Thèse soutenue

FR  |  
EN
Auteur / Autrice : Raphaël Valensi
Direction : Philippe CôteDonatienne Leparoux
Type : Thèse de doctorat
Discipline(s) : Sciences de la Terre et de l'Univers, Géophysique
Date : Soutenance en 2014
Etablissement(s) : Nantes
Ecole(s) doctorale(s) : École doctorale Sciences pour l'ingénieur, Géosciences, Architecture (Nantes)
Partenaire(s) de recherche : autre partenaire : Université de Nantes. Faculté des sciences et des techniques
Jury : Président / Présidente : Hervé Chauris
Examinateurs / Examinatrices : Philippe Côte, Donatienne Leparoux, Hervé Chauris, Philippe Roux
Rapporteurs / Rapporteuses : Philippe Roux

Résumé

FR  |  
EN

Within the framework of Seismic FullWaveform Inversion (FWI) applied to near surface imaging, multicomponent data open new prospects. In this thesis, the potential of bi-component measurements in a 2D/P-SV configuration is investigated for shallow media where surface waves dominate signal. This approach combines formal developments, numerical tests and laboratory experiments. First, using an intrinsic metric in the polarization states space, a new kind of cost-functions for the polarization inversion is introduced. Then, with an adapted version of the FWI code FWT2D-PSV, several numerical experiments are conducted in order to investigate the limits of this approach with different sources of bias as erroneous a priori concerning the density or the attenuation parameters and source/receivers coupling effects. The new methodological developments are then evaluated in case of a near surface configuration with variable depth shallow interfaces. With a view of experimental validation, the third step concerns the upgrade of a reduced scale physical modelling bench (MUSC) in order to model multicomponent seismic acquisitions. Performances of the laser interferometer integrated in the measurement bench are quantitatively determined, especially for several polarization observables. Finally, two applications of this experimental facility to near-surface configuration are presented : shallow cavity detection and laterally varying interfaces.