Thèse soutenue

Résolution de systèmes bivariés et topologie de courbes planes

FR  |  
EN
Auteur / Autrice : Yacine Bouzidi
Direction : Sylvain LazardMarc Pouget
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 18/03/2014
Etablissement(s) : Université de Lorraine
Ecole(s) doctorale(s) : École doctorale IAEM Lorraine - Informatique, Automatique, Électronique - Électrotechnique, Mathématiques de Lorraine (1992-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire lorrain de recherche en informatique et ses applications
Jury : Président / Présidente : Monique Teillaud
Examinateurs / Examinatrices : Fabrice Rouillier, Michaël Sagraloff
Rapporteurs / Rapporteuses : Laurent Buse, Éric Schost

Résumé

FR  |  
EN

Un problème fondamental en géométrie algorithmique est celui du calcul de la topologie d'une courbe plane donnée par son équation implicite. Ce problème peut être vu comme celui du calcul d'un graphe qui approche la courbe et qui possède la même topologie que cette dernière. Une étape importante dans les algorithmes calculant la topologie d'une courbe plane concerne le calcul des points singuliers et points extrêmes (en x) de celle-ci. Ce problème se ramène naturellement à celui de la résolution de systèmes bivariés définis par la courbe et ses dérivées par rapport aux variables qui la définissent. Cette thèse porte sur l'étude, l'élaboration et l'implantation d'algorithmes robustes et efficaces pour la résolution de systèmes définis par des polynômes en deux variables à coefficients entiers. Plus précisément, nous nous somme intéressé au calcul d'une Représentation Univariée Rationnelle des solutions. Une telle représentation est constitué d'un polynôme univarié et de deux fonctions rationnelles qui envois les racines du polynôme univarié sur les coordonnées des points solutions du système. Nous présentons dans un premier temps un algorithme théorique pour calculer la RUR d'un système bivarié qui améliore la meilleure borne de complexité connue d'un facteur d^2, ou d désigne le degré des polynômes de départ, et qui permet d'obtenir une nouvelle borne sur la taille des polynômes de cette RUR. Dans un second temps, nous présentons un algorithme de calcul de RUR efficace en pratique. Cet algorithme, basé sur certain choix aléatoires et sur l'utilisation du calcul multi-modulaire est probabiliste. Nous en présentons une première version Monte-Carlo, puis nous montrons comment tester la correction du résultat ce qui fourni un algorithme Las-Vegas. Cet algorithme est efficace à la fois en théorie et en pratique à en juger par l'analyse de complexité en moyenne et les nombreux tests effectués