation method chosen.

Furthermore, to overcome the problems posed by the violation of assumptions H2 and

H3, chemometricians have developed new methods. To reduce the number of explanatory

variables and limit the risk of collinearity, the linear regression is performed in a spectral

space of limited dimension. To reduce the spectral space dimension, it is possible to

select a certain number of variables assuming that the excluded ones do not signi�cantly

improve the model. Stepwise Multiple Linear Regression (MLR) (Martens & Næs, 1989)

or CovSel (Roger et al., 2011) are some examples of variable selection methods. One

limitation to this approach is that the variable selection can be arbitrary (in stepwise

MLR for example) and highly dependent on the available data set (Williams & Norris,

2001).

Another way to reduce the spectral space dimension is to build new variables from

linear combinations of descriptors xi.

T = XP (2.11)

With T the constructed latent variables and P the loadings.

The regression is performed between the variable to predict (y) and so called la-
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tent variables (or scores). This approach is among the most used in chemometrics and

the principal algorithms are Principal Component Regression (PCR) and Partial Least

Squares regression (PLS), the latter being developed by Wold (Wold et al., 2001).

With PLS, the regression model based on these new variables can still be written

in a simple form like equation 2.12 and the OLS method is used to predict the model

coe�cient qOLS because assumptions H2 and H3 become ful�lled: the latent variables

are not correlated one with another (by construction, they are orthogonal) and they are

fewer than the number of observations.

y = TqOLS + e (2.12)

With T containing tk latent variables (or scores) and qOLS the regression coe�cients

to be estimated by OLS.

qOLS = (T′T)−1T′y (2.13)

ŷ = T ∗ (T′T)−1T′y = XP(P′X′XP)−1P′X′y = XbPLS (2.14)

with bPLS = P(P′X′XP)−1P′X′y.

However, the PLS (or PCR) remains within the paradigm of linear regression, and

is therefore subject to the same constraints of the assumptions regarding the residuals

(assumptions H4 and H5). If the conditions are strongly violated, the lower quality of

the model parameter estimates will directly impact the prediction quality (accuracy and

robustness). This may be the case if the residuals are heteroscedastic (their variance is

not constant) or if the distribution of ei is not normal (Fearn, 2012).
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2.3 Does di�use re�ectance spectroscopy satisfy the

assumptions of the linear multivariate calibration

methods when applied on soils?

2.3.1 Hypothesis H1: Violation of the Beer-Lambert law

Soil is a mixture of mineral and organic matter with a physical structure composed

of macroscopic aggregates of particles and porous spaces which may contain water or air

(Ben-Dor et al., 2009). Soil is therefore a highly absorbing and scattering medium. In this

case, the ideal theoretical conditions that are required by the Beer-Lambert law cannot

be satis�ed. This a�rmation is not speci�c to soils, indeed it is commonly applicable for

all scattering media. But soil is, from this point of view, extremely challenging, especially

when the samples are measured in situ or without prior sample preparation (drying and

grinding for example). The application of near infrared spectroscopy to measure soil

carbon concentrations has yet to be performed in a satisfactory manner and principally

becomes a chemometric challenge. Indeed, nonlinearities introduced by the scattering

e�ect are a real constraint for linear multivariate calibration as they impact hypothesis

H1.

2.3.2 Violation of the assumptions about residuals (H4, H5)

The carbon content of a given set of samples does usually not follow a normal dis-

tribution. Some authors maintain that it is positively skewed (Vistelius, 1960; Reimann

& Filzmoser, 2000) with a high occurrence in low carbon concentrations and other state

that the distribution is lognormal (Ahrens, 1954; Parkin et al., 1988; Clark, 1999; Brejda

et al., 2000). According to Reimann & Filzmoser (2000), this asymmetry is frequent for

many environmental variables of low values as they can not be given negative values and

are thus truncated at 0. Also, the important spatial dependence of these type of variables

may re�ect the existence of several subpopulations, which is inconsistent with a strictly
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gaussian distribution.

It is essential to know the distribution function of a variable to be able to charac-

terize a given data set. Describing a population when the distribution is symmetric is

unambiguous because the mean, median and mode coincide and all can be taken as the

center. In most studies applied to soils, the statistics provided are insu�cient to ade-

quately describe the variables. Very often, only the mean and standard deviation are

shown with sometimes the extreme values (min, max), although the two �rst values are

of little interest if the data are not normally distributed, which is usually the case.

As a consequence of this asymmetric distribution of carbon content in soils, there is

a high probability that residuals neither satisfy the condition of homoscedasticity (H4)

nor the condition of normality (H5). The causes of heteroscedasticity are di�cult to

identify, but authors agree that the variation of the residual variance is a by-product

of the violation of other assumptions (Osborne & Waters, 2002) like an asymmetric

distribution of y. Measurement errors of x can also contribute to the residual error term.

Consequently, an increase of the residual error as a function of y is often observed (Geladi

et al., 1999).

2.4 Impacts on the metrological quality of the predic-

tion

In metrology, several indicators are usual to characterize the properties of a method

or an instrument: reproducibility, repeatability, sensitivity, precision, accuracy or un-

certainty. Zeaiter et al. (2006) recalls the de�nitions of these terms. How are these

parameters, speci�cally signal quality and prediction model quality, a�ected when NIRS

is applied to estimate the carbon concentration of soils?
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2.4.1 Signal quality

The quality of a spectroscopic signal determines the quality of the resulting measure-

ment. This quality can be assessed using the signal to noise ratio (SNR). Technological

advances in instrumentation have reduced optical noise and improved signal quality. But

in scattering materials such as soils, only a part of the signal contains relevant infor-

mation related to the absorbance and therefore useful for calibration. The remaining

information, which results from scattering, contributes to noise. Signal sensitivity de-

creases as the scattering e�ect increases compared to chemical absorbance (µs >> µa).

In addition, scattering changes the optical path of the photon in a random manner, which

in turn, impacts another metrological quality criterion, i.e measurement reproducibility.

2.4.2 Model quality

As seen above, building a linear model to directly estimate soil carbon content from

a soil spectrum will probably be lacking in performance as the ideal conditions are not

met: non-linearity of the spectra - concentration relationship, non-normal distribution

of y, which leads to biased estimation of the model parameter and to heteroscedasticity.

Fearn (2012) discusses the possible consequences of non-normally distributed data on

robustness of the least square �t, the validity of signi�cance tests and the relevance of

statistics used to assess the �t such the Standard Error of Calibration (SEC).

However, as these optimal conditions are rarely met the BLUE can not be found and

the overall quality of the model has to be evaluated through a validation step. To perform

it, the model is tested on an independent data set in order to calculate performance

indicators, of which the following are the most frequently used in soil science:

- The SEP (Standard Error of Prediction) is the root mean square average error

recorded on a independent dataset (validation set). It can be broken down as

follows: SEP 2 = biais2 + SEP 2
c . The bias re�ects systematic error, related to

systematic variations of in�uence factors (e.g instrument, the analysis methodology

. . . ). SEPc (for SEP corrected for biais) is the residual variance (Davies & Fearn,
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2006a).

- The RPD (Ratio of Performance to Deviation), RPD = SD/SEP , is a popular

indice used in soil science. It standardizes the value of the SEP with respect to

sample population dispersion (i.e the standard deviation).

Bellon-Maurel et al. (2010) o�ers a critical overview on the use of these indicators in

the speci�c case of spectroscopy applied to soils analysis. In particular, RDP based on

skewed data is considered irrelevant since it is calculated from the standard deviation

of the dataset (RPD = SD/SEP ), whereas SD is not a good indicator to correctly

describe the dispersion of a skewed dataset. They propose to improve this indicator by

introducing a more representative distribution parameter of y based on the interquartile

distanceQ1−Q3. With the same objective, Limpert et al. (2001) o�er another alternative

to characterize the log normal data with the geometric mean.

Beyond the overall performance assessment of the model, a new analytical technique

should be able to predict a value for a new sample with the least uncertainty. Calculating

the SEP is insu�cient, because (i) it contains a part of systematic error (bias), (ii) its

value does not provide any information about an individual sample, and (iii) because

uncertainty will vary from one sample to another. It is necessary to compute var(ŷ), i.e.

the uncertainty attached to the estimated sample i.

Several expressions of linear model uncertainty, which can be expressed as var(ŷ), can

be found in the literature. Zhang & Garcia-Munoz (2009) review most of them. They are

based on the theoretical error propagation framework, which identi�es and assesses the

contribution of all sources of uncertainty associated to the model parameters. The terms

of these expressions di�er depending on the simplifying assumptions made. Fernandez-

Ahumada et al. (2012) discuss these assumptions and propose a general expression of the

uncertainty based on least restrictive assumptions.

Whatever the expression, one term is common: (x̂− x̂c), with x̂ the measured spec-

trum and x̂c the spectrum at the center of the model. This term, which re�ects the

distance of the spectrum x̂ to the center x̂c of the model is called leverage (Cook &
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Weisberg, 1982). Prior to regression, the data are centered in relation to a �xed point.

This helps to compare the scales of both dependent and independent variables. Thus,

analysis of the deviation from the center and the distribution around this point becomes

possible , thereby facilitating the interpretation of the regression model. The further the

sample is from the center of the model, the higher the prediction uncertainty.

In most cases, the models are mean-centered. Hence, x̂c = x̄, which coincides with

the mode, if the dataset is symmetrically distributed. Close to the mean, the predictions

will have a smaller variance. This phenomenon, which is called Dunne e�ect, leads to

an overall improvement of model performance when most of the samples to be predicted

are close to the distribution mean (Martens & Næs, 1989).

The SEP can be written SEP 2 = SEP 2
c = Σvar(yi)P (yi). In order to minimize it,

it is necessary to have the maximum of the distribution of y, P (yi), coincide with the

minimal uncertainty var(ŷi). If the center of the model x̂c is close to the mode, then the

leverage e�ect will be reduced.

Figure 2.2: Mode, Median and Mean in (a) normally distributed and (b) positively skewed data and
representation of the leverage e�ect on the prediction uncertainty when the model is mean centered

From that, we may state that :

- When the distribution is symmetric, it makes sense to center the model on the

mean, because it corresponds to the mode;

- In the case of soil carbon content which distribution is skewed (Figure 2.2.b), the

mode and the mean do not coincide. The overall quality of a mean-centered model
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will be directly a�ected as there will be more predicted samples with high uncer-

tainty (because of high leverage) in the lower values of y;

- The mode determination is not straightforward to achieve. For statisticians, the

geometric mean ( n
√∏

yi) is less sensitive to high values in a positively skewed

dataset than the arithmetic mean ( 1
n
Σyi). It gives, therefore, another more accurate

data centrality in the case of positively skewed distributions. Thus, the geometric

mean, zero (Seasholtz & Kowalski, 1992) or even the median are alternatives worth

considering when choosing the center of the model, these values being closer to the

mode than the mean.

2.5 Data pretreatment help to ful�ll the assumptions

of linear multivariate calibrations

Preprocessing methods provide mathematical transformation of the signal in order

to amplify the useful (i.e chemically related) part of the signal and reduce the irrelevant

(i.e the scattered) information. A �rst approach involves applying transformations on

spectral variables (spectral preprocessing) in order to remove the scattering e�ect and to

restore, to a certain extend, the linear relationship between the spectrum and concentra-

tion, which tends to satisfy H1. The other approach is to restore the symmetry of the

distribution of y by applying statistic transformations (Martens & Næs, 1989).

2.5.1 Spectral preprocessing

The performance of linear calibration depends on the degree of linearity between the

independent variables and the predicted variables. Sources of spectral variations ex-

plained in section 2.2.1 are identi�ed causes of nonlinearities and can be partly corrected

with pretreatments. Thus, based on the proposed expression of the absorbance (equation

2.8), the spectral pretreatments are designed to reduce the impact of multiplicative and

additive e�ects while maintaining a su�cient amount of useful information to ensure an
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e�cient prediction model. Ideally, the corrected absorbance spectrum should look like

the absorbance coe�cient µa(λ).

Geometric spectral pre-processing methods

A �rst group of widely used methods, e�ectively remove the additive and multiplica-

tive e�ects due to scattering from the spectra. Among them: Multiplicative Signal Cor-

rection (MSC) (Geladi et al., 1985), Extended MSC (EMSC) (Martens, 1991), Standard

Normal Variate (SNV), Detrend (Barnes et al., 1989) and normalization.

These methods all correct the measured spectrum by describing the multiplicative

and the additive e�ect based on explicit functions like those introduced in equation 2.8.

xcorr =
xorg − fa

fm
(2.15)

where xcorr is the corrected spectra, xorg the measured spectra, fm and fa the function

describing the multiplicative and additive e�ect of scattering on the original spectra

respectively.

These preprocessing methods di�er in the parameter estimation of the explicit func-

tions. For example, in the MSC method, the corrective parameter are the regressors

(intercept and slope) of the ordinary least squares regression line between a reference

spectrum and the spectrum to be corrected. The fa function corresponds to the inter-

cept and fm to the slope. The reference spectra commonly used is the mean spectra of the

calibration set. This choice is open to discussion when used with skewed population as

the mean spectrum is not necessarily the most representative spectrum of the database.

SNV method has been introduced by Barnes et al. (1989) in order to reduce the

multiplicative e�ect of scattering. Each spectrum is centered and reduced. Therefore, in

equation 2.15, fa corresponds to the mean value of the spectrum to be corrected and fm

to its standard deviation. With this approach, a reference spectrum in not required to

estimate the corrective parameter.

With these two methods, the corrective functions are quite simple but are based on
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the hypothesis that the multiplicative e�ect is not wavelength dependent. However, in

section 2.2.1, we stated that the additive function depends on (i) the structure of the

material, which can be characterized by the scattering coe�cient µs(λ), (ii) the volume

traveled by the photons (or the thickness of the sample) and (iii) the wavelength.

In order to get more closely the physical realities of the scattering phenomenon, some

methods introduce more complexity in the corrective function of the additive e�ect.

Detrend, often associated to SNV, removes the baseline curvature by adjusting it with

polynomial function of the wavelength λ (for example of a second order). EMSC, an

extended version of MSC, is comprised of a second order adjustment of the reference

spectra, a quadratic function of the wavelength or also pure spectra of the chemical

compounds of the studied material. There is, in theory, no mathematical limitation to

an increase in the complexity of the corrective functions (Rinnan et al., 2009). Thus,

Thennadil & Martin (2005) substitute the wavelength dependent term in EMSC (diλ+

eiλ
2) by dilog(λ). Their reasoning is based on the fact that, for small-particulate media,

the scattering intensity is proportional to λ−4 (Rayleigh approximation). By extension,

they suppose that light scattering can be expressed using the form αλβ, which becomes

proportional to log(λ) when transformed in absorbance units. The introduction of a

semi-empirical model based on the physics of the scattering phenomenon produced better

calibration models on simulated data (Thennadil & Martin, 2005).

Derivative methods are other very popular pretreatment techniques used in chemo-

metrics. The �rst derivative removes an additive constant and the second derivative

removes also the slope of the baseline. In other words, these methods suppose that

the additive function, fa has a null derivative (�rst and second), which eliminates the

non-informative parameter. Among the most popular methods, the Savistzky-Golay al-

gorithm (SG) (Savitsky & Golay, 1964) associates the derivative with a smoothing step to

reduce (i) the random noise of the measurements and (ii) its ampli�cation by the di�er-

entiation step. The derivative methods have the advantage of accentuating the spectral

resolution but it is a deep spectral transformation which runs the risks of removing part

of the useful information for the calibration process.
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Orthogonal projections

Another preprocessing strategy consists in identifying a sub-space of the total spectral

space, which supports variability caused by the non-informative part of the signal. This

subspace is then subtracted by orthogonal projection so that the resulting space is,

in theory, independent of the scatter - or any other - e�ect. Di�erences between the

various orthogonal projection methods exist and mainly concern the method used to

identify the sub-pace to be orthogonalized. The Orthogonal signal correction (OSC)

method, proposed by Wold et al. (1998), extracts and remove the useless sub-space by

selecting the principal components that contain most of the spectral variability and are

not correlated to y. The main drawback of this approach is that the calibration set

does not necessarily contain all the variability due to the scatter e�ect. Moreover, the

PLS algorithm is subject to the same constraint so OSC does not add any value to the

calibration quality if it is based on a PLS (Verron et al., 2004).

Another approach called External Parameter Orthogonalization (EPO) was developed

by Roger et al. (2003). It consists in building the subspace containing the in�uence factor

using a dedicated experimental design where spectra, with and without perturbation,

are collected. The spectral in�uences are then removed from the total spectral space by

orthogonal projection. The identi�ed subspace contains, for example, the additive e�ect

due to scattering, but also all the linear combinations of this e�ect. On the other hand, if

y and the spectral variation due to the in�uence factor are correlated, EPO will remove

some useful information and therefore impoverish the calibration database.

Discussion

In the NIRS publications applied to soils, on the shelf pretreatments like MSC or SNV

are almost systematically used as they have the advantage of being widely implemented

in multivariate analysis software. On the other hand, orthogonal projection methods are

not so popular, although promising for materials as complex as soils. Minasny et al.

(2011) tested the EPO method to overcome the moisture e�ect on the spectra. In this
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case, it would seem appropriate to set up a dedicated experimental design to characterize

the scattering e�ect on the spectra by varying the physical characteristics of the soil.

Preys et al. (2008) also propose a method, that combines EPO and OSC and which

seems particularly suited to soil related spectroscopy. In an approach similar to EPO,

a spectral database is built by making the factor of in�uence vary and then OSC is

used to select the principal components that carry a maximum spectral variability while

remaining orthogonal to y. These identi�ed directions are then used to remove the useless

subspace from an existing dataset.

2.5.2 Restoration of y distribution symmetry

The spectral preprocessing methods presented above do not solve the problem arising

from the skewed soil carbon content distribution which impacts H4 and H5. Statisti-

cians (Webster, 2001; Kleinbaum et al., 2008), recommend a variable transformation to

restore its symmetry. Thus, Vasques et al. (2008) log transform the Total Carbon and

Bartholomeus et al. (2008) apply (SOC)1/4 to reduce the skewness index of the soil

organic carbon (SOC ) distribution from 2.85 to 0.91.

Mathematically, this approach makes sense and contributes to the reduction of the

model prediction error by lowering leverage (the mode is closer to the model center).

After back transformation (i.e. the inverse transformation), the most probable values (in

the mode neighborhood) are predicted with less uncertainty, which improves the quality

of the model (cf section 2.4.2).

However, these statements lead us to make the following comments:

- If the objective is model comparison, it is possible to provide model quality indexes

without back transformation, as in Minasny et al. (2011), but if the purpose is to

assess absolute prediction quality, it is mandatory to back transform the predicted

result, in order not only to be able to assess the weight of the extreme values but

also to retrieve the original units in the performance indexes of the model.

- One may ask the question of the relevance of these transformations in spectrometry.
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The modeling process is based on the existence of a relationship dictated by phys-

ical law (Beer-Lambert's law or others) between variables. How do these variable

transformation o�set the non-linearities of the signal/variable relationship?

- If the objective of variable transformation is to restore its distribution symmetry

in order to lessen the total uncertainty of model prediction, then precautions must

be taken to avoid hazardous conclusions from these results.

To conclude, linear methods, and in particular PLS are, by far, the most used cali-

bration methods to predict soil parameters (Viscarra Rossel et al., 2006). These methods

comply with the theoretical framework of the Beer-Lambert law, are easy to implement,

and the model parameters can be interpreted from a spectroscopic point of view.

However, the PLS method often fails to circumvent all the di�culties exposed above

because basic assumptions are not satis�ed. Therefore, PLS should be associated with

other mathematical techniques such as pretreatments (2.5.1), wavelets, Neural Networks

(Mouazen et al., 2010), which may help approaching these assumptions.

And even then, the predictions are sometimes not satisfactory or the interpretation of

the model signi�cance theoretically di�cult. Thus, new calibration strategies not based

on linear model may be used for soils. We will study the ones discussed in NIRS literature

related to soil science.

2.6 Other calibration strategies as an alternative to

linear models

2.6.1 Local strategies

Local methods, although considered as non-linear methods, take advantage of the

simplicity associated with linear methods. The common principle of local methods is to

select a sub-set of samples from a training set in order to build a local linear model used

to predict an unknown sample. The sample selection can either be based on auxiliary
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information or on proximity of the samples in terms of their spectral characteristics. The

global model built on all the created local models is capable of modeling the non-linear

structure of the data set (Gogé et al., 2012).

Sub-set selection based on auxiliary information

The sub-set selection of spectra in order to build a local model can be based on expert

knowledge or information related to the data. The type of soils, geology or geographic

location (Sankey et al., 2008) can be used to select proximal samples and thus reduce,

to a certain degree, the spectral variability between samples (Stevens et al., 2010). The

concentration range of the soil carbon content can be narrower and, consequently, the

distribution of y more symmetric (Janik et al., 2009). Some of the basic assumptions of

multiple linear regression will be better ful�lled.

Although this strategy has not been subject to a lot of testing, this approach seems

interesting in the case of NIRS applied to soils as there is a large number of auxiliary

information (McBratney et al., 2003) that could be used to perform intelligent sampling

designed to create this sub-calibration set.

Sub-set selection based on the spectral characteristics of the neighborhood

samples

The selection of the sub-set based on the spectral characteristics of the samples is

a more commonly used technique in soil science. These approaches originates from the

K-NN (K-nearest neighbor) classi�cation method (Kowalski & Wold, 1982). A set of

spectra that are spectrally similar to the unknown sample to be predicted is selected

from a larger database. The so created sub-set is used to build a calibration model

speci�cally dedicated to the prediction of the new sample.

The three main local methods found in the literature are LWR (Locally Weighted

Regression) (Cleveland & Devlin, 1988; Næs et al., 1990), the LOCAL algorithm (Shenk

et al., 1997) and CARNAC methods (Davies & Fearn, 2006b). They di�er in their

approaches to select the neighboring samples. LOCAL and LWR use an euclidean dis-
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tance between samples while CARNAC uses local averaging instead of local regression

for prediction and performs data compression (Fast Fourier Transformation) before the

distances are computed.

These methods are very attractive for complex and heterogeneous matrices such as

soils. The spectral similarity between the selected samples suggests a certain homogeneity

with regards to the structure (Fernández Pierna & Dardenne, 2008).

However, implementation of local methods within soil spectral databases raise some

di�culties. In its basic principle, the selection of local samples within the database

should be related to the spectral absorbance feature, i.e. related to the analyte of interest

concentration. In a soil spectrum, the impact of scattering is greater than absorbance

(µs >> µa). Therefore, the subset selection step in local methods will be mainly based

on the physical properties of the soil rather than it's chemical content. As a consequence,

the local model will probably not meet the expected quality. Performing the best strategy

to select the local samples still remains an open question in soil science. The ideal case

would be to be able to compare the samples regarding their absorbance coe�cient µa.

Several solutions can solve, to a certain extent, this issue:

- In order to homogenize the scatter e�ect between the samples and therefore enhance

the chemical absorbance compared to scattering, soil samples are dried, sieved

at 2mm and sometimes grounded at a smaller particle size (< 0.2mm). Sample

preparation before spectral measurement is a way to control the e�ects of the

physical in�uence factors such as moisture, particle size, bulk density . . . (Stenberg

& Viscarra-Rossel, 2010). Soil sample preparation is a very common procedure. If

it is suited for laboratory analysis, it is not possible if the spectral acquisition is

performed in-�eld, on bulk samples.

- Spectral pretreatment (section 2.5.1) have, in a certain way, the same objective than

the sample preparation as both aims at reducing the impact of the scatter e�ect

against the chemical absorbance. If the method has proven its e�ciency, it does not

always solve the problem as the scatter e�ect is very complex and multidimensional.
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Part of µs e�ect can still remain, even after preprocessing. Furthermore, selection

of the best preprocessing method is generally based on the model performance and

not in order to optimize the sample subset selection for local methods (Igne et al.,

2010).

- Another possibility is to perform the local sample selection within an exhaustive

database, i.e. containing all the possible variability regarding the carbon concentra-

tion (which is usually expected from a dataset) but also all the possible variability

due to the physical properties of the samples. If some soil scientists actively work

on building an global soil spectral library (Viscarra Rossel, 2008), it is far from

achieved. An alternative approach consists in spiking (i.e. completing) global

datasets with some local (geographically) samples (Wetterlind & Stenberg, 2010;

Brown, 2007).

Results

Despite these obstacles, local methods generally give good results (Igne et al. (2010)

and Gogé et al. (2012) with LWR and Fernández Pierna & Dardenne (2008) with LO-

CAL). In their study, Gogé et al. (2012) apply the LWR method on 2500 soil samples

representative of the entire french territory. An analysis of the auxiliary characteristics

of these samples show a strong relationship between these samples and the geology of

their respective sites. These �ndings merit deeper analysis but provide arguments for

the use auxiliary information to improve the similar samples selection.

2.6.2 Non-linear processing methods

To overcome the non-linear relationship between the spectrum and the reference value,

the use of nonlinear methods is becoming increasingly popular in soil science (Stenberg,

2010). Table 2.1 divides the references in three main categories of methods.

1. Tree based regression: Tree-based methods for classi�cation and regression were

introduced from a statistical perspective by Breiman (1984) (CART, classi�cation
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Table 2.1: A review of non-linear methods used to predict soil carbon content with NIR di�use re�ectance
spectroscopy

Calibration methods1 Parameter n R2 RMSE/SEP Reference

MARS OC g · kg−1 300 R2
val = 0.8 RMSE = 3.1 Shepherd & Walsh (2002)

MARS OC % 1104 R2
cv = 0.8 RMSE = 1.02 Viscarra Rossel & Behrens (2010)

Tree BRT OC g · kg−1 3793 R2
cv = 0.82 RMSE = 9 Brown et al. (2006)

based BRT OC g · kg−1 52 R2
val = 0.96 SEP = 3.8 Sankey et al. (2008)

regressions CART OC g · kg−1 30 R2
cv = 0.48 RMSE = 2.64 Ballabio (2009)

Cubist OC % 157 R2
test = 0.96 RMSE = 0.35 Minasny & McBratney (2008)

Treenet OC % 257 R2
test = 0.71 RMSE = 0.76 Minasny & McBratney (2008)

RF OC % 1104 R2
cv = 0.8 RMSE = 1.23 Viscarra Rossel & Behrens (2010)

ANN OC % 214 R2
cv = 0.94 RMSE = 0.89 Udelhoven & Schütt (2000)

Arti�cial PLS-NN OC % 256 R2
test = 0.94 RMSE = 0.5 Janik et al. (2009)

neural ANN OC % 1104 R2
cv = 0.89 RMSE = 0.75 Viscarra Rossel & Behrens (2010)

network BPNN OC % 45 R2
test = 0.94 RMSE = 0.54 Mouazen et al. (2010)

BPNN OC % 157 R2
test = 0.71 RMSE = 0.76 Fernández Pierna & Dardenne (2008)

ANN SOM mg · g−1 10 R2
val = 0.86 Daniel et al. (2003)

MLP SOM % 60 R2
test = 0.88 RMSE = 0.35 Fidêncio et al. (2002)

RBFN SOM % 60 R2
test = 0.92 RMSE = 0.25 Fidêncio et al. (2002)

LS-SVM OC % 40 R2
val = 0.89 RMSE = 0.5 Vohland et al. (2011)

Support SVMR OC g · kg−1 30 R2
cv = 0.61 RMSE = 2.35 Ballabio (2009)

Vector SVMR OC g · kg−1 102 R2
val = 0.83 RMSE = 5.37 Stevens et al. (2010)

Machine LS-SVM OC % 157 R2
test = 0.89 RMSE = 0.56 Fernández Pierna & Dardenne (2008)

SVMR OC % 1104 R2
cv = 0.84 RMSE = 0.92 Viscarra Rossel & Behrens (2010)

LS-SVM OC g · kg−1 106 R2
val = 0.6 SEP ≈ 0.8 Igne et al. (2010)

1: Abbreviations: MARS=multivariate adaptative regression splines; BRT= boosted regression trees;

CART= Classi�cation and regression trees; RF=random forest; ANN = arti�cial neural network;

PLS-NN= Partial least squares neural network; BPNN = backpropagation neural network;

MLP= Multiple layer perceptron; RBFN = Radial basis function network;

LS-SVM=least squares support vector machine; SVMR=support vector machine regression;

OC=organic carbon; SOM = Soil organic matter; RMSE = root mean square error; SEP= standard error of prediction
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and regression trees). Regression trees are used when the response variable is

continuous, while classi�cation trees are used for a categorical response. The fun-

damental idea is to split the data into subsets giving a splitting criteria. Examples

of splitting criteria are given in Breiman (1984). The same procedure is applied

in turn to the descendant nodes, sometimes called recursive partitioning. Usually,

the trees are grown until a stopping criterion is met, for example, all nodes contain

fewer than some �xed number of cases, then pruned back to prevent over-�tting

(Breiman, 1984). Once a tree has been grown and possibly pruned, it will have

some non-partitioned nodes called terminal nodes. Predicted values are obtained

by computation of the terminal node outputs in order to have an unique value.

The CART algorithm (Breiman, 1984) underpins theses methods which di�er in

the way of calculating the �nal output. The main methods found in the soil related

literature are MARS and BRT (Friedman, 1991), Random Forest (Breiman, 2001),

Cubist (Quinlan, 1992).

2. Arti�cial Neural Network: The design and the basic concept of Arti�cial Neu-

ral Networks (ANN) have been adopted from data processing in biological nervous

system: a group of cells receives information, others forwards or stores it and a

last group processes it before releasing it. In a modeling process, input variables

of the network undergo non-linear transformations (sigmoid or logistic function),

run through several layers where information is combined (often weighted) and the

output value obtained will be assigned to the target parameter. ANN are very

�exible functions with many parameters to be determined. They are adaptive and

possess the ability to model almost any relationship (linear or not). However, in

NIRS, as the input data (x) are generally the spectral variables and therefore,very

numerous, the network will be large and the parametrization tricky with no expe-

rience. To overcome this issue, some authors use principal components or latent

variables as inputs (Mouazen et al., 2010; Janik et al., 2009). But ANN remain

a black box -type approach where the network architecture does not give clues to
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understand how the calibration really works.

3. Support Vector Machine: SVM are kernel-based learning methods. Initially

a classi�cation method, the concept has been extended to multivariate regression

(Cogdill & Dardenne, 2004). A hyperplane describing as precisely as possible the

spectral data set is de�ned using a kernel function. The model reduces the complex-

ity of the data by the construction of subset of support vectors. The parameters to

be de�ned are (i) the distance between the hyperplane and the dataset and (ii) the

kernel function. Computational times are huge (Vohland et al., 2011; Igne et al.,

2010) and this method has not yet much applied on soil data.

As shown in Table 2.1, the prediction model for these applications can be of very

good quality. In theory, the methods are capable to model the relationship between the

spectrum and the variable of interest, even if it is nonlinear. Moreover, they presuppose

nothing about the distribution of y. These are advantages in favor of using non-linear

methods for the calibration of soil parameters using NIRS.

However, their use remains still marginal in soil science because the algorithms are

not present in commercial NIR spectrometers and are sometimes considered as black

boxes. Training and structure optimization may require long computation time.

2.6.3 Bayesian methods

To our knowledge, Bayesian methods have not yet been applied to soil data. Chen

et al. (2007) provide a theoretical perspective on the value of using Bayesian methods in

chemometrics, in comparison with more traditional methods. The Bayesian framework

seems relevant when addressing a number of issues posed by NIRS applied to soil. Fearn

et al. (2010) and Pérez-Marín et al. (2012) used the Bayesian framework to predict the

composition of materials showing some similarities with soils, i.e. forages. Forages have

got similar spectral signal behavior with soils (scattering, heterogeneity of composition

and structure). In addition, these authors identify both nonlinearity problems and issues

related to the non-gaussian distribution of variables to predict.
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Whereas previously described methods involve regression, linear or nonlinear, between

reference values and spectral data (inverse regression) Bayesian estimation methods com-

bine prediction model distribution and a a priori distribution describing the population

of samples to be predicted (Fearn et al., 2010).

With Bayesian approaches, a prediction consists in computing the distribution proba-

bility (p(y|x)) of the reference measurement y knowing the spectra x. This term describes

the variability of y for samples with the same spectra. A kernel function (kernel density

estimate) is used to model p(x|y). The Bayes theorem gives:

p(y|x) = p(x|y)p(y)/p(x) (2.16)

If the distribution is normal, equation 2.16 can be solved analytically. However, in

order to be able to apply this method in a more general situation, speci�cally with skewed

p(y) distribution, Fearn et al. (2010) use a discrete set I of y1, . . . , yI values for y. Thus,

equation 2.16 becomes:

p(yi|x) = p(x|yi)p(yi)/p(x) for i = 1, . . . , I (2.17)

As an output, a discrete distribution of p(y|x) is obtained. The mean of this distribu-

tion can be used to assign a value to y, but the other characteristics of this distribution

(i.e the median) can also be used if necessary. This is of high interest because it becomes

possible to calculate a prediction interval for ŷ, from this distribution, which informs in

another way about the quality (or uncertainty) of the model (Pérez-Marín et al., 2012).

Predictions of forage compounds using this method are better than with PLS and

similar in terms of quality to local methods, with advantages such that (i) of not requiring

any calibration set to build the model and (ii) to be able to a�ect, in addition to a value

for y, a prediction interval (Chen et al., 2007).

33



Major issues of NIR spectroscopy in Soil Science

2.7 General conclusions

The purpose of this review paper was to o�er a focus on the basic theoretical con-

cepts supporting NIRS and the use of linear multivariate calibration in soil applications

especially related to soil carbon content measurement. Compared to other studied ma-

terials, soil does present some speci�c features that needed to be highlighted regarding

their in�uence on these theoretical concepts:

- soils are highly di�use materials where the scattering e�ect dominates in the spectra

and introduces non-linearities in the relation with the carbon content;

- soils are extremely complex in terms of chemical composition and physical struc-

ture, which present a high variability between samples, especially in-�eld;

- soil carbon content presents a highly skewed distribution.

Because of this, the spectral measurement conditions (including sample preparation)

and the choice of calibration methods will directly impact the quality of the prediction

model. We showed that on the one hand, the optical phenomena, and especially the

scatter of photons and on the other hand, the data structure are limiting factors to build

good and robust calibrations.

New approaches are emerging in the soil literature, mostly in chemometrics, such as

nonlinear or local methods, but their added value has still to be con�rmed.

To conclude, the main goal of this study was to make soil scientists fully aware of the

critical point of using classical chemometric methods without completely being aware of

the underlying theory. It is also an opportunity to show that speci�c developments are

needed to adapt NIRS and chemometrics to soil applications:

- A need in better understanding the light-soil interaction in order to better express

the absorbance as a function of µa and µs;

- A need in new optical acquisition methods capable of overcoming the issues of

scattering, especially in the case of in-�eld measurements;
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- A need in adapted preprocessing methods and chemometric calibration methods.

Investing, simultaneously or not, these paths of research will allow to take an impor-

tant step in the metrological quality of the soil carbon content measurement by NIRS.
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Scienti�c issues at stake

According to the analysis carried out in this chapter, the main issue faced by NIR

Spectroscopy applied to soil is the negative impact of light scattering on the signal quality,

which directly a�ects the quality of the prediction models. Although a considerable e�ort

has been made in the empirical scattering correction techniques, they are not su�cient

to solve the problem of multiple scattering completely.

The conclusions drawn from this chapter lead us to investigate this issue through the

prism of signal quality. In other terms, to provide answers to the following question as

the scienti�c heart of this thesis:

How can we measure an absorbance signal of optimal quality on highly

scattering materials ?

The signal formation is the �rst stage of the whole analytical method which also in-

cludes the calibration step. When light interacts with matter, it picks up both physically

and chemically related information about the material. Hence, improving the quality

of the signal means increasing its sensitivity and selectivity to the analyte of interest.

The �gures of merit of the analytical method such as precision and robustness will be

positively impacted. In the case of highly scattering materials such as soils, the challenge

is mainly to restore the linearity between the absorbance and the chemical property of

interest, which is a�ected by light scattering.
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In this context, the objective of the thesis is to provide an original approach solving

the following two scienti�c questions:

1. How to optically reduce the impact of light scattering on the spectroscopic signal ?

2. How to model the chemical absorbance of highly scattering materials ?

The �rst question, addressed in following chapter, requires to invoke optical theories

to act on the quality of the spectroscopic signal. Based on the principles of light polar-

ization, we design an original optical setup, which selects light being less impacted by

multiscattering. The chapter �rst present the theoretical aspects underlying the proposed

optical approach, which is then experimentally validated on model samples in powdered

form.

The second question is addressed in chapter 4. Here it is about comprehension of

the information contained in the signals measured with the new method and their link

with the chemical absorbance. We combine the optimized signals with the Absorp-

tion/Remission function of Dahm's Representative Layer Theory (RLT) (Dahm & Dahm,

1999) to model the absorption which becomes, in theory, linearly proportional to concen-

tration of constituents. This approach, named PoLiS (for Polarized Light Spectroscopy),

is tested on liquid and particulate model samples in the visible range.

In chapter 5, we validate the method for the estimation of Total Organic Carbon

content in soils by applying it on real soil samples and benchmark the results (i.e. the

prediction accuracy) with the ones achieved using empirical preprocessing.
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Preamble

The main problem, in quantitative analysis of highly scattering samples using Vis-NIR

spectroscopy, is that multivariate calibration models built on conventional spectroscopic

measurements such as Transmittance or Re�ectance are adversely a�ected by variations

arising from non-linear multiple light scattering e�ects. Because these variations are not

necessarily related to changes in the chemical composition, it makes the extraction of

chemical information from such samples challenging.

Instead of spectral pre-processing, which is commonly used by Vis � NIR spectro-

scopists to deal with undesirable scattering e�ects, this chapter presents an optical

methodology to reduce multiple scattering. A new optical setup, based on polarized

light spectroscopy is speci�cally designed to select photons that have been only weakly

scattered. When tested in Visible range (400-800 nm) on powdered samples mixing

scattering and absorbing particles, the set-up provides signi�cant improvements in the

capacity to predict the absorber's concentration. This optical pretreatment allows us to

retrieve linear and steady conditions for spectral analysis.
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Improvement of the chemical content prediction of a model

powder system by reducing multiple scattering using polarized

light spectroscopy
1

3.1 Introduction

Visible - Near infrared spectroscopy (Vis-NIRS) is a well-known technique used for

measuring the chemical composition of a wide variety of media and products. Although

Vis-NIRS has been quoted in articles for approximately 50 years (Hart et al., 1962; Massie

& Norris, 1965) with this purpose, it really took o� in the late 80's in agricultural and

food applications (jumping from around 10 publications per year in the late 80's to 150

publications per year in the turn of century), and then in the 90's for pharmaceutical

and biomedical applications. Today, it plays a major role in these sectors, as a routine

laboratory method for in-vivo or in-line monitoring system. On the one hand Vis-NIRS

presents several advantages: Vis-NIR extinction coe�cients are small compared to mid-

infrared (MIR) ones, which allows light to penetrate deeper into objects and avoids time-

consuming sample preparation; Vis-NIR light scattering makes it possible to analyze

bulk samples with a retro-di�usion optical con�guration, thus turning it into a non-

destructive technique. In addition Vis-NIR optical components are low cost and with

high Signal-to-Noise Ratio (SNR). On the other hand, VIS-NIRS has several drawbacks:

the VIS-NIR spectrum is poorly resolved as it is made up of scattering e�ects and of

wide low-intensity harmonics and combinations of MIR fundamental absorption bands.

Consequently, retrieving chemical information from Vis-NIR spectra is quite painstaking

and requires advanced chemometrics: it is based on calibration models to be built between

VIS-NIR spectra and known concentrations of a set of calibration samples. Traditionally,

linear multivariate calibration methods such as Principal Component Regression (PCR)

and Partial Least Square Regression (PLS) are used in Vis-NIRS. However, scattering

1Ryad Bendoula, Alexia Gobrecht, Benoit Moulin, Jean-Michel Roger, Véronique Bellon-Maurel,
Improvement of the chemical content prediction of a model powder system by reducing multiple scattering

using polarized light spectroscopy, Accepted in Applied Spectroscopy, June 2014
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e�ects are troublesome in the VIS-NIR spectra of turbid media, de�ned by Shi and

Anderson (Shi & Anderson, 2010) as �samples exhibiting multiple scattering events�.

Scattering can be several orders of magnitude larger than absorption and may invalidate

the use of such data processing methods, which are themselves based on the underlying

assumption of a linear Beer-Lambert law relationship between absorbance spectra and

chemical concentration. It is therefore necessary for VIS-NIR spectroscopists working

on highly scattering media to use strategies to release Vis-NIR spectra from scattering

e�ects. The most common strategy is spectral pre-treatment. These preprocessing step is

speci�cally designed to reduce multiplicative and additive e�ects caused by variations in

sample physical properties (Rinnan et al., 2009; Martens, 1991) . Among them, standard

normal variate (SNV) often associated to detrend, multiplicative signal correction (MSC)

(Geladi et al., 1985), Extended MSC (EMSC) (Martens, 1991), normalization or Optical

Path Length Estimation and Correction (OPLEC) (Chen et al., 2006; Jin et al., 2012).

However, these approaches remain questionable : they consider that scattering is nearly

constant over the wavelengths, which is not the case3; they may eliminate chemical-

related information, which is very small with regard to scattering e�ects (Martens et al.,

2003); they are inappropriate when light scattering varies greatly from sample to sample

(Steponavicius & Thennadil, 2011).

Another option is to acquire the spectrum in a way that separates the part related to

absorption from the part related to scattering. Speci�c experimental techniques, related

to the application of light propagation theory and resolution of the Radiative Trans-

fer Equation (Shi & Anderson, 2010) have been proposed, including adding-doubling

set-ups (Steponavicius & Thennadil, 2011; Prahl, 1995; Steponavicius & Thennadil,

2009), spatially-resolved spectroscopy (Farrell et al., 1992), time-resolved spectroscopy

(Chauchard et al., 2005; Abrahamsson et al., 2005b) and frequency-resolved spectroscopy

(Martens, 1991).

Although powerful, these methods have their limitations, particularly when applied

on highly scattering samples. First, they may require complex and sometimes expensive

optical implementations, which may not be compatible with conventional spectrometers
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or with highly turbid samples (for which transmission measurement is not possible). Sec-

ondly, as they rely on the estimation of absorption and scattering coe�cients achieved by

model inversion, parameters describing the studied medium (sample thickness, refractive

index, particle size and shape...) must be known or approximated, which may be a trou-

blesome task as they are often unknown in complex media (Steponavicius & Thennadil,

2011; Swartling et al., 2003).

Whereas separating absorption and scattering from a Vis-NIR signal is still an open

research issue on highly turbid samples, the main demand from Vis-NIR spectroscopists is

merely for spectra with reduced impact of scattering in order to better �t Beer-Lambert's

Law conditions (Hebden et al., 1997; Lu et al., 2006). Light polarization subtraction is

a simple technique to reduce directly the e�ects of multi-scattering on the measured

signal (Lu et al., 2006; Backman et al., 1999). This approach has been based on the

fact that, when light interacts with matter, a small number of scattering events do

not signi�cantly modify the polarization status of the beam whereas multiple scattering

leads to depolarization (Swartling et al., 2003; Abrahamsson et al., 2005a). Polarization

subtraction technique (Hebden et al., 1997; Schmitt et al., 1992; Morgan & Ridgway,

2000; Demos & Alfano, 1997) was used to select light beams that retain initial polarization

and which are therefore less impacted by multiple scattering events.

Although this technique has gained interest in the �eld of biomedical (Lu et al.,

2006; Backman et al., 1999; Demos & Alfano, 1996), where it is used to optically target

subsurface organelles (particles suspended in water) and tissues (layered samples), it is

either poorly understood or not used by NIR spectroscopists working with agricultural,

food, pharmaceutical and other industrial samples. To our knowledge, polarized NIRS

techniques have never been applied to routine or in-line analysis to reduce scattering

e�ects on spectra on turbid media.

In this paper, the e�ectiveness of this multi-scattering correction based on the po-

larization subtraction is evaluated using a two-component model powder system. The

objectives of this paper were to assess the e�ect of multi-scattering correction (i) on the

performances of a calibration model and (ii) on the robustness of the prediction model
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built from the corrected spectra for predicting the absorber's concentration of powder

samples.

3.2 Theoretical Model : Polarization subtraction

Capital bold characters will be used for matrices, e.g. X; non bold characters will be

used for column vectors, e.g. x.

Polarization subtraction technique (Schmitt et al., 1992; Morgan & Ridgway, 2000;

Demos & Alfano, 1997) is based on the polarization-maintaining property of weakly

scattered light. When polarized light illuminates a scattering medium, weakly scattered

light will emerge in its original polarization state (Backman et al., 1999; Demos & Alfano,

1996; Sokolov et al., 1999; Yoo & Alfano, 1989), while multiple scattered light will emerge

with random polarization. In the case of linearly polarized source, the light that is

remitted in the same polarization channel as the input illumination is composed by light

that has maintained its original polarization state plus a component from the randomly

polarized heavily scattered light (cf equation 3.1). Light that emerges in the orthogonal

polarization channel contains only randomly polarized light, approximately equal to the

randomly polarized component in the original polarization state (cf equation 3.2).

I‖(λ) =
Ω

2π
· I0(λ) · S(λ) +

Ω

2π
· I0(λ) · α(λ) ·M(λ) (3.1)

I⊥(λ) =
Ω

2π
· I0(λ) · β(λ) ·M(λ) (3.2)

Where I‖(λ) and I⊥(λ) are the light scattered by the media with parallel and per-

pendicular polarization respect to the polarization of the illumination light. I0(λ) is the

intensity of the illumination light. Ω is the collection solid angle, residual term of the

integration on the solid angle (Schmitt et al., 1992; Morgan & Ridgway, 2000; Demos

& Alfano, 1997), of the optical device. S(λ) and M(λ) are the probabilities of light

undergoing single and multiple scattering respectively.
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Since all light undergoes scattering :

S(λ) +M(λ) = 1 (3.3)

Finally, α(λ) and β(λ) are the multiple light scattered ratio by the media with the

parallel and perpendicular polarization respect to the polarization of the illumination

light. The sum α(λ) and β(λ) must be one :

α(λ) + β(λ) = 1 (3.4)

By subtracting 3.1 to 3.2, the intensity of light undergoing single scattering (Iss(λ))

is equal to :

Iss(λ) = I‖(λ)− I⊥(λ) =
Ω

2π
· I0(λ) · [S(λ) + (α(λ)− β(λ)) ·M(λ)] (3.5)

In conclusion, the part of the single-scattering e�ect in the signal is preserved and

the multi-scattering e�ect is highly reduced.

3.3 Materials and Methods

3.3.1 Instrumentation

In the experimental setup (�gure.3.1), a halogen light source (150 W, Leica Cls)

was coupled with a 940 µm core diameter optical �ber of numerical aperture (N.A) of

0.25, Sedi & ATI). The light delivered by the �ber was collimated by an aspheric lens

(F220SMA-B - Thorlabs). The incident beam was a 1.5 cm diameter circular spot with

1◦ divergence. The incident and re�ected beam were polarized through two broad-band

(400 nm - 800nm) polarizers (NT52-557, Edmunds Optics). Incident light was linearly

polarized and re�ected light was collected in a narrow cone (1◦). The output from the
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analyzer was coupled inside an optical �ber (N.A = 0.25, Sedi & ATI) by an aspheric lens

(F220SMA-B - Thorlabs). This �ber was connected to a spectrometer (MMS1, Zeiss)

featuring a detection range of 400 nm - 800 nm, with 3 nm resolution. A constant angle

of 70o was maintained between the excitation and collection arms. This angle was chosen

to optimize intensity of the re�ected beam and to avoid specular re�ection.

Sample

Broadband light

         source

Polarizer
Analyzer

Spectrometer
Fiber

FiberLens Lens

Acquisition

Figure 3.1: Schematic diagram of polarized light spectroscopy system.

3.3.2 Experimental design and sample preparation

Powdered samples mixing sand (Fontainebleau sand VWR International) and col-

oring dyes (brilliant blue FCF-E133 and chlorophyllin E141, purchased from Colorey,

respectively named E133 and E141 in the text) were prepared. Two sand particle size

classes were used : S1 with a diameter less than 250 µm and S2 with a diameter greater

than 250 µm. Sand plays the role of a scattering but non absorbing matrix. One or both

of the coloring dyes have been added at di�erent densities to the sand, playing the role

of absorbing substance in the mixture. Note that absorbers in powdered form also have

scattering properties. Particle sizes of the coloring powders were less than 50 µm, with

E133 being about three times smaller than E141.

Overall, 42 samples were prepared for spectral acquisition composing a calibration

set and 12 samples were prepared, afterward and with the same procedure to create an

independent test set. The range of sample's colorant densities (in g · L−1) are speci�ed

in Figure 3.2.

Each sample was directly prepared in an airtight plastic container of 100 mL by
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Figure 3.2: Experimental design presenting the dye densities g · L−1 of 42 samples for the calibration
set and 12 samples for the independent test set.

adding the precisely weighted corresponding amount of colorant in 20 g of sand using an

analytical balance (Kern 770). The maximum dye volume added was not higher than 4%

of the total sand volume. Considering that the pore volume for sand is about 40%, and

that the dye particles are between 5 to 10 times smaller than the sand, one can make

the assumption that the dye would �ll the interstices between the sand particles and

therefore not increase the initial volume of sand. The density of dye (ddye) in a sample

was obtained from :

ddye =
mdye · dsand
msand

(3.6)

withmdye the added mass of dye, dsand the density of sand (which di�er for S1 and S2)

andmsand the mass of sand (here 20g). The colorant density ranged from [0− 18 g · L−1].

To ensure homogeneity of the mixture, the sample was agitated after preparation and

again just before it was carefully transferred in an adapted 5 cm of diameter cup to get

an even and horizontal surface.
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3.3.3 Spectral acquisition

For each sample, light was measured with the polarized spectrometer with parallel

and perpendicular respect to the polarization of the illumination light. Dark current (Ib)

was recorded from all measured spectra and subtracted.

A broadband dielectric mirror (BB3-E02, Thorlabs) was used as a reference (I0) to

standardize spectra from non-uniformities of all components of the instrumentation (light

source, �bers, lens, polarizer and spectrometer).

From these measurements and the equation (3.5), a raw re�ectance (RW ) and a

corrected re�ectance (RC), for each sample, were calculated :

RW (λ) =
(I‖(λ)− Ib‖(λ)) + (I⊥(λ)− Ib⊥(λ))

(I0‖(λ)− Ib‖(λ))
(3.7)

RC(λ) =
(I‖(λ)− Ib‖(λ))− (I⊥(λ)− Ib⊥(λ))

(I0‖(λ)− Ib‖(λ))
=
Iss(λ)− (Ib‖(λ) + Ib⊥(λ))

(I0‖(λ)− Ib‖(λ))
(3.8)

With I‖(λ) and I⊥(λ), the intensities of light scattered by the media with parallel

and perpendicular polarization respect to the polarization of the illumination light and

I0‖(λ) and I0⊥(λ), the intensities of light re�ected by the standard mirror with parallel

polarization respect to the polarization of the illumination light (as the perpendicular

component emerging from the mirror is zero). Ib‖(λ) and Ib⊥(λ) are the dark current

intensities recorded for each measurement.

3.3.4 Multivariate analysis

All computations and multivariate data analysis were performed with Matlab software

v. R2012b (The Mathworks Inc., Natick, MA,USA).
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Linear unmixing

The �rst step of Classical Least Square (CLS) (Geladi, 2003) was used to extract the

re�ectance pure spectra of the absorbers from the re�ectance spectra of the mixtures.

Also called K-matrix, this linear unmixing assumes that a spectrum is a linear combina-

tion of the pure component's spectra. The whole calibration set R (42 samples mixing

the absorbers at di�erent concentrations) and C, the matrix of sample components con-

centrations, were used to compute the linear least square estimated K̂-matrix of the two

pure active components (E133 and E141) composing K knowing that:

K̂ = RCT (CCT )−1 (3.9)

Both the raw re�ectance spectra (RW ) and the corrected re�ectance spectra (RC)

were used to compute respectively K̂w and K̂c containing the demixed pure spectra of

E133 and E141.

Calibration

Partial Least Square (PLS) (Wold et al., 2001) algorithm was used to model the

chemical composition of the powder mixture using RW and RC . A general PLS model

was built using the whole calibration set (42 samples) to predict the samples of the

independent test set (12 samples). Secondly, to assess the robustness of the prediction

models regarding sand particle size, a PLS model was built with the samples set S2 and

tested on the independent test set S1 (�gure 3.2). The number of latent variables was

determined by comparing performances by leave-one-out cross-validation (Wold, 1978).

Performances (R2, Standard Error of cross-validation (SECV)) and number of latent

variables of the di�erent prediction models built with uncorrected and corrected signals

of the di�erent models were compared.
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3.4 Results and discussion

3.4.1 Spectra analysis

Bulk colorant

The raw spectra (RW (λ)) and the corrected spectra (RC(λ)) of the pure powder

colorant E133 and E141 are represented in �gure 3.3 (a) and (b).

First comment is that the polarization subtraction reduces the global re�ectance

intensity of the measured signal (by 10 times). It is an expected result as only a small

part of the signal is selected: the single-scattered one. Despite this re�ectance loss, the

corrected spectrum is not noisy and contains information about the sample.

Between 400 nm and 700 nm, the raw spectrum and the corrected spectrum have

similar shapes. For example, the spectroscopic signature of the colorant E133 appears to

be purple (as seen in powdered form), mixing a re�ectance peak at 450 nm (Blue) and at

650 nm (Red). However, these peaks are more marked on the corrected spectra. For the

raw spectrum, crushing peaks can be explained by a strong increase in re�ectance above

750 nm. This sharp increase in re�ectance, in a spectral range where the colorant does

not absorb, is due to the multi-scattering. However, this e�ect seems to be less important

for E141 than for E133. In the corrected spectra, this e�ect is strongly reduced (Figure

3.3 (b)).

Sand and dye mixtures

Figures 3.3 (c) and (d) show respectively the raw spectra and the corrected spectra

of sand S1 mixing coloring powder E133 at di�erent densities. When mixed with the

colorant, sand is responsible for high multi-scattering as it is not absorbing the light. This

physical phenomena come of top of the chemical information contained in the spectra

and masks the spectral features linked to the absorber. The shape of the raw spectra of

coloring powder E133 (Figure 3.3.(a)) and the shape of the raw re�ectance of the sand�

dye mixture (Figure 3.3(c)) are completely di�erent. The multiplicative e�ect due to
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Figure 3.3: (a) Raw re�ectance spectra of coloring powder E133 (b) Corrected re�ectance spectra of
coloring powder E133 (c) Raw re�ectance spectra of sand S1 + coloring powder E133 mixed at di�erent
densities. (d) Corrected re�ectance spectra of sand S1 + coloring powders E133 mixed at di�erent
densities.(e) Raw re�ectance spectra of sand S1 + coloring powder E141 mixed at di�erent densities.(f)
Corrected re�ectance spectra of sand S1 + coloring powders E141 mixed at di�erent densities.
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scattering is not wavelength dependent and depends on the number of scatterers in the

sample. Therefore, the more dye, the more scatterers and, consequently the higher the

re�ectance. The order of the raw spectra is consistent with the dye's concentration, but

for a physical reason. By applying the correction, the spectral features of the colorant

are enhanced as it can be seen on �gure 3.3 (d). The signature of the corrected spectra is

similar to the spectral signal of the colorant E133 in powdered form (�gure 3.3 (b)). The

re�ectance peaks at 450 nm and at 650 nm clearly appear, but more important, because

linked to the dye's concentration, the wavelength regions where absorbance occurs (400

� 430 nm and 500 � 650 nm) are now visible. In these regions, the spectrum ordering is

consistent with the dye concentration, contrary to the other areas where low absorbance

occurs and reveals more complex re�ectance patterns.

Figures 3.3 (e) and (f) show respectively the raw spectra and the corrected spectra

of sand S1 mixing coloring powder E141 at di�erent densities. By comparing the raw

re�ectance intensities for of the sand - E133 mixtures (Figure 3.3 (c)) and sand - E141

mixtures (Figure 3.3(e)), containing the same ranges of dye's densities, it appears that

the level of Rw(λ) is two-times higher for E133 than for E141. As stated in section 3.3.2,

the particle size of E141 is, at least, three-times larger than E133. This di�erence in

particle diameter has a direct impact on the elastic scattering phenomenon occurring

during light-matter interaction. First, for the same density of dye, small particles scatter

more than larger particles (Backman et al., 1999). Secondly, the scattering angle di�er

between small and larges particles: the larger the diameter, the smaller the scattering

angle. Combining these two properties, the overall re�ectance intensity will be higher

for smaller particles, which is the case of raw re�ectance of the Sand-E133 mixture.

For the corrected spectra RC(λ), there is no signi�cant di�erence in the intensity level

between sand � E133 mixtures (Figure 3.3 (d)) and sand - E141 mixtures (Figure 3.3(f)).

This is coherent with the fact that the method corrects the spectra form multi-scattering,

which is mainly due to the sand particles but also, and in a signi�cant manner, to the

powdered colorant.
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3.4.2 Extraction of the absorber's pure spectra
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Figure 3.4: Comparison of the raw and the corrected spectra acquired on the two coloring pow-
ders (RW_E133(λ), RW_E141(λ) and RC_E133(λ), RC_E141(λ)) with the demixed pure spectrum

(K̂W_E133(λ), K̂W_E141(λ) and K̂C_E133(λ), K̂C_E141(λ)) extracted respectively from (RW ) and (RC)
with Linear unmixing.

Figure 3.4 presents the demixed pure spectra K̂ extracted from the re�ectance spectra

(RW and RC). The linear unmixing (�gure 3.4.a) applied to raw spectra (RW ) provided

estimated pure spectra (K̂W_E133(λ) and K̂W_E141(λ)) that a very di�erent from the raw

spectra RW_E133(λ) and RW_E141(λ) measured directly on the powders. The shape of

these spectra are not matching and the correlation coe�cients, between K̂W_E133(λ) and

RW_E133(λ) and between K̂W_E141(λ) and RW_E141(λ), are respectively equal to 0.59

and 0.74.

Linear unmixing assumes that a spectrum is a linear combination of the pure com-

ponents spectra. From these results, the failure to recover the absorber's pure spectrum

from the raw re�ectance spectra, support the fact that interactions in the mixture are

responsible of non-linearities which are directly responsible of the non-linearities in the

relationship between the Absorbance and the absorbing power of the sample. It is well

known (Lu et al., 2006; Stockford et al., 2007) that scattering and absorbance are not

independent phenomenon. Scatter increases the mean free path of photons, increasing

the chances of being absorbed.

On the contrary, the computation of the K̂C_E133(λ) - matrix is successful and matches

53



Optical methodology for reducing scattering e�ects on the spectroscopic signal

the pure colorant corrected re�ectance spectrum. Estimated pure spectra (K̂C_E133(λ)

and K̂C_E141(λ)) are very close to RC_E133(λ) and RC_E141(λ) measured directly on

the powder and corrected. The correlation coe�cients are respectively 0.98 and 0.93.

As the method corrects the signal from a physical phenomenon (multi-scattering), one

can a�rm that the observed interactions in the raw spectra are of optical nature (and

not chemical interactions). Regarding these results and this consideration, polarization

subtraction correction induces, by reducing the multi-scattering e�ect, a better linear

relationship between the light attenuation and the absorption the dyes. The recovered

spectra (K̂C_E133(λ)) are corrected from the physical interactions occurring in the mix-

ture.

3.4.3 Calibration models

General model

Table 3.1 shows the quality parameter of the prediction models of the test set ab-

sorber's densities comparing the raw and the corrected spectra.

Cal set
(n)

Test set
(n)

Spectra
Predicted
absorber

PLS
factors

R2 SEPc
(%g/l)

General
model

S1+S2
(42)

S1
(12)

Rw
E133 8 0.75 2.52
E141 5 0.91 1.3

Rc
E133 5 0.91 1.41
E141 4 0.93 1.12

Table 3.1: Figure of merit of the calibration models

First, with the raw spectra Rw(λ), the quality of the E133 prediction model is dis-

tinctly poorer than the quality of the E141 prediction model. The number of latent

variables is much higher for E133 as well as the SEPc. On the contrary, the �gures of

merit for the E141 model are good. Again, E133 and E141 behave di�erently. As stated

before, multiscattering e�ect is more important when E133 is present in the mixture

(with or without E141) because of a smaller particle diameter. Hence, non-linearities be-

tween absorbance and absorber's concentration are more important and the PLS model

is limited in building a performant linear prediction model for E133.
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When the models are built with the corrected re�ectance spectra Rc(λ), the �gure

of merit of the absorber's density prediction models are good and of the same level

for E133 and E141. In both cases, the number of latent variables is decreasing. The

improvement is less important for E141 but signi�cant for E133. And both models have

a lower standard error of prediction compared to the Rw(λ) prediction models for the

two colorants. In section 3.4.1, we stated that the proposed method mainly reduced the

e�ect of multiscattering due to sand particles, enhancing the part of the signal related

to chemical absorbance. In Rw(λ), while this information is present, it is masked by

the multi-scattering and the PLS needs more latent variable to extract this chemically

related information to build a model.

Here, the di�erent behavior of the two dyes is not obvious anymore. This agrees with

the hypothesis that the correction method equalizes the mean free photon path between

all the samples, regardless of the particle size and shape of the sample's constituents. For

the two absorbers, the number of latent variables, which is an indicator of the complex-

ity of the models, is still high (respectively 5 and 4 for E133 et E141 with the corrected

spectra Rc(λ)) for samples mixing only two di�erent absorbers. Theoretically, two PLS

components should be su�cient. This agrees with the initial assumption that the po-

larization subtraction method highly reduces the multi-scattering but does not remove

it completely. In addition, these results are consistent with the conclusions of section

'Extraction of the absorber's pure spectra, stating that the correction method restores,

in a signi�cant manner, the linear relationship between the spectra and the absorber's

density in the powdered samples. To conclude, as the PLS models using the corrected

spectra show good prediction capacities, it ful�lls the assumption that even if the cor-

rected signal intensity is highly reduced, the remaining information is of better quality

in terms of signal sensitivity.

Robustness assessment

Table 3.2 presents the results of the calibration model built with samples of one

particle size (S2) and tested on samples with another particle size (S1).
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Cal set
(n)

Test set
(n)

Predicted
absorber

Spectra
PLS
factors

R2 SEPc
(%v/v)

Robustness
assessment

S2

(21)
S1

(12)

E133
Rw 5 0.69 1.61
RC 4 0.94 0.71

E141
RW 5 0.83 0.8
RC 3 0.86 0.8

Table 3.2: Figure of merit of the calibration model built with samples of one particle size (S2) and tested
on samples with another particle size (S1)

First, the models built with RW (λ) show, as previously observed, better predictions

for E141 than for E133, but, in overall, lower quality than in table 3.1. This con�rms a

di�erent behavior of E133 and E141, but also that the sand particle size has an e�ect in

the quality of the predictions. A change in the physical structure of the samples usually

leads to low prediction performances because of the scattering impact on the signal.

When built with the corrected spectra RC(λ), again, the prediction of E133 highly

improves, while the gain is less signi�cant for E141, which is also consistent with the

previous conclusions. But overall, the predictions are good, con�rming that the corrected

spectra, composed by the single scattered part of the total re�ectance signal, becomes

less dependent to physical changes in the sample.

The polarization subtraction method selects by optical means only, part of informa-

tion related to the powdered absorbers concentration, while discarding the unwanted

e�ect of multi-scattering on the signal. The measured signal becomes less dependent of

the particle size changes of the samples and therefore improves both quality and robust-

ness of the prediction models.

3.5 Conclusion

This study demonstrates the e�ectiveness of the polarized light subtraction method,

applied to a two component model powder system, which improves the performance of

multivariate calibration models.

By selecting only the light which has conserved the initial polarization and therefore

being less impacted by scattering events, a better linear correlation between the spectra
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and the absorbers of the powder is observed. Only photons, that all have the same path

length, are present. Then it's possible, by using the extracted pure spectrum from the

calibration set with CLS, to have a good prediction of the absorbers concentrations in

the samples.

When the corrected spectra are used to build the PLS models (more powerful than

the CLS method), all the general quality parameters and the parsimony signi�cantly

improve. Although the overall signal intensity is reduced after optical correction, the

remaining information in the corrected signal is su�cient and of better quality to build

a good prediction model, thus meaning that the signal sensitivity increases. Inevitably

there is a trade-o� between making more accurate measurements and a reduction of SNR.

After the polarization correction, the measured signal becomes less dependent to

physical changes (particle sizes) which also improves the robustness of the prediction

models.

This �plug and play� optical method o�ers the potential to be easy to implement to a

commercial spectrophotometry system and does not signi�cantly increase the measure-

ment time.
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Contributions of chapter 3 and outlook

In this chapter, we showed a way of acting on the �rst stage of any spectroscopic

analytical method: the signal formation. Therefore, we developed an original optical

methodology to remove multiscattering from re�ectance signals.

This method is original because it is based on light polarization principles, which

are rarely implemented in NIR spectroscopy, except from some experiments conducted

in the �eld of biomedical optics. Actually, polarization techniques are considered to

present high SNR issues as the intensities of the signals are lower than for conventional

spectroscopy.

So, this method overcomes these SNR issues and provides signals of improved quality.

Moreover, correcting the spectrum from non-linear physical e�ects, the signal becomes a

linear combination of the pure component spectra. This is an essential prerequisite for

multivariate analysis.

To evaluate this optical approach, we have built models from the corrected spectra

to predict the concentration of dyes. The models have proven better quality compared

to ones built from the raw re�ectance. However, according to Beer-Lambert's law, it is

the absorbance which is linearly proportional to the constituents concentrations, and not

the re�ectance.

This raises the following questions:

- Which information has been extracted from the samples by the corrected re�ectance

spectra RC(λ)?

- How are these measurements linked to the Beer-Lambert's law chemical absorbance?
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In the following chapter, we will provide answers to these questions. Starting with

the measurements made by the optical method (named PoLiS method) developed here,

we propose a method to model the absorbance which has the same properties as the

Beer-Lambert absorbance of non-scattering media.
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Modeling the absorbance of highly

scattering materials
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Preamble

The output of the PoLiS optical method, described in the previous chapter, is a

re�ectance signal corrected from multiscattering e�ects. Although this signal present a

good SNR and contains relevant information related to the sample's chemical content, it

only interrogates a small volume of the sample. Therefore, it is necessary to link these

optical measurements to the absorbing properties of the whole sample.

We found the frame of the Representative Layer Theory (RLT) developed by Dahm

& Dahm adapted to provide a link between the PoLiS measurements and the absorbing

power of highly scattering samples. This chapter details the underpinning theories of this

combined approach and presents the experimentation conducted to evaluate the method

on scattering samples in liquid and powdered form.

To avoid the reader some redundancies between the two stand-alone chapters (chapter

3 and chapter 4), part of the introduction has been grayed. In addition, between the two

chapters, the following symbols changed:

- the raw re�ectance RW (λ) becomes the backscattered re�ectance RBS(λ)

- the corrected re�ectance RC(λ) becomes the low scattered (or single scattered)

re�ectance RSS(λ)
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Combining linear polarization spectroscopy and the

Representative Layer Theory to measure the Beer-Lambert's Law

Absorbance of highly scattering media
1

4.1 Introduction

Visible and Near Infrared (Vis�NIR) Spectroscopy has been widely accepted as a

rapid, nondestructive analytical technique for a huge number of media and products.

Today, it plays a major role in many sectors such as agricultural and food products

or for petrochemicals and pharmaceuticals, as a routine laboratory, in-vivo or in-line

monitoring system (Williams & Norris, 2001). The spectrometric signal is used to extract

chemically related information from di�erent materials, usually by means of chemometric

modeling. This is made possible because, according to Beer�Lambert Law, absorbance

is linearly related to the concentration of the chemicals composing the samples.

This ideal case occurs only in transmission measurements of low concentration in non

turbid media where the derived absorbance {Abs = − log T} is a good estimation of the

Beer�Lambert law absorbance, here referred as the �absorbing power� (Dahm & Dahm,

2007). In other cases, especially when highly turbid samples are dealt with, measuring

the absorbing power of samples is far from trivial. As soon as the material contains

scattering centers, accounting for all the photons that have entered the sample becomes

a real challenge. Some of them are absorbed, some of them reach the detector directly;

some after having traveled a certain distance in the media; and, at last, some of the pho-

tons exit the sample without striking the (transmission) detector. In di�use re�ectance,

the detector measures the backscattered signal R. Traditionally, a �simili-absorbance�

is computed from R for an �in�nitely thick� sample : {Abs = − log R} . This com-

puted absorbance is a bad approximation of the Beer�Lambert law absorbance, because

the path-length through the sample is dependent on both absorption and scatter in the

1Alexia Gobrecht, Ryad Bendoula, Jean-Michel Roger, Véronique Bellon-Maurel, Combining lin-

ear polarization spectroscopy and the Representative Layer Theory to measure the Beer-Lambert's Law

Absorbance of highly scattering media. Accepted in Analytica Chimica Acta, October, 2014.
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sample. This gives rise to additive and multiplicative e�ects, generating non-linearity

in the absorbance-concentration relationship. When this phenomenon dominates the

spectra formation, the chemically related absorbance can be severely overlapped by the

physically related information, making the calibration step more critical.

It is therefore necessary for NIR spectroscopists working on highly scattering materials

to use strategies to free NIR spectra from scattering e�ects. The most common strategy

is spectral pre-processing, with treatments speci�cally dedicated to reduce multiplicative

and additive e�ects caused by variations in sample's physical properties (Rinnan et al.,

2009; Martens, 1991). While they may be su�cient in some practical situations, they

may not be able to integrate the whole complexity of non-linear multiple scattering ef-

fects in many situations. This may be because they consider that scattering is nearly

constant over the wavelengths, which is not the case (Shi & Anderson, 2010); they may

eliminate chemical-related information, which is very weak with regard to scattering

e�ects (Martens et al., 2003); they are inappropriate when sample-to-sample light scat-

tering variations are large (Steponavicius & Thennadil, 2011). Hence, preprocessing the

spectra may revert some simple variations like additive or multiplicative e�ects, but as

scattering and absorption are not two independent phenomena (Dahm & Dahm, 2001),

their e�ect on the spectrum can be mathematically irreversible.

Another option is to acquire the spectrum so that one can separate the signal re-

lated to absorption from the one related to scattering. Speci�c experimental techniques,

related to the application of light propagation theory and resolution of the Equation

of Radiative Transfer (ERT) (Shi & Anderson, 2010) have been proposed, including

adding-doubling set-ups (Steponavicius & Thennadil, 2011; Prahl, 1995; Steponavicius

& Thennadil, 2009), spatially-resolved spectroscopy (Farrell et al., 1992), time-resolved

spectroscopy (Abrahamsson et al., 2005b; Chauchard et al., 2005) and frequency-resolved

spectroscopy (Torrance et al., 2004). Though powerful, these methods have limitations

particularly when applied to highly scattering samples. First, they may require complex

and sometimes expensive optical implementation, which may not be compatible with

conventional spectrometers or with opaque samples (transmission measurement may be
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impossible). Secondly, as they rely on the estimation of absorption and scattering coe�-

cients achieved by model inversion, they require knowing or approximating the parame-

ters describing the studied medium (sample thickness, refractive index, particle size and

shape), which may be critical (Steponavicius & Thennadil, 2011; Swartling et al., 2003).

Simpler approaches of the ERT like N-�ux models (Kubelka & Munk, 1931; Thennadil,

2008; Kessler et al., 2009) have been tested to separate absorption and scattering coe�-

cients. Among them, the Kubelka-Munk theory (Kubelka & Munk, 1931) is the simplest

and therefore most popular one. However, these approaches assume a continuous sample

but fail when the media include spatial discontinuities such as powdered samples pre-

senting di�erent particles and voids (Pasikatan et al., 2001; Coello et al., 2008). Aware

of these limitations, Dahm & Dahm (2004a) derived a more general expression of the

2-�ux Kubelka-Munk equation, in the frame of plane parallel mathematics, the Repre-

sentative Layer Theory (RLT) (Dahm & Dahm, 1999, 2007). The sample is, as in the

K�M theory, considered as a superposition of n representative layers of thickness small

enough so that there is no scatter between material in the same layer. This present

the advantage that absorption and scattering occur independently in the layer and can

therefore be theoretically separated. The frame of RLT has been already been used to

study highly scattering materials such as milk (Bogomolov et al., 2013; Dahm, 2013) or

powdered mixtures (Coello et al., 2008). Whereas separating absorption and scattering

from Vis�NIR signal is still an open research issue on highly scattering samples, the

main demand from Vis�NIR spectroscopists is at least to get an absorbance spectra with

a reduced e�ect of scattering in order to better approximate Beer�Lambert conditions

(Hebden et al., 1997; Lu et al., 2006).

In this study, we propose to use a Polarized Light Spectroscopy setup (PoLiS ),

adapted from Bendoula et al. (2014), to optically select photons that have undergo very

few interactions with matter, i.e. photon of which paths have not been a�ected by multi-

scattering (Bendoula et al., 2014). Although light polarization has gained interest in the

�eld of biomedical spectroscopy (Lu et al., 2006; Backman et al., 1999; Sokolov et al.,

1999) and imaging (Demos & Alfano, 1997; Arimoto, 2006), for example to optically
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target subsurface organelles and tissues, it is still not used by Vis�NIR spectroscopists.

We propose to combine the PoLiS spectral information with the Absorption-Remission

function A(R, T ) de�ned by Dahm & Dahm (1999) in their Representative Layer Theory

to compute a new absorbance spectra ful�lling Beer�Lambert law conditions. This is

the aim of this paper, which �rst introduces the theoretical aspects underpinning this

approach and second, studies experimentally its validity for scattering samples in liquid

and powdered form in the 350 nm to 850 nm range corresponding to the Visible and

Very-Short-Near-Infrared range (Vis-VSNIR).

4.2 Theory

4.2.1 Polarization subtraction spectroscopy

Light emitted by a source with an intensity I0(λ) is an electromagnetic wave vibrating

in all the planes randomly, when unpolarized. By means of a linear polarizer, it is possible

to select the light's electric �eld oscillation plane, either parallel or perpendicular to the

plane de�ned by the direction of the incident and the re�ected beam. After re�ection,

an analyzer placed before the detector makes it possible to measure the two components

I‖,Ω(λ) and I⊥,Ω(λ) of the backscattered light intensity IBS,Ω(λ), where Ω is the solid

collection angle of the optical setup:

IBS,Ω(λ) = I‖,Ω(λ) + I⊥,Ω(λ) (4.1)

I‖,Ω(λ) is the intensity of light measured with the analyzer orientated in parallel to

the polarizer. I⊥,Ω(λ) is the light collected with the analyzer oriented perpendicularly to

the polarizer.

When linearly polarized incident light penetrates a scattering medium, the remitted

signal looses its initial polarization state because of the multiple scattering (including

re�ection) events. This is a gradual process and photons that have undergone a few

scattering events maintain their initial polarization status (Stockford et al., 2007; Sokolov
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et al., 1999; Backman et al., 1999; Demos & Alfano, 1997).

Let IMS,Ω(λ) be the multiscattered part and ISS,Ω(λ) the low scattered part of back-

scattered light intensity IBS,Ω(λ) such as :

IBS,Ω(λ) = IMS,Ω(λ) + ISS,Ω(λ) (4.2)

Multiscattered light is isotropically unpolarized and half of its intensity passes through

the analyzer when oriented parallel to the polarizer and the other half when oriented

perpendicular. Therefore,

I⊥,Ω(λ) =
1

2
IMS,Ω(λ) (4.3)

I‖,Ω(λ) = ISS,Ω(λ) +
1

2
IMS,Ω(λ) (4.4)

From these relations, it is possible to select the intensity of light undergoing very few

scattering events (ISS,Ω(λ)) :

ISS,Ω(λ) = I‖,Ω(λ)− I⊥,Ω(λ) (4.5)

Polarization subtraction technique enables us to select the light conserving the initial

polarization and therefore being less impacted by multiscattering events (Bendoula et al.,

2014; Stockford et al., 2007; Hebden et al., 1997; Schmitt et al., 1992).

4.2.2 Absorbance of scattering samples

According to the Glossary of Terms used in Vibrational Spectroscopy compiled by

John Bertie (Bertie, 2006), Absorbance (here abbreviated Abs) expressed by the Beer�

Lambert law, in the case of non turbid liquids, is the product of the extinction coe�cient

(ε) (also called the Beer�Lambert absorption coe�cient), the absorber's concentration
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(c) and path length of light through the sample (dx) :

Abs(λ) = ε(λ) c dx (4.6)

In transparent liquids with no scatterers, light is either absorbed (with a probability

A, also called absorptance) or transmitted (T or transmittance) through the sample so

that A(λ) + T (λ) = 1. Therefore, the absorbance value, by Beer�Lambert Law, can be

expressed by the absorbance function :

Abs(λ) = − log T (λ) = − log (1− A(λ)) (4.7)

In the case of a scattering media, light is composed of three fractions, the absorbed

(A), the transmitted (T) and the remitted (R or re�ectance) one, with A+ T +R = 1.

Hence, the absorption function can be similarly used to calculate the absorbance Abs

from the measurements of R and T :

Abs(λ) = − log (R(λ) + T (λ)) = − log (1− A(λ)) (4.8)

This absorbance value is however a bad approximation of the Beer�Lambert law

absorbance because in scattering samples, absorbance and scattering are not independent

phenomena (Dahm, 2013). One consequence is that the relationship between absorbance

and concentration is not linear anymore.

4.2.3 Absorbance of a representative layer of the sample

Based on their Representative Layer Theory, Dahm & Dahm (2007) propose an esti-

mate for the Beer�Lambert law absorbance, which is corrected from scattering. In this

theoretical approach, a sample is considered as a superposition of n plane parallel layers

being representative of the sample, i.e. layers that are considered to have the same av-

erage chemical and physical properties. This layer, named Representative Layer (RL) is

thin enough so that absorption, transmission and remission occur independently: a pho-
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ton interacting with the representative layer can either be absorbed (with a probability

a), transmitted (with a probability t) or remitted (with a probability r). The Represen-

tative Layer absorbance value computed for these fractions (a, r, t) can be considered

as freed from scattering. Hence, the Beer�Lambert law absorbance can be approximated

by the absorbance of the representative layer AbsRL :

AbsRL(λ) = −log (1− a(λ)) (4.9)

with a the absorbed fraction of light of a representative layer. This absorbance AbsRL

is linearly related to the sample's extinction coe�cient, the analyte's concentration and

sample thickness as a conventional absorbance value is, for non scattering samples (Dahm,

2013).

In addition, the Absorption-Remission A(R, T ) function (Dahm & Dahm, 1999) re-

lates the fractions of light absorbed, remitted and transmitted by a representative layer

to the spectroscopic measurements (R and T ) made on the whole sample. This function

is constant for any number of layers making up the sample:

A(R, T ) =
(1−R)2 − T 2

R
=
a

r
· (2− a− 2r) (4.10)

In order to resolve equation 4.10 to compute the absorbed fraction of light in the

representative layer a, the total re�ectance R, total transmittance T and remitted fraction

of the representative layer r have to be measured or approximated. This is the purpose

of the next section.
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4.2.4 Estimation of the PoLiS absorbance combining polarized

light spectroscopy and the Representative Layer Theory

For optically thick samples, the transmitted fraction of light is null, T = 0. The total

re�ectance R can be approached by the remitted fraction of light RBS,Ω computed from:

RBS,Ω(λ) =
IBS,Ω(λ)

I0,Ω(λ)
(4.11)

with I0,Ω(λ) the intensity if the light source.

According to Dahm, r, the remitted fraction of a representative layer of sample is, in

theory, independent of any multi-scattering event. As ISS,Ω(λ) is the intensity of light

not being in�uenced by multiscattering, the assumption can be made that it can be used

to approximate the remitted fraction of light r, by computing the related low scattered

re�ectance RSS,Ω(λ):

r(λ) ≈ RSS,Ω(λ) =
ISS,Ω(λ)

I0,Ω(λ)
(4.12)

Considering this, equation 4.10 becomes :

A(RBS,Ω(λ), 0) =
(1−RBS,Ω(λ))2

RBS,Ω(λ)
=

a(λ)

RSS,Ω(λ)
· (2− a(λ)− 2RSS,Ω(λ)) (4.13)

Therefore, by resolving equation 4.13, the absorbed fraction a of a representative

layer can be expressed as:

a(λ) = 1−RSS,Ω(λ)−

√
(1−RSS,Ω(λ))2 − RSS,Ω(λ)

RBS,Ω(λ)
(1−RBS,Ω(λ))2 (4.14)

With RSS,Ω(λ) and RBS,Ω(λ) measured with (PoLiS ), it is possible to compute the ab-

sorbance spectrum AbsPo(λ) from equation 4.9 presenting the same properties, regarding

70



Modeling the absorbance of highly scattering materials

the Beer�Lambert Law, as the Absorbance of a representative layer, AbsRL(λ):

AbsPo(λ) = − log

(
RSS,Ω(λ) +

√
(1−RSS,Ω(λ))2 − RSS,Ω(λ)

RBS,Ω(λ)
(1−RBS,Ω(λ))2

)
(4.15)

4.3 Material and Methods

We propose to couple a Polarized Light Spectroscopy setup (PoLiS ) with the Rep-

resentative Layer Theory (RLT) to compute a new absorbance value AbsPo of highly

scattering media. Experiments have been conducted on two types of scattering samples:

liquid and powdered samples.

4.3.1 Samples preparation

Liquid samples

Liquid samples were composed of half-fat milk mixed with 6 di�erent concentrations

of chlorophyllin E141, a common food colouring (Colorey) : 0, 0.025, 0.050, 0.10 and

0.20 and 0.30 g · L−1.

Aliquots of 75 mL of each sample were conditioned in a beaker so that the height of

liquid was about 3 cm, though optically thick.

Powdered samples

A series of 6 powdered samples was prepared mixing sand of 250 µmmean particle size

(Fontainebleau sand, VWR International ) with the same dye E141 in powdered form,

at di�erent concentrations. Each sample was directly prepared in a 100 mL airtight

plastic container by adding the precisely weighted corresponding amount of dye in 20 g

of sand using an analytical balance (Kern 770, Kern Gmbh). Considering that the dye,

presenting a particle size of less than 50 µm, would �ll the interstices between the sand

particles and therefore not increase the total volume, the concentration of the colorant
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cE141 in a sample was obtained from mE141 the added mass of dye, dsand the bulk density

of sand and msand the mass of sand:

cE141 =
mE141 dsand
msand

(4.16)

The colorant concentrations ranged from [0− 18 g · L−1].

To ensure homogeneity of the mixture, the sample was thoroughly mixed after prepa-

ration and again just before it was carefully transferred in a layer 5 cm � diameter cup.

The powder was then leveled in order to get an even and horizontal surface.

4.3.2 Instrumentation

Jasco spectrophotometer

On the liquid samples, total di�use re�ectance (R) and transmittance (T) have been

measured using a double beam spectrophotometer (V670, Jasco) equipped with a 60

mm diameter integrating sphere (ISN-723, Jasco). The Jasco presented a linear photo-

metric range of [−2 . . .+ 4 Abs]. Spectral data was collected in the wavelength region

350-850 nm at 1 nm interval. For each sample, a 1 mm path length quartz cuvette (100-

QS, Hellma) was used. The baseline was measured with a white reference (Spectralonr ,

Labsphere) to ensure a simultaneous baseline correction during the re�ectance and trans-

mission measurements.

PoLiS setup

The PoLiS optical setup (�gure 4.1) is composed of a halogen light source (150 W,

Leica Cls) coupled with a 940 µm core diameter optical �ber of numerical aperture (N.A)

of 0.25 (Sedi & ATI) . The light delivered by the �ber was collimated by an aspheric lens

(F220SMA-B - Thorlabs). The incident beam was a 1.5 cm diameter circular spot with

1◦ divergence. The incident and re�ected beam were polarized through two broad-band

(400 nm - 800nm) polarizers (NT52-557, Edmunds Optics). Incident light was linearly

polarized and re�ected light was collected in a narrow cone ( 1◦). The output from the
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analyzer was coupled to an optical �ber (N.A = 0.25, Sedi & ATI) by an aspheric lens

(F220SMA-B - Thorlabs). This �ber was connected to a spectrometer (MMS1, Zeiss).

Spectral data were collected in the 350 � 850 nm wavelength range at 3 nm intervals,

resulting in measurements at 151 discrete wavelengths per spectrum. The illumination

arm was placed at the zenith so that the beam of light hit the sample perpendicularly.

The collection arm was oriented at 45o zenith angle in order to avoid specular re�ections.

The irradiated surface was about 1.8 cm2.

Sample

Broadband Light

         Source

Polarizer

Analyzer

Spectrometer Fiber

Fiber

Lens

Lens

Acquisition

Figure 4.1: Schematic diagram of polarized light spectroscopy system (PoLiS).

4.3.3 Spectral acquisitions and computation of the absorbance

Dahm's representative layer absorbance AbsRL on liquid samples

A sample of colorant E141 dissolved in distilled water (at 0.156 g.L−1) has been

measured with the Jasco V670 in transmission to computed the extinction coe�cient

εE141 from equation 4.6.

From the di�use re�ectance (R) and transmittance (T) Jasco measurements, the

three fractions of light (transmitted, re�ected and absorbed) are known for samples of
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1 mm thickness. Following Dahm & Dahm's procedure to compute an absorbance of a

representative layer as presented in Dahm & Dahm (2013), the following set of Benford

equations (4.17 � 4.19) (Benford, 1946), have been repeatedly applied to compute the

three fractions (A, R and T) for a thinner and thinner layer :

Rd/2 =
Rd

1 + Td
(4.17)

Td/2 =
[
Td (1−R2

d)
]0.5

(4.18)

Ad/2 = 1−Rd/2 − Td/2 (4.19)

with d the thickness of the sample and d/2 half of this thickness. And Rd, Td and Ad

the re�ected, transmitted and absorbed fractions of light of a sample of thickness d.

From these iteratively computed fractions, the absorbance for each layer of thickness

d/n has been computed using equation 4.8, with n the number of representative layers

composing the sample :

AbsRL,d/n = −log(1− Ad/n) (4.20)

According to Dahm & Dahm (2013), when a minimal thickness is reached, absorbance

is directly proportional to sample thickness: if the thickness is doubled, so does the

absorbance, in accordance with Beer�Lambert's Law. Therefore, iterations have been

stopped for the condition :

AbsRL,d/n
AbsRL,d/2n

≈ 2 (4.21)

PoLiS spectral acquisitions

For each type of sample (powdered and liquid), remitted light intensity was measured

with the PoLiS setup with the analyzer set parallel (I‖,Ω(λ)) and perpendicular (I⊥,Ω(λ))

with respect to the polarization of the illumination light. Dark current (Ib(λ)) (i.e.
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current without light) was recorded for all measured spectra and subtracted.

A di�use re�ectance white standard (Spectralonr SRS-99-010, Labsphere) was used

to collect a reference spectrum (I0,Ω(λ)) to standardize spectra from non-uniformities of

all components of the instrumentation (light source, �bers, lens, polarizer and spectrom-

eter).

From these measurements and the equations (4.1) and (4.5), the backscattering re-

�ectance (RBS,Ω(λ)) and the low scattered re�ectance (RSS,Ω(λ)), has been calculated

for each sample :

RBS,Ω(λ) =

[
I‖,Ω(λ)− Ib‖(λ)

]
+ [I⊥,Ω(λ)− Ib⊥(λ)]

[I0,Ω(λ)− Ib0(λ)]
(4.22)

RSS,Ω(λ) =

[
I‖,Ω(λ)− Ib‖(λ)

]
− [I⊥,Ω(λ)− Ib⊥(λ)]

[I0,Ω(λ)− Ib0(λ)]
(4.23)

From the measurements performed with the Jasco on the liquid samples and the PoLiS

setup on both type of samples, di�erent absorbance spectrum have been computed and

compared :

- AbsRL(λ), the absorbance of the representative layer of liquid samples computed

from its absorbed fraction of light (Ad/n), obtained from the Jasco measurements

(c.f. equation 4.20). ;

- AbsBS(λ), the absorbance computed from the total backscattered re�ectance signal

RBS,Ω(λ) measured with PoLiS. AbsBS(λ) = − log RBS,Ω(λ);

- AbsPo(λ), the PoLiS absorbance computed from I‖,Ω(λ) and I⊥,Ω(λ), measured with

PoLiS and implemented in equations 4.22 and 4.23, to retrieve a, the absorbed

fraction of a representative layer of the samples using equation 4.15.
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4.4 Results and discussion

4.4.1 E141 extinction coe�cient ε141(λ)

The transmission measurement performed with the Jasco laboratory spectrometer of

a sample mixing E141 coloring dye in low concentration with distilled water, allowed us

to compute the E141 extinction coe�cient ε141(λ) from equation 4.6, with the assumption

that there is no scattering in a low concentrated sample. Figure 4.2 shows the spectral

signature of the extinction coe�cient ε141(λ) over the wavelength range 250 � 800 nm.

The dye shows two absorbance peaks at 405 nm and 630 nm.
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Figure 4.2: Extinction coe�cient ε141(λ) of E141 dye obtained from the collimated transmittance mea-
sured with the Jasco on a sample having low concentration

4.4.2 Liquid samples

Comparison of the di�erent absorbance signals

Figure 4.3 shows the three di�erent absorbance signals computed according to the

di�erent types of measurements made on the milk + dye samples: AbsRL(λ), AbsBS(λ)

and AbsPo(λ). For AbsRL(λ), the number of representative layers composing the sample

has been set at n = 256 for which the condition of equation 4.21 is ful�lled.
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Figure 4.3: Absorbance spectra of milk + E141 sample; a. AbsRL(λ) computed from the Jasco mea-
surements combined with the Representative Layer Theory (RLT); b. AbsBS(λ) computed from the
backscattered re�ectance measured with the PoLiS setup and c. AbsPo(λ) computed from the backscat-
tered and low scattered re�ectance measured with PoLiS and combined with the RLT.

The absorbance level of the three di�erent absorbance signals computed can not be

compared in their absolute value since the absorbance intensity depends on the path

length traveled by the photons in the sample. For AbsRL(λ) this path length corresponds

to the thickness of the representative layer. Figure 4.3 a. shows the absorbance for a RL

of 1000/256 = 3.9 µm since the samples have been measured in a 1 mm cuvette. This

value is in accordance with the average size (3 - 4 µm) of fat globules in milk, which are

responsible of scattering (Cabassi et al., 2013).

AbsRL(λ) (�gure 4.3 a.) show similar spectral features to those of ε141(λ) (c.f. �gure

4.2), with two narrow peaks at 405 nm and 630 nm. By measuring both the transmittance

and the re�ectance with the Jasco spectrometer, the goal is to collect all the photons

interacting with the sample within the integration sphere, including those scattered by

the fat globules present in milk (Cattaneo et al., 2009). However, a baseline is present,

even when there is no colorant added to the milk. This baseline can be explained by a

non negligible loss of photons (in transmission for example), which leads to overestimate

the absorbance over the whole studied wavelength range. In addition we observe that

for the high concentrated sample (cE141 = 0.3 g.L−1), at 405 nm, the absorbance value

is lower than expected. The Absorbance value of the whole sample (1 mm thick) can be
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retrieved from AbsRL(λ):

Absj(λ) = n · AbsRL(λ) (4.24)

with n the number of layers composing the sample. Hence, for n = 256, the Ab-

sorbance Absj = 4.5 Abs at 405 nm which is just outside the upper limit of the photo-

metric range of the Jasco (section 4.3.2), which can explain the ceiling reached by this

sample. But inside the linear photometric range of the Jasco, AbsRL(λ) can be considered

as a reliable reference measurement of the absorbing power of the liquid samples studied.

For the absorbance computed from the PoLiS measurements (AbsBS(λ) andAbsPo(λ)),

the path length is not known, although it is supposed to approximate the mean particle

size for AbsPo(λ) (Dahm, 2013). However, a visual analysis can be carried out on the

shapes of these di�erent spectra to compare with the Jasco absorbance (�gure 4.3).

The absorbance AbsBS(λ) computed from only the backscattered di�use re�ectance

RBS,Ω(λ) (�gure 4.3 b.) shows the same absorbance peaks at 405 nm and 630 nm. The

overall shape is also similar to the shape of E141 colorant without milk. It is known

that di�use re�ectance measurements do provide relatively coherent information about

the studied material. However, compared to the Jasco measurements, here considered

as the laboratory reference measurement, some qualitative di�erences can be observed:

an important base line, larger peaks and an overall intensity dynamic (i.e. the di�erence

between absorbing and non absorbing zones) which is reduced compared to the one seen

for the Jasco measurements. This is typical of scattering which increases the light path

length, especially in the non or low absorbing wavelength ranges. The longer the path

in the medium, the higher the probability of the photon to be absorbed. This results in

larger peaks in the highly absorbing ranges and an increase of the absorbance level in

the low absorbing ranges.

The PoLiS absorbance AbsPo(λ) spectrum (�gure 4.3 c.) also presents two distinct

peaks at 405 nm and 630 nm. The baseline is highly reduced as the absorbance for

raw milk is close to zero. Compared to AbsBS(λ), AbsPo(λ) shows narrower absorbance
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features. The absorbance intensity at 405 nm is lower than expected for all concentrations

(comparing the the higher peak with the Jasco). This can be a direct consequence of the

computation of AbsPo(λ). One hypothesis is that at 405 nm, where the absorbance is

high, the RSS(λ) component is less scattered and therefore, underestimated compared to

630 nm. At 405 nm, the light is rapidly absorbed by the absorbing liquid before reaching

any scattering center. At 630 nm, as the absorbing power is lower, the light is more able

to reach a scattering center and can be remitted. However, this hypothesis would need

further investigations to be con�rmed.

The visual inspection of the three di�erent types of spectra shows that with the ab-

sorbance obtained with the PoLiS optical setup combined to the Absorption � Remission

function of the representative layer theory, it is possible to retrieve a signal less impacted

by multiscattering than the one of mere re�ectance and therefore better revealing its

chemically related information.

Does the linearity with the concentration improves ?

In Beer�Lambert law theory, absorbance is linearly related to the concentration of

the absorber, the optical path traveled by the photons and the extinction coe�cient (c.f.

equation 4.6). The latter is the same for all the samples as milk is not absorbing in

this wavelength range and only one absorber (E141) has been added. For AbsPo(λ), the

optical path length can also be considered as constant for all the samples, as the PoLiS

setup selects the photons that have been weakly scattered, by the scatterers contained

in the super�cial layer. Therefore, concentration in E141 (CE141) is the only changing

parameter and should linearly a�ect the absorbance. Figure 4.4 shows the degree of

linearity between the absorbance value at 405 nm and 630 nm and the dye concentrations

for all the absorbance computed in this experiment: the Jasco absorbance AbsRL(λ), the

backscattered absorbance AbsBS(λ) and �nally the PoLiS absorbance AbsPo(λ).

At 630 nm, the absorbance AbsRL(λ) of the representative layer computed from the

Jasco measurement is linearly related with E141 concentration, with a Pearson's coe�cient

of more than 0.99 (�gure 4.4 a.). However, at 405 nm, all the samples are lined up besides
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the highly concentrated sample which absorbance value is clearly reaching a limit as

already observed in �gure 4.3 (a.).

The backscattered absorbance AbsBS(630) show a less linear relation with the con-

centration, with a Pearson's coe�cient of 0.94. Although the shape of the backscattered

absorbance spectra AbsBS(λ) appeared very similar to the extinction coe�cient εE141(λ),

the multiscattering is responsible of a certain degree of non-linearity as shown in �gure

4.4 (b.).

The Pearson's coe�cient between the PoLiS absorbance AbsPo(630) and the concen-

tration is higher than 0.99, comparable to the performances of the Jasco measurements.

Figure 4.4 (c.) shows the good alignment of the points for both wavelengths (λ = 405nm

and λ = 630nm) and they nearly pass through zero. The improvement of the linearity

between AbsPo(λ) and the concentration of the dye is due to the fact that the optical

setup architecture of PoLiS allowed us to select only the weakly scattered photons which

have traveled a short distance in the matrix. From a spectroscopic point of view, this

photon path is similar to a transmission measurement with no (or very few) scattering,

hence approaching the ideal conditions of Beer�Lambert's law.
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4.4.3 Powdered samples

Powdered samples used in our experiment are highly scattering and absorbing sam-

ples. Hence it is not possible to perform the transmission measurement necessary to

compute a reference absorbance value on a representative layer, as it has be done on

liquid samples with the Jasco. The backscattered absorbance AbsBS(λ) = −logRBS(λ)

signal is usually the one used in multivariate analysis, even knowing that it can be

strongly a�ected by multiscattering e�ects and therefore far from the Beer�Lambert law

conditions. Here, the performance of the PoLiS method on powdered samples is as-

sessed by comparing the backscattered absorbance AbsBS(λ) and the PoLiS absorbance

AbsPo(λ) signals (�gure 4.5), both computed from PoLiS measurements I‖(λ) and I⊥(λ),

respectively implemented in equations 4.22 and 4.23 .

For both absorbance spectra, the characteristic spectral features of E141 are present,

with peaks at 405 nm and 630 nm. For the raw absorbance AbsBS(λ) spectra (�g. 4.5

a.), the peaks are large, which is characteristic of the multiscattering occurring in the

samples. On the contrary, the shape for the PoLiS absorbance AbsPo(λ) spectra (�g. 4.5

c.) are very close to the spectral signature of the colorant E141 characterized by εE141(λ)

(�gure 4.2). At 405 nm and 630 nm, the peaks are narrow. More, the baseline is highly

reduced � though not completely removed. On the contrary to what we observed on the

liquid samples, the absorbing peak at 405 nm is higher than at 630 nm and more consis-

tent with εE141(λ). This con�rms the assumption made in section 4.4.2 that part of the

photons are absorbed in the continuous phase, and therefore the low scattering compo-

nent RSS(λ) in highly absorbing regions (around 405 nm) is slightly underestimated, and

consequently so does the absorbance. In particulate samples, absorbance occurs within

the particles as they are surrounded by voids �lled with air, which do not absorb. The

single scattered component of the remitted light do reach the detector, even in the region

where absorbance is high.

To validate that the PoLiS absorbance AbsPo(λ) is a better approximation of the

Beer�Lambert absorbance than the backscattered absorbance AbsBS(λ), the degrees of
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linearity of the relationship between the dye concentration (CE141) and the two computed

absorbance AbsBS(λ) and AbsPo(λ) have been compared at λ = 405nm and λ = 630nm

(respectively Figure 4.5 b. and d.). At 405 nm and 630 nm, AbsPo(λ) show a better linear

correlation with concentration than AbsBS as highlighted by the Pearson's coe�cient. It

is known that a mixture of particles of di�erent sizes (here 250 µm for the sand and less

than 50 µm for the dye) may produce a non linear behavior when absorbance is measured

in re�ectance mode, as it is here for AbsBS (Dahm & Dahm, 2007). This can explain the

curve in �gure 4.5 (b.). The fact that PoLiS absorbance is linear with the concentration

shows that the e�ect of di�erences in particle size is negligible. We �nd ourselves in

conditions close to those of representative layer conditions where the e�ect of particle

size has no foundation (Dahm & Dahm, 2007). This helps to validate our hypothesis of

using the polarization components, R‖(λ) and R⊥(λ) to solve the Absorption/Remission

function A(R,T).

By selecting the weakly scattered photons, the PoLiS method homogenizes the pho-

ton path�lengths and lessens the multiplicative and additive e�ects, leading to a more

accurate signal. The computed absorbance value AbsPo(λ) combining the PoLiS spec-

tral measurements with the representative layer theory, approximates, also for powdered

samples, an absorbance which is more linearly related to the extinction coe�cient (ε),

the dye's concentration (c) and the path length (dx).

4.5 Conclusions

In turbid or particulate samples, scattering is strongly and negatively impacting the

spectroscopic signature when it comes to extract chemically relevant information, i.e. the

absorbance. Preprocessing methods are used to reduce the scattering e�ect the spectra,

but they sometimes fail because the e�ect of multiscattering is deep and complex and

can not always be revert mathematically. This is why it is crucial to measure a signal as

free as possible from scattering e�ects prior calibration.

In this work, we propose a method which can be used as an alternative to select,
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by optical means only, the spectral information related to chemical absorbance of highly

scattering samples, while discarding the unwanted e�ect of multi-scattering on the signal.

Combining the PoLiS signal with the Representative Layer Theory (RLT) we computed

an absorbance spectra being a reasonable approximation of the Beer�Lambert absorbance

of a representative layer of the sample.

Applied on liquid and powdered samples, the results con�rmed the following assump-

tions:

- The backscattered re�ectance RBS(λ) measured with PoLiS on in�nitely thick sam-

ples is a good approximation of total re�ectance of samples of in�nite optical thick-

ness;

- The low scattered re�ectance RSS(λ), measuring the light being weakly scattered,

is a satisfying approximation of the remitted fraction r of a representative layer;

- The combination the PoLiS measurements with the Representative Layer Theory

allows us to compute a good estimation of an absorbance spectrum, AbsPo(λ),

being freed from scattering e�ects and peaks of which are linearly related to the

concentration of the absorber.

The PoLiS optical setup allows to perform re�ectance measurements, on optically

thick samples, which presents a real advantage comparing to methods like Kubleka-Munk,

which need di�erently prepared samples (di�erent thickness for example) or di�erent

optical setups (Transmission and Re�ectance).

PoLiS method presents a high potential to increase the di�use re�ectance signal

quality on highly scattering media, in solid form (soils, waste, pharmaceutical tablets)

or liquid form (algae, sludge). Building calibration models using high quality signals will

increase their overall quality and robustness.
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Contributions of chapter 4 and outlook

This chapter presents an original approach to meet the challenge of modeling the

absorbance of highly scattering materials. This approach combines optimized optical

measurements and the theoretical concept of the Representative Layer.

The theoretical framework of the Representative Layer proved to be useful to estab-

lish our approach. The RLT models a sample as a series of identical layers and is based

on discontinuous theories which are more appropriate to describe and to understand the

optical properties of highly scattering and absorbing samples (Dahm & Dahm, 2004b).

Here, the signals measured by PoLiS found their counterpart in the expression of Ab-

sorption/Remission function which could then be solved to compute a, the absorbed

fraction of light by the representative layer. From this absorptance, the discontinuous

mathematics allow us to derive the absorption of the whole sample, provided that it is

homogenous.

At this point, only simple mixtures (in liquid and powdered form) were considered.

The next chapter intends to validate the results of chapter 4 in a more complex appli-

cation, which is the objective of this thesis: prediction of total organic carbon content

(TOC) in soils.

The main interrogations are:

- Is the PoLiS method adapted to highly complex materials such as soils? In other

terms, does the polarized light have the same behavior after interacting with soils?

- Are the measured signals of su�cient intensity and quality to be processed?

- Does the PoLiS method improve the linearity between the absorbance and a more
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complex variable of interest such as TOC ?

- Is the TOC calibration model of better quality when built with the PoLiS Ab-

sorbance ? And does the PoLis method present an added value compared to pre-

processing methods?
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Chapter 5

Application of the PoLiS method to

predict soil carbon content
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Preamble

Soil are highly scattering and absorbing samples. Scattering is due to particles, which

are large compared to the wavelength and which can either exclusively scatter (quartz

for example) or both scatter and absorb (organic-mineral complex). To add complexity,

the analyte of interest, here the carbon content, is itself a complex chemical parameter

to be studied in soils. In this chapter, we test the PoLiS method (described in chapter 3

and 4) on a set of real soil samples to predict Total Organic Content. First, the ambition

is to validate the whole PoLiS process in a more complex situation and also to con�rm

the assumption that the quality of the calibration models directly depend on the quality

of the spectroscopic signals. Therefore, we benchmarked the models built with the PoLiS

spectra against models built from classically preprocessed spectra.
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Improvement of soil carbon content prediction by reducing

multiple scattering using polarized light spectroscopy
1

5.1 Introduction

Although Visible and Near Infrared Spectroscopy (Vis�NIRS) is becoming a very

popular analytical technology in soil science, it is still steps away from being used as a

routine analytical tool, both in �eld and laboratory. One of the reasons is that calibra-

tion models lack of robustness as soon as in�uence factors, which are numerous in soils,

interfere. One of the main issues is that soils are highly scattering materials. As a direct

consequence, the measurement conditions are far from the ideal conditions stated by

Beer-Lambert's law where the absorbance should be linearly related to the chemical con-

centration (Gobrecht et al., 2014a). Light scattering depends on the physical structure of

the soil samples and directly contributes to the shape of the measured spectrum by hid-

ing (or overlapping) the chemically related information. The absorbance at wavelength

λ is not linear with concentration and there is a real contradiction in building calibration

models based on linear multivariate methods such as the commonly-used Partial Least

Squares Regression (PLS). Overcoming this signal quality issue is of great interest be-

cause the accuracy of the prediction is directly related to the quality of the measured

signal (MacDougall & Crummett, 1980).

The most common strategy to reduce scattering e�ects is spectral pretreatment. This

preprocessing step is speci�cally designed to reduce multiplicative and additive e�ects

caused by variations of physical properties (Rinnan et al., 2009; Martens, 1991). Among

them, standard normal variate (SNV) often associated to detrend (Barnes et al., 1989),

multiplicative signal correction (MSC) (Geladi et al., 1985), Extended MSC (EMSC)

(Martens, 1991), normalization or Optical Path Length Estimation and Correction (OPLEC)

(Chen et al., 2006; Jin et al., 2012). However, these approaches remain questionable: they

1Alexia Gobrecht, Ryad Bendoula, Jean-Michel Roger, Véronique Bellon-Maurel, Improvement of soil

carbon content prediction by reducing multiple scattering using polarized light spectroscopy, submitted in
Soil and Tillage Research, October 2014.
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consider that scattering is nearly constant allover the wavelengths, which is not the case

(Shi & Anderson, 2010); they may eliminate chemical-related information, which is very

small with regard to scattering e�ects (Martens et al., 2003); they are inappropriate when

light scattering varies greatly from sample to sample (Steponavicius & Thennadil, 2011).

As a consequence, the model may sometimes fail when applied on a new set of samples.

Another option is to acquire the spectrum in a way that separates the part related to

chemical absorption from the part related to scattering. Speci�c experimental techniques,

based on the application of the light propagation theory or resolution of the Radia-

tive Transfer Equation (Shi & Anderson, 2010) have been proposed: adding-doubling

set-ups (Steponavicius & Thennadil, 2011; Prahl, 1995; Steponavicius & Thennadil,

2009), spatially-resolved spectroscopy (Farrell et al., 1992), time-resolved spectroscopy

(Chauchard et al., 2005; Abrahamsson et al., 2005b) and frequency-resolved spectroscopy

(Martens, 1991). Although powerful, these methods have their limitations, particularly

when applied on highly scattering samples. First, they may require complex and some-

times expensive optical implementations, which may not be compatible with conventional

spectrometers or with highly scattering samples (for which transmission measurement is

not possible). Secondly, as they rely on the estimation of absorption and scattering coef-

�cients achieved by model inversion, parameters describing the studied medium (sample

thickness, refractive index, particle size and shape...) must be known or approximated,

which may be a troublesome task as they are often unknown in complex media (Stepon-

avicius & Thennadil, 2011; Swartling et al., 2003).

Bendoula et al. (2014) proposed to combine light polarization and VIS-NIR re�ectance

spectra acquisitions. The Polarized Light Spectroscopy (PoLiS) method is an original

technique to reduce directly the e�ects of multi-scattering on the measured signal by using

the wave theory of light (Lu et al., 2006; Backman et al., 1999). When linearly polarized

light interacts with a scattering material, the backscattered light progressively looses

its initial polarization and oscillates randomly in all the planes. Using the principle of

polarization subtraction, Bendoula et al. (2014) measured a re�ectance spectra that has

been less impacted by multiscattering. In Gobrecht et al. (2014b), the signals measured
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with the PoLiS method have been processed in the frame of Dahm's Representative Layer

Theory (Dahm & Dahm, 2007) to propose a model of the absorbing power. The method

has been successfully tested on model particulate samples (sand + dye) showing that the

newly computed absorbance signal is more linearly related to the concentration of dye

in the sample.

The aim of this study is to test the PoLiS method on real soil samples to predict

Total Organic Carbon (TOC) content in order to:

- validate that PoLiS absorbance measured on soil samples is more linearly related

to TOC ;

- evaluate the bene�t of using the PoLiS absorbance in TOC calibration models ;

- compare this �optical� preprocessing method to commonly used mathematical pre-

processing methods.

5.2 Material and Methods

5.2.1 Instrumentation

The PoLiS optical setup, schematized in �gure 5.1, was composed of a halogen light

source (150 W, Leica Cls) coupled with a 940 µm core diameter optical �ber (Numerical

Aperture N.A = 0.25, Sedi & ATI). The light delivered by the �ber was collimated by

an aspheric lens (F220SMA-B - Thorlabs). The incident beam was a 1.5 cm diameter

circular spot with 1◦ divergence. The incident and re�ected beam were polarized through

two broad-band (400 nm�800 nm) polarizers (NT52-557, Edmunds Optics). Incident

light was linearly polarized and re�ected light was collected in a narrow cone ( 1◦). The

output from the analyzer was coupled to an optical �ber (N.A = 0.25, Sedi & ATI) by

an aspheric lens (F220SMA-B - Thorlabs). This �ber was connected to a spectrometer

(MMS1, Zeiss). Spectral data were collected in the 400 � 800 nm wavelength range at

3 nm intervals, resulting in measurements at 121 discrete wavelengths per spectrum. A
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constant angle of 70o was maintained between the incident and re�ecting arms. This

angle was chosen to optimize intensity of the re�ected beam.

Sample

Broadband Light

         Source

Polarizer
Analyzer

Spectrometer
Fiber

FiberLens Lens

Acquisition

Figure 5.1: Schematic diagram of polarized light spectroscopy system (PoLiS).

5.2.2 Soil samples

The 52 studied soil samples, provided by Irstea EMGR research unit are a subset of a

soil sample collection used in a previous research work published in Saenger et al. (2013).

The samples were collected in the Vercors High Plateau Natural Reserve (VHPNR) a

protected mountainous area in the French calcareous Prealps (44◦97N - 5◦42E). Soils of

the VHPNR developed on Urgonien limestones and are generally neutral or basic. They

comprise humiferous and very shallow Cambisols, Leptosols, Umbirsols and Anthroposols

(FAO/IUSS/ISRIC 200). Detailed information on vegetation and soil types of the study

area are provided in Saenger et al. (2013). The samples were collected from the Topsoil

(0-10 cm) from the A horizon (Organo-mineral layer). The litter layer, when present,

was removed prior to sampling.

After collection, soil samples have been air dried and stored at 4◦C until chemical

and spectral analysis. Total Organic Carbon was measured by dry combustion after

decarbonation according to NF ISO 10694, using a N/C-Analyzer (Thermo Scienti�c,

FLASH 2000 NC Analyzer, France) (Table 5.1).

Each sample has been prepared to get di�erent particle sizes, namely:

- The Coarse form obtained by hand crushing the air-dried soil to get aggregates
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smaller than 5 mm. This preparation conducted to a large variety of particle and

aggregate sizes within and between samples, depending on the type of soil;

- The Sieved form at 2 mm, which is the classical soil preparation prior to spectral

acquisition;

- The �nely Ground form at 0.25 mm.

Each sample was carefully transferred in an adapted 5�cm diameter petri dish and

moved in circles to get an even and horizontal surface before spectral analysis.

n Mean SD Min Q1 Q2 Q3 Max Skewness
52 88.6 48.04 11.4 50.20 88.75 115.0 248.0 0.86

Table 5.1: Total Organic Carbon (g.kg−1) descriptive statistics for the whole dataset. Q1, Q2 and Q3
correspond respectively to the �rst quartile, the median and the upper quartile. SD: standard deviation

5.2.3 PoLiS spectral acquisition

Each sample was illuminated with linearly polarized light and the remitted light

intensity was measured with the PoLiS setup with the analyzer set respectively parallel,

I‖(λ), and perpendicular, I⊥(λ), with respect to the polarization of the illumination light

(Figure 5.2). Dark current, Ib(λ), i.e. signal without light, was systematically recorded

for all measured spectra with the same optical con�guration and subtracted to each

measurement.

Low scattering conditions

linearly

polarized

light

unpolarized

light

Multiple scattering conditions

linearly

polarized

light

unpolarized

light

unpolarized

light

Polarizer PolarizerAnalyzer Analyzer

linearly

polarized

light

I0 I0Ill I

Figure 5.2: Principle of the measurement of the two components I‖(λ) and I⊥(λ) of the totally backscat-
tered light by means of linear light polarization
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A di�use re�ectance gray standard (Spectralonr SRS-60, Labsphere) was used to

collect a reference spectrum, I0(λ), to standardize spectra from non-uniformities of all

components of the instrumentation (light source, �bers, lens, polarizer and spectrometer).

From these measurements, the backscattered re�ectance, RBS(λ), and the weakly

scattered re�ectance, RSS(λ), have been computed for each sample according to Bendoula

et al. (2014):

RBS(λ) =

[
I‖(λ)− Ib‖(λ)

]
+ [I⊥(λ)− Ib⊥(λ)]

[I0(λ)− Ib0(λ)]
(5.1)

RSS(λ) =

[
I‖(λ)− Ib‖(λ)

]
− [I⊥(λ)− Ib⊥(λ)]

[I0(λ)− Ib0(λ)]
(5.2)

5.2.4 PoLiS absorbance AbsPO

As proposed in Gobrecht et al. (2014b), the PoLiS absorbance AbsPO(λ) has been

computed from the backscattered re�ectanceRBS(λ) and low scattered re�ectanceRSS(λ)

as :

AbsPO(λ) = − log

(
RSS(λ) +

√
(1−RSS(λ))2 − RSS(λ)

RBS(λ)
(1−RBS(λ))2

)
(5.3)

For comparison, the backscattered absorbance AbsBS(λ) has also been computed from

the total backscattered re�ectance signal RBS(λ) measured with PoLiS.

AbsBS(λ) = − log RBS(λ) (5.4)

5.2.5 Multivariate Analysis

Principal Component Analysis

An exploratory analysis of the backscattered absorbance spectra AbsBS(λ) and the

PoLiS absorbance spectra AbsPO(λ), has been carried out using Principal Component
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Analysis (PCA). In order to evaluate the impact of the soil preparation on the spectra,

the spectral data have been centered in two di�erent ways:

- Mean centered, meaning that the mean spectrum of the entire data set (global

mean) is removed from all samples (Coarse, sieved and ground) to analyze the

global variance of the dataset;

- Centered according to the location: the mean of the three spectra (one for each

particle size preparation) measured for each sample collected at one location is

subtracted. This centering allows us to examine the variance within samples having

the same TOC content but presenting di�erent physical structure.

The Wilk's lambda criterion (Λw) has been applied on the scores of the PCA. Wilk's

Lambda is the ratio of the between class variance to the total variance (Roger et al.,

2005). Λw ranges from 0 to 1. For a value close to one, the classes are well separated

and a value close to zero indicates that the classes are confounded.

Calibration with Partial Least Squares Regression

Calibration models have been built using PLS (Wold, 1978), considered as the bench-

mark chemometric technique used for quantitative analysis of di�use re�ectance spectra.

The di�erent types of signals computed, RBS(λ), AbsBS(λ) and AbsPO(λ), were com-

pared on the basis of the performances of leave-one-out cross-validation models built on

the each particle size sample set to predict soil Total Organic Content (TOC).

Preprocessing methods such as Standard Normal Variate (SNV), Multiplicative Scat-

ter Correction (MSC) and modi�ed Optical Pathlength Estimation and Correction

(OPLECm) have been applied to the di�erent spectra.

Finally, the best models obtained for each particle size class have been applied on the

other particle size sets.

The performances of the cross-validation models and validation models have been

assessed through the number of latent variables used in the models, the coe�cient of
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determination R2 and the Standard Error of Cross-Validation (SECV) and Standard

error of prediction (SEP) corrected from the bias (Bellon-Maurel et al., 2010).

All the computations have been performed with Matlab software (Matlab R2012b,

Mathworks).

5.3 Results and discussion

5.3.1 Spectral analysis

The di�erent mean�per�quartile spectra measured for samples having di�erent par-

ticle sizes are plotted in �gure 5.3. In the studied wavelength range (400 nm - 800

nm), soil spectra do not show characteristic spectral features and appear ��at�. Hence,

the di�erences in the intensity level are related to the brightness of the samples. The

re�ectance intensity is consistent with the total organic carbon content (TOC) of the

studied samples, showing that the darker the sample, the higher the TOC content. This

observation concerns all particle sizes classes.

The wavelength range of the PoLiS setup is limited to 400 nm - 800 nm by the range

of the polarizer used. This range is not the optimal Vis-NIR region for soil carbon cali-

bration but Viscarra Rossel et al. (2008), for example, suggest that the visible portion of

the spectrum contains more information on the absorbance characteristics of soil organic

carbon than the shortwave NIR (700 � 1100 nm) content. In regard of the objectives of

this study, this range is su�cient.

Sample preparation, i.e. particle size, has an impact in the intensity level of the

backscattered re�ectance RBS(λ). As commonly seen in NIR di�use re�ection (Pasikatan

et al., 2001), the smaller the particles, the higher the re�ectance. As a consequence,

the absorbance computed as AbsBS(λ) = −log RBS(λ) shows a lower level for ground

samples. Therefore, the di�erences in the intensity levels are due to the combined e�ect

of the physical structure and the brightness of the soil samples.

For the PoLiS absorbance AbsPO(λ), the intensity is about ten times smaller than for
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Figure 5.3: Mean re�ectance RBS(λ), backscattered absorbance AbsBS(λ), PoLiS absorbance AbsPO(λ)
per quartile of TOC concentration for the three di�erent particle sizes (a.) coarse < 5mm, (b.) sieved
< 2 mm and (c.) ground < 0.25 mm

backscattered absorbance AbsBS(λ). This is partly due to the fact that the PoLiS optical

set up selects only a small part of the signal (the single scattered one). The shape is also

slightly di�erent, with a small shoulder at 600 nm.

For coarse samples, the absorbance spectra AbsBS(λ) of the highly concentrated sam-

ples (quartiles Q3 and Q4) are not clearly separated, meaning that the variance due to

particle size di�erences, and therefore scattering, dominates the chemically related in-

formation in the spectra. On the contrary, the PoLiS absorbance spectra AbsPO(λ) for

quartiles Q3 and Q4 are clearly separated. This indicates that part of the spectral infor-

mation due to the physical structure has been removed. Chemically related information,

characterized by the brightness, becomes more visible.

Figure 5.4 shows the score plots of the PCA performed on di�erently centered spectral

datasets (AbsBS(λ) and AbsPO(λ)) according to section 5.2.5.

On the mean-centered data and for both AbsBS(λ) and AbsPO(λ), PC1 explains more

than 98 % of the variability. Because of a multiplicative e�ect, the spectra appear to be
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organized in a conic pattern represented by the triangle in �gure 5.4. The responsible

in�uence factors is acombination of soil brightness (related to TOC) and soil physical

structure, i.e. the particle size.

The score plot converges both to a minima close to zero and spreads on the opposite

side. This conic pattern represented on �gure 5.4, is characteristic of a multiplicative

e�ect caused by variables of in�uence.

For AbsBS, �nely ground samples are clearly separated from the two other particle

size classes. For AbsPO(λ), this separation is less obvious. The summit of the cone

contains the darker samples of di�erent particle size classes. The multiplicative e�ect is

due to TOC content as scattering is supposedly lessen.

The score plot of the data centered per sample location con�rms the previous obser-

vation: for AbsBS(λ), the ground soils are clearly separated from the two other classes

(sieved and coarse) as for AbsPO(λ), the classes appear more confounded. The values of

the Wilk's lambda, computed on the scores of the PCA con�rm these statements. When

particle size classes are separated, the Wilk's lambda is lower.

The PoLiS method corrects, to a certain extent, the e�ect of scattering on the signal,

leading to an absorbance less sensitive to the physical structure of the samples.

5.3.2 Linearity between Absorbance and TOC Concentration

The assumption that, by correcting the signal from part of the multiscattering e�ect,

the PoLiS absorbance AbsPO(λ) is more linearly related to TOC content can be assessed

through the Pearson's correlation coe�cient between the absorbance and the TOC con-

tent. The correlograms presented in �gure 5.5 show the correlation between the two

absorbance signals (AbsBS(λ) and AbsPO(λ)) and TOC as a function of the wavelength

and for each sample preparation.

For coarse and sieved samples, the Pearson's coe�cient R between the absorbance

and the TOC concentration is always higher for AbsPO(λ) than for AbsBS(λ), over all the

wavelength range. For ground samples, the two correlogram are similar, although slightly

better for AbsPO(λ) between 400 and 600 nm. It is coherent with the general acceptance
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Figure 5.5: Correlogram between Absorbance and TOC for the wavelength range 400 - 800 nm. Vertical
line indicates the wavelength at which the correlation coe�cient for AbsBS(λ) is the highest.

that preparing the samples (sieving or grinding) has a direct impact on the signal quality

and consequently on the quality of the calibration models (Morgan et al., 2009; Bellon-

Maurel et al., 2010). Here, PoLiS method leads to an additional improvement of the

correlation between the Absorbance signal and TOC.

Another way to visualize this observation is to plot TOC versus the absorbance value

at the optimal wavelength of AbsBS(λ), respectively 450 nm for the coarse samples, 600

nm for the sieved samples and 570 nm for the ground samples (�gure 5.6).

The degree of linearity between AbsPO(λ) and TOC is improved for coarse and sieved

samples, but this e�ect is lessen for ground samples, for which the linear correlation

coe�cient for AbsBS(λ) and AbsPO(λ) are very similar and high (>0.87).

To conclude, this analysis shows that AbsPO(λ) is more linearly related to the TOC

concentration (Figure 5.6) and additionally that the particle size has less impact on its

spectral signature (Figure 5.4). Therefore, calibration conditions are more appropriate

for AbsPO(λ) than for AbsBS(λ) to use linear methods like PLS in order to predict TOC

in soils.

5.3.3 Model analysis

Quality of the calibration models

Figure 5.7 shows the quality of the models calibrated on the spectra obtained with

the di�erent methods : the backscattered re�ectance spectra (RBS(λ)), the backscattered
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Figure 5.6: Plot of the backscattered absorbance AbsBS(λ) and the PoLiS absorbance AbsPO(λ) at
wavelength λ vs the TOC concentration (in g · kg−1) for the three di�erent particle sizes: coarse < 5
mm, sieved < 2 mm and ground < 0.25 mm) with linear �tting. R is the Pearson's coe�cient.

absorbance spectra (AbsBS(λ)) and the PoLiS absorbance spectra (AbsPO(λ)), with no

preprocessing, for each category of particle size.

First, the prediction models built with the backscattered re�ectance RBS(λ) are not

satisfying. They show a characteristic �banana� shaped regression curve, typical of non-

linearity. However, ground and sieved samples produce better predictions than coarse

samples. The latter present a high structural variability which a�ects the spectra. The

scattering e�ect dominates in the spectral information but in a di�erent manner for all

the samples. This con�rms the discussion of the previous section: sieving or grinding

soils improves the PLS models.

The log�transformation of the backscattered re�ectance RBS(λ) into backscattered

absorbance, {AbsBS(λ) = −log RBS(λ)}, improves the quality of the models. Theoret-

ically, the linear relation is between absorbance and concentration and not between re-

�ectance and the concentration. In our case, the log also plays the role of a mathematical

preprocessing method as it transforms multiplicative e�ects (due to scattering) into addi-
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Figure 5.7: Predicted vs measured total organic carbon content from leave-one-out cross validation
models calibrated with backscattered re�ectance spectra (RBS), backscattered absorbance (AbsBS(λ))
and PoLiS Absorbance (AbsPO(λ)) for the three di�erent particle sizes: (a.) coarse < 5mm , (b.) sieved
< 2 mm and (c.) �nely ground < 0.25 mm) . R2 : coe�cient of determination; SECV: standard error
of cross validation; LV: number of latent variables
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tive e�ects (Hadoux et al., 2014). The PLS algorithm is capable to discard this additive

e�ect in the regression process. R2 and SECV are improved but need a high number

of latent variables to build the models (10 for the ground samples and 8 for the sieved

samples). According to the principle of parsimony, there is a risk that models will lack

in robustness (Bellon-Maurel & McBratney, 2011; Seasholtz & Kowalski, 1993).

The models built with AbsPO(λ) outperform all the other models built with RBS(λ)

and AbsBS(λ), whatever the particle size. R2 and SECV are improved and, in addition,

the number of latent variables decreases. However, soil sample preparation still impacts

the results. PoLiS method also takes bene�t from sample preparation (ground or sieved).

For coarse samples, predictions are not so good, although improved compared to the

predictions of the models built with the backscattered absorbance AbsBS.

Comparison of optical and mathematical spectral preprocessing

The PoLiS method can be considered as an �optical preprocessing� method: prior to

the calibration step, the di�erent components of the total spectra are selected in order

to compute an absorbance spectrum. The main objective of this optical preprocessing

step is to enhance the quality of the signal by reducing the e�ect of multiscattering.

We compared the calibration results using the PoLiS method with three mathematical

preprocessing methods (SNV, MSC and modi�ed OPLEC) usually applied on spectra to

reduce the multiplicative and additive e�ects due to scattering.

Figure 5.8 present the R2 and the SECV values for each models built.

The TOC prediction models built with the PoLiS absorbance spectra AbsPO(λ) always

show better �gures of merit than for the models built with RBS(λ) and AbsBS(λ), even

when they are preprocessed.

The backscattered re�ectance spectra RBS(λ) are highly impacted by light scattering.

Hence, the preprocessing methods improve the performances of the prediction models,

in particular for the sieved and ground samples. SNV and MSC have almost the same

behavior on these spectral data, which is often stressed out by authors (Fearn et al., 2009).

Modi�ed OPLEC gives good results and seems to be a promising preprocessing method as
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Figure 5.8: Comparison of the determination coe�cient R2 and the Standard Error of cross validation
(SECV) of the prediction models built on the three types of samples. Dotted lines correspond to the
performances of the models built with AbsPo(λ).
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it speci�cally removes the multiplicative e�ect. For coarse samples however, none of the

preprocessing methods applied do signi�cantly increase the quality parameters. These

samples present a high sample�to�sample heterogeneity and as a consequence, di�erent

levels of light � matter interactions, which are more di�cult to capture and correct by

the di�erent preprocessing method. Preprocessing the backscattered absorbance spectra

AbsBS does not signi�cantly changes the quality of the models, although the number of

latent variables decreases from 10 to 7.

For AbsPO(λ), none of the preprocessing methods have a positive impact on the

�gures of merit compared to the raw absorbance spectra. On the contrary, preprocessing

the PoLiS absorbance AbsPO(λ) highly degrades the quality of the models. It is known

that mathematical preprocessing methods suppresses part of the spectral information,

sometimes not exclusively due to physical in�uence but which can also be related to

chemical information.

As a conclusion, the PoLiS method produces an optimal absorbance signal, which

does not need to be preprocessed prior calibration as the models built from AbsPO(λ)

always outperform the other models, for all the particle sizes.

Behaviour of the PoLiS method regarding particle size

The main assumption made for the PoliS method is that it reduces the multiscattering

e�ect on the absorbance spectra. Yet, multiscattering is dependent of the particle size

of the sample. In section 5.3.1, the PCA analysis on the data concluded that AbsPO(λ)

is less impacted by the preparation of the samples than AbsBS(λ), although, the ground

samples still behave di�erently. Table 5.2 show the quality parameter (R2, bias and

Standard Error of Prediction corrected from the bias (SEPc) and slope) of the models

built on a particle size class and applied to another particle size class.

First, each time �nely ground samples (< 0.25 mm) are involved, either in the cal-

ibration set or in the test set, PoLiS method do not produce better predictions. R2

is lower with AbsPO(λ) than with AbsBS(λ) and the SEPc, the bias and the slope are
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Particle size of the
Calibration set Particle size of

the Test set

Signal L.V. R2 SEPc Bias Slope

Coarse
Sieved

AbsBS(λ) 5 0.64 29 −6.5 0.74
AbsPO(λ) 5 0.76 24 −5.7 0.86

Ground
AbsBS(λ) 5 0.67 28 −44 0.70
AbsPO(λ) 5 0.62 31 −33 0.50

Sieved
Coarse

AbsBS(λ) 8 0.53 37 24.5 0.78
AbsPO(λ) 5 0.67 28 6.0 0.72

Ground
AbsBS(λ) 8 0.75 24 −20 0.72
AbsPO(λ) 5 0.70 28 −34 0.54

Ground
Coarse

AbsBS(λ) 10 0.45 44 12 0.8
AbsPO(λ) 4 0.50 52 23 1.1

Sieved
AbsBS(λ) 10 0.70 27 11 0.84
AbsPO(λ) 4 0.69 43 31 1.28

Table 5.2: Performance of the models built with AbsBS(λ) and AbsPO(λ) on one particle size sample
set and tested on another particle size sample set. L.V. is the number of latent variables used for the
calibration model, R2 is the coe�cient of determination, SEPc is standard error of prediction corrected
form the bias in g.kg−1.

worse. We previously observed that for ground samples, AbsBS(λ) and AbsPO(λ) show a

very similar correlogram, meaning that both absorbance signals show a relative linearity

with TOC. Here, the PoLiS method seems to reach its limits when the particle size of

the particulate samples are very small. Grinding �nely the samples a�ects the way light

travels in the samples and probably also the depolarization process. As a consequence,

the backscattered re�ectance RBS(λ) and the low scattered re�ectance RSS(λ) used to

compute the PoliS absorbance AbsPO(λ) (equation 5.3) are not completely reliable.

When particle sizes are higher that 2 mm, i.e. sieved or coarse, the models built with

AbsPO(λ) always produce better results than with AbsBS(λ), as shown in �gure 5.9.

Although the PoLiS calibration model built on coarse samples was the less performant

in cross-validation (see �gure 5.7), the prediction are not degraded when it is applied on

the sieved samples. Moreover, the bias, which is a good indicator of robustness, remains

small. On the other way, when the model built on sieved samples is applied on coarse

samples, the �gures of merit are not as good as in cross validation, but still, the results

are much better with AbsPO(λ) than with AbsBS(λ). And again, the bias is very small

for AbsPO(λ) compared to the high bias value for AbsBS(λ).
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Figure 5.9: Predicted vs measured total organic carbon content. Models were calibrated with the
backscattered absorbance (AbsBS(λ)) and the PoLiS Absorbance (AbsPO(λ)) on one particle size class
and tested on another particle size class. (upperline: coarse < 5 mm on sieved < 2 mm and lower
line: sieved < 2 mm on coarse <5 mm ). R2 : coe�cient of determination, SEPc: standard error of
Prediction corrected from the bias in g.kg−1.

These results show that PoLiS is a promising measurement technique in the perspec-

tive of reducing the sample preparation as it is less sensitive to changes of the physical

structure of the samples and well adapted to low processed samples.

5.4 Conclusions

For the �rst time, the issue of light scattering in Vis-NIR spectroscopy applied to soils

has been studied from an optical point of view. In this study, PoLiS, an original optical

setup based on light polarization spectroscopy, has been used to select backscattered light

being less impacted by multiscattering e�ects due to particles composing soil samples.

The absorbance signal computed from the PoLiS measurements has been compared to

the absorbance traditionally computed by taking the log of the backscattered re�ectance.

The aim of this study was to verify the assumptions underpinning the PoLiS method.

We can make following statements and concluding remarks :
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- On soil samples, the method produced spectral signatures of good quality, with no

noise, despite the low intensity in the PoLiS wavelength range;

- Removing part of the multiscattering improved the degree of linearity between the

PoLiS absorbance and the TOC, over all the wavelength range (400 - 800 nm) for

coarse and sieved samples.

- TOC prediction models build with the PoLiS absorbance always outperformed

the models built with the backscattered absorbance, even when mathematically

preprocessed. This is an important result con�rming that a signal of better quality

improves the quality of the prediction models.

- The PoLiS absorbance is less impacted by a change of particle size of the samples

but an e�ect is still visible, particularly for ground samples. As a consequence, the

predictive potential of the PoLiS absorbance when only the physical structure of

the sample changes is higher than the backscattered absorbance, when the particle

size is > 2 mm. For �nely ground samples, PoLiS seems to reach it limits.

This study con�rms the high potential of the PoLiS method for the spectral analysis

of soil properties. Solving the technical limits which would make the PoLiS method work

beyond 800 nm, would allow to take an important step in the metrological quality of the

soil carbon content measurement by NIRS.
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In this chapter we tested the PoLiS method, which combines an optical setup based

on light polarization spectroscopy and the Representative Layer Theory to model the

absorbance signal of soils. This absorbance signal tends to be more linearly related to

the concentration of organic carbon, which is an important pre-requisite to perform linear

multivariate modeling.

In a second step, we showed that the method leads to calibration model which perform

appreciably better than models based on preprocessed re�ectance spectra.

The results of this preliminary study on soils should be con�rmed on a larger soil

database. In addition, the wavelength range of the actual version of the PoliS method is

not the most relevant for the study of chemical soil properties. Therefore, technical im-

provements are needed to con�rm the high potential of the PoLiS method to characterize

soils.
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6.1 Introduction

In this thesis we aim at developing an optical method based on light polarization

spectroscopy to measure the absorbance of highly scattering materials. The operational

problem that initiated this work was to measure soil carbon content with Vis-NIR spec-

troscopy and while the classical methods faced some limitations mainly due to light

scattering. We proposed therefore an optical architecture capable of reducing the e�ect

of multiscattering on the spectra, posing the assumption that the calibration models

built with these spectra would be more precise and robust.

While the goal of this undertaking was very focused on a particular application, it

opened new alleys of research. This �nal chapter synthesizes the major �ndings and

results of the current thesis. It summaries the assumptions, capabilities and constraints

of the PoLiS method.

The scienti�c perspectives, that have emerged during this work, are also presented,

as a testimony of the bright future of light polarization spectroscopy serving multivariate

analysis of complex materials.

6.2 Summary of the main contributions of the work

6.2.1 A pedagogical review : back to basics !

The �rst contribution of this work is a pedagogical review mainly addressed to soil

scientists. We focused on the causal link between the theoretical concepts underpinning

NIR and linear chemometric modeling and the question why such a promising technique,

NIR, is still not largely widespread in soil analysis.

The review highlights that light scattering is an important source of limitations: it

negatively impacts the NIR spectrum, which itself is not a very selective signal. As a

consequence, extracting the relevant information, being usually the chemical absorbance,

becomes a much bigger challenge than for non scattering materials. Indeed, the useful

information is overlapped, both linearly and non linearly, by useless, and even sometimes

112



Contributions and Perspectives

harmful spectral information (section 2.2).

To overcome these limitations, the main e�orts have been concentrated on the de-

velopment or adaptation of chemometric methods. The strategy is to either restore the

linearity between signal and concentration, by preprocessing the spectra for example

(section 2.5.1) or to circumvent the problem by using local and non-linear approaches

(section 2.6). If the latter present a certain potential, linear approaches such as PLS

remain, by far, the number one calibration method in NIR analysis. PLS is simple to

implement (sometimes even already implemented in spectral analysis software), rapid

and simple to interpret. However, as it is a linear method, it is also the most impacted

one, in case of high level of scattering.

The conclusions drawn at the end of the review insist on the fact that overcoming

the issue of signal quality should improve the performances of NIR spectroscopy as an

analytical tool for soil analysis.

6.2.2 PoLiS: an original optical setup to reduce the scattering

e�ect

Optical methods aiming at separating the absorbing coe�cient from the scattering

coe�cients in NIR spectra already exist (section 3.1) but we found out that they are

not adapted to highly scattering and absorbing materials such as soil samples. Their

common principle is to solve (directly or by model inversion) a system of equations with

two unknown parameters, i.e. the scattering and the absorption coe�cients. Hence,

it is necessary to collect at least two di�erent type of spectral information about the

studied material. The most common �set� of measurements is the Transmission and the

Re�ectance performed on the same sample (in the Inverse Adding-Doubling methods or

more simple 2-Flux methods such as the Kubelka-Munk model). An alternative is to

measure a re�ectance on a optically in�nite sample and a re�ectance on a optically �nite

sample. In methods such as spatially or time resolved spectroscopy additional spectral

data are acquired as a function of space or time.
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In soil samples, the distance traveled by the photons is very short before they are

absorbed, that it is neither possible to measure a transmittance or a re�ectance on

an optically thin sample (like in Kessler et al. (2009)) nor to have di�erent spectral

signatures with SRS. In highly scattering and absorbing samples, on which transmission

measurements are not possible to perform, the optical analysis must rely on re�ectance

measurements.

This conducted us to �nd alternative ways to measure this �set� of di�erent spectral

information : we used light polarization properties. Based on the theoretical principles

of polarization subtraction we designed an optical architecture aiming at decomposing

a remitted signal in two complementary components: a multiscattered re�ectance and

a low scattered re�ectance (section 3.2). This optical setup is fully adapted to highly

scattering materials as the measurements are performed only in re�ectance on optically

thick samples.

We �rst tested the PoLiS setup on powdered model samples mixing sand and two

coloring dyes. We observed that when corrected from multiscattering, the re�ectance

signal becomes a linear combination of the pure components spectra. On the contrary,

the classical re�ectance spectrum tends to be a non-linear mixture of the two colorant

spectra (section 3.4.1). This preliminary result showed the potential of the PoLiS method

to correct the spectrum of physical interactions.

In addition, whatever the type of sample, powder or liquid form (section 4.4), the

spectra (multiscattered and low scattered component) showed a good signal to noise ratio

in the studied wavelength range (350 nm to 800 nm).

Based on the principles of light polarization, the PoLiS method outputs two di�erent

types of signals: a classical backscattered re�ectance and a corrected re�ectance, which

proved to be less impacted by multiscattering.

6.2.3 A model of the absorbance of highly scattering materials

According to Beer-Lambert law, it is the absorbance that is linearly related to concen-

tration. Here, the objective is to provide a better approximation of the true absorbance of
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scattering materials than the almost exclusively used expression {−log RBS(λ)}, which is

inherently non linear with concentration. The main reason is that applying Beer-Lambert

Law to re�ectance measurements is based one wrong assumptions: (i) the path-length

of light is constant and (ii) the scattering coe�cient for the sample is independent of

absorption (Dahm & Dahm, 2001).

In this thesis, we used the frame of the Representative Layer Theory proposed by

Dahm & Dahm because they explicitly raise the question of an equivalent to the Beer-

Lambert Law for scattering materials (Dahm & Dahm, 2007, p. 34).The RLT allows

for a layer to contain particle types of multiple materials and diameters, as well as

voids between the particles so long as each layer is identical in its composition with

relation to the volume and surface area ratio between particle types (Dahm & Dahm,

2007). Because of the initial assumptions about a sample, this technique is particularly

applicable to the optical characterization of powdered samples, which may be contain

multiple chromophores .

We put forward the hypothesis that the �set� of PoLiS re�ectance measurements can

be implemented in the Absorption � Remission function to model the absorbing power

of a scattering sample (section 4.2.4).

We validate these assumptions experimentally for liquid and powdered samples by

con�rming that the PoLiS absorbance showed a better linear relation with the absorber

concentration (section 4.4.2) than the classical backscattered absorbance {−log RBS(λ)}.

6.2.4 Application on soils

The samples studied to validate experimentally the PoLiS method are simple samples,

mixing a scattering but non absorbing matrix (milk or sand) with a unique absorber (a

coloring dye). Applying the PoLiS method on real soil samples intent to con�rm that

the method could be applied on more complex samples (soil is a sort of ideal complex

sample) to predict more complex variables of interest (e.g. Total Organic Carbon).

First, from a practical point of view, the PoLiS optical setup is fully adapted to the

measurement of air dried and sieved soil samples. The collected spectra showed a good

115



Contributions and Perspectives

S/N ratio in the 350 - 800 nm range. Next, the linearity between the PoLiS absorbance

AbsPO with TOC is improved compared to AbsBS (section 5.3.2).

More important, we con�rmed that building a calibration model with PLSR using the

PoLiS absorbance to predict the TOC content outperforms the model built with AbsBS,

even when mathematical pretreatments were applied to it (section 5.3.3). Here, in our

experiment, we found out that preprocessing the PoLiS absorbance degraded the model.

This leads us to believe that PoLiS is an optical preprocessing method that discards only

the useless information from the absorbance spectra which reaches an optimal quality

regarding linear multivariate analysis.

6.3 Technical limits and areas of improvements

The application of the Polis method on soil did highlight some limits, which are

presented, and discussed. As these limits are mainly of technical order, we propose some

technical improvements.

6.3.1 Limits of the actual optical setup

The wavelength range of the PoLiS setup, i.e. 350 - 800 nm, tend not to be a limiting

factor to study coloring dyes, which absorb in the visible range. To study soil chemical

properties, however, this restricted range is a clear limitation, although for carbon, there

is clearly a link between soil color and soil carbon content.

The main reason that we can not measure in the near infrared range is related to

the detector of the spectrometer. The quality of the signal depends on the responsivity

of the detector. In the Vis-VNIR range (350 nm � 1100 nm), the spectrometer includes

a silicon detector, which present the advantage of having a high responsivity. Over

1000 nm, (SWIR - NIR), the spectrometer is generally composed of an InGaAs (Indium

Gallium Arsenide) detector, which show a lower responsivity. So if the signal is to low

in intensity, the noise will be relatively high. The PoLiS measurements, as they result

from the di�erence between the two signals R‖ and R⊥, are too noisy to be used.
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6.3.2 Areas of improvements

To overcome these limits, some technical adaptation of the PoLiS method should be

tested:

- To augment the signal intensity , one can use a more powerful light source. In the

PoliS optical setup, the light source used is an halogen lamp (150 W, Leica Cls). A

lot of power is lost by collimating the beam. Using a supercontinuum source (laser),

which is already collimated, will concentrate the available energy on a small surface

of the sample. As a consequence, the remitted intensity will increase and therefore

also the selected low scattered component. Another lever would be to rethink the

architecture of the collecting part of the device, with the objective to increase the

quantity of photons reaching the detector. The optical components must be chosen

so as to maintain the intensity at its maximum. The right lenses have to be chosen

and the use of optical �bers have to be limited, as they attenuate light.

- To build the whole spectrometer integrating a source, optical components, a mono-

chromator (wavelength range) and a detector. Each component can be adapted

to optimize the signal quality. This is a necessary stage to de�ne the technical

speci�cations of a fully optimized sensor.
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6.4 Scienti�c perspectives

6.4.1 Increasing knowledge about the studied material

The PoLiS method is combining various theoretical �elds such as light polarization

principles, the Beer�Lambert physical law and the Representative Layer Theory. This

coupling allows us to study light�matter interactions at two di�erent, but complementary

levels: the macroscopic and the microscopic one.

- From a macroscopic point a view, the light is considered as a corpuscular ele-

ment and di�erent properties of the material can be extracted from the quantity

of photons reaching (or not) the detector. The frame of the Representative Layer

Theory is very promising to understand how light travels in the material and how

it is absorbed. But the added-value is the combination of the RLT with the Po-

liS method. Indeed, the optical setup can implement di�erent polarization status

that are di�erent of linear one : the the elliptic or circular ones. The wave will

interact di�erently with the material. For example, circular polarized light pen-

etrated deeper in the material before it looses its polarization status (Voit et al.,

2012). The re�ectance signals measured could be accordingly interpret and pro-

vide new knowledge about the material, a better understanding of the light�matter

interaction and the mechanism of light absorption..

- From a microscopic point a view: The fraction of light that is re�ected by a surface

can be computed with the Fresnel equations. This fraction is a function of the

complex refractive index {n− ik} of the material and the state of polarization of

the incident beam; k is known as the absorption index and it is related to the

absorbing power of the material (Wendlandt & Hecht, 1966). The PoLiS method

allows us to measure all the polarization states of light. Polarized light with its

electric �eld along the plane of incidence is denoted p-polarized, while light electric

�eld of which is normal to the plane of incidence is called s-polarized. When these

wave interact with the material, their re�ectance Rs(λ) and Rp(λ) have a di�erent
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expression. From them, it may be possible to calculate analytically, by using model

inversion, the complex refractive index {n− ik} of the medium. These values are

of high interest for a several complex materials. Among them soils, for which

published information on refractive indices is very scarce.

6.4.2 Assessing the signal quality prior calibration

All through this research, we were confronted to the question of assessing the quality

of the signals produced by each method. This was particularly the case when we had to

optimize the architecture of the optical set up. Here, we consider that a signal is of good

quality, if it is su�ciently selective and sensitive to predict the variable of interest. In

other terms, if it contains su�ciently information to be captured by the model.

Usually, to assess the impact of a signal, we assess the quality of the model: the model

is built and �gures of merit (FOM) of the prediction model are compared (Dardenne et al.,

2000). Among them, the correlation coe�cient R2, the standard error of prediction (SEP)

and the bias. However, this procedure needs many available samples, each with a known

reference value to build, validate and test the model. In addition, the FOM assess the

whole analytical process (i.e. comprising the measurement and the calibration) and it is

di�cult to know which of the measurement stage or the model calibration stage has the

higher impact on the prediction uncertainty.

Several FOM exist, dedicated to signal comparison. They mainly come from the frame

of the Net Analyte Signal (NAS), a concept introduced by Lorber et al. (1997). The NAS

is the part of the measured signal that a calibration model relates to the property of

interest (e.g. analyte concentration) (Boelens et al., 2004). The remaining part contains

the contribution from other components. Several �gures of merit are computed from

the NAS, such as the selectivity, the sensibility, the signal to noise ratio and limit of

detection (Olivieri et al., 2006). In simple mixtures, where the pure spectra are known,

the real NAS can be computed. However, if the samples are more complex or if the pure

spectra are not available (which is, in NIR spectroscopy, the usual case), NAS has to

be estimated. Several methods exist to estimate the NAS, depending on the available
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information about the analyte of interest and the interferent. The main method is to

estimate the NAS from the b coe�cient of a PLS model (Faber, 1998).

If the purpose of the �gure of merit is to assess the signal quality, the there is no real

added value in computing FOM from an estimated NAS using the model coe�cient in

comparison to computing the traditional FOM of model quality from the same database:

R2, RMSEP, bias. In addition, �gures of merit are computed for each sample.

Therefore, knowing about the signal quality before (and independently of) the cali-

bration step is of practical interest when di�erent optical setups have to be benchmarked.

As far as we know, there is no such a quality parameter, which could assess the prediction

capacity of a spectra without building a model.
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General conclusion

The aim of the present thesis was to provide an optical methodology to measure,

with Vis-NIR spectroscopy, an absorbance signal of optimized quality to characterize

soils. Two main scienti�c questions have driven this work:

1. How to optically reduce the impact of light scattering on the spectroscopic signal ?

2. How to model the chemical absorbance of highly scattering materials ?

The �rst step was to design an optical setup, named PoLiS, dedicated to remove

scattering from re�ectance signals measured on highly absorbing and scattering mate-

rials. Using the wave theory of light, this approach was based on the fact that, when

linearly polarized light interacts with a scattering medium, the remitted signal looses its

initial polarization state because of the multiple scattering events. By light polarization

subtraction, it was possible to select light beams that were less impacted by multiple

scattering events.

The second step was to link the corrected signal measured with PoLiS to the chemical

absorbance of the material. The Representative Layer Theory provided a theoretical

frame to model, from the PoLiS measurements, the absorbed fraction of a hypothetical

representative layer of the sample. From this absorbed fraction, an absorbance signal,

less impacted by scattering could be computed and used for multivariate analysis.

The assumptions underlying our approach combining the PoLiS measurements and

the RLT have been successfully veri�ed on model samples, mixing powdered or liquid

scattering matrices with coloring dyes, in the Vis-VNIR (350 - 800 nm) range: the

absorbance signal retrieved its linearity with the absorbers concentration.
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The feasibility of the method to be applied on soil samples has been tested to predict

total organic carbon content. Again, the linearity between the PoLiS absorbance and the

concentration of TOC improved compared to the classical absorbance {−log R(λ)}. But

more importantly, the PLS models built from the PoLiS absorbance outperformed the

models built from the classical absorbance, this, even when the signals were mathemati-

cally preprocessed to reduce scattering. The standard errors of cross validation decreased

from 20.8 g.kg−1 to 17.6 g.kg−1 and the coe�cient of determination R2 improved from

0.82 to 0.87 on ground samples, although the wavelength range was not the optimal range

for soil carbon analysis.

This work con�rmed that by optical means, it is possible to signi�cantly improve the

quality of a spectroscopic signal. It also con�rmed that, when the absorbance signal is

more linearly related the analyte of interest concentration, the linear model is improved.

These �ndings allow us to see the great potential of this method, both for the characteri-

zation of soils and more generally, for all materials presenting the common characteristic

of being complex from the physical structure and chemical composition point of view.
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RESUME

Avec l'objectif de réduire de la quantité de gaz à e�ets de serre dans l'atmosphère, les
pouvoirs publics encouragent les pratiques ayant vocation à séquestrer le carbone dans les sols
(reforestation, changement de pratiques agricoles). Pour en évaluer les réels béné�ces, des
outils analytiques rapides, précis et peu coûteux sont nécessaires pour pouvoir comptabiliser
précisément les stocks de carbone et leur évolution dans le temps. La Spectroscopie proche
infrarouge est une technologie analytique adaptée à ce cahier des charges mais qui relève encore
du domaine de la recherche en science du sol.

Cette thèse s'est focalisée sur la première étape de cette méthode analytique: la formation du
signal. Les sols étant des milieux très complexes, en termes de composition chimique et de struc-
ture physique, le signal spectroscopique est négativement impacté par les phénomènes de di�u-
sion. Les conditions de la loi de Beer-Lambert n'étant plus remplies, les modèles chimiométriques
pour prédire la teneur en carbone des sols sont moins précis et robustes. Nous proposons un
système optique de mesure spectrale original et adapté aux milieux très di�usants, qui se base
sur le principe de polarisation de la lumière. Il permet de sélectionner les photons ayant été
moins impactés par le phénomène de di�usion. Ce signal est utilisé pour calculer un signal
d'absorbance étant une bonne approximation de l'absorbance de Beer-Lambert.

Ce dispositif, appelé PoLiS, a été validé expérimentalement sur des milieux modèles liquides
et particulaires. La méthode PoLiS a été testée sur des échantillons de sols pour prédire leur
teneur en carbone organique. En comparaison avec les méthodes classiques d'étalonnages, les
modèles de prédiction présentent de meilleurs résultats avec la méthode développée dans cette
thèse.

Mots clés : Spectrométrie Visible et Proche Infrarouge - Polarisation de la lumière - Dif-
fusion - Sols - Carbone -

ABSTRACT

With the goal of reducing the amount of greenhouse gases in the atmosphere, policy makers
encourage practices intended to sequester carbon in soils (reforestation, changes in farming
practices). New methods are required to rapidly and accurately measure soil C at �eld- and
landscape-scales. Near infrared spectroscopy (NIRS) is an analytical technology adapted to
these speci�cations but remains experimental research in soil science.

This thesis has focused on the �rst step of this analytical method: signal formation. The soils
are very complex materials, in terms of chemical composition and physical structure. Hence,
the spectroscopic signal is negatively impacted by light scattering. Consequently, the conditions
of the Beer-Lambert are no longer ful�lled, and the chemometric models to predict the carbon
content of soils are less accurate and robust. We develop an original optical method based on
light polarization spectroscopy to measure the absorbance of highly scattering materials. By
selecting photons being less scattered, we compute a new absorbance signal which is a good
approximation of the Beer-Lambert absorbance.

This method, called Polis, was experimentally validated on model materials in liquid and
powdered form. Applied on soils to predict Total Organic Content, the model built with the
PoLiS absorbance outperform the models built with the classical absorbance computed from
the di�use re�ectance signal.

Keywords : Visible and Near Infrared Spectroscopy - Light Polarization - Scattering - Soil
- Carbon -
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