Thèse soutenue

Non traduit

FR  |  
EN
Auteur / Autrice : Giovanni Massasso
Direction : Yannick Guari
Type : Thèse de doctorat
Discipline(s) : Chimie séparative matériaux et procédés
Date : Soutenance le 13/10/2014
Etablissement(s) : Montpellier 2
Ecole(s) doctorale(s) : École doctorale Sciences Chimiques Balard (Montpellier ; 2003-2014)
Partenaire(s) de recherche : Laboratoire : Institut Charles Gerhardt (Montpellier ; 2006-....)
Jury : Examinateurs / Examinatrices : Yannick Guari, Christian Serre, José Antonio Cabezos Real, Agnès Grandjean, Barbara Onida, Guillaume Maurin
Rapporteurs / Rapporteuses : Christian Serre, José Antonio Cabezos Real

Résumé

FR  |  
EN

La production d'énergie nucléaire nécessite des systèmes avancés pour améliorer les procédures de stockage et de confinement des déchets radioactifs. Par ailleurs, la capture d'éléments radioactifs mobiles dans les effluents des centrales nucléaires demande une amélioration de la capacité et de la sélectivité. L'iode 129-I est un des produits les plus critiques à confiner et il est produit pendant les procédés de recyclage des déchets nucléaires. Dans ce travail de thèse, la classe de matériaux moléculaires, dénommée structures de type Hofmann, a été étudiée en tant que matériaux massifs et nanoparticules supportées pour la capture sélective de l'iode moléculaire. En premier lieu, les matériaux M'(L)[M''(CN)4] ont été précipités sous la forme de poudres microcristallines. L'insertion d'iode dans le réseau des matériaux massifs a été effectuée par différents protocoles: 1) adsorption d'iode dans des solutions de cyclohexane à température ambiante; 2) adsorption d'iode en phase gazeuse à 80 °C; 3) adsorption de vapeurs d'iode en phase gazeuse à 80 °C et en présence de vapeurs d'eau. Les différents protocoles pour l'insertion d'iode n'ont pas influencé la nature de l'iode confiné. Pour la capture en solution, les structures NiII(pz)[NiII(CN)4], NiII(pz)[PdII(CN)4] et CoII(pz)[NiII(CN)4] ont montré une capacité d'une molécule d'iode par unité de maille. L'iode confiné est physisorbé en tant qu'iode moléculaire en interaction avec le réseau. Les modélisations GCMC ont confirmé la capacité maximale et ils ont indiqué que l'iode interagit avec la pyrazine et avec les cyanures. Sur la base des données expérimentales, la modulation des métaux dans le réseau a montré une légère différence dans la force d'interaction entre l'iode et le réseau et une adaptation de la maille spécifique pour chaque composition. Une complète régénération du réseau a été possible, puisque l'iode était complètement désorbé avant la décomposition du réseau. Pour le réseau NiII(pz)[PtII(CN)4], on a observé un mécanisme différent de capture puisque ce réseau contenant Pt a réagi avec l'iode en donnant le complexe de coordination NiII(pz)[PtII/IV(CN)4].I-. La formation de ce type de complexe était déjà observée dans la littérature par Ohtani et al. lesquels avaient préparé le complexe via une synthèse in-situ. Ensuite, le changement du ligand organique pyrazine avec d'autres ligands plus longs, c'est-à-dire la 4,4'-bipyridine (bpy) ou 4,4'-azopyridine (azpy), pour avoir des cages plus grandes a montré une diminution de la capacité maximale de capture d'iode. Les données expérimentales ont suggéré que pour un confinement d'iode optimisé, le réseau doit disposer de cages avec une dimension très proche de la molécule d'iode (0.5 nm). Après l'étude des matériaux massifs, nous avons considéré la préparation de nanoparticules supportées de NiII(pz)[NiII(CN)4] pour la capture d'iode. Nous avons obtenu les nanoparticules via un procédé étape par étape, par imprégnation d'une série de silices mésoporeuses greffées avec un ligand diamine, puis avec les précurseurs de NiII(pz)[NiII(CN)4]. Nous avons utilisé en tant que supports, une silice SBA-15 modifiée et des billes de verre poreux pour obtenir respectivement les nanocomposites Sil@NP and Glass@NP. Par microscopie électronique à transmission, nous avons détecté pour Sil@NP des nanoparticules de diamètre moyen 2.8 nm. L'adsorption d'iode dans les nanoparticules a été confirmée par spectroscopie FT-IR. Les traitements thermiques ont indiqué que la portion d'iode dans les nanoparticules pouvait être désorbé dans l'intervalle 150-250 °C. Nous avons pu estimer que la capacité de capture des nanoparticles était très proche de la capacité du massif NiII(pz)[NiII(CN)4]@I2.