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Résumé

Depuis la naissance des supercalculateurs jusqu'à l'arrivée de machines péta�opiques,

les technologies utilisées n'ont cessé d'évoluer à une vitesse fulgurante. Cette course à la

performance se heurte aujourd'hui au passage à l'Exascale, qui se démarque des autres

échelles par les di�cultés qu'elle impose pour la franchir. Les conséquences qui en dé-

coulent bouleversent tous les domaines scienti�ques relatifs au Calcul Haute Performance

(HPC).

Nous nous plaçons dans le contexte des problèmes à valeurs propres, largement ré-

pandus: du page ranking aux simulation de systèmes nucléaires, astronomie, explorations

pétrolifères...

Notre démarche comporte deux thématiques complémentaires: Nous proposons

d'étudier puis d'améliorer la convergence de la méthode de recherche de valeurs propres

Explicitly Restarted Arnoldi Method (ERAM) en réutilisant les informations générées.

L'étude de la convergence et sa caractérisation sont indispensables pour pouvoir mettre

en place des techniques de Smart-Tuning, c'est à dire l'adaptation durant l'éxécution par-

allèle de certains paramètres numériques ou informatique (au sens large) de la méthode

considérée. La phase d'amélioration consiste à utiliser les valeurs de Ritz de manière ef-

�cace a�n d'accélerer la convergence de la méthode sans coûts supplémentaires en terme

de communications parallèles ou de stockage mémoire, paramètres indispensables pour

les machines multi-coeurs et hétérogènes.

En�n, nous etudions deux méthodes pour générer des matrices de très large dimensions

aux spectres imposés a�n de constituer une collection de matrices de tests qui seront

partagées avec la communauté du HPC. Ces matrices servent à valider numériquement

des solveurs de systèmes à valeurs propres d'une part, et d'autre part de pouvoir évaluer

leur performances parallèles grâce à leur propriétés adaptées aux machines peta�opiques

et au-delà.

Mots Clés: Architectures Hétérogènes et Homogènes, Communications Asyn-

chrones, Extreme-Scale, Méthodes de Krylov, Co-Méthodes, Méthodes Hybrides, Prob-

lèmes à valeurs Propres, Auto/Smart-Tuning, Stratégies de Redémarrage.



Summary

Supercomputing architectures and programming paradigms have dramatically evolve

during the last decades. Since we reached the peta�op scale, we forecast to overcome

the exa�op scale. Crossing this new scale implies many drastic changes, concerning the

overall High Performance Computing (HPC) scienti�c �elds.

In this Thesis, we focus on the eigenvalue problems, implied in most of the industrial

simulations. As an non-exhaustive list, we can cite page rank, nuclear physics simulations,

oil & gas exploration, astronomy ...

This thesis focuses on two complementary topics, where we propose to study and

improve the Explicitly Restarted Arnoldi Method (ERAM) convergence. The �rst step is

to study and characterize the ERAM convergence: such metric is the basis of every up-

coming smart/auto-tuning heuristic. We propose to ameliorate the ERAM convergence

by using e�ciently the Ritz eigenpairs without any additional parallel communications

nor memory storage, two key points in the ultra-scale computing context.

We then study two matrix generators, starting from a user-imposed spectrum. Such

collections of matrix are used to numerically check and approve extreme-scale eigensolvers,

as well as measure and improve their parallel performances on ultra-scale supercomputers.

Keywords: Heterogeneous and Homogeneous Architectures, Asynchronous Com-

munication, Extrem-Scale Computing, Krylov Methods, Co-Methods, Hybrid Methods,

Eigenvalue Systems, Linear Systems, Auto/Smart-Tuning, Restarting Strategies, Restart-

ing Vector.
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Introduction

In the large shade of scienti�c applications and simulations, solving an eigenvalue

problem is a common occurrence. This diagnosis is not new, as evidenced by the famous

title "150 Years Old and Still Alive: Eigenproblems" [Vorst 1997].

Recently, eigenproblems have been particularly highlighted with search engines suc-

cess. The truth is, eigenproblems guide many scienti�c applications. As a non-exhaustive

list, we can mention the Oil & Gas exploration, astronomy/aerospace simulations, clima-

tology, mechanical simulations, nuclear physics modeling... Many other scienti�c �elds

can be quoted, the list is certainly not limited to the previous mentioned above.

The "nature" of the eigenproblem itself di�ers, depending on modeled system prop-

erties. We will illustrate this purpose on two nuclear reactor physics applications.

The neutron transport is the heart of physical processes in nuclear reactor simulations.

The Boltzmann equation (also called neutron transport equation) is a part of the neutron

transport simulation. Such equation is solved by using whether deterministic or Monte

Carlo methods. As a part of the global system resolution, computing the dominant

eigenpair of a large non-Hermitian matrix leads to compute the so-called "criticality
coe�cient". Among the large palette of eigensolvers, a subset present speci�c properties,
turning them to the most-e�cient eigensolvers to compute the dominant eigenpair of a

large system.

On the other side, some applications require to compute a (large) subset of domi-

nant eigenpairs of a large non-Hermitian matrix. This is illustrated by the Fission matrix

method, used to improve the Monte Carlo process convergence to solve the neutron trans-

port equation: The more eigenpairs we compute, the more we improve the Monte Carlo

process convergence. Computing many dominant eigenpairs implies to use eigensolvers

that can focus on such speci�c eigen systems.

Additionally to the mathematical properties of each eigen systems, we have to bear in

mind that such eigen solvers address to large simulations, therefore large systems. The

computing capability is one of the leading parameter to solve such huge eigenproblems.

In some cases, eigen solver mathematical properties and scalability go hand in hand. In

many other cases, we must balance mathematical e�ciency with scalability properties.

Finding an optimum equilibrium between these two major metrics (numerical e�ciency

and scalability) of a large eigen systems is an endless topic.

This debate is all the more true in present context of the "High Performance Com-
puting (HPC)". Fast evolution of supercomputers during the last decades is now shaken

by the up-coming exascale supercomputers. Most of the scienti�c �elds related to HPC

(from hardware architecture to the level of application design) are constrained to re-think

acquired knowledge and technologies. This upheaval may seem intuitive or natural for

some �elds, such as programming paradigms or hardware architecture... It is less obvious

to apprehend and understand that exascale revolution also deeply impacts other scienti�c

�elds such as algorithm design and applied mathematics.
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This is the backdrop to this thesis, we focus on improvement of Krylov eigensolvers for

large non-Hermitian matrices. The leading parameter will remain optimum of numerical

e�ciency (in this context, convergence of the Krylov eigen solver) and parallel e�ciency.

This thesis covers the Explicitly Restarted Arnoldi Method improvement by studying its

convergence scheme. Such preliminary work is essential to implement an auto-adaptive

(also called Smart-Tuning) ERAM algorithm. In this context, we particularly focus on

the ERAM restarting strategies, as they may considerably accelerate ERAM convergence

without any disruption regarding parallel performances (in terms of memory storage,

global/blocking communications and number of operations). This study is completed

by two matrix generators implementation to verify on one hand exactness of computed

eigenpairs and on the other hand whose dimensions can be adapted to ultra-scale super-

computers.

We will �rst introduce the current context of High Performance Computing to high-

light locks and challenges raised by the exascale target. The next chapter will present

some Krylov eigensolvers, focus on their di�erences and emphasize "tricky" parameters

that athirst parallel performances. The third chapter will present a method to evaluate

and characterize Krylov eigensolvers convergence: such heuristic forms the basis for up-

coming Auto/Smart-Tuning tools to improve ERAM performances. We will then present

matrix generators and their huge potential for many scienti�c �elds that (will) use ultra-

scale supercomputers. We will emphasize their numerical e�ciency and use generated

matrices during the next chapters. The chapter 5 will present ERAM restarting strate-

gies behavior and their impact on ERAM convergence. The last chapter will suggest

some ways forward by outlining avenues for further re�ection to dynamically tune ERAM

restarting strategies with respect to its convergence.

2







Chapter 2

The Extreme-Scale Challenge

This chapter displays an overview of the High Performance Computing (HPC), since
it's inception to today. The �rst part focuses on the fast evolution of HPC to reach

the peta�op scale. We emphasize that HPC is thus crucial for the understanding of our

environment (in the broadest sense of the term) and why its evolution is so important to

improve our current scienti�c knowledge. Secondly, we will detail locks that prevent us

to reach the exa�op scale and the tracks of re�exion to over come exascale.

2.1 Supercomputing Rise until the Peta�op scale

In this section, we are going over the history of HPC, from its beginning until now.

This introduction presents brie�y HPC evolution and its incredibly fast development.

Most of all, we highlight the revolution that is currently shaking up the entire HPC

community.

Since the �rst supercomputers, many scienti�c achievements have been successful

thanks to simulations. When we mention simulations, we generally think to computa-

tional science of "non-feasible" experiences, such as universe visualization [Springel 2011]

as an illustration.

Simulation term thankfully encompasses much more experiences, both "feasible" and

"non-feasible" ones. Regardless simulations, they are all issued from an advanced com-

putational science study and a powerful supercomputer.

From a "global and simpli�ed" point of view, scienti�c knowledge is gained through

simulations and simulations are gained through supercomputers. Drawing on this, HPC

science gathers fundamental sciences (such as physics, applied mathematics ...) with

computer science (from the hardware until the programming languages). Compared to

fundamental sciences, HPC is relatively recent but its evolution is incredibly fast. As

knowledge is probably the most powerful weapon of the world, supercomputers are the

most quali�ed soldiers to create and handle it.

A straightforward representation of HPC is that the more computing power you get,

the more knowledge you are susceptible to get. We intentionally add "susceptible" as

taking advantage of supercomputers computing power recquires �rst a "taming" phasis

of the supercomputer itself.

Supercomputer's performance is generally the reduction, through the expanding notion

of computing power to the �oating point operations capacity ([Daly 2011], page 7). The

higher the number of �oating point operations per second (Flops) is, the more powerful

supercomputer is, therefore the Flops measure is one of the reference metrics to appreciate

5



The Extreme-Scale Challenge

supercomputers performance. Still, reducing supercomputers performance only to this

single metric remind a simplistic scheme ([Booth 2011], page 10).

2.1.1 Supercomputers History, Past & Present

HPC birth date is a controversial topic. Should we consider that HPC is born with

the emergence of parallel computing or supercomputer concept? We will certainly not be

taking part in this open debate.

If "Super Computing" concept has been �rst introduced in the early 1930s [New 1929],

supercomputers as we consider them nowadays emerged in the 1950s.

Among many others, we can mention as computational science pioneers John von

Neumann and Grace Hopper (We often refer to Grace Hopper as "the woman who gave
voice to computers"). Many innovations were made possible thanks to their huge con-

tributions to computational science. The computing power race which is indeed a global

race, started out from this period and still goes on.

Since the �rst supercomputers, physicists, biologists and many other scientists

have expressed their needs for more computational power. The �rst Moore's law

([Moore 1965],[Moo 2005]) suggested a strong and extended growth of power computing

through chips computing capacities improvement. Supported by many scienti�c indus-

tries and �elds, computer science community has made important innovations, in terms

of hardware, software and programming languages/libraries.

In light of this, HPC leads to a conducive mutual enrichment of both computer and

fundamental sciences. The mega�op scale was reached in the 1970s and no more than

ten years later, the giga�op scale was crossed. At that point, hardware components

technology was still evolving and computing power was rapidly acquired by multiplying

the number of components on a single chip.

We �nally reached the tera�op scale [Mattson 1997] in the 1990s thanks to supercom-

puters with thousands of processors. The thirst for knowledge has driven us to peta�op

supercomputers [Roa 2008] in only 5 decades since supercomputers appeared.

Based on existing technologies, supercomputers enhanced their power capacity by

using more and more processors on a single chip, therefore by con�rming the Moore's

law. However, getting more parallelism level(s) inside of a node itself arises new issues,

especially about the supercomputers operating systems, but also about algorithms designs

and programming paradigms: How can you get e�ciency from all of these parallelism

levels? Over and above these problems, new components appeared to enhance power

computing, such as accelerators (Graphic Process Units (GPU) and Intel R© accelerators

as an illustration).

Heterogeneous architectures (this point will be detailed in paragraph 2.3) have up-

set classic programming paradigms. If the theoretical peak performance o�ered by such

supercomputers is de�nitely interesting, taking advantage of it requires many e�orts at

an expensive price (in both �nancial and working terms). Industries simulations frame-

works are mainly long term development frameworks. With such architectures, a new
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constraint arose, which is to optimize the fragile balance of e�ciency versus re-usability,

maintainability and portability of frameworks.

Petascale supercomputers gave access to an unprecedented power computing through

many parallelism levels (dozens of thousand nodes, each having potentially many proces-

sors, each having many cores ...). Based on this observation, one computing node has

itself at least 3 parallelism degrees and nodes may have di�erent components, potentially

leading to more intra-node parallelism. The increasing number of cores per node also

implies a high memory hierarchy level, introducing new memory constraints.

All these constraints (among many others that will not be detailed in this thesis) are

part of challenges to over-come to build a petascale simulation. If petascale constitutes

itself a challenge, the exascale one is by far the highest in the whole HPC history.

As soon as the �rst peta�op supercomputer was built, HPC scienti�c communities were

already dreaming of future exa�op supercomputers. Exascale has enhanced many other

locks that we must override, so that the exascale dream may become true ... Somewhere

in the (near?) future: As an illustration, the �rst exascale supercomputer is expected by

the year 2018/2020 according to the expert advices of M. Snir, W. Gropp and P. Kogge

in ([Snir 2011], page 2).

Latest changes introduced by petascale computing point to a better understand-

ing of major research areas, such as nuclear science ([Ashby 2010], pages 20-24), cli-

mate ([Ashby 2010], pages 16-17), astrophysics ([Ashby 2010], pages 14-16), aerospace

([Ashby 2010], pages 11-14), combustion ([Ashby 2010], pages 17-20) and many others.

Current exascale research has been urged by many scienti�c communities thirsting for

larger and more accurate simulations that will considerably extend our current knowledge.

Every �elds we mentioned above de�nitely need exascale supercomputers to get to a better

understanding/visualization of current simulations/models ([Ashby 2010], pages 25-46).

Thanks to the computational power growth from the 1960th until today, the scienti�c

progress were realizable making sure that previous simulations implementations were

improved with respect to new supercomputers characteristics. Far more e�ort is needed

to extend current petascale simulations into exascale simulations ([Daly 2011], page 11).

In fact, the term "extension" is not appropriate anymore, we should rather refer to a

"metamorphose". Multiple exascale hurdles have been identi�ed, as well as a small part

of the tools to achieve it.

2.2 The Exascale Energy Wall

As a primary observation, exascale computing is unobtainable by using the past and

present strategies to increase supercomputers power ([Dongarra 2014], pages 7-8). Super-

computers achieved more performances due to parallelism and clock rate improvements.

However, due to technical constraints, the CPUs clock rate stopped its speed rate and

supercomputers builders must now deal with it ([Brown 2010], page v). Both energy and

technological barriers are major exascale constraints, we can de�nitely say that exascale

marks a strong break with HPC knowledge acquired so far. To highlight the energy wall
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for exascale, we illustrate this purpose on the current 5 most powerful supercomputers

from Top500's list (June 2014) [Meuer ]:

Top500's Rank Supercomputer Sustainable Peak Theoretical Peak Power

PetaFlops/second PetaFlops/second Mega Watt

1 Tianhe-2 33,8627 54,9024 17,808

2 Titan 17,5900 27,1125 8,209

3 Sequoia 17,1732 20,1327 7,890

4 K-Computer 10,5100 11,2804 12,660

5 Mira 8,5866 10,0663 3,945

Table 2.1: The Top500 List is actualized twice a year. Starting in 1993, it provides the

list of the 500 most powerful supercomputers in terms of Flops performance.

An extremely simplistic vision but a good introduction to exascale energy challenge

is to multiply by 102 the energy consumption of each most powerful supercomputer

([Decker 2010], page 9) listed in the Table 2.1.

Getting Tianhe-2 to an exa�op system would consume 1700,808 Mega Watt. The high-

est limit of supercomputers energy consumption has been evaluated around 20−30 Mega

Watts with the expert advice of the United State Department of Energy ([Brown 2010],

page 9; [Ashby 2010], page 49; [Decker 2010], page 9; [Beckman 2012], page 7/21).

A relatively recent (compared to the Top500 "birth date") trend is to classify super-

computers with respect to their Performance per Watt [?]. Based on the Table 2.2, the

most e�cient supercomputer (id est that has the best ratio of Flops versus consumed

energy) list does not corresponds to the Top500 one (for both sustainable and theoretical

peak performances).

PFlops/MW Top500 Supercomputer Sustainable Peak Perf. Theoretical Peak

Rank Rank per Watt Perf. per Watt

(PFlops).(s)−1.(MW )−1 (PFlops).(s)−1.(MW )−1

3 1 Tianhe-2 1,9 3,08

2 2 Titan 2,14 3,3

1 3 Sequoia 2,18 2,55

4 4 K-Computer 0,83018 0,89103

1 5 Mira 2,18 2,55

Table 2.2: Starting from the Table 2.1, we computed the peak performance per Mega

Watt for each most powerful supercomputer according to the Top500 List (June 2014).
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The current supercomputer (from Green500 June 2014 List [Gre ]) with the best Per-

formance per Watt ratio is TSUBAME-KFC from the GSIC Center, Tokyo Institute of

Technology (Japan) with a 4, 38982 Pflops/MW .

We recall that the previous tables (2.2 and 2.1) that presented supercomputers energy

consumption do not take into account neither cooling system consumption nor module

inverter, nor building consumption ... We estimate that a complete computing center

energy consumption represents about 30% to 40% of supercomputer consumption itself.

During the last decade, the Flops measure was de�nitely the performance reference

metric, while nowadays, �ops performance per watt is a more pertinent metric, leading to

a "low-consumption �ops" performance ([Brown 2010], page v). According to the Table

2.1, an exa�op supercomputer using the current architecture models would consume many

giga Watts: Such energy consumption scale is not �nancially viable.

Starting out this naive representation of the energy wall, one may glimpse the reason

why we are all talking about HPC metamorphosis rather than an extension of our current

knowledge. The power challenge is de�nitely the main piece of exascale achievements

([Brown 2010], page v; [Dongarra 2014], page 7-8), outcoming on dramatic transforma-

tions from fundamental mathematics until the highest programming level.

2.2.1 The Energy Consumption Metric as Reference

It is recognized that the greediest part in terms of energy consumption of parallel ap-

plications is data movement ([Booth 2011], page 10; [Daly 2011], page 13). The previous

supercomputers architectures lead to bulk-synchronous applications and energy consump-

tion has never been a priority.

In this context, overcome the energy wall de�nitely implies to favor the asynchronous

communications and avoid (to the extend possible) global and blocking communications.

If OS ability to measure energy consumption may appear as an evidence, languages

and numerical scienti�c libraries must also include such tools, so that simulation execution

parameters may be adapted with respect to energy consumption at runtime.

This implies that algorithm design themselves must take into account energy con-

sumption metric. Basically, we expect to get algorithms able to dynamically tune some

numerical/simulation/hardware parameters to reduce its energy consumption, while con-

serving the method consistency.

2.3 The Extrem-Scale Supercomputers Architectures

With peta�op supercomputers arise heterogeneous architectures. The use of accelera-

tors with CPUs or di�erent CPU components is widespread in supercomputers architec-

ture. As an illustration, one of the supercomputer we used during this thesis has three

di�erent partitions.

We emphasize that heterogeneous architecture is neither the unique trend nor the
best one, as the K − Computer achieves very good performances using a homogeneous
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architecture (among many other supercomputers with homogeneous architectures).

The use of heterogeneous architectures aim to extract the most computing power as

possible as they maximize the Flops per Watt ratio. The two following �gures issued

from [Rupp 2013] present peak �oating point operations per watt with single and double

precision respectively. These �gures are very interesting as they compare the recent

accelerators used in current supercomputers.

From 2007 until 2013 the GPUs were providing a signi�cantly better peak �oating

point operations per watt ratio than the classic CPUs. This explains the democratiza-

tion of heterogeneous supercomputers architectures based on CPU-GPUs during the last

decade.

Figure 2.1: Peak Floatting Point Operations per Watt, Double Precision

Intel R© CPU, GPU (NVIDIA R© and AMD R©) and Intel R© MIC GFLOP/sec per Watt Compar-

ison in the case of double precision arithmetics. The higher, the better [Rupp 2013].

If accelerators may be a good compromise to increase the peak �oating point opera-

tions performances, one may notice that performance for a heterogeneous supercomputer

is increasing non-uniformly compared to a homogeneous architecture ([Daly 2011], page

15): therefore, this "performance gain" is not "free" and many e�orts are required to
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take advantage of heterogeneous architectures.

As each hardware has its own speci�cities (parallelism levels, peak performance et

caetera), it may also have languages and programming speci�cities. As an illustration,

use of a NVIDIA R© GPU for HPC computation requires to dispose of an implementation

of the simulation framework with CUDA R© language. On the other side, use of an AMD R©
GPU for the same purpose is not compatible with CUDA R© language, neither we can use

CUDA R© to implement a framework destinate to a pure CPUs architecture.

The scientists can not a�ord the luxe to have a framework design speci�c to each

architecture. However, developers and algorithm designers must work o� their energy

to bene�t from each hardware power computation as much as possible and as long as

the framework re-implementation costs do not overcome a certain amount. In this con-

text, programming languages that abstract hardware language dependency arise. As an

non-exhaustive list, we can mentioned the Open Computing Language (OpenCL) and

OpenACC regarding the hardware speci�c languages.

Since 2011, the gap between the Intel CPUs and the accelerators is reduced (Figure

2.1), leading to the fact that supercomputers architectures may be chosen depending on

the applications maintainability, portability and developments requirements with respect

to hybrid architecture rather than on peak performance only.

2.3.1 Toward Hardware-Aware Algorithms

Heterogeneous architectures have neither a uniform performance metric nor uniformly

parallelism levels. A partition may have some parallelism degrees while another one will

not have the same. Therefore algorithms must consider this important constraint to

exploit every parallelism levels of every partitions otherwise performance may be very

poor compared to sustainable peak performance.

In this context, some simulations algorithms may be more adapted to accelerators or

pure CPU architectures. Such constraints must intervene at algorithm design level, but

this parameter is limited by the fact that supercomputers architectures evolve much more

faster than simulations framework(s).

2.4 The New Programming Paradigms to Overcome

the Exascale Challenge

Petascale supercomputers have already emphasized this additional complexity, as tak-

ing advantage of highly parallel multiple cores architectures has an expensive price. Meth-

ods themselves must be able to exploit more parallelism levels, from the lowest grain

parallelism until the highest one ([Booth 2011], pages 23-24; [Brown 2010], page 23).

New parallelism levels may not be exploited by algorithm and/or previous program-

ming paradigms.

Process units have drastically increased to provide more computation power. In fact,

the growth of parallelism within chips had so far an exponential evolution. From the
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computational power point of view, we can consider this additional parallelism levels as

a bene�t, but we can also qualify it as a complexity level.

2.4.1 Manage the Hardware Dependencies

Taking advantage of the lowest parallelism level may require a framework imple-

mentation very speci�c to the hardware used, getting to the e�ciency versus portabil-

ity/maintainability dilemma ([Beckman 2012], page 10).

The lowest grain parallelism de�nition may depend on both the algorithm and hard-

ware point of view.

Exploiting multi cores parallelism and getting the best e�ciency of it requires a multi-

threading programming taking into account the hardware speci�cities. Develop current

simulations framework to exploit hardware speci�cities implies a considerable reduction of

framework portability and may engender deep modi�cations of frameworks development.

One di�culty is to adapt these frameworks on future exascale machines while using them

on the current supercomputers. In this context, new programming paradigms appear,

using low intrusive language (such as pragma directive languages for example): as an

illustration, we cite StarPU, Cilk or TBB. Each of these libraries/languages has its own

bene�ts and defaults compared to each others. As a common point, they all aim to

maintain portability, maintainability of framework while improving hardware parallelism

e�ciency ([Beckman 2012], page 12).

2.4.2 Algorithms Adapted to Multi-Level Parallelism

Multiple parallelism levels must be integrated directly at the algorithm design.

Peta�op supercomputers have many parallelism levels and it remains arduous to exploit

them from the highest one (inter-node) until the lowest one (processor). Such parallelism

levels are de�ned by the memory hierarchy, that becomes more and more complex due

to components and hybrid architecture. It is admitted that data movement is one of

the greediest part in terms of energy consumption of parallel applications. Reducing

data movement must not be limited to inter-node communications but also to intra-node

parallelism.

In this context, new tools appeared to e�ciently exploit each parallelism levels and

conserve at the same time a certain maintainability and portability of application frame-

work.

As an illustration, the �nest parallelism levels will be sensitive to e�cient manage-

ment of resources inside a node: this implies to use libraries dedicated to shared-memory

parallelism architecture and e�ciently manage memory hierarchy inside a node, such as

considering the multi-caches and their speci�cities so as to limit data-movement inside a

node.

On the other side, coarse grain parallelism levels must be e�ciently managed. As an

illustration, the coarse grain parallelism may represent several collaborating methods or
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parts of a method itself. According to graphic representations, the coarse grained paral-

lelism may be modeled by tasks scheduler programming paradigms. As an illustration we

can mention YvetteML (YML) ([yml ]), a graph description language that separates com-
munications and computation parts. Tasks communication are modeled using a graphic,

starting from this the scheduler optimizes tasks communications. Graph descriptions

are adapted tools to describe coarse (but not only) parallelism level while maintaining

framework re-usability.

If we almost overcame some of these issues for petascale supercomputers, they arise

again as exascale supercomputers are expected to have at least two to three additional

orders of parallelism levels compared to petascale computers. Getting more scalability

will require again expensive e�orts from likely every HPC scienti�c community.

2.5 The Resiliency as a Key Parameter for the Exascale

Computing

On previous supercomputers, resiliency was more considered under hardware and op-

erating system ([Beckman 2012], page 7/20) �elds. Basically, only hardware builder and

supercomputer software designers worried about the resiliency challenge. It is assumed

that the more the number of components increase, the more the Mean Time Before Fail-
ure (MTBF) decreases. Regarding the costs of a simulation, this is an absolute necessity.

The MTBF is obviously expected to decrease with the exascale computing.

2.5.1 Ensure and Manage the Operating Systems Resiliency

OS designers and developers are �rst concerned by the resiliency challenge. Firstly, OS

will have more trouble to detect faults regarding hardware complexity architecture and

de�nitely more di�culties to communicate failure noti�cations across such large system.

As OS are expected to be able to recover in a very short time, this adds an other level of

complexity.

2.5.2 Languages & Numerical Libraries to Support the Resiliency

Many scienti�c frameworks are not using from now resilient parallel communication

libraries. If having a perform OS regarding the resiliency property is not su�cient, we

must add it to the languages and scienti�c numerical libraries to ensure the framework

simulation execution even in the case of hardware failure. As an example, a massive e�ort

from MPI library is provided to integrate the resiliency property [MPI ] so that the entire

communicator can survive to task subsets failure.
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2.5.3 Toward Resilient Algorithms

With today's supercomputers having dozens of thousands cores, the resiliency begins

to interest designers algorithms and developers. Many tools (algorithmic and mathemat-

ical ([Daly 2011], page 12; [Dongarra 2014], pages 8-9)) arise to recover data in case of

hardware/software failure. There is a urge need to conceive resilient algorithms that must

be able to recover eventual lost data. In the context of exascale applications, it is an ab-

solute necessity to maintain simulation execution and get the right results even though

a part of the method has failed (due to a cores and/or task failure). Resiliency property

integrated in algorithms is not anymore an "extra" but a "sine qua none".

2.6 The Mathematics Challenge for the Exascale Wall

Each exascale player presented above are all strongly related to each others and their

improvements obviously depend from each other. If these correlations seem naturally

related to HPC, applied mathematical research in accordance with HPC revolution is less

evident.

In this section, we highlight mathematical needs for the exascale challenge. The com-

plexity in the exascale challenge is that both computer science and algorithm design

must evolve hand in hand. Algorithms must be developed according to supercomputer

architecture and (future) supercomputer architectures must be compatible with previ-

ous/current/future algorithms...

To reduce algorithm energy consumption, we may limit data movements. To improve

algorithm scalability, we may use asynchronous communications instead of synchronous

ones ([Alexander 2011], page 14). To satisfy resiliency property, we may share each tasks

results with each other (this enters into direct confrontation with communications con-

straints) or use data redundancy (this enters into direct confrontation with memory con-

straints) ([Daly 2011], page 12; [Dongarra 2014], pages 8-9/40-42). Many of possible

ameliorations presented above may depends on varied parameters and a part of these

parameters may themselves depend on the execution itself.

For each of these constraints, we disrupt the proper implementation of algorithms

and potentially its mathematical properties. As an example, deleting arbitrarily parallel

communications or turn them to asynchronous ones lead to an incoherent simulation in

terms of mathematical results. Many research has been done to reduce drastically com-

munications ([Alexander 2011], pages 6-7) or at least optimize them such as we optimize

simulation exactitude versus energy consumption ratio. Programming paradigms appear

such as tasks schedulers to optimize the communications as an example. We are moving

towards concurrent methods models rather than complementary and dependent method

models.

In this context, new algorithms, quali�ed as self-adaptive (or auto-tuned) appeared,

driving to smart methods able to modify some of their parameters with respect to runtime

execution ([Beckman 2012], pages 10/21/43-44; [Daly 2011], page 14; [Ang 2012], pages
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13-14), to satisfy to the listed constraints above. Modi�ed parameter(s) or metric(s)

used to perform changes may evolve independently from each other depend on hardware

constraints, data storage constraint, numerical constraints ...

Two cases are particularly relevant:

m the metric depends and/or relies on numerical properties and/or elements of the

method,

m the modi�ed parameter depends and/or relies on numerical properties and/or ele-

ments of the method.

In these two cases, auto-tuned algorithm aims to optimize the ratio of numerical accu-

racy versus parallel execution performance (in a broad sense) ([Ang 2012], pages 15-16).

Bearing this in mind, whether numerical parameters is a metric or is changed, mathemat-

ical properties and validity must be ensured, while accuracy must be at least maintained.

The introduction of uncertainties coming from programming and/or hardware parameters

must be represented, quanti�ed and integrated into mathematical models ([Brown 2010],

page 43; [Alexander 2011], page 8-9; [Ang 2012], page 15-16; [Dongarra 2014], page 10;

[Booth 2011], page 12-17).

As an illustration, parallel normalization of a vector using the Euclidean norm 2

should be completely avoided from all algorithms to satisfy to exascale constraints. Let's

illustrate our purpose: We consider a vector of size n distributed onto np tasks. For

simplicity, we consider that each task dispose of n
np

contiguous data. Each tasks executes

its local scalar product, leading to the necessity to share local scalar product among np

tasks, sum them and �nally send them to all tasks. In the speci�c but very common case

that the Euclidean norm 2 of a distributed vector is needed to pursue the computation,

such operation may constitute a bottleneck. How can you replace it and conserve the

mathematical properties and consistency of the results?

This is the case with the Gram-Schmidt orthogonalization process [Gram 1883],

[Schmidt 1908], widely used in many numerical algorithms. However, such algorithm is

de�nitely mis�t in terms of parallelism: global and blocking communications, operations

depending from each others. If we want to adapt the Gram-Schmidt orthogonalization

process to exascale computing, we must delete all global and blocking communications,

getting to an inconsistent system that does not satisfy at all to mathematical properties

of algorithm.

New methods aim to delete a part of global and/or blocking communications

([Alexander 2011], pages 6-7) to reduce the exascale locks and minimize at the same

time disturbances of model mathematical accuracy. Many methods exists and they are

all based on the optimization of parallel scalability (and execution time) with respect to

mathematical accuracy and consistency of the model.

If the metric or changed parameters depends on runtime execution and in�uence it

([Alexander 2011], pages 9; [Dongarra 2014], pages 42-43), how can you provide repro-

ducibility? Even worst, how can you ensure, for every cases the model consistency?
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HPC community need to go back to mathematical roots of methods, consider at this

level nondeterministic aspects ([Alexander 2011], pages 8-9) and auto-tuning methods to

ensure at every levels the model mathematical consistency.

It is ironic that the exascale computing aims to provide more precision of existing

models while the future framework scalability depends on the nondeterministic and ap-

proximation introduction into existing methods. In the same way as we are missing many

information regarding hardware, software, programming models, we are de�nitely missing

mathematical background to reinforce algorithms and framework models.

In this thesis, an e�ort has been provided to model from a mathematical point of view

presented methods and algorithms. We aim to mathematically model every elements,

especially in the case of auto-adaptive method, regarding metrics used to change its

parameters. By identifying them, we aim to provide some tools to re-design method

using mathematical models.

2.6.1 The Eigenvalue Problems, Still Alive

The eigenvalue problem is a key point in many simulations: Many systems "simpli�ca-

tion(s)" and/or "transformation(s)" drive to an eigenvalue problem. Then, the eigenvalue

problem itself di�ers by the number of eigenpairs the system requires:

m whether you must compute the dominant (respectively the lowest) eigenpair,

m whether you must compute a subset of eigenpairs,

m whether you must compute the entire spectrum.

To each eigenvalue problem quoted above corresponds a class of eigensolvers.

Among all of methods that use the dominant eigenpair, we can cite page rank problem

which is nothing more than �nding the dominant eigenpair as fast as possible more in-

formation in [Kamvar 2004] and [Bianchini 2005]). The modeling of epidemic spread is a

very similar problem to page rank one. In a di�erent context, we can cite the Boltzmann

neutron transport equation [Lewis 2004]. All these problems need to compute at a point

the dominant eigenpair of a system.

For the eigenvalue problem in general, we can also mention seismic, climate modeling,

oil driving, �uid structure interaction, vibration accoustic, et caetera. The eigenvalue

problems are so current that quoting all concerned areas would constitute a thesis by

itself.

As each simulation has its own requirement, eigenvalue problem has it too. Depending

on matrix properties, the eigenvalue problem will be more or less complicated. Most of

HPC community gets its test matrices from its own applications or from open-source

matrices.

Using matrices issued from simulation(s) is de�nitely better as it re�ects at best the

system we aim to solve, but it may arise con�dentiality problems. The reproducibility

and (results) validation of simulations impose to dispose of a set of test matrices. As
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an illustration, the CEA applications use matrices coming from nuclear reactor model.

These matrices are fully con�dential, it is out of question to let them being open-source

matrices for tests and results validations.

Two widely used open-source sites propose many matrices coming from di�erent prob-

lems, such as (un)directed graph, optimization problem, circuit simulation problems, com-

putational �uid dynamics problems and many others ... Having such matrices is a huge

bene�t to tests and validate our applications, however, the matrices properties do not nec-

essarily match with our problem requirements. As an example, the eigenvalue repartition

is not compatible with our system matrices, the size may be too small ...

We aim to dispose of matrices generators, such that starting out a given spectrum,

we generate a matrix that conserves this spectrum and has the required mathematical

properties. We take o� the con�dentiality lock, matrices properties requirements and

additionally have a matrix that matches perfectly with the problem to solve.
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Conclusion

We presented in this chapter the current revolution that is shaking up HPC community.

Supercomputers performance was enhanced by the increasing computation units, but this

scheme is now stopped by the exascale energy wall.

The performance must be lead by the use of e�cient algorithms with auto-adaptive

tools in order to improve the parallelization and/or the numerical accuracy of the method.

As the eigenvalue problem is a key operation in nuclear physics, among many other

scienti�c �elds, there is a need to improve the eigen values solver(s) with respect to the

scalability and numerical e�ciency. This goes with the needs of matrix generators starting

from imposed spectrums in order to validate the computed eigenvalues and get systems

according to the ultra-scale supercomputers.

These thematics will be developed during the following chapters.
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Chapter 3

Krylov Method for Eigenvalue

Problems

Computing eigenvalues and/or eigenvectors of a large non-hermitian matrix is not

easy and remains costly in terms of parallel computations costs.

In this context, Krylov methods are good candidates to compute a subset of eigen-

pairs of a large non hermitian matrix. Krylov eigensolvers builds an eigen-system whose

dimension is negligible compared to the initial system and whose mathematical proper-

ties verify it approximates the original eigen-system. Krylov eigen solvers philosophy is

based on the equilibrium of numerical accuracy of the approximated eigen system and

computation costs to solve it.

In this chapter we present some of the commonly used Krylov eigen solvers. It exists

of course many variants of the following presented methods. We will focus on restarting

strategies for each eigen solver presented below and conclude on their parallel ability with

respect to exascale requirements.

3.1 The Arnoldi Method

The Arnoldi Method [Arnoldi 1951] is the basis of the Restarted Arnoldi Method:

this last one is an iterative method that aims to compute the spectrum of a large non-

Hermitian matrix A ∈ Cn×n. The Arnoldi Method generates an incomplete Hessenberg

decomposition of A [Saad 1980],[Saad 2011], so as to compute A eigenpairs.

Introduced in 1951, the Arnoldi Method is based on the Gram-Schmidt orthogonaliza-

tion process [Gram 1883], [Schmidt 1908]. It exists several variants of the Gram-Schmidt

orthogonalization process, but the Classic Gram-Schmidt (CGS) is the most common one

among many other variants (such as Modi�ed Gram-Schmidt, Classic Gram-Schmidt with

Re-orthogonalization... More details can be found in [Dubois 2011a] pages 33).

Starting from a random unit norm vector v ∈ Cn, the Arnoldi Method computes

iteratively an orthogonal projection of A onto a Krylov subspace (introduced in 1931 by

A. N. Krylov) that we denote by Km,v, where Km,v is de�ned by:{
Km,v = Span{v, Av, ..., Am−1v},

dim(Km,v) = m,n >> m,
(3.1)

m is the size of the generated Krylov subspace Km,v and is commonly called the Krylov

subspace size. A Krylov subspace that veri�es the equation 3.1 is the result of a m-step

Arnoldi Method.
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The Algorithm 1 presents the Arnoldi Method using a Classic Gram-Schmidt orthog-

onalization process.

We �rst introduce some notations used in the Algorithm 1 below:

m For a given matrix G with n ∈ N lines and m ∈ N columns, the vector gi refers to

the ith column of the matrix G while gi,j the element of matrix G on ith row and

jth column,

m the Gk,l matrix refers to the sub-matrix of G containing the k �rst lines and the l

�rst columns of G,

m during all the following chapters, unless we specify it explicitly, the norm ||.|| refers
to the Euclidean norm ||.||2,

m the operator T is the transpose operation and H is the Hermitian transpose opera-

tion,

m ∀i ∈ N∗, ei ∈ Ci is the ith Cartesian basis vector of Ci.

During all the following chapters, we will retain these notations.

Algorithm 1 The Arnoldi Method using CGS

Input: A ∈ Cn×n, v1 ∈ Cn, ε > 0, m ∈ [1, n]N
H ∈ C(m+1)×m

V ∈ Cn×(m+1)

1: v1 = 1
||v1||v1

2: for k = 1,m do
3: vk+1 = Avk
4: hk = vHk+1Vn,k
5: vk+1 = vk+1 − Vn,khk
6: hk+1,k = ||vk+1||
7: if ε ≥hk+1,k then
8: stop

9: else
10: vk+1 = 1

hk+1,k
vk+1

11: end if
12: end for

Output: H ∈ C(m+1)×m, V ∈ Cn×(m+1)

The Arnoldi Method generates two matrices:

m The matrix H ∈ C(m+1)×m,
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m The matrix V ∈ Cn×(m+1).

In fact, the incomplete Hessenberg decomposition of A is H by deleting its last row

(We denote it by Hm,m).

The resulting matrix V from the Arnoldi method has many properties. We denote by

Vn,m the matrix V by deleting its last column. At the end of a m-step Arnoldi Method,

the vector vm+1 is orthogonal to Vn,m but not normalized. Considering the Algorithm 1,

each columns of Vn,m are orthogonal and have a unit norm. Vn,m is then an orthonormal

matrix, which constitutes a basis of Km,v.

3.1.1 The Arnoldi Method Convergence

The Arnoldi Method stops if and only if we have reached the maximum number of

iteration m or if ε ≥ hk+1,k (Algorithm 1, step 6) [Saad 2011]. If ε ≥ hk+1,k is true, this

means that Km,v has converged to an invariant subspace. In this speci�c case, the vector

vm+1 is not computed during the mth step of the Arnoldi Method. Starting from this

hypothesis, we obtain the equation:

A = Vn,mHm,mV
T
n,m, (3.2)

If we satisfy the equation 8.1, then Hm,m eigenpairs are the exact A eigenpairs

[Saad 2011].

3.1.2 The Arnoldi Method Accuracy Dependancies

The full Arnoldi Method using a CGS orthogonalization process necessitates :

m m(m+1)
2

axpys operations (step 5 of the Algorithm 1),

m m matrix/vector products (step 3 of the Algorithm 1),

m m(m+1)
2

dots operations (step 4 of the Algorithm 1),

m m norm 2 operations (step 6 of the Algorithm 1),

m and �nally m scal operations (step 10 of the Algorithm 1).

In a parallel distributed memory environment, due to the large n value, the matrices

A and V are distributed while the matrix H is replicated one each processor, as H ∈
C(m+1)×m dimension is negligible compared to the initial system matrix A (n >> m). We

recall that V is a dense matrix, while A may be dense or sparse.

At each restart (that we denote by k ∈ N) of the Arnoldi Method, we build a new

vector vk+1 ∈ Cn, k ∈ [1,m]N and a new column of H matrix. Therefore, data size

increases, adding n+m+1 elements at each restart.

Additionally to memory storage, each Arnoldi Method restart is costly in terms of

number of parallel computations. Especially, operations such as normalization of vk+1

23



Krylov Method for Eigenvalue Problems

and matrix vector products steps are expensive in terms of number of blocking and global

communications. The more m increases, the more the Arnoldi Method is expensive in

terms of computational resources.

The m value is �xed such that n >> m in order to satisfy computational and memory

costs constraints, however, �xing correctly m value is not that simple.

It is assumed that a large m value will produce a better Km,v in terms of numerical

accuracy [Châtelin 1988]. With a large m, the Hm,m matrix is a better projection of A

onto Km,v. However, we recall that obtaining this numerical accuracy is not free in terms

of computational costs.

There is a tricky equilibrium between the Arnoldi Method numerical accuracy and

its computational costs (both memory storage and parallel communications), most of

it depends on m parameter. A large m value will favor Km,v numerical accuracy but

may considerably increase its execution time per iteration and lead to an energy-greedy

algorithm. On the opposite way, a small m will provide poor approximation of the initial

system but in a fast execution time per iteration due to the decrease of blocking and

global prallel communications.

Considering these two factors independently from each other is a mistake: they are

intrinsically related to each other and they must be optimized simultaneously in order to

reach the optimum con�guration between numerical accuracy and parallel execution time

of the Arnoldi Method.

Additionally to parallel computation costs, m value has a direct impact on numer-

ical accuracy of the projected system: A large m value favors a lack of orthogonality

[Giraud 2005] and may engender an inaccurate Krylov basis. Indeed, the larger m is, the

more we face to Floating Point rounding errors during Vn,m computation. The Arnoldi

Method can rely on other variants of Gram-Schmidt orthogonalization process, in order

to improve Vn,m orthogonality. If Vn,m orthogonality is poor, then Hm,m is consequently

an instable projection of A onto Km,v ([Braconnier 2000]).

It is possible to re-orthogonalize each vector of Vn,m to ensure a numerical accuracy.

If such method is numerically e�cient [Dubois 2011d],[Dubois 2011a], but this algorithm

is computationally very greedy. Such process is called the Classic Gram-Schmidt with

Re-orthogonalization (CGSR) process. The Arnoldi Method using the CGSR process is

presented in the Algorithm 2 bellow:
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Algorithm 2 The Arnoldi Method using CGSR

Input: A ∈ Cn×n, v1 ∈ Cn, ε > 0, m ∈ [1, n]N

1: v1 = 1
||v1||v1

2: for k = 1,m do
3: vk+1 = Avk
4: hk = vHk+1Vn,k
5: vk+1 = vk+1 − Vn,khk
6: ck = vHk+1Vn,k
7: vk+1 = vk+1 − Vn,kck
8: hk+1,i = ||vk+1||
9: if ε ≥hk+1,k then
10: stop

11: else
12: vk+1 = vk+1

hk+1,k

13: end if
14: end for
15: H = H + C

Output: H ∈ C(m+1)×m, V ∈ Cn×(m+1)

It also exists some variants of the Arnoldi-CGSR algorithm. Several studies em-

phasize the possibility to reduce the re-orthogonalization process, by using a selective re-

orthogonalization [Aquilanti 2011b], [Aquilanti 2011a]. The selective re-orthogonalization

consists in decreasing the number of global communications while maintaining as much

as possible Vn,m orthogonality.

Finally, there exists a variant of the Arnoldi Method using a classic CGS or CGSR

orthogonalization scheme, which is called the Arnoldi Method with incomplete orthogo-

nalization. It consists to execute (whatever the orthogonalization scheme you choose) a

partial Arnoldi Method, meaning that we execute only a subset of restarts of the m-step

Arnoldi Method.

3.1.3 The Arnoldi Method with Incomplete Orthogonalization

We generally start from previously computed data resulting from a k-step Arnoldi

Method, where k ∈ [1,m]N. This method has been introduced by Y. Saad [Saad 1980]

(more information can be found in [Saad 2011]).

Let's consider that we performed a k-step Arnoldi Method, obtaining H ∈ C(k+1)×k

and V ∈ Cn×(k+1) matrices. One may use Hk+1,k and Vn,k+1 matrices to extend them

until Hm+1,m and Vn,m+1 via a (m − k)-step Arnoldi Method. As m ≥ k, it results that

Kk,v ⊂ Km,v. The Incomplete Arnoldi Method using CGS orthogonalization scheme is

presented below:
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Algorithm 3 The Incomplete Arnoldi Method using CGS

Input: A ∈ Cn×n, vk ∈ Cn, ε > 0, m ∈ [1, n]N, k ∈ [1,m]N

1: vk = 1
||vk||

vk

2: for i = k,m do
3: vi+1 = Avi
4: hi = vHi+1Vn,i
5: vi+1 = vi+1 − Vn,ihi
6: hi+1,i = ||vi+1||
7: if ε ≥hi+1,i then
8: stop

9: else
10: vi+1 = 1

hi+1,i
vi+1

11: end if
12: end for

Output: H ∈ C(m+1)×m, V ∈ Cn×(m+1)

We recall that the Incomplete Arnoldi Method can be executed with every orthogo-

nalization schemes presented above (CGS, CGSR or MGS ...).

The Arnoldi Method presented in this section is not self-su�cient to provide A ap-

proximated eigenpairs, unless Km,v subspace has reached an invariant subspace. In most

of the cases, we must iteratively builds several Km,v using more and more accurate eigen-

information to favor Km,v to the desired eigen-subspace.

The Restarted Arnoldi Method (based on the Arnoldi Method) uses Hm,m and Vn,m
properties to extract pertinent eigen-information and compute from it a new Krylov

subspace. By restarting such process, we aim to obtain a satis�able convergence of Km,v

to an invariant subspace.

3.2 The Restarted Arnoldi Method

In this section, we present the Restarted Arnoldi Method, how we reuse computed

data of the Arnoldi Method to compute a more accurate Krylov subspace.

Starting from the previous section, we already mentioned that Hm+1,m is a unitary

projection of A onto Km,v. From the Arnoldi Method, we have the following equation

[Saad 2011]:

AVn,m = Vn,mHm,m + hm+1,mvm+1e
H
m, (3.3)

In scienti�c literature, we denote by fm = hm+1,mvm+1. In what follows, we will retain

this notation.

In the section 3.1, we mentioned that the Arnoldi Method is used to compute the

spectrum of matrix A. In fact, we must moderate this point. The Arnoldi Method tends
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to converge towards the outer eigenvalues of A spectrum [Saad 2011], [Châtelin 1988].

As Hm,m is an Hessenberg superior matrix, computing its eigenpairs is relatively easy.

Additionally to this important property, n >> m which justi�es that computing Hm,m

eigenpairs is not costly in terms of computation time but still, we need to moderate this

point as it depends on m value.

We compute a Schur decomposition from Hm,m to extract its eigenvalues:

Hm,m = STmTmSm, (3.4)

The matrix Sm is a unitary matrix and Tm is triangular. Hm,m eigenvalues are con-

tained on Tm main diagonal: We will denote by Θm ∈ Cm the spectrum of Hm,m and by

Ym ∈ Cm×m the corresponding eigenvectors.

Multiplying the equation 3.3 by Ym we obtain the following equation 3.5:{
AVn,mYm = Vn,mHm,mYm + fme

H
mYm

AVn,mYm = ΘmVn,mYm + fme
H
mYm

(3.5)

We denote by Un,m = Vn,mYm, βm = e∗mYm and replace them in the equation 3.5:{
AUn,m = Un,mΘm + fmβm

AUn,m − Un,mΘm = fmβm
(3.6)

Basically, the equation 3.6 means that {Um,Θm} provides an approximation at fmβm
precision of A eigenpairs. 

∀ j ∈ [1,m]N
Auj − ujθj = fme

H
myj

||Auj − ujθj|| = |hm+1,mym,j|,
(3.7)

The equation 3.7 is available for ∀ j ∈ [1,m]N in theory. In practice, only a subset of

{Um,Θm} veri�es these observations with a satis�able residual. Additionally, this method
is not adapted to compute all eigenpairs of A: it would require to �x m = n, which is

no possible because of computational reasons that we presented in section 3.1 (memory

storage and parallel communications costs).

Θm eigenvalues may not be ordered during their computation step. We denote by

λj ∈ the jth dominant (in terms or real or imaginary modulus) eigenvalue of A (we

will remain this notation during this thesis). After ordering Hm,m eigenvalues, one may

observe that θj does not necessarily corresponds to λj, as an illustration, θj may converge

to λj+1 or λj−1. Such phenomenas arise during �rst restarts of the Arnoldi Method, when

Km,v is not accurate enough. Nevertheless, such behavior also depends on Amathematical

properties and its eigenvalues distribution: conjugate eigenpairs are a classic example of

such problems.

Starting from the equation 3.6, there are two estimators to estimate the accuracy of

approximated eigenpairs.

We will denote these two indexes by :
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m resTrj = ||Auj − ujθj|| where θj is the jth dominant (in terms of real or imaginary

modulus) approximated eigenvalue of A (also called Ritz eigenvalue) and uj its

associated approximated eigenvector (also called Ritz eigenvector),

m resThj = |hm+1,mym,j| where hm+1,m is the last element of H matrix and ym,j is the

mth (last) element of the jth dominant eigenvector of Hm,m (H by deleting its last

row).

During all the following chapters, we will retain these notations. Theoretically speak-

ing, the equation 3.7 proves that resTrj = resThj, ∀j ∈ [1,m]N.

The theoretical residual resThj for each eigenpair is a simple multiplication of hm+1,m

with the last element of eachHm,m eigenvectors. First of all, this is a very simple operation

that implies neither temporary memory storage nor parallel communications.

The other residual resTrj implies for each desired eigenpairs a matrix/vector product,

a scalar operation and a dot operation. For each desired eigenpairs, computing this

residual requires global and blocking parallel communications, which is quite costly:

m m matrix (sparse or dense)/vector (dense) products,

m m linear operation (neither blocking nor global communications for this point),

m m dot operations.

Moreover, these parallel operations induce the propagation of many roundings. Be-

cause of the computational di�erences, it results that the equation 3.7 is not true com-

putationally speaking.

In the widely used parallel numerical libraries o�ering the Restarted Arnoldi Method

(or some variants that we will detail below), both residuals can be computed. However,

resTrj is considered as the reference residual as the resThj numerical value is not as

accurate as resTrj. Numerical accuracy is favored compared to computational costs.

The Algorithm of the Restarted Arnoldi Method is an extension of the previously

presented Algorithm 1. In what follows, we will denote by s the number of desired

eigenpairs, �xed by the user. It is obvious that m ≥ s, still this point will be detailed

later. We will remain this notation throughout all this thesis.
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Algorithm 4 The Restarted m-step Arnoldi Method

Input: A ∈ Cn×n, v1 ∈ Cn, εArnoldi > 0, ε > 0, m ∈ [1, n]N, s ∈ [1,m]N

1: v1 = 1
||v1||v1

2: Execute m-step Arnoldi Method using {A, v1, εArnoldi, m}

3: Solve the eigen problem HmYm = ΘmYm
4: ∀j ∈ [1,m]N, resThj = |hm+1,mym,j|
5: Us,m = Vn,mYm,s
6: ∀j ∈ [1, s]N, resTrj = ||Auj − ujθj||
7: if ε ≥ max

j=1,s
{resTrj} then

8: stop.

9: else
10: v1 = u1, go to step 1

11: end if
Output: Um,s ∈ Cn×s,Θs,1 ∈ Cs, ResTrs,1 ∈ (R+)

s

Depending on the accuracy we desire for desired eigenpairs, s Ritz eigenpairs (denoted

by Θs,1 and Um,s issued from the Restarted Arnoldi Method) may be a good approximation

of A eigenpairs. In the other case, we must restart the Arnoldi Method in order to

minimize resTrj value ∀j ∈ [1,m]N.

There exists several variants to restart the Restarted Arnoldi Method.

Each restarting method reuses previously computed data such as Ritz eigenpairs. How-

ever, each method uses eigen-information di�erently, implying di�erent characteristics in

terms of numerical convergence and parallel computation properties.

The Krylov Eigensolvers presented below are all derivated from the Restarted Arnoldi

Method, each of them using di�erent methods to restart.

In a large sense, Krylov Eigensolvers aim to solve the initial eigenvalue problem onto

the projected system, because of its Hessenberg form and its small size. Once we get

eigenpairs of the projected system, we project them onto the Krylov subspace and obtain

�nally Ritz eigenpairs that approximate A eigenpairs.

We restart the process until Ritz eigenpairs provide a satis�able approximation of A

eigenpairs.

3.3 The Explicitly Restarted Arnoldi Method

The Explicitly Restarted Arnoldi Method (ERAM) [Saad 1980],[Saad 2011] uses the

Ritz eigenvectors to restart the Arnoldi Method. ERAM is the most straightforward

version of the Krylov eigen solvers.

To restart an ERAM, we must compute a new initial guess v1 that will be introduced

in the Restarted Arnoldi Method in order to generate more accurate eigenpairs than the

previous restart. In order to distinct each ERAM restart, we introduce a new index on
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each presented data. As an illustration, v
(i)
1 is the initial guess used for the ith ERAM

restart. If v
(1)
1 is arbitrarily chosen, the next initial guess must be computed carefully.

v
(i+1)
1 is generally chosen such that it takes into account previously computed eigen-

vectors Un,s. In this context, the new Krylov subspace K(i+1)
m,v1 convergence to desired

eigenpairs will be favored. We denote by γ the number of Ritz eigenvector we take into

account to compute the restarting vector: it is obvious that m ≥ γ ≥ s. In what follows,

we will keep this notation.

The most classic formula to compute the new initial guess v
(i+1)
1 is presented in equa-

tion 3.8:

v
(i+1)
1 =

γ∑
j=1

<(u
(i)
j ),m ≥ γ ≥ s ≥ 1 (3.8)

Where <(u
(i)
j ) denotes the real part of the jth dominant Ritz eigenvector computed at

the ith restart.

We uniformly weight each approximated eigenvectors to favor the convergence of

Km,v1
(i+1) to s desired eigenvectors.

We use only <(u
(i)
j ) of approximated eigenvectors, so that we avoid all complex arith-

metic di�culties. This choice is consistent in the case of conjugated eigenpairs, as <(u
(i)
j )

remains the same for u
(i)
j and uj(i).

The ERAM convergence may be a�ected especially in the case of conjugated eigen-

values. In these cases, one may observe that approximated eigenpairs have a satis�able

accuracy, while eigenvectors do not correspond at all to A eigenvectors. Such situations

are tricky to detect, as only the residual is used to track eigenpairs convergence. In these

cases that have been identi�ed and studied in [Chen 2005], [Jia 2004b], it appears that

the Ritz eigenvalue converges while its associated eigenvector is wrong. Therefore, restart

the ERAM with v
(i+1)
1 that takes into account such vectors may considerably disrupt the

ERAM convergence.

Including the equation 3.8 into the Algorithm 4, we obtain the ERAM Algorithm

5 presented below. We denote by maxERAM the maximum number of restarts for the

ERAM, this number is �xed by the user. In what follows, we will keep this notation.
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Algorithm 5 The Explicitly Restarted Arnoldi Method

Input: A ∈ Cn×n, v1 ∈ Cn, εArnoldi > 0, ε > 0, m ∈ [1, n]N, s ∈ [1,m]N,maxERAM ∈ N,
γ ∈ [s,m]N

1: v1 = 1
||v1||v1

2: while (ε ≥ max
j∈[1,s]N

{resTrj}) or (maxERAM > i) do

3: Execute m-step Arnoldi Method using {A, v1, εArnoldi, m}

4: Solve the eigen problem HmYm = ΘmYm
5: Un,s = Vn,mYm,s
6: resTrj = ||Auj − ujθj||,∀j ∈ [1, s]N

7: v1 =
γ∑
j=1

u
(i)
j

8: end while
Output: Un,s ∈ Cn×s,Θs ∈ Cs, ResTrs ∈ (R+)

s

The ERAM Algorithm 5 adds an operation compared to the Restarted Arnoldi

Method, which the restarting vector computation (step 8): It is a simple addition of

γ approximated eigenvectors. Note that this operation does not imply neither additional

parallel communication nor memory storage compared to the Restarted Arnoldi Method.

By using such combination, we aim to favor convergence to the s desired eigenpairs simul-

taneously. However, the Arnoldi Method favors mostly the convergence to the dominant

eigenpair. In this context, other restarting methods exist to take into account this speci-

�city.

3.4 The Explicitly Restarted Arnoldi Method with De-

�ation

The Explicitly Restarted Arnoldi Method with De�ation [Saad 1980],[Saad 2011]

drifts from the ERAM, adding a condition to the restarting vector and Krylov basis

so that we take into account the Arnoldi Method characteristics regarding the dominant

eigenpairs convergence.

The ERAM with De�ation restarts its process until the dominant eigenpair reaches

the convergence: ε ≥ resTr1. At this point, we lock the u1 approximated eigenvector

into Vn,m basis, getting to Vn,1 = u1. We restart the ERAM with De�ation using an

Incomplete Arnoldi Method (please, refer to the Algorithm 3) of m− 1 steps.

We illustrated the ERAM with De�ation considering that only the dominant eigenpair

reached the convergence. It is entirely possible that �rst and second dominant eigenpairs
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reached simultaneously the convergence.

In this case, we lock respectively u1 getting to Vn,1 = u1, then orthogonalize u2 with u1

getting to ũ2 (id est ũ2 = Vn,1 ⊥ u2) and �nally proceed to a m− 2 step Arnoldi Method

with Vn,1 = u1 and Vn,2 = ũ2.

Algorithm 6 The Explicitly Restarted Arnoldi Method with De�ation

Input: A ∈ Cn×n, v1 ∈ Cn, εArnoldi > 0, ε > 0, m ∈ [1, n]N, s ∈ [1,m]N,maxERAM ∈ N,
s ∈ [1,m]N

1: k = 1

2: vk = 1
||vk||

vk

3: while (ε ≥ max
j∈[1,s]N

{resTrj}) or (maxERAM > i) do

4: Execute (m− k)-step Arnoldi Method using {A, vk, εArnoldi, m, k}

5: Solve the eigen problem Hm−kYm−k = Θm−kYm−k
6: Um−k,s = Vn,m−kYm−k,s
7: resTrj = ||Auj − ujθj||,∀j ∈ [k, s]N
8: Build ũk = Vm−k ⊥ uk and ||ũk||2 = 1

9: vk = ũk
10: i=i+1

11: if ε ≥ resTrk then
12: k=k+1

13: end if
14: go to step 4

15: end while
Output: Un,s ∈ Cn×s,Θs,1 ∈ Cs, ResTrs,1 ∈ (R+)

s

The ERAM with De�ation favors convergence to the (next) dominant (in terms or real

or imaginary eigenvalue modulus) eigenpair. In the speci�c case of conjugated and/or

clustered eigenpairs, the ERAM with De�ation is a numerically powerful algorithm.

In the case that one ERAM and one ERAM with De�ation are doing exactly the same

number of restarts until convergence, one may notice that the ERAM with De�ation saves

operations and global communications via the Incomplete Arnoldi Method. The ERAM

with De�ation performs a m − k step Arnoldi Method versus a m-step Arnoldi Method

for the ERAM. However, we add orthogonalization operation for each desired eigenpairs

(step 9 of the Algorithm 6).

The accuracy of approximated eigenpairs strongly depends on Vn,m quality. Indeed,

the quality of the Krylov basis �xes the quality of A projection onto Km,v1 . The de�a-

tion locks the converged approximated eigenvector to coerces Km,v1 convergence to the

desired eigenvectors subspace. It exists other variants, still butting in the Krylov basis to

accelerate desired eigenpairs convergence.

32



Krylov Method for Eigenvalue Problems

3.5 The Implicitly Restarted Arnoldi Method

The Implicitly Restarted Arnoldi Method [Saad 1980],[Saad 2011] (IRAM) accelerates

the convergence of s desired eigenpairs by using shift method. It is assumed that shifting

the smallest A eigenpairs accelerates convergence of Km,v1 onto the dominant desired

eigen subspace. The reader may refer to [Saad 2011], [Carden 2011], [Sorensen 1990] (as

a non-exhaustive list) to read more information about IRAM. In this paragraph, we focus

mainly on the restarting step.

The IRAM �xes a shift value that we denote by p ∈ [1,m − s]: p represents unde-

sired eigenvalues among m ones computed when solving the eigenvalue problem on Hm,m

matrix. Instead of shifting undesired eigenvalues on A, we shift them on Hm,m matrix.

Because of Hm,m small size, this requires low computation costs and memory storage. To

ensure the numerical consistency of Krylov basis, we operate some modi�cations on Vn,m
matrix. The IRAM Algorithm is presented bellow:

Algorithm 7 The Implicitly Restarted Arnoldi Method

Input: A ∈ Cn×n, v1 ∈ Cn, εArnoldi > 0, ε > 0, m ∈ [1, n]N,maxIRAM ∈ N, s ∈
[1,m]N

1: p = 0

2: while (ε ≥ max
j∈[1,s]N

{resTrj}) or (maxIRAM > i) do

3: v1 = 1
||v1||v1

4: Execute (m− p)-step Arnoldi Method using {A, v1, εArnoldi, m,p}

5: Solve the eigen problem HmYm = ΘmYm
6: Um,s = Vn,mYm,s
7: resTrj = ||Auj − ujθj||,∀j ∈ [1, s]N
8: if ∀j ∈ [1, s]N, ε ≥ resTrj then
9: stop.

10: else
11: Fix p ∈ [1,m− s]N the number of eigenvalues to shift

12: for j = 1, p do
13: Build a QR factorization of H̃m − θjI
14: H̃m = Qj

∗H̃mQj where H̃m − θjI = QjRj

15: Vm = VmQj

16: v1 = vH1 Vm
17: end for
18: end if
19: end while
Output: Un,s ∈ Cn×s,Θs,1 ∈ Cs, ResTrs,1 ∈ (R+)

s

The IRAM Algorithm 7 is numerically very robust thanks to the shift operation.
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Similarly to the ERAM De�ation, the IRAM performs an Incomplete Restarted Arnoldi

Method, savings operations compared to the ERAM algorithm. However, it adds a QR

factorization (which is a sequential operation), a dense matrix/matrix multiplication (of

size (n,m) × (m,m))and a matrix/vector operation.

3.6 The Krylov Eigen Solvers

Each restarting strategy of the presented Krylov Solvers have bene�ts and/or draw-

backs in terms of parallel computing and numerical accuracy.

3.6.1 Fixing the Restarted Arnoldi Method Parameters

For all the presented Krylov eigen solvers, we emphasized that m value is the key

parameter that leads de facto the numerical accuracy and the execution time.

It is assumed that the larger m is, the more accurate the approximated eigenpairs

will be, but this point must be moderated as opposite behavior may be observed (we will

return to this point later).

It is also known that the largerm is, the longer the execution time per Arnoldi Method

iteration will be due to blocking and global parallel communications. Additionally, one

may have observed that in the case of IRAM, computingQR step is a sequential operation,

therefore a largem value can rapidly lead to a bottleneck. We aim to �xm such as its value

is not too large to satisfy the parallel operations constraints but ensures the convergence

for the desired eigenpairs.

In terms of energy consumption, a Restarted Arnoldi Method (RAM) with a too small

m may not converge fast enough, leading to a poor �ops/watt ratio. On the other side,

a large m value will increase memory storage of the Krylov system as well as global and

blocking parallel communications used to build the Krylov subspace: it may imply more

memory transferts and default-cache that will increase energy consumption per restart

of the RAM. One may see that this fragile equilibrium is neither simple to reach nor its

evolution is uniform according to subspace size. Krylov subspace size has many e�ects,

some are directs and many indirects.

There is no general method to �x this m value for all variants of the Restarted Arnoldi

Method with respect to s and de�nitely no methods to ensure the convergence to s desired

eigenpairs with a m value optimizing the execution time per restart.

Many research has been done to provide a relevant m value, the reader may �nd

m = 2s which is the most common used value: it is �xed to satisfy on one side the

system convergence and on the other side the parallel computation/communication costs.

As an illustration, this is the default m value in the Restarted Arnoldi versions im-

plemented in Scalable Library for Eigenvalue Problem Computations (SLEPc) [SLE ],

[Hernandez 2007a], [Hernandez 2006].

However, for some matrices, m = 2s may be not su�cient and never provide the

convergence at a satis�able tolerance. Unfortunately, such con�gurations can not be
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prevented at the runtime. Potentially, you may run several times the Restarted Arnoldi

Method with di�erent m values to obtain the convergence at the desired threshold.

Some tricky cases also appears considering m value. It may happen that an ERAM

with a m1 value converges faster (numerically speaking but also in terms of execution

time) than an ERAM using m2 such that m2 > m1.

For some cases, it may be wised to compute a larger number of eigenvalues to get

s desired ones faster. As the Arnoldi Method favors dominant eigenpairs convergence,

computing γ eigenpairs such that m ≥ γ ≥ s ≥ 1 may accelerate the convergence

of s desired eigenpairs. However, additional eigenpairs must have a correct threshlod

(compared to the one we desire), otherwise we may add only numerical disturbance,

leading to slow-down convergence.

Select a relevant {m, s, γ} for the complete Restarted Arnoldi Method (and its variants

presented above) is very tricky. It depends on the matrices itself but also on the eigenvalue

distribution, the convergence rate, the eigenvectors convergence et caetera. Some of these

parameters depends on runtime execution and can not be predicted before.

As a remedy, Hybrid methods have been developed to accelerate the presented Krylov

eigen solvers convergence. The Multiple Restarted Arnoldi Method executes concurrent

Restarted Arnoldi Methods, all solving the same eigenvalue problem but with di�erent

input parameters, so as to generate di�erent eigen-information on each solver. Each solver

shares asynchronously its eigen-information with others to accelerate its own process.

3.7 The Multiple Restarted Arnoldi Method

With upcoming exascale, the current trend is to avoid problematic parallel operations

and communications from our current algorithms to improve their scalability.

As an illustration, an optimum exascale version of the Arnoldi Method would avoid

every dot products and matrix/vector products, but such scheme leads to an unconsistent

Arnoldi Method.

The mathematicians, numericians and computer scientists must �nd compromises to

reduce global and blocking parallel communications/operations while maintaining math-

ematical validity of the method.

The Multiple Restarted Arnoldi Method grew out of this compromise. We recall

that the Multiple Restarted Arnoldi Method (MRAM) is not new, as it appeared in the

1990's [Edjlali 1994], [Edjlali 1995], [Edjlali 1996]. Many research still goes on this topic

[Emad 2001],[Emad 2005],[Dubois 2011a]. The Multiple Restarted Arnoldi Method is in

fact a large concept.

To illustrate our purpose, let's consider µ Restarted Arnoldi Method (RAM) and we

denote by RAMk the k
th Restarted Arnoldi Method. Each RAMk solves the same eigen-

value problem, id est computing s approximated eigenpairs of A with a �xed threshold ε:

these two parameters are �xed among every Restarted Arnoldi Method inside a MRAM

solver. Other parameters, such as m, γ and v1 can di�er. Algorithm 8 describes the

concept of Hybrid Restarted Arnoldi Methods. This Algorithm is intentionally generic,
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we will re�ne it later. In what follows, we use the two indexes (k, l) ∈ [1, µ]N
2 such that

l 6= k to distinct two RAM solvers inside a MRAM.

Algorithm 8 The Multiple Restarted Arnoldi Method

Input: A ∈ Cn×n, k ∈ N∗, ε > 0, s ∈ N
1: while ∀k ∈ [1, µ]N, RAMk has not converged do
2: RAMk executes a restart (cf Algorithm 3.2) with its RAM parameters

{v(ik)
1 ,mk,maxERAM,k, γk} using npk tasks

3: if RAMk has converged then
4: Send ASYNCHRONOUSLY STOP signal to RAMl

5: Stop.

6: else
7: if RAMk has received an ASYNCHRONOUS message from RAMl, ∀l ∈ [1, µ]l 6=

k then
8: if STOP signal then
9: Stop.

10: else
11: if RAMl eigen-data are more accurate then
12: RAMk uses RAMl, ∀l ∈ [1, µ]l 6= k, eigen-data to compute v

(ik+1)
1

13: else
14: RAMk uses its eigen-data to compute v

(ik+1)
1

15: RAMk Sends ASYNCHRONOUSLY its eigen-data to RAMl, ∀l ∈
[1, µ]l 6= k

16: end if
17: go to step 2.

18: end if
19: end if
20: end if
21: end while
Output: Un,s ∈ Cn×s,Θs,1 ∈ Cs, ResTrs,1 ∈ (R+)

s

We recall thatm, γ and v1 have an impact on the numerical e�ciency and the execution

time of one RAM:

m m value has an impact on Ritz values accuracy: it assumed that a RAM with a

large m value will execute less restarts than a RAM with a small m value1. m has

a second impact, in terms of parallel execution time of the RAM. A RAM with a

small m value will execute faster each of its restarts compared to a RAM with a

large m. We conclude on the fact that there is an equilibrium (that depends on

m) between the parallel execution time per restarts and the number of restart to

execute to reach the convergence.

1Nevertheless, we recall that the opposite behavior can be observed.

36



Krylov Method for Eigenvalue Problems

m γ (the number of Ritz eigenpairs used to compute the restarting vector) has a

numerical impact on the RAM convergence. Its impact on the execution time

per restart is negligible compared to m impact. If γ > s, then we add γ − s

matrix/matrix multiplications (two dense matrices of size n ×m and m × (γ − s)
respectively) as well as γ − s matrix/vector (sparse or dense matrix whose size is

n× n and a dense vector of size n) and �nally γ − s dot operations.

m Computing the restarting vector v1 has no impact on the parallel execution time.

This operations weight the Ritz eigenvectors with coe�cients and sum them. There-

fore, the restarting vector is an interesting parameter to reduce "at no cost" the

number of restarts and therefore the parallel execution time of the complete RAM.

Keeping these capital informations in mind, we will present the MRAM abilities in

the context of ultra-scale computing.

3.7.1 Resiliency Property

With future exascale supercomputers, solvers resiliency is essential. It is assumed that

the more nodes we have, the shorter the Mean Time Between Failure (MTBF) is, leading

to the fact that an exascale simulation has higher probability to face to a system failure

during its execution. In fact, the decrease of MTBF can not be attributed only to the

higher number of nodes (and cores). The hybridization of supercomputers leads to more

complex software to manage such architectures. The management of many parameters

that where so far considered as "non prius" adds complexity to the applications, software

and resources operations.

If the resiliency may appear as being only part of the hardware and software domains,

it must to be integrated into the algorithms design.

As an illustration, one may note that RAM is not endowed of resiliency property.

During RAM parallel execution, if one task fails (for any reason mentioned above), its

results are lost and the global system resolution is then lost. Basically, we must restart

the RAM from the very beginning.

As we can not a�ord this luxe, resiliency must be integrated at every levels of High Per-

formance Computing. The resiliency property is inherent to the MRAM concept. Indeed,

if one RAM is a�ected by a hardware and/or software breakdown, only the communi-

cator associated to this RAM will be down. As all RAMs compute their eigenproblem

independently from each others, they will not be a�ected by the failed RAM. A study of

MERAM resiliency has been conducted in [Dubois 2011a].

Even better, in the case that we can resurrect the failed RAM, it will begin its own

process with a restarting vector coming from a converging RAM. All this scheme is avail-

able in the case that we are using a MPI implementation that supports local fails, id

est sub-communicators are not a�ected by one (or more) failed tasks used in an other

sub-communicator.
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3.7.2 Reduce the Global and Blocking Communications

The MRAM eigensolver has many other bene�ts for exascale supercomputing. The

structure of independent Multi-Methods but collaborating numerically altogether adduces

many assets. We evoked in section 3.1 that the RAM e�ciency in terms of numerical

results and swiftness to compute the Ritz eigenpairs is dependent on the Krylov subspace

size m value.

The MRAM eigensolver aims to optimize both parameters "numerical accuracy" and

"execution time". The MRAM will use RAMs with a large m value, and others with a

small m value. In that case, the RAMs with a large m value will produce more accurate

results but they also will be slower in terms of parallel execution time (each restart has

a longer parallel execution time compared to a RAM with a small m value). Therefore,

there are two possible scenarios:

m RAMs with a small subspace size will provide more accurate data than the RAMs

with a large subspace size. Such behavior may be due itself to two factors:

� Whether RAMs with a small subspace size will execute more restarts as they
are faster in terms of execution time per restart and therefore their convergence

has more progressed compared to the RAM with a large m. Therefore, they

may accelerate the ERAMs with a large subspace size in this case.

� Whether RAMs with a small subspace size provide more accurate data than

RAMs with a large subspace size, as this phenomena can be observed.

m ERAMs with a large subspace size will provide more accurate data than RAMs

with a small subspace size. RAMs with a small subspace size will take into account

the most accurate eigen-data among their asynchronous receptions. In this case,

still two scenarios may happen:

� RAMs with a small subspace size may converge �rst, starting from an accurate

restarting vector and executing faster each of their restarts.

� RAMs with a large subspace size is the �rst to converge, leading to a

Eater/Feeder behavior: RAMs with small subspace size impact will be null.
This scheme is not satis�able as it means that we used resources for RAMs that

could not participate neither to the eigen-data enrichment nor to reduction of

parallel execution time.

The balance between numerical accuracy and execution time is managed by these

two (forsooth 4) scenarios and of course by the nondeterministic behavior of the MRAM:

The asynchronous characteristic of the inter-ERAMs communications does not allowed

to prevent or control the MRAM behavior.

We now introduce an other important property of the MRAM in terms of parallel

communications. Let's consider one MRAM, running on npMRAM tasks and one RAM

running on npRAM tasks.
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The single RAM running on npRAM tasks will execute its blocking and global parallel

communications on npRAM tasks.

In the case of the MRAM, each RAM will compute the same operations on its sub-

communicator, id est on npk (npMRAM > npk) tasks, where npk is the number of tasks

used for the kth RAM. The MRAM reduces the size of the blocking and global parallel

communications which is a crucial asset in the context of up-coming exascale computing.

Moreover, MRAM may optimize the parallel execution time with respect to the sub-

space size by dedicating more tasks to RAMs with a large subspace size and less tasks

to the RAM with a small subspace size. This aims to balance parallel execution time of

all RAMs to favor the eigen-data exchange and limit Eater/Feeder behavior mentioned

earlier.

3.7.3 Multiple Levels of Parallelism

In the same area, the MRAM has an additional parallel level compared to a single

RAM. If this may be seen as an additional complexity, this is in fact a key asset in

the context of current and future supercomputers. With petascale area, the levels of

parallelism have increased but the algorithms have not necessarily the possibility to exploit

them.

The highest parallel level of the RAM is represented by the numerical kernels, such

as the Arnoldi Method, followed by the projection of Hm,m eigenvectors onto Km,v and

�nally computation of desired eigenpairs residuals.

With the MRAM algorithm, we add a higher parallel level than RAM, which gathers

the asynchronous communications between each RAMs. This one does not a�ect the

lowest and medium RAM parallel levels, it just adds and exploits more parallelism and

enhance the parallelism/scalability of the original RAM.

3.7.4 Exploit Heterogeneous Architectures

Due to its algorithm (8), the MRAM is an hybrid2 eigensolver. In the case that we

dispose of several implementations of RAM, each of them implemented and optimized for

a speci�c architecture, MRAM allows to exploit them altogether.

Each RAM solves its own problem asynchronously from each other and sends at each

restart its own eigen-data. This completely matches with the supercomputers having an

heterogeneous architecture. Indeed, the current widely used accelerators such as Graphic

Process Units (GPU) or Many Integrated Cores (MIC, Intel R©) may exchange messages

by using the PCI-Express. We can execute a MRAM using many RAMs while none of

them is executed on the same hardware.

2Hybrid in terms of supercomputer architectures.
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3.8 The Multiple Restarted Arnoldi Method Variants

In this section, we exposed the MRAM concept, by using the most basic eigensolver

presented so far, the Restarted Arnoldi Method.

The same concept can be applied to all the Krylov eigensolvers presented above, id

est the Explicitly Restarted Arnoldi Method, the Explicitly Restarted Arnoldi Method

with De�ation and �nally the the Implicitly Restarted Arnoldi Method.

As a general extension, all these solvers could be mixed together, leading to a Multiple

Hybrid Restarted Arnoldi Method, using as an illustration an ERAM and an IRAM.

Nevertheless, the ERAM is the most convenient Krylov eigen solver (among the one

presented in this chapter) to constitute a MRAM (in this case, a Multiple Explicitly

Restarted Arnoldi Method). We will detail this point in what follows.

3.8.1 The Multiple Explicitly Restarted Arnoldi Method

The MERAM is composed of several independent instances of ERAM, each solving

the same eigenvalue problem, which is �nding the s dominant3 eigenpairs of a large non-

hermitian matrix A.

We emphasized in section 3.7 the impact of m, γ and v1 parameters onto the numerical

accuracy and the ERAM parallel execution time. It appears that v1 optimizes this ratio,

as it requires neither blocking/global parallel communications nor memory storage.

In the context of MERAM, each ERAM will send to its companions n×s eigenvectors,
s eigenvalues and �nally s residuals, leading to n × s + 2s data. Therefore, in the most

general case (we suppose that there is no �lter to asynchronously send the eigen-data)

: An ERAM (as a member of a MERAM) asynchronously sends (respectively receives)

(µ− 1)× (n× s+ 2s) data at maximum.

Note that the ERAM may have several ways to compute the restarting vector v1 this

point particularly will be detailed in this thesis). This means that we do not only vary

the subspace size in the case of MERAM (leading to embedded Krylov subspaces).

Many research have been developed to improve the MERAM since its creation in 1994

[Edjlali 1994]. Several con�gurations appeared, we will cite two major contributions to

MERAM but this is a non-exhaustive list.

m A relatively recent MERAM version aimed to exchange only the restarting vector

v1 between ERAMs. This means that ERAMk computed v
(ik+1)
1 with its eigen-

data and sends it to ERAMl. As a �rst observation, this considerably reduces the

size of asynchronous messages. At maximum, ERAMk receives (respectively sends)

(µ − 1) × n data. If this is a good point, it also reduces drastically the degrees
of freedom of MERAM (mentioned above), which is the driving force of MERAM

(these implementation has been discussed in [Dubois 2011a]).

3In terms of real or imaginary eigenvalue modulus
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m The second implementation allows each ERAM to get di�erent parameters (such

as γ,m and v1 by asynchronously share the Ritz eigenpairs and their associated

residuals or a speci�c restarting vector.

3.8.2 The Multiple Implicitly Restarted Arnoldi Method

The MIRAM consists in several independent instances of the IRAM. Each IRAM is

solving the same eigenvalue problem, which is �nding the s dominant4 eigenpairs of a

matrix A.

The Multiple Implicitly Restarted Arnoldi Method (MIRAM) shares eigen-data to

accelerate each IRAM convergence. If MERAM has one liberty degree regarding the data

we can asynchronously share, the IRAM has no choice.

The IRAM restarts its process using the matrices Hm,m and Vn,m: these two matrices

contain the "historic" of present and passed shift operations. Therefore, if IRAMk wants

to send its data to accelerate the IRAMl, it must send basically its matrices Hm,m
(ik) and

Vn,m
(ik).

In this context, each IRAM will asynchronously send to its companions n×m vectors

and m×m data to each IRAM. Therefore, in the most general case (we sill suppose there

is no �lter to asynchronously send the data) : An IRAM (as a member of a MIRAM)

asynchronously sends (respectively receives) (µ− 1)× (m(m+ n)) data at maximum.

First of all, this amount of data -even though those are asynchronously sent- is con-

siderably larger than the MERAM one. Secondly, this implicitly implies that the only

"degree of freedom" of MIRAM is the subspace size m, while MERAM has three "degrees
of freedom".

We will not detail the MERAM with De�ation case, as it remains the same problematic

as MIRAM: as ERAM De�ation restarts its process by disrupting the Vn,m basis, it leads

to the same conclusion as MIRAM, meaning that MERAM with De�ation asynchronously

exchange the Krylov basis and upper Hessenberg matrix of each component.

4In terms of real or imaginary eigenvalue modulus

41



Krylov Method for Eigenvalue Problems

Conclusion

In this chapter, we presented a palette of Krylov eigen solvers. We recall that it

exists on one hand many other variants of eigensolvers, and on the other hand, many

other Krylov eigenvalue solvers. In the context of nuclear physics simulation, the Krylov

eigensolvers are particularly relevant.

We presented the Krylov subspace size issue and how it leads (in an opposite direction)

the parallel and numerical e�ciency of the presented Krylov eigensolvers. We emphasized

the restarting strategy role for each Krylov eigensolver, how this parameter in�uences their

numerical e�ciency and a�ect the parallel computation part.

We then presented each Krylov eigensolver in the context of Multiple Restarted

Arnoldi Method, by highlighting the bene�ts and drawbacks regarding the degrees of

freedom o�ered by such hybrid methods.

The MERAM eigen solver is the most relevant in terms of degrees of freedom compared

to MIRAM of a MERAM De�ation. We argued that MERAM composed of ERAM

with many di�erent parameters, especially the restarting vector v1 can lead to a great

improvement of the convergence compared to a single ERAM.

What if, thanks to a Smart-MERAM, we could evaluate/measure each ERAMk con-

vergence rate, appreciate (or depreciate?) each ERAMk parameter set and turned them

to (more) e�cient ones? What if we dispose of Smart-ERAM, that could adapt their pa-

rameters dynamically with respect to the received eigen information and their own eigen

information?

Participate to this debate �rstly required a in-depth review of the ERAM eigen solver

itself. In what follows, we will focus on the ERAM convergence, especially how could

we measure and characterize it in order to further appreciate the input parameters. In

a second time, we will present matrix generators, starting from an input spectrum, that

helped us to proceed to numerical performance tests. Such matrix generators have a huge

interests in the context of ultra-scale eigensolvers.

Finally, we will present the sensibility of the ERAM convergence with respect to the

restarting vector computation and the orthogonalization process.
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Chapter 4

Describe and Characterize the ERAM

Convergence

This chapter presents a heuristic to de�ne and characterize the ERAM convergence.

This heuristic is the basis for smart-tuning methods to enhance the equilibrium of the

ERAM convergence and parallel abilities.

4.1 De�ne the ERAM Convergence

We denoted by res
(i)
j the residual associated to the jth dominant (in what follows, we

will focus on the real modulus eigenvalue) eigenpair, ∀j ∈ [1, s]N. We consider that an

ERAM has converged at the ε threshold (ε ∈ R∗+) when the s desired eigenpairs have

reached this threshold themselves, id est if and only if ∀j ∈ [1, s]N, ε ≥ resj.

4.1.1 The Convergence Criteria

There exists some variants to estimate the ERAM eigenpairs convergence. The most

commonly used are listed in the Equation 4.1:

∀j ∈ [1,m]N, res
(i)
j = ||Au(i)

j − θ
(i)
j u

(i)
j ||,

=
||Au(i)

j − θ
(i)
j u

(i)
j ||

||A||+ |θ(i)
j |

,

=
||Au(i)

j − θ
(i)
j u

(i)
j ||

|θ(i)
j |

,

(4.1)

m ||Au(i)
j − θ

(i)
j u

(i)
j ||: This convergence criteria is the most common criteria. It simply

uses resTr
(i)
j formula (equation 3.7).

m ||Au(i)
j −θ

(i)
j u

(i)
j ||

||A||+|θ(i)j |
: This convergence criteria takes into account the matrix norm, which is

a pertinent parameter. Computing ||A||may be costly in terms of parallel operations
and communications, however it remains available for all the ERAM restarts.

m ||Au(i)
j −θ

(i)
j u

(i)
j ||

|θ(i)j |
: This convergence criteria is relative to the Ritz eigenvalues only.

This criteria is a good compromise between the two mentioned above in terms of
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accuracy and parallel operations/communications costs. We emphasize that this

residual is the default value of SLEPc Library [SLE ]. In what follows, we will keep

this residual formula.

Each eigenpair convergence is evaluated by its own res
(i)
j . Therefore, we can easily

estimate each eigenpair convergence starting from its own index. The Arnoldi process

favors the exterior eigenvalues convergence, id est the dominant and lowest eigenpairs:

therefore, the jth eigenpair may converge slower than the j + 1th one (j ∈ [1, γ]N). Each

eigenpair convergence may have a "chaotic" convergence: by "chaotic", we mean that

considerable or relatively small gap may be observed for the residual evolutions.

Based on this observations, it is arduous to describe the global system convergence.

Nevertheless, there exists methods to measure and estimate the convergence of the itera-

tive Krylov subspaces to an invariant subspace, but those are applied to the linear system

solvers. One major di�erence is that the Krylov methods for the linear systems must

converge to one vector solution, while the Krylov methods applied to the eigen systems

must converge to a subspace of Ritz eigenvectors. The convergence algorithms applied to

the Krylov methods for the linear systems use as metric the successive Krylov subspace

angles.

4.1.2 Convergence Study applied to the Krylov Method for Lin-

ear System

The Generalized Minimum Residual Method (GMRES) is a widely spread Krylov

Method to solve the linear system problems. It has been introduced by Yousef Saad and

Martin H. Schultz in 1986 [Saad 1986] and aims to solve linear system of equations such

that Ax = b where A ∈ Cn×n is a large dense or sparse non-symmetric matrix.

We choose to present the convergence criteria of this method as its concept is very

similar to the ERAM one.

Based on the Arnoldi Method (cf Chapter 3), the GMRES is an iterative solver that

computes an approximation x̃ ∈ Cn of the real solution x ∈ Cn such that Ax = b.

We �rst choose a random initial guess x0 and compute its associated residual

r0 = b − Ax0. The �rst GMRES restart computes x1 ∈ x0 + Km,r0 where Km,r0 =

Span{r0, Ar0, ..., Am−1r0}.
The GMRES iteratively builds xi ∈ xi−1 + Km,ri−1

meaning that it provides at the ith

restart a xi vector that approximates x at ri threshold. The complete GMRES reaches

the convergence when ε ≥ ri where ε ∈ R∗+ is the desired threshold �xed by the user.

Similarly to the ERAM, the GMRES is restarted due to the memory storage and com-

putational operations required at each restart (more details can be found in [Saad 1986]

and [Saad 2003] (pages 164-184)).

Such as the ERAM, it is assumed that the larger m value, the better the GMRES con-

verges. However, in some cases the opposite behavior can be observed (such as ERAM).

The GMRES is facing to the tricky equilibrium between improving its convergence

rate (by using a large m value) and reduce its memory, computation operation and block-
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ing/global parallel communications consumption [Joubert 1994] for the exact same rea-

sons as ERAM.

Many research has been done to e�ciently �x the m parameter with respect to its

convergence status. There are di�erent approaches to �x the subspace size values, as a

non-exhaustive list, we can increase or (respectively and) decrease its value leading to a

one (respectively two) direction(s) evolution.

The new m value is �xed depending on the GMRES convergence and aims to optimize

the computational constraints (memory storage, blocking/global parallel communications,

number of operations) versus the system convergence (number of restarts).

There are many possibilities to �x the m value depending on the metric used. If

heuristics may di�er, all auto-tuning tools have a common point, which is the GMRES

convergence estimation. This metric is a key parameter for the GMRES Krylov subspace

size auto-tuning, however, its value may not be the same for every auto-tuning.

The metric used in [Baker 2005] is a classic metric that has inspired many research

on subspace size tuning for the GMRES. The work presented in [Baker 2005] has been

widely used in recent work [Katagiri 2012] to improve their heuristic.

Other research trying to optimize the parallel computation ratio and numerical ef-

�ciency for the GMRES have been done using di�erent metrics and di�erent heuristics

([H. Kuroda 2000] as an example)

In our case, the same convergence metric as the GMRES can not be used for the

ERAM, as we aim to converge to an eigen subspace instead of a single vector. The

mathematical properties of the GMRES convergence metric presented in [Baker 2005] are

no longer available in the case of ERAM. However, the idea remains close from it.

4.2 Detect and De�ne the ERAM Convergence at the

Runtime Execution

All the work and results presented in this chapter have been executed in the Lawrence

Berkeley National Laboratory with the expert advices of M. Leroy Anthony Drummond.

I gratefully Thanks M. Leroy Anthony Drummond for this rewarding experience.

The Krylov methods convergence is pretty chaotic, especially during the �rst restarts.

The aim of the ERAM convergence algorithm is to detect, the earliest as possible the

divergence or the stagnation behavior, in order to change some ERAM parameters.

The �nal objective is to avoid or limit the stagnation and divergence status by using

pertinent ERAM parameters, leading to a smoother ERAM convergence.

Firstly, we need an index to estimate the global ERAM convergence, based on this

index value we may de�ne the ERAM behavior. There may be several possibilities re-

garding the ERAM criteria convergence. Throughout all this thesis, we will denote by

res
(i)
CV the convergence criteria used at the i(th) restart.

In our study, we will focus on the lowest convergence eigenpair. The convergence of

θ
(i)
j does not evolves at the same rate ∀ j ∈ [1, s]N. Therefore, a good criteria to de�ne

47



Describe and Caracterize the ERAM Convergence

the ERAM convergence evolution is:

res
(i)
CV = max

j∈[1,s]N
(
||Au(i)

j −θ
(i)
j u

(i)
j ||

|θ(i)j |
), (4.2)

4.2.1 The ERAM Local Convergence

We use the convergence criteria res
(i)
CV to estimate the ERAM convergence based on

two successive restarts. This aims to detect the ERAM convergence behavior restart per

restart. The following basic heuristic measures the res
(i)
CV evolution at each restart thanks

to an interval �xed by the user: we denote by (finf , fsup) ∈ ]0, 1[2 the two parameters

�xed by the user to compute the convergence tolerance interval. We shall shortly return

on this subject in what follows.

Algorithm 9 Restart per Restart Convergence Estimation Algorithm

Input: residuals (res
(i)
CV , res

(i−1)
CV ) ∈ R+2, (finf , fsup) ∈ ]0, 1[2.

1: status=unde�ned

2: bornsup =
res

(i−1)
CV

fsup

3: borninf = res
(i−1)
CV finf

4: if bornsup ≥ resCV (i) ≥ borninf then
5: status=stagne

6: else if borninf > resCV (i) then
7: status=converge

8: else
9: status=diverge

10: end if
Output: status

We de�ne a tolerance range [borninf , bornsup] depending on the previous residual value.

We consider that if current residual is in this interval, the evolution is not signi�cant

(whether res
(i)
CV > res

(i−1)
CV or res

(i−1)
CV > res

(i)
CV ) and qualify it as stagnant.

This choice is inspired from [Baker 2005] except that modi�cations were required to

�x the interval. The Algorithm 9 is an "instantaneous" convergence algorithm but this

does not provide an accurate tendency of the ERAM convergence. We improved this

heuristic in order to consider the global ERAM state convergence.

4.2.2 The ERAM Multi-Levels Convergence

The Algorithm 10 studies the convergence status using di�erent rates. Starting from

the Algorithm 9, we analyze based on several successive restarts the ERAM convergence.
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Algorithm 10 Multi-Levels Convergence Algorithm

Input: residuals (res
(i)
CV , res

(i−1)
CV ) ∈ R+2, (finf , fsup) ∈ ]0, 1[2, maxcount ∈

N∗.
1: status=unde�ned

2: bornsup =
res

(i−1)
CV

fsup
; borninf = res

(i−1)
CV finf

3: divsup = res
(i−1)
CV ∗ 10

4: divergeit = 0, stagneit = 0

5: localMAX = 0, localMIN = +∞
6: status=unde�ned

7: if bornsup ≥ resCV (i) ≥ borninf then
8: stagneit = stagneit + 1

9: if stagneit ≥ maxcount then
10: stagneit = 1

11: status=stagne

12: end if
13: end if
14: if res

(i)
CV > bornsup then

15: divergeit = divergeit + 1

16: if (divergeit ≥ maxcount) OR (res
(i)
CV ≥ divsup) then

17: divergeit = 1

18: status=divergence

19: end if
20: end if
21: if divergence OR stagnation then
22: localMAX = 0

23: localMIN = +∞
24: end if
25: if toleranceinf > res

(i)
CV then

26: if (res
(i−1)
CV ≥ localMAX) then

27: localMAX = res
(i−1)
CV

28: intervalbegin = i− 1

29: status=convergence

30: end if
31: if (localMIN ≥ res

(i)
CV ) then

32: localMIN = res
(i)
CV

33: intervalend = i

34: end if
35: if intervalend 6= intervalbegin then

36: rate = log10(
res

(intervalend)

CV )

res
(intervalbegin)

CV

)

37: if rate ≥ 4 then
38: status=high convergence

39: end if
40: end if
41: end if
Output: status
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We highlight that the Algorithm 10 uses data that have been previously computed: we

mean that we do not add neither computation operation nor communication to measure

the ERAM convergence, so as the Algorithm 10 computation costs is negligible.

The Algorithm 10 to detects as a priority the sudden convergence peak or stagnation

state. These two status are our priority as we want to avoid them as soon as possible.

This version of convergence treats with accuracy the convergence state. Indeed, preserve

this status remains important. The [bornsup, borninf ] interval coupled withmaxcount value

will favor some speci�c convergence schemes, as explained below:

m A large interval [borninf , bornsup] and a large maxcount value:

The larger the interval [borninf , bornsup] is, the more we favor the stagnation state

in case of a slow evolution. However having a high value of maxcount limits some

"abusive" stagnation status. The high borninf and bornsup values will limit the slow

convergence and divergence status compared to other con�gurations.

m A large interval [borninf , bornsup] and a small maxcount value: In this con�guration,

we favor the detection of the convergence status if borninf is quite high. This

con�guration favors also the stagnation status and slow divergence detection. Some

stagnation parts may be considered as a slow convergence due to the interval gap.

m A small interval [borninf , bornsup] and a small maxcount value: This con�guration

favors the slow evolution for each status. We mean that slow divergence/convergence

will be detected thanks to such con�guration. If bornsup (respectively borninf ) value

is low (respectively high) then the stagnation (respectively convergence) status will

be dominant.

m A small interval [borninf , bornsup] and a high maxcount value: This con�guration

favors the slow convergence detection and limit the stagnation detection interval.

In what follows, we apply the Algorithm 10 to the target matrices summarized in the

Table 4.1. These matrices spectrum distribution are very di�erent (the matrices spectrum

will be detailed in the next chapter), such as their sparse distribution schemes. All of

these matrices are non-symmetric.
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Name Size Field Source

Ex11 16614 computational �uid UF SMC[Davis ]

dynamics problem

Mixtank_new 29,957 computational �uid UF SMC[Davis ]

dynamics problem

Rim 22,560 computational �uid UF SMC[Davis ]

dynamics problem

Table 4.1: Target Matrices to Test the Algorithm 10.

Figure 4.1: Mixtank_new Matrix Sparsity

Figure 4.2: Ex11 Matrix Sparsity
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Figure 4.3: Rim Matrix Sparsity

In the next paragraphs, we present the Algorithm 10 results applied to the target

matrices listed above. The Algorithm 10 parameters are maxcount = 3, bornsup = 0.2 and

borninf = 0.8.

Each presented ERAM uses γ = s = 5 (where s is the number of desired eigenpairs

and γ the number of Ritz eigenvectors used to compute the restarting vector) and a CGSR

orthogonalization process. Restarting vector is computing as presented in the equation

3.8.

All the results presented below have been executed on the PRACE Curie supercom-

puter 1.

1The 26th most powerful supercomputer according to the Top500 list of June 2014
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4.2.2.1 The Ex11 Matrix

Figure 4.4: Ex11 Matrix, m=20, Algorithm 10 Results.

The ERAM has s = γ = 5, m = 20 and a CGSR orthogonalization scheme. The Algorithm 10

parameters are maxcount = 3, bornsup = 0.2 and borninf = 0.8. We used 39 MPI tasks on thin

nodes (2 processors Intel R© Sandy-Bridge with 8 cores) of the PRACE Curie supercomputer.

We present on this �gure the Algorithm 10 results: the black points refer to the dominant

eigenpair residuals at each ERAM restart. Each colored stripe corresponds to the convergence

status de�ned by the Algorithm 10. The gray one (unde�ned) means that no status could be

determined at this restart. The red one (divergence) means that a divergence has been detected,

the yellow one (stagnation) means that the ERAM stagnates at this restart, the green one

(convergence) means that the ERAM converges at this restart and �nally the blue one (high

convergence) means that the ERAM highly converges at the considered restart.

The Figure 4.4 presents the Algorithm 10 results applied to the Ex11 matrix. The

Krylov subspace size is m = 20. We present the res
(i)
CV evolution with respect to the

convergence status detected by the Algorithm 10.

As a primary observation, most of the divergence schemes are detected, which was

our primary objective. The "Unde�ned" status ("Und" on the Figure 4.4) means that

we could not a�ect a convergence status to the ERAM at this point.

The stagnation status could be more present, due to the residuals repartition. For the

same con�guration, a higher bornesup value allows to detect more stagnation states.

This means that with a higher bornesup value, there are more stagnation status

detected, less unde�ned one. Nevertheless the stagnation intervals remains the same as

the Figure 4.4, their size is simply smaller than a con�guration using a higher bornesup
value. The only di�erence will be about the number of restarts that remained in the
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stagnation status.

We choose to favor large convergence status rather than large stagnation status, as

we aim to intervene at the beginning of a stagnation status.

The Algorithm results 10 presented on �gure 4.4 are satisfying as they properly identify

the stagnation and divergence status, leading to a pertinent intervention to modify some

ERAM parameters with respect to the convergence status. This point will be detailed

later in this thesis.

We executed the same tests by using a smaller Krylov subspace size m = 15 (Figure

4.5 below).

Figure 4.5: Ex11 Matrix, m=15, Algorithm 10 Results.

The ERAM has s = γ = 5, m = 15 and a CGSR orthogonalization scheme. The Algorithm 10

parameters are maxcount = 3, bornsup = 0.2 and borninf = 0.8. We used 39 MPI tasks on thin

nodes (2 processors Intel R© Sandy-Bridge with 8 cores) of the PRACE Curie supercomputer.

One may note that the ERAM using m=15 has a better convergence scheme than the ERAM

using m=20 above. The black points refer to the dominant eigenpair residuals at each ERAM

restart. Each colored stripe corresponds to the convergence status de�ned by the Algorithm 10.

The input parameters of the Algorithm 10 still detects the divergence and stagnation

parts, allowing us to modify some ERAM parameter at the appropriate restart.

The Algorithm 10 successfully detects the slow convergence, which prevents of abusive

ERAM parameters changes. Conserve the convergence is as important as properly detect

the stagnation and divergence status.

In this context, we applied the Algorithm 10 to the Ex11 matrix with a "large"

subspace size: we mean that this subspace size is large enough to get a very smooth

convergence. Note that the convergence on Figure 4.4 is better than the convergence
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presented on Figure 4.5. This perfectly illustrates the tricky issue of m value, meaning

that we can observe a better convergence with a smaller subspace size.

We applied he Algorithm 10 to the Ex11 matrix, using a subspace size 25 and com-

puting 5 eigenpairs. The results are presented on the Figure 4.6 below.

Figure 4.6: Ex11 Matrix, m=25, Algorithm 10 Results.

The ERAM has s = γ = 5, m = 25 and a CGSR orthogonalization scheme. The Algorithm 10

parameters are maxcount = 3, bornsup = 0.2 and borninf = 0.8. We used 39 MPI tasks on thin

nodes (2 processors Intel R© Sandy-Bridge with 8 cores) of the PRACE Curie supercomputer.

The black points refer to the dominant eigenpair residuals at each ERAM restart. Each colored

stripe corresponds to the convergence status de�ned by the Algorithm 10.

If the input parameters of the Algorithm 10 are wrongly chosen, some intervals of the

ERAM convergence presented on the Figure 4.6 could be characterized as a stagnation.

In this case, the risk is to change an (some) ERAM parameter(s) to remedy to these

"false" stagnation, therefore we would uselessly disrupt the convergence. The Algorithm

10 detects and maintains the high convergence which is a priority for our study.

4.2.2.2 The Mixtank_new Matrix

We present some results of the Algorithm 10 with the same input parameters applied

on the Mixtank_new matrix. This matrix has a convergence completely di�erent from

the Ex11 Matrix, we aim to show that the Algorithm 10 still successfully detect and

characterize the ERAM convergence. We recall that maxcount = 3, bornsup = 0.2 and

borninf = 0.8.
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Figure 4.7: Mixtank_new Matrix, m=15, Algorithm 10 Results.

The ERAM has s = γ = 5, m = 15 and a CGSR orthogonalization scheme. The Algorithm 10

parameters are maxcount = 3, bornsup = 0.2 and borninf = 0.8. We used 29 MPI tasks on thin

nodes (2 processors Intel R© Sandy-Bridge with 8 cores) of the PRACE Curie supercomputer. The

black points refer to the dominant eigenpair residuals at each ERAM restart. Each colored stripe

corresponds to the convergence status de�ned by the Algorithm 10. The gray color (unde�ned

status) means that no status could be determined at the considered restart.

The Mixtank_new Matrix is quite slow to converge as presented on the Figure 4.7:

Nevertheless, the Algorithm 10 detects successfully the two convergence intervals as well

as the diverse stagnation intervals, much more presents in this con�guration. Most of the

divergence status are detected due to sudden peaks.

We applied the Algorithm 10 to the Mixtank_new matrix, using a subspace size 25

and computing 5 eigenpairs. The results are presented on the Figure 4.8 below.

TheMixtank_new eigenvalues of the are still pretty slow to converge, especially until

the 80th restart. For this con�guration, two scenarios may be considered:

m Somehow, we may consider that the ERAM only converges and does not stagnate.

Nevertheless, we reached the convergence at the 120th restarts, therefore this con�g-

uration is no comparable to the smooth and fast convergence observed on he Figure

4.6.

m We consider that the matrix alternates between convergence and stagnation. We

bet on the fact that modifying an ERAM parameter will provide better results than

keeping this con�guration.
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Figure 4.8: Mixtank_new Matrix, m = 25, Algorithm 10 Results.

The ERAM has s = γ = 5, m = 25 and a CGSR orthogonalization scheme. The Algorithm 10

parameters are maxcount = 3, bornsup = 0.2 and borninf = 0.8. We used 29 MPI tasks on thin

nodes (2 processors Intel R© Sandy-Bridge with 8 cores) of the PRACE Curie supercomputer. The

black points refer to the dominant eigenpair residuals at each ERAM restart. Each colored stripe

corresponds to the convergence status de�ned by the Algorithm 10. The gray color (unde�ned

status) means that no status could be determined at the considered restart.

4.2.2.3 The Rim Matrix

To enhance our conclusion, we realized the same study on the Rim matrix.

The Rim matrix convergence presented on the Figure 4.9 is relatively "chaotic", es-
pecially after the 55 restart. From the �rst until the 40th restart, one may consider

that the ERAM stagnates. However, If we look closer, the ERAM successively converge,

then diverge, then converge ... The gap are too high to be considered as a stagnation

and too disrupted to be considered as a convergence or a divergence scheme. Ideally, it

would be characterized as a new status, that we could quali�ed as "cyclic" or "chaotic"
convergence.

As a second observation, one may considered that the convergence status between the

55 and 96 restarts is not a stagnation but a divergence status. Somehow, this is true.

However, we recall that we aim to detect as soon as possible the stagnation to the

divergence status: Therefore we judge that it was no necessary to consider and take into

account a slow divergence.
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Figure 4.9: Rim Matrix, m = 25, Algorithm 10 Results.

The ERAM has s = γ = 5, m = 25 and a CGSR orthogonalization scheme. We used 120

MPI tasks on thin nodes (2 processors Intel R© Sandy-Bridge with 8 cores) of the PRACE Curie

supercomputer. The Algorithm 10 parameters are maxcount = 3, bornsup = 0.2 and borninf =
0.8. The black points refer to the dominant eigenpair residuals at each ERAM restart. Each

colored stripe corresponds to the convergence status de�ned by the Algorithm 10. The gray color

(unde�ned status) means that no status could be determined at the considered restart.

We present the Algorithm 10 results applied on the same matrix using a subspace

size m = 30. This ERAM con�guration is de�nitely characterized as a high and smooth

convergence (like the Figure 4.6). Such convergence scheme is successfully detected by

the Algorithm 10.

58



Describe and Caracterize the ERAM Convergence

Figure 4.10: Rim Matrix, m = 30, Algorithm 10 Results.

The ERAM has s = γ = 5, m = 30 and a CGSR orthogonalization scheme. We used 120

MPI tasks on thin nodes (2 processors Intel R© Sandy-Bridge with 8 cores) of the PRACE Curie

supercomputer. The Algorithm 10 parameters are maxcount = 3, bornsup = 0.2 and borninf =
0.8. The black points refer to the dominant eigenpair residuals at each ERAM restart. Each

colored stripe corresponds to the convergence status de�ned by the Algorithm 10. The gray color

(unde�ned status) means that no status could be determined at the considered restart.
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Conclusion

The study presented in this chapter consists of assessing the ERAM convergence. We

exposed that the Krylov method GMRES used to solve the linear systems dispose of such

method to appreciate its numerical convergence at the runtime execution.

The Krylov eigen and linear system solvers are very similar: the concept is pretty

close, the nature of the system to solve just di�ers. Fixing the subspace size value for

both ERAM and GMRES remains the trickiest part.

In the case of the GMRES solver, the convergence metric is used to optimize the

subspace size value with the convergence rate. In the case of a strong convergence, the

subspace size will be decreased, so as to reduce the parallel execution time per restart

while maintaining the GMRES convergence at a satis�able rate. Conversely, the opposite

modi�cation will be done so as the GMRES can reach the convergence. We presented

some (ongoing) research to estimate the GMRES convergence and how the subspace size

is �xed with respect to its convergence: such algorithms use the measure of iterative

Krylov subspaces angles as the convergence metric.

Such scheme would be interesting to apply in the case of the ERAM solver, however,

the GMRES convergence heuristics are no longer available for the ERAM one.

We presented in this chapter an adaptation of the GMRES heuristic to measure and

characterize the ERAM convergence. The �rst step is then to determine a convergence

metric to appreciate the ERAM convergence. Based on this metric, we presented an

algorithm that detects the ERAM convergence behavior.

We �xed two priorities regarding the ERAM convergence detection. First, the di-

vergence or stagnation status must be quickly detected. We aim to avoid such behavior

by modifying ERAM parameters so as to reach the convergence faster. This implies the

second condition, which is properly detect the convergence behavior. Indeed, if a con-

vergence status is "wrongly" interpreted as a stagnation, then we may change ERAM

parameters and disrupt the ERAM convergence instead of ameliorate it.

Such heuristic will be used in this thesis so as to dynamically modify some ERAM

parameters with respect to its convergence.

In the next chapter, we will present two matrix generators, both starting from an

imposed spectrum. In what follows, we will use matrices generated by these matrix

generators only.
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Chapter 5

Matrix Generators for Extreme-Scale

Computing

Basically, all the scienti�c domains concerned by the exascale computing must have

target matrices in accordance with the problem to solve and its extreme scale.

In the wide spectrum of the High Performance Computing scienti�c applications, the

eigenvalue problem arises quite frequently.

Nevertheless, the eigenvalue problems are not the only solvers concerned by the lack of

target matrices with respect to �xed mathematical properties and/or extreme-scale size.

As an example, some linear systems may use the matrix eigenvalues (or a subset of its

eigenvalues) to build preconditioners in order to accelerate the system convergence.

Starting from these observations, many scienti�c �elds crave of target matrices to test

both the eigensolver numerical performances and the parallel e�ciency.

5.1 Extreme-Scale Eigenvalue Solvers Performances

Evaluation

Many applications mentioned in the Chapter 2 require to solve an (or many) eigen

problem(s) during their computation process. Based on this observation, some eigen solver

(depending on their numerical/parallel characteristics) used by the simulation must be

adapted to the extreme scale supercomputers and still be numerically e�cient. This

reasoning can be extended to the linear solver case.

As every large HPC simulation is always preceded by validation, the eigen solvers

must be checked and endorsed in terms of both numerical results and parallel sturdiness.

In the context of Extreme-Scale computing, two objectives must be reached:

m The exactness of the eigen solver: does the computed eigenvalues θj,∀j ∈ [1, s]N
correspond to the exact eigenvalues λj,∀j ∈ [1, s]N

1?

m The scalability of the eigen solver: does the solver verify the extreme-scale scalability

constraints?

In order to provide a numerically robust eigen solver, we need to dispose of matrices

whose spectrum is known to conclude on the numerical e�ciency. Having an extreme-scale

1s is the number of desired eigenpairs. In this speci�c case, s ∈ [1, n]N where A ∈ Cn×n
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eigen solver implies to dispose of large input matrices, in accordance with the extreme-

scale systems size. As a conclusion, we need target matrices with very large dimension

and a known spectrum.

5.1.1 The Existing Collections

We can cite two famous and widely spread matrices providers, the Tim Davis [Davis ]

and the Matrix Market [Mat ] collections.

They both contain many matrices coming from many scienti�c �elds. As an non-

exhaustive list, we can cite the undirected (random/weighted) (multi-)graph, optimiza-

tion problem, combinatorial problem, circuit simulation problem, computational �uid

dynamics problem, linear programming, structural problem, electro-magnetics problem,

model reduction problem et caetera. If both collections provide many matrices with

many mathematical properties, we still have issues to get matrices that match with our

requirements:

m Hypothesis 1 : The spectrum of the matrix must be known and moreover controlled:

we can �x speci�c spectrum properties in order to evaluate numerical robustness of

various algorithms,

m Hypothesis 2 : The matrix shall not be Hermitian and shall not look like a trivial

matrix,

m Hypothesis 3 : The matrix may have very high dimension (this includes the non-zeros
elements and/or the matrix size),

m Hypothesis 4 : The matrix must not be con�dential and can be shared with the

scienti�c community.

It is burdensome to get matrices to evaluate the parallel performances and the behavior

of the numerical algorithms (linear and eigen solvers) at the extreme-scale.

In this chapter, we will present two matrices generators, focus on their bene�ts and

drawbacks regarding our extreme-scale matrices hypothesis.

5.1.2 The Spectrum as the Key Parameter

We address the following problem : Let's consider a matrix A ∈ Cn×n, n ∈ N∗. We

denote by Spec(A) the spectrum of A de�ned by:

Spec(A)={λ ∈ K,∃x ∈ Kn \ {0} such that Ax = λx}, (5.1)

Starting from a �xed spectrum Specin ∈ Cn, we aim to create a matrix Agen ∈ Cn×n

such that Spec(Agen) = Specin where Agen refers to the matrix resulting from the matrix

generator. During all the following chapters, we will keep these notations.
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Our matrices generators use the input spectrum as the leading characteristic to build

the algorithm. Starting from an imposed spectrum itself to generate a matrix allows to

skirt many problems that we raised earlier:

m Some eigen solvers are more or less sensitive to "particular" spectrum. As an illus-

tration, a scienti�c community may be interested in matrices with clustered eigen-

values or conjugated eigenvalues. Some others could be interested in a random

distribution of the eigenvalues or eigenvalues contained in a speci�ed interval. This

list of examples is of course non exhaustive.

Fixing the spectrum may allow many scienti�c communities to numerically check

their algorithms according to a speci�c spectrum scheme and remaining close to the

initial problem.

m Many industries, laboratories and academic centers are confronted to the con�den-

tiality locks of their results. Matrices issued from real applications (as an illustra-

tion, neutronic applications) are con�dential most of the time. It is out of question

to let these matrices being shared on matrix collection websites.

Generate a "fake" matrix, with the same spectrum but di�erent shape (dense in-

stead of sparse, or di�erent sparsity schemes) erases the con�dentiality lock. Start-

ing from the spectrum allows to experiment the algorithms with no con�dentiality

violations while remaining close from the original application �eld.

m Choosing the spectrum implies choosing the matrix size. In the context of the ex-

ascale computing, very-large matrices are required (in terms of dimension and/or

number of non-zeros elements). Especially, choosing the size and the spectrum al-

lows to execute scalability tests and ensure the numerical accuracy of the results.

We illustrate our proposal with an example: If we aim to study the ERAM scala-

bility, we will execute both strong and weak scaling tests. Let's consider A whose

size is n = 210.

In the case of the strong scaling, we will solve the eigenvalue problem on A using

successively 2k tasks, k ∈ [0, 10]N. In this case, the same matrix will be used for all

parallel executions.

In the case of the weak scaling, the problem size per tasks must remain the same.

In this context, we need to get A of size n = 2k,∀k ∈ [0, 10]N. The current matrices

collections do not necessarily provide such matrices, having the same eigenvalues

but di�erent sizes. This is of course theoretically impossible as spectrum size is the

matrix size, therefore, for n1 6= n2, the associated spectrum of An2 and An1 will

not remain the same. As the ERAM computes the dominant eigenpairs, we will

consider this particularity to build an extended spectrum. If we consider n1 > n2,

we start from An2 spectrum and add some eigenpairs whose values are close to the

smallest eigenpairs of An2 . This aims to extend An2 spectrum until n1 size, without

disrupting the original spectrum (or at least, limit their in�uence). The opposite

method could be used to preserve the smallest eigenvalues.
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5.1.3 The Matrix Generator Computational Hypothesis

One major component has not been clearly identi�ed in the previous matrix generator

hypothesis. The hypothesis "The matrix generator must conserve Specin" may be divided

in two hypothesis:

m Specin must be mathematically conserved,

m The computer arithmetic must be controllable.

The �rst hypothesis depends on the method itself as we may �nd an algorithm that

mathematically checks the exact equality of Specin and Spec(Agen).

Regarding the second hypothesis, we must consider that the �oating point operations

and rounding will induce that Specin 6= Spec(Agen). This point will be detailed later in

this chapter.

In the context of the Framework Programming for Post-Petascale Computing (FP3C)
Project 2, two matrix generators matching with the hypothesis listed above have been

designed by Hervé Galicher in CEA Saclay (DEN/DANS/DM2S). More Informations on

the matrices generators ca be found in [Galicher 2014].

These two matrix generators have been widely used during this thesis. I contributed

to the improvement in terms of parallelism performances of the methods presented bellow,

their numerical validation and parallel performances.

Secondly, I contributed to their validation and use to check the numerical e�ciency of

our ERAM results. As a major contribution, I could identify some numerical trends of the

matrices generators thanks to the ERAM results that will be presented in the following

chapter.

These results justify the Hypothesis 4 :The matrix must not be con�dential and can be
shared with the scienti�c community. We will detail later how the matrix generators could

provide target matrices whose behavior remain close to the initial problem and validate

their use, e�ciency and great interest for the all HPC community.

5.2 The Dense Matrix Generator

This method is radically di�erent from the diagonal-band matrix generator, it is based

on orthogonal permutations and Bartlett's formula.

We consider the system matrix A ∈Mn(K) and divide it into blocks such that:

2The FP3C project is a French-Japanese project started in 2010 funded by ANR and JST. During four

years, French and Japanese researcher have shared their knowledge and collaborated altogether on the

software technologies, languages and programming models to explore extreme performance computing

beyond petascale computing. This project gathered the CNRS (IRIT, PRISM), INRIA (Bordeaux,

Rennes, Saclay) and CEA/DEN (Saclay) on French side and the Kyoto University, Tokyo Institute of

Technology, University of Tokyo and University of Tsukuba on the Japanese side. More informations can

be found in http://j�i.nii.ac.jp
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(
A1,1 A1,2

A2,1 A2,2

)
This block shape can be used e�ciently to compute A−1. To simplify the notations,

we denote by Ablock the matrix resulting of (A2,2 − A2,1A1,1
−1A1,2)

−1. It is assumed that

computing A−1 is equivalent to compute ([Bierens 2013] and [Diciunas 1998]):

(
A1,1

−1(Id + A1,2AblockA2,1A1,1
−1) −A1,1

−1A1,2Ablock
−AblocksA2,1A1,1

−1 Ablock

)

As a consequence, computing A−1 requires to compute A1,1 and (A2,2−A2,1A1,1
−1A1,2)

inverts. To simplify the problem, we impose A1,1 orthogonal. Then, we must focus on

computing (A2,2 − A2,1A1,1
−1A1,2)

−1. We de�ne by k the size of A1,1 and by l the size of

A2,2.

According to [Diciunas 1998] computing A2,2 − A2,1A1,1
−1A1,2 remains the same as

computing :

A2,2 − A2,1A1,1
−1A1,2 = [· · · [[A2,2 + λ1C1R1] + λ2C2R2] + · · ·+ λk2Ck2Rk2 ] (5.2)

Each block has a form such as Bj + λjCjRj, j ∈ [1, k2]N. Computing the invert of

(A2,2 − A2,1A1,1
−1A1,2) requires to compute the successive inverts of Bj + λjCjRj. The

Bartlett's formula [Bartlett 1951] matrix provide us a simpli�ed version of Bj + λjCjRj

invert (more details can be found in [Diciunas 1998]):

(Bj + λjCj.Rj)
−1 = Bj

−1 − 1
1
λj

+RjBj
−1Cj

Bj
−1CjRjBj

−1 (5.3)

It results from 5.3 that computing Bj +λjCjRj, j ∈ [1, k2]N invert requires to compute

only Bj invert. Finally, computing (A2,2 − A2,1A1,1
−1A1,2)

−1 implies to compute the

successive Bj and A2,2 inverts. We impose the orthogonality property to A2,2 matrix to

simplify the inverts computations.

The dense matrix generator method imposes to build a matrix such that:

m A1,1 and A2,2 are orthogonal matrices,

m A1,2 and A2,1 contains random values.

We then apply k2 Bartlett's formula using the chosen eigenvalues to build the �nal

dense matrix. We present the associated Algorithm 11:
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Algorithm 11 The Dense Matrix Generator

Input: Specin ∈ Cn , ε ∈]0, 1], nnul ∈ [1, n]

nnz = n− nnul
for i = 1, n do
Ap[i] = i

colRowp[i] = i

end for
make a random n-permutation of Ap and colRowp
Insert nnz random elements in {col, row} ∈ {Cn}2
for k = 1, n do
if colRowp[k] ≥ nnz then
indrow = 0

else
indrow = row[colRowp[k]]

end if
if colRowp[Ap[k]] ≥ nnz then
indcol = 0

else
indcol = col[colRowp[Ap[k]]]

end if
RinvAC = RinvAC + indrow × indcol
RinvADC = RinvADC + Specin[Ap[k]]× indrow × indcol

end for
λ = ε−RinvAC
for i = 1, n do
Aout[i, i] = Specin[Ap[i]]

for j = 1, n do
if colRowp[k] ≥ nnz then
indrow = 0

else
indrow = row[colRowp[k]]

end if
if colRowp[Ap[k]] ≥ nnz then
indcol = 0

else
indcol = col[colRowp[Ap[k]]]

end if
element = (indrow × indcol)( 1

λ
× Specin[Ap[i]]− 1

ε
× Specin[Ap[j]]− RinvADC

λ×ε )

Aout[i, j] = Aout[i, j] + element

end for
end for

Output: Aout ∈ Cn×n, such that Spec(Aout) ∼ Specin
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5.2.1 The Dense Matrix Generator Results

The current implementation is sequential, due to the poor parallelism potential of the

method. We summarized the target matrices to test the dense matrix generator accuracy

in the Table 5.2.1. We add a new matrix to this table, issued from CEA neutronic

applications:

Name Size Field Source

Fission 10,000 neutronic CEA applications

Ex11 16614 computational �uid UF SMC[Davis ]

dynamics problem

Mixtank_new 29,957 computational �uid UF SMC[Davis ]

dynamics problem

Rim 22,560 computational �uid UF SMC[Davis ]

dynamics problem

Table 5.1: Target Matrices to Test the Dense Matrix Generator

For each target matrices, we dispose of the original spectrum. We will use these

spectrums to obtain Agen that will correspond to the "dense" version for each presented

matrices above.

The poor parallelization potential of the Algorithm 11 does not match with the hy-

pothesis "The algorithm must be tractable in very high dimension". Theoretically, there
is no limit regarding the Agen size. However, the sequentiality of the dense matrix gen-

erator implementation limits the memory size of Agen, therefore its dimension. The Agen
matrices obtained from the Algorithm 11 are interesting for the eigenvalue problems, this

is why we present the following results.

5.2.1.1 The Fission Matrix

The Fission matrix is issued from CEA neutronic simulations. Originally, this matrix

is very sparse. As we dispose of its complete spectrum, we will generate from it two dense

matrices:

m Dense Fission: Obtained by applying the Algorithm 11 with Spec(Fission) as input

parameter.

m Dense Fission2p : We aim to extend the Fission matrix size until 2p, p ∈ N. Due to
the memory limits, we could generate Dense Fission215 . Increasing the matrix size

implies to increase the spectrum size therefore add eigenvalues to the spectrum. We

choose to add 6384 eigenvalues that we will denote by δj, j ∈ [1, 6384]N to distinct

them from the original spectrum. We choose δj such that ∀j ∈ [1, 6384]N, λ8,000 ≥
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δj ≥ λ10,000. We disrupt the lowest part of the spectrum as the Restarted Arnoldi

Method favors the convergence to the dominant eigenpairs.

On the following �gures, we present the spectrum of Fission and Fission215 matri-

ces (real modulus eigenvalues) and the respective distance between each real modulus

eigenvalues.

Figure 5.1: The Fission Matrix Spectrum, Size is 10, 000

This �gure shows the original Fission matrix real modulus eigenvalues (blue line) without any

modi�cation. The red points present the distance between each successive real modulus eigen-

value. The Eigenvalues and Distance metrics use both log10 scale to enhance the eigenvalues

distribution visibility.

The generated matrix resulting from the Algorithm 11 is Dense F ission with

99, 980, 003 non-zeros elements. We could generate Dense F ission on a fat node (4 octo-

cores processors per node) of the PRACE CURIE supercomputer. The matrix generation

(including the Input/Output operations) execution time is about 35 minutes.
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Figure 5.2: The Fission215 Matrix Spectrum, Size is 215

The presented spectrum is an extension of the original Fission matrix spectrum. We added

6384 eigenvalues, starting from the 8000th eigenvalue so as we do not disrupt the dominant

part of the spectrum. The added eigenvalues are chosen with respect to the lowest part of the

original spectrum. The blue line represents the real modulus of eigenvalues while the red points

represent the distance between each real modulus of eigenvalues (this aims to show the clustered

eigenvalues if they exist). The Eigenvalues and Distance metrics use both log10 scale to enhance

the eigenvalues distribution visibility.

The generated matrix resulting from the Algorithm 11 is Dense F ission215 . This ma-

trix has 286, 402, 691 non-zeros elements. We could generate this matrix on a fat node of

the PRACE CURIE supercomputer. The matrix generation (including the Input/Output

operations) execution time is about 4h37.

The next step is to compute the dominant (largest real modulus) eigenvalues and

compare the results with the spectrums presented above. We used the SLEPc Arnoldi

and Krylov-Schur method. For each solver, we will compare the relative error (blue

line) of the obtained eigenvalues and present the associated computed residuals (red line)

resulting from the SLEPc eigen solvers.
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Figure 5.3: Dense Fission Matrix Spectrum, SLEPc Eigen Solvers Numerical Comparison

The blue line refers to the residual error while the red line refers to the SLEPc computed

eigenpairs residual. The SLEPc eigen solvers have been executed using 50 MPI tasks on thin

nodes (2 processors Intel R© Sandy-Bridge with 8 cores ) of the PRACE Curie supercomputer.

We �xed s = 200 and m = 400 (the default SLEPc value). The SLEPc Arnoldi (respectively

Krylov-Schur) eigen solver stopped after 5 (respectively 3) restarts.

The Figure 5.3 shows the relative error between Spec(Fission) and Spec(Dense

F ission) (blue line) for the 200 largest real modulus eigenvalues. We computed theDense

F ission eigenvalues using the Arnoldi and Krylov-Schur eigen solver of the SLEPc library.

On the red line, we present the residual of the 200 largest real modulus eigenvalues ob-

tained with SLEPc library. Both SLEPc eigen solver use the Rayleigh-Ritz method to

extract the eigenvalues ([Hernandez 2006] and [Hernandez 2007a]).

The relative error regarding the computed spectrum is very satisfying, as we expected.

The SLEPc eigen solvers may compute at maximum 20% of the spectrum (id est 2000

dominant eigenvalues). As we are interested in the dominant part of the spectrum, we

choose to compute 2% of the spectrum. The precision is similar for both eigen solvers.

The SLEPc residuals order shows that Dense F ission computed eigenvalues are rela-

tively accurate, leading to the fact that the relative error will provide a good metric to

evaluate the spectrum conservation through the Algorithm 11. Based on the Figure 5.3,

we conclude on the spectrum conservation, Dense F ission sprectum is comparable to

Spec(Fission).
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We executed the same tests with the Dense F ission215 spectrum, with exactly the

same parameters as mentioned above excepted for the number of MPI tasks. The following

tests have been executed on 64 MPI tasks, using the thin nodes of the PRACE Curie

supercomputer.

Figure 5.4: Dense Fission215 Matrix Extended Spectrum, SLEPc Eigen Solvers Numerical

Comparison
The blue line refers to the residual error while the red line refers to the SLEPc computed

eigenpairs residual. The SLEPc eigen solvers have been executed using 64 MPI tasks on thin

nodes (2 processors Intel R© Sandy-Bridge with 8 cores ) of the PRACE Curie supercomputer.

The SLEPc Arnoldi (respectively Krylov-Schur) eigen solver stopped after 6 (respectively 3)

restarts.

The Figure 5.4 shows that the 200 dominant eigenvalues have been conserved by the

algorithm, as the relative error (blue line) and the residuals (red line) are comparable

to the previous results. Both solvers provide accurate residuals, leading to the same

conclusion as the Dense F ission matrix: the relative error of Dense F ission215 spectrum

shows the spectrum conservation through the Algorithm 11.

Obviously, the dominant part of the spectrum of Dense F ission215 matrix is not

disrupted by the injection of "fake" eigenvalues ot the lowest part of the spectrum.

The same tests have been executed on the target matrices listed in the Table 5.2.1.

As they lead to the same conclusion, we present all these results in the Appendix A. We

invite the reader to consult this appendix for more results.
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5.3 The Diagonal-Band Matrices Generator

Starting from a spectrum, this algorithm generates Agen with a diagonal-band shape.

The diagonal-band matrix generator method is based on the Ordinary Di�erential Equa-

tions and the nilpotent semi-group generators. The method is premised on the following

theorem:

Theorem 1 :
Let's consider the matrices A ∈ Cn×n,M ∈ Cn×n,M0 ∈ Cn×n, n ∈ N∗. If M veri�es :{

dM(t)
dt

= AM(t)−M(t)A,

M(t = 0) = M0,

Then the matrices Mt and M0 are similar, ∀A ∈ Cn×n.

The idea is to impose the desired spectrum toM0 and obtain aMt matrix that veri�es

the Theorem 1 and our hypothesis. TheMt spectrum is the same asM0 however we recall

that the Mt eigenvectors are not the same as M0. The idea may seem very simple but

many parameters need to be �xed to achieve our objective.

Firstly, we de�ne the linear operator Ã such that:

ÃA : Mn×n → Mn×n
M → A.M −M.A,

(5.4)

At the present time, we did not imposed any conditions on the matrix A. The Ã

operator veri�es that:

ÃA(Id) = 0,∀A ∈Mn×n, (5.5)

Based on the Theorem 1 and the linear operator ÃA de�nition, we can rewritte the

ordinary di�erential equation such that:{
dM(t)
dt

= ÃA(M(t)),

M(t = 0) = M0,
(5.6)

Starting out the equation 5.6, we apply the exponential operator (which is possible as

ÃA has no time dependency). This leads to the fact that the solution of the equation 5.6

can be expressed as follows:  M(t) = e(ÃAt)(M0),

M(t) =
∞∑
n=0

tn

n!
(ÃA)n(M0),

(5.7)

The equation 5.7 does not allow to compute the Mt matrix, as its sum is in�nite. We

add the hypothesis that ÃA is nilpotent to obtain a �nite sum: If ÃA is nilpotent, then

∃p ∈ N∗ such that Ãp = 0. Therefore, the equation 5.7 can be rewritten as:

M(t) = M0 + tÃA(M0) + t2

2!
(ÃA)2(M0) + ...+ tp−1

(p−1)!
(ÃA)p−1(M0), (5.8)
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The equation 5.8 exact arithmetic can be conserved if computed with integers values

and if the integers divisions by the successive (k)! are avoided. The exact

arithmetic version of the equation 5.8 is then:

(p− 1)!M(t) = (p− 1)!
p−1∑
k=0

tk

(k)!
(ÃA)k(M0), (5.9)

The equation 5.8 provides a satis�able form of Mt but we still need to de�ne the A

matrix associated to ÃA to compute the �nal matrix Mt. The ÃA nilpotency degree is

related to A one's. We denote by d ∈ N∗ the A nipoltency degree then p = 2d. As A is

nilpotent of degree d, ∃B ∈Mn×n an invertible matrix such that :

A = B−1


P1 · · · · · · · · ·
· · · P2 · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · Pk

B (5.10)

where Pk ∈ Rk×k, k ∈ N has the following form:

0 1 0 0 · · · 0

0 0 1 0 · · · 0

0 0 0 · · · · · · 0

· · · · · · · · · · · · · · · · · ·
0 0 · · · · · · · · · 1

0 0 · · · · · · · · · 0



We can easily express the A nilpotency degree as d = max
i∈[1,k]N

(size(Pi)).

Fixing B = Idn avoids to compute B−1 and simpli�es the A form. Considering this

hypothesis leads to a simple formula of the equation 5.9 to compute Mt with the input

spectrum.

This method veri�es most of the hypothesis �xed for the matrix generator:

m Hypothesis 1 : Specin is mathematically conserved by the method.

m Hypothesis 2 : Agen = Mt is non-Hermitian.

m Hypothesis 3 : Agen = Mt size and/or number of non-zeros elements must not be

limited by the algorithm. This implicitly means that the algorithm must be par-

allelizable. This hypothesis is partially veri�ed: The parallelism of the method is

undeniable, leading to the possibility to �x very large dimension for Agen. However,

the number of non-zeros elements is limited by the number of diagonals we can add.
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m Hypothesis 4 : Agen = Mt shape is diagonal-band and the �nal matrix Mt depends

on M0 matrix. Executing the algorithm with M0 matrix whose elements are signi�-

cantly di�erent from the original matrix ensures that Mt will have a di�erent shape

and elements from the con�dential matrix.

Our current version and implementation of the diagonal-band matrix generator ensures

the exact arithmetic computation by using integers and the equation 5.9 formula, leading

to the point that Mt has the exact spectrum Specin.

We present the diagonal-band matrix generator Algorithm 12, taking into account the

speci�city of integer values. The following Algorithm 12 is available for M0 ∈ Mn(N)

and can be extended to the complex matrices by executing the algorithm with <(Mt) and

=(Mt) separately (due to the ÃA linear property).

Algorithm 12 The Diagonal-Band Matrix Generator
Input: Specin ∈ Nn

Randomly choose k ∈ [0, n− 1]N
Insert random elements in k lower diagonals of M0 ∈ Nn×n

diag(M0) = Specin
Randomly insert 1 on A ∈ Nn×n sub-diagonal

Find the nilpotency degree d of A

for i = 0, 2d− 2 do
Mi+1 = Mi + (ÃA)k(M0)

end for
Mt = 1

(2d−2)!
M2d−2

Output: Mt ∈ Nn×n, such that Spec(Mt) = Specin

5.3.1 Diagonal-Band Matrix Generator Results

We computed 5 spectrums with di�erent size (from 215 until 219) and di�erent integers

values. We then generated 3 matrices for each spectrum and computed 200 eigenvalues

of the generated matrices that we denote by Agen.

For each generated matrix, we will compare Spec(Agen) with respect to Specin. We will

detail our approach with the spectrum Spec215 . The same tests have been executed with

higher dimensions and lead to the same conclusion. These results will be summarized

in what follows. We present on the Figure 5.5 the input spectrum Spec215 . The blue

points represent the real modulus of the eigenvalues, the red bars represent the distance

between each successive real modulus eigenvalue. Such metric is important as clustered

eigenvalues as an example deeply in�uence the ERAM convergence.
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Figure 5.5: Spectrum Spec215

Spec215 contains exclusively integer eigenvalues to preserve the exact arithmetic of the Algorithm

12. Its size is 215, its highest eigenvalue is 2, 147, 328, 638 and its lowest is 8, 893. This spectrum
has been randomly generated.

We executed the Algorithm 12 with 1, 2 and 4 MPI tasks respectively, using the

same input Spec215 presented on the Figure 5.5. We summarize in the Table 5.2 some

characteristics of Mt and M0 matrices for each execution of the Algorithm 12. In what

follows, the matrixMt
np (respectivelyM0

np) refers to the output matrix of the Algorithm

12 using Spec215 as input and executed with np MPI tasks.
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Spec215 nnz max(nnz max
(i,j)∈[1,215]N

2
mi,j min

(i,j)∈[1,215]N
2
mi,j d MPI

per row)

M0
1 180, 169 11 7, 792, 226, 161, 574, 400 0 5 1

Mt
1 181, 435 16 7, 792, 226, 150, 688, 000 −1, 422, 738, 172, 800 5 1

M0
2 114, 667 7 1, 546, 076, 619, 360 0 3 2

Mt
2 115, 770 10 1, 546, 076, 619, 360 −180, 652, 320 3 2

M0
4 180, 169 11 7, 792, 226, 161, 574, 400 0 5 4

Mt
4 181, 403 16 7, 792, 226, 161, 574, 400 −1, 354, 407, 868, 800 5 4

Table 5.2:

For each execution of the Algorithm 12 on 1, 2 and 4 MPI tasks respectively, we summarized

some properties of M0 and Mt matrices. All matrices presented in this table verify that their

spectrum is Spec215 presented on the Figure 5.5. We used the fat nodes of PRACE CURIE

Supercomputer (4 octo-cores processors per node).

Based on the Table 5.2 results, the Algorithm 12 does not verify the reproducibility

even though this characteristic remains important in the context of exascale computing.

We compute for Mt
1,Mt

2, and Mt
4 presented in the Table 5.2 the 200 dominant

eigenvalues and their associated eigenvectors (1,22% of the complete spectrum).

We use the Scienti�c Library SLEPc [SLE ], with respectively the Arnoldi

[Hernandez 2006] and the Krylov-Schur [Hernandez 2007a] eigen solvers. We choose to

compute a subset of the dominant spectrum only to evaluate the spectrum conservation

accuracy. We recall that in our study, we are interested only in the dominant eigenvalues.

For each matrices Mt
1,Mt

2, and Mt
4, we will present the eigenvalues relative error

(blue line) and the residuals associated to the computed eigenvalues (red line).
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Figure 5.6: Spec215 Mt
1, SLEPc Krylov-

Schur
Figure 5.7: Spec215 Mt

1, SLEPc Arnoldi

The Figure 5.7 (respectively 5.6) shows the Mt
1 dominant eigenvalues relative error (blue

line) using the Arnoldi (respectively Krylov-Schur) SLEPc eigen solver. The red line shows

the residual associated to each computed eigenpair. Both Solvers are executed with 64 MPI

tasks using the fat nodes of PRACE CURIE Supercomputer (4 octo-cores processors per node).

We �xed s = 200 and m = 400. The SLEPc Krylov-Schur (respectively Arnoldi) eigen solver

reached the convergence after 22 (respectively 100) restarts.

The residuals according to the relative error associated to each eigenvalue are every

satisfying, therefore we consider that the computed eigenvalues accuracy is correct. We do

not consider the eigenvectors in this work, we only focus on the eigenvalues. We conclude

on the Figures 5.6 and 5.7 that the 200 dominant eigenvalues are conserved through the

Algorithm 12.
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Figure 5.8: Spec215 Mt
2, SLEPc Krylov-

Schur
Figure 5.9: Spec215 Mt

2, SLEPc Arnoldi

The Figures 5.9 (respectively 5.8) shows the Mt
2 dominant eigenvalues relative error (blue

line) using the Arnoldi (respectively Krylov-Schur) SLEPc eigen solver. The red line shows

the residual associated to each computed eigenpair. Both Solvers are executed with 64 MPI

tasks using the fat nodes of PRACE CURIE Supercomputer (4 octo-cores processors per node).

We �xed s = 200 and m = 400. The SLEPc Krylov-Schur (respectively Arnoldi) eigen solver

reached the convergence after 16 (respectively 100) restarts.

Figures 5.8 and 5.9 show the same results for the matrix Mt
2. Spectrums of Mt

2 and

Mt
1 are the same, however their eigenvectors may be di�erent. This explains the better

convergence of Mt
2 eigenvalues using the SLEPc Arnoldi eigen solver compared to Mt

1.

Both SLEPc residuals have the same order as 5.6 and 5.7 Figures. The relative errors

remains very small, therefore we conclude on the Mt
2 spectrum conservation through the

Algorithm 12.

80



Matrix Generators for Extreme-Scale Computing

Figure 5.10: Spec215 Mt
4, SLEPc Krylov-

Schur
Figure 5.11: Spec215 Mt

4, SLEPc Arnoldi

Figures 5.11 (respectively 5.10) shows the Mt
4 dominant eigenvalues relative error (blue line)

using the Arnoldi (respectively Krylov-Schur) SLEPc eigen solver. The red line shows the

residual associated to each computed eigenpair. Both Solvers are executed with 64 MPI tasks

using the fat nodes of PRACE CURIE Supercomputer (4 octo-cores processors per node).

We �xed s = 200 and m = 400. The SLEPc Krylov-Schur (respectively Arnoldi) eigen solver

reached the convergence after 11 (respectively 100) restarts.

On �gures 5.10 and 5.11, we present the residuals (red line) and the relative errors

obtained for the matrix Mt
4. SLEPc Krylov-Schur solver computes e�ciently 200 desired

eigenvalues, with a very satisfying residual while SLEPc Arnoldi solver e�ciency is not

uniform for each matrices presented above: We could obtain 60 dominant eigenvalues for

the matrix Mt
4, 35 for Mt

2 and �nally 20 for Mt
1. We conclude on the Mt

4 spectrum

conservation through the Algorithm 12 based on the residuals and relative errors orders

presented on the Figures 5.11, 5.8 and 5.10.

We realized the same tests for the spectrum Spec216 , Spec217 and Spec218 . We sum-

marize in the Table 5.3.1 some properties of the matrices Mt generated from spectrums

Spec216 , Spec217 the Spec218 using the Algorithm 12.
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Size nnz max(nnz max
(i,j)∈[1,n]N

2
mi,j min

(i,j)∈[1,n]N
2
mi,j d MPI

per row)

M0 216 294, 876 9 86, 579, 235, 711, 360 0 4 1

Mt 216 296, 405 13 86, 579, 235, 711, 360 −5, 681, 225, 760 4 1

M0 216 294, 876 9 86, 579, 235, 711, 360 0 4 2

Mt 216 296, 434 13 86, 579, 235, 711, 360 −7, 799, 561, 280 4 2

M0 216 294, 876 9 86, 579, 235, 711, 360 0 4 4

Mt 216 296, 327 13 86, 579, 235, 711, 360 −6, 566, 071, 680 4 4

M0 217 720, 841 11 7, 792, 741, 480, 204, 800 0 5 1

Mt 217 722, 635 16 7, 792, 741, 480, 204, 800 −322, 996, 766, 400 5 1

M0 217 720, 841 11 7, 792, 741, 480, 204, 800 0 5 2

Mt 217 722, 517 16 7, 792, 741, 480, 204, 800 −363, 600, 316, 800 5 2

M0 217 589, 788 9 86, 586, 016, 446, 720 0 4 4

Mt 217 592, 781 13 86, 586, 016, 446, 720 −5, 839, 021, 440 4 4

M0 218 1, 441, 737 11 7, 792, 713, 269, 913, 600 0 5 1

Mt 218 1, 445, 221 16 7, 792, 713, 269, 913, 600 −217, 291, 636, 800 5 1

M0 218 1, 441, 737 11 7, 792, 713, 269, 913, 600 0 5 2

Mt 218 1, 445, 065 16 7, 792, 713, 269, 913, 600 −272, 584, 569, 600 5 2

M0 218 1, 441, 737 11 7, 792, 713, 269, 913, 600 0 5 4

Mt 218 1, 445, 081 16 7, 792, 713, 269, 913, 600 −144, 145, 008, 000 5 4

Table 5.3: Diagonal-Band Matrices Characteristics

This Table summarizes some properties of matrices generated using the Diagonal-Band Matrix

Generator Algorithm 12. The matrices have been generated using the fat nodes of PRACE

CURIE Supercomputer (4 octo-cores processors per node).

For each input spectrum, the reader may note that each output matrix have di�erent

characteristics. The non-reproducibility of our diagonal-band matrix generator is due to

the random functions used in the Algorithm 12 (that could be avoided depending on the

user needs).

We computed the 200 dominant eigenpairs using both SLEPc Arnoldi and Krylov-

Schur eigen solvers to evaluate the spectrum conservations through the Algorithm 12 for

each matrices listed in the Table 5.3.1.
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Figure 5.12: Diagonal Band Matrices, SLEPc Krylov-Schur Accuracy

This Figure shows the SLEPc residuals and relative errors for all diagonal-band matrices eigen-

values computed with SLEPc Krylov-Schur. We denote by Mt(q, np) the diagonal band matrix

generated by the Algorithm 12 using the spectrum 2q, q ∈ [15, 18]N and 2np tasks, np ∈ [0, 2]N.
The Figure shows for both metric (Eigenvalues SLEPc Residuals and Eigenvalues Relative Error)

the minimum, maximum and mean respectively. All solvers have been executed with 64 MPI

tasks using the fat nodes of PRACE CURIE Supercomputer (4 octo-cores processors per node).
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Figure 5.13: Diagonal Band Matrices, SLEPc Arnoldi Accuracy

This Figure shows the SLEPc residuals and relative errors for all diagonal-band matrices eigenval-

ues computed with SLEPc Arnoldi. We denote byMt(q, np) the diagonal band matrix generated
by the Algorithm 12 using the spectrum 2q, q ∈ [15, 18]N and 2np tasks, np ∈ [0, 2]N. The Figure
shows for both metric (Eigenvalues SLEPc Residuals and Eigenvalues Relative Error) the mini-

mum, maximum and mean respectively. All solvers have been executed with 64 MPI tasks using

the fat nodes of PRACE CURIE Supercomputer (4 octo-cores processors per node).
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Based on the results presented on the Figures 5.12 and 5.13 we conclude on the

spectrum conservation through the Algorithm 12 for each computed matrix. We recall

that Algorithm 12 does not conserve the eigenvectors, only the spectrum. The SLEPc

residuals variations between Mt(q, np)∀np ∈ [0, 2]N with q �xed are explained by the

non conservation of the eigenvectors. Nevertheless, their small values indicate that the

computed eigenvalues are reliable. For q �xed, all Mt(q, np)∀np ∈ [0, 2]N have the same

spectrum (conserved by the Algorithm 12), as shown on the previous results.

The Diagonal-Band Matrix Generator matches with all of the required hypothesis.

The spectrum is conserved, however, this is not the case regarding the eigenvectors. For

this work, we considered that the eigenvectors conservation was not the priority.

We may temper the hypothesis "The matrix shall not look like a trivial matrix", as

the resulting matrices have a diagonal band shape and the sparsity is relatively high (cf

Table 5.3.1, maximum non-zeros elements per row). The Algorithm 12 presents many

interesting properties, especially regarding the output matrix mathematical properties.
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Conclusion

Validation is a key point in many scienti�c frameworks. We highlighted the needs of

open-source matrix generators or collection that would provide huge dimension matrices

and their spectrum.

As a remedy, two matrix generators have been implemented. We choose di�erent spec-

trums to enhance that both Algorithms 12 and 11 are not dependent of its distribution.

The diagonal-band matrix generator presents many bene�ts, in terms of parallelism

and numerical accuracy. Its mathematical properties are more interesting than the dense

matrix generator and its parallelism is de�nitely better.

Nevertheless, the dense matrix generator is also very interesting as the provided ma-

trices have a large non-zeros elements and their repartition is completely random. The

reader will notice in the next section that the dense matrix generator tends to conserve

the convergence behavior for the ERAM solver: we mean that an ERAM, using exactly

the same parameters applied on a matrix and its dense version issued from the dense

matrix generator tends to converge similarly.

This point is important insofar as it con�rms the ability of the dense generator to

provide good candidates to tests the numerical e�ciency of ultra-scale eigen solvers.

All the matrices presented in this section will be used to illustrate further results in

this thesis.
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Chapter 6

Restarting Strategies In�uence on the

ERAM Convergence

As presented in Chapter 3, choosing a pertinent combination to compute the restarting

vector v1 may considerably accelerate the convergence. In this chapter we present several

restarting strategies that we will use during all this thesis.

6.1 ERAM Restarting Strategies

The ERAM (cf Algorithm 5) restarts its process with a restarting vector computed

using the equation 6.1 :

v
(i+1)
1 =

γ∑
j=1

<(u
(i)
j ),m ≥ γ ≥ s ≥ 1 (6.1)

This linear combination uses a uniform weight for each desired approximated eigen-

vectors. In the scienti�c literature, this weight scheme is de�nitely the most classic and

widely spread for the existing ERAM implementations.

6.1.1 The Restarting Strategies

Some other weight schemes were discussed, especially in [Sedrakian 2005]. As an

illustration, Yousef Saad suggested in [Saad 2011] to use the following equation to compute

the restarting vector:

v1
(i+1) =

γ∑
j=1

resTr
(i)
j <(u

(i)
j ), (6.2)

Where γ ∈ [1,m]N.

This weight scheme favors the slowest convergence eigenpair(s), as their associated

residual(s) will be higher. Such weight scheme may be pertinent as it is well known that

the Restarted Arnoldi Method (see the section 3.2) favors the outer eigenvalues of the

spectrum, therefore it is not surprising to observe that {θ(i)
s , u

(i)
s } converges faster than

{θ(i)
s−1, u

(i)
s−1}1. Nevertheless, we moderate this purpose as this observation varies from one

ERAM con�guration to another (depending on the matrix itself, the subspace size value,

the number of desired eigenpairs etc ...).

1This is an illustration, not a generality.
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In what follows, we aim to be very generic to compute the restarting vector. We intro-

duce α
(i)
j , the restarting coe�cient associated to the jth Ritz eigenpair used to compute

the restarting vector v
(i+1)
1 . Then, the equation 3.8 is rewritten as follows 8.5:

v1
(i+1) =

γ∑
j=1

α
(i)
j <(u

(i)
j ),

(6.3)

Where γ ∈ [1,m]N.

The α
(i)
j coe�cients may weight di�erently the Ritz eigenvectors, depending on their

values. The restarting eigenvector may use three di�erent weight schemes: whether we use

a uniformly weight, a randomly weight or an ordered (increasing or decreasing) weight.

In this Thesis, we will study these three schemes to compute the restarting vector.

Additionally to the weight schemes, we will study two restarting coe�cients pro�les:

m The restarting coe�cients uses Ritz eigenpairs information (including the residuals),

m The restarting coe�cients do not contain any Ritz eigenpairs information, but they

are computed relatively to their order (in terms of real modulus eigenvalue).

We summarize in the Table 6.1.1 the restarting strategies used in our ERAM frame-

work:

Restarting Abreviation α
(i)
j Weight

Strategy Scheme∗

Default αDef 1 U

Residual αRes |1− resTr(i)
j | O or R or U

Linear αLi (s− j) O

Linear Residual αLiRes (s− j)× |1− resTr(i)
j | O or R

Lambda αLa |θ(i)
j | O or U

Lambda Residual αLaRes |θ(i)
j | × |1− resTr

(i)
j | O or R or U

Table 6.1: We summarize in this table the values of restarting coe�cients and their weight

schemes: O refers to an Ordered weight, R to a Randomly weight and U to a Uniformly

weight. ∗Relatively to the real modulus of the desired eigenvalues.

The reader may note that many other restarting strategies can be derived from the

Table 6.1.1, the restarting strategies listed above do not constitute an exhaustive list.
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6.2 The ERAM Restarting Strategies Convergence

In this section, we will emphasize the restarting strategies in�uence on the ERAM

convergence. In what follows, we will execute many ERAMs, with the same parameters

excepted the restarting strategy.

We de�ne by EP = {m, s, γ, orthogonalization, αX} the ERAM Parameters set (we

will detail each component below). We will consider in this section that these parameters

are �xed for the complete ERAM execution.

m m ∈ [1, n]N the Krylov subspace size,

m s ∈ [1,m]N the number of desired eigenpairs,

m γ ∈ [1,m]N the number of Ritz eigenpairs used to compute the restarting vector

v1
(i+1),

m orthogonalization the orthogonalization process used by the Arnoldi Method.

orthogonalization may be CGS, CGSR ... As a �rst step, we will �x

orthogonalization = CGSR: This choice is in�uenced by the previous work ex-

ecuted in [Dubois 2011d],

m αX the restarting strategy. αX value may be αDef , αRes, αLi, αLiRes, αLa or αLaRes.

To highlight the restarting strategies behavior, we will execute, for each target matrix

(that will be listed later), the following test:

We �x a constant ERAM Parameter Set whose components, except that restarting

strategy is �xed for one target matrix. We will vary he restarting strategy parameters

among the one presented in the Table 6.1.1 and compare the results.

We apply the test presented above to the target matrices summarized in the Table

6.2:
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Size nnz Source

Ex11 16,614 1,096,948 UF SMC[Davis ]

Ex11Dense 16,614 275,991,771 Issued from A.0.2.1

FissionDense 10,000 99,980,003 Issued from 5.2.1.1

and CEA neutronic applications

Fission215 16,384 286,402,691 Issued from 5.2.1.1

and CEA neutronic applications

Mixtank_new 29,957 1,995,041 UF SMC[Davis ]

Mixtank_newDense 29,957 897,361,938 Issued from A.0.2.2

Rim 22,560 1,014,951 UF SMC[Davis ]

RimDense 22,560 508,908,483 Issued from A.0.2.3

Spec216 ,Mt
4 32,768 296,327 Issued from 5.3.1

Table 6.2: Target Matrices to Test the Restarting Strategies.

We mostly used matrices provided from the famous Tim Davis matrices collection

[Davis ]. We choose di�erent spectrums, in terms of the real modulus eigenvalues and

their distribution. We apply the ERAM restarting strategy behavior study to the

matrices issued from our matrix generators (please, see the Chapter 5). We choose to

focus to one diagonal band matrix, but the results presented in this section can be

extended to the other diagonal-band matrices.

For each �gure presented in this section, one color will be associated to one restarting

strategy as follows: αDef , αRes, αLi, αLiRes, αLa and αLaRes. Such colors "code" remain

available in this section only.

We recall that the restarting strategy has no impact on the parallel execution time,

meaning that using αDef or αLaRes will not change the execution time per restart
but it will in�uence the number of restarts to reach the convergence, therefore
the global parallel execution time.

6.2.0.1 Ex11 & Ex11Dense

The Figure 6.1 (respectively 6.2) presents the restarting strategy convergence behavior

of Ex11 and Ex11Dense matrices respectively. Both ERAM presented on �gures 6.1 and

6.2 have the following ERAM Parameter set: EP = {m = 20, s = 4, γ = 4, CGSR, αX}.
The number of restarts until the convergence is from our point of view the best per-

formance metric for this study. As the parallel execution time remains identical whatever

the restarting strategy is, it measures simultaneously the algorithm performance and the

numerical quality of the ERAM with the �xed parameter set. This would have not been

the case if the restarting strategies would have had an impact on the parallel execution

time per restart.
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Figure 6.1: Ex11 Matrix, ERAM Restarting Strategies Convergence.

The ERAM has m = 20, s = γ = 4 and a CGSR orthogonalization process for the Arnoldi

Method (s is the number of desired eigenpairs while γ is the number of eigenpairs we use to

compute the restarting vector). We present the dominant eigenvalue residual evolution. We

used a single thin node (2 processors Intel R© Sandy-Bridge with 8 cores) of the PRACE Curie

supercomputer. The ERAMs reach the convergence in the following order (according to the

restarting strategies): αLaRes, αRes, αLa, αDef and αLi. αLiRes did not reach the convergence.
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Figure 6.2: Ex11 Dense Matrix, ERAM Restarting Strategies Convergence with respect

to the number of restarts.
The ERAM has m = 20, s = γ = 4 and a CGSR orthogonalization process for the Arnoldi

Method (s is the number of desired eigenpairs while γ is the number of eigenpairs we use to

compute the restarting vector). We present the dominant eigenvalue residual evolution. We used

234 MPI tasks on thin nodes (2 processors Intel R© Sandy-Bridge with 8 cores Intel R© Xeon R©)

of the PRACE Curie supercomputer. The ERAMs reach the convergence in the following odrer

(according to the restarting strategies): αLaRes, αLi, αRes, αDef , αLa and αLiRes.
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On the Figure 6.1, the most e�cient restarting strategy is without any contest the

αLaRes one. We reach the convergence in only 10 restarts. Then, the αRes and αLa reach

the convergence at 47 and 52 restarts respectively. The other restarting strategies and

especially αDef are clearly less e�cient.

The αLaRes restarting strategy e�ciency is still very impressive for the Ex11Dense
matrix (Figure 6.2).

The performance of the αDef compared to the best restarting strategy is still relatively

poor for both matrices.

The reader may notice that the convergence performances between Ex11 (6.2.0.1)

and its Dense version (issued from A.0.2.1) are similar. This con�rms the ability of the

dense matrix generator to provide pertinent test matrices for eigenvalue solvers. This

observation will be emphasized with the matrices that will be presented below.

Note that for both Ex11 and Ex11Dense, the αLaRes convergence presents a "peak"
during its convergence. This peak is due to a spectrum shift: Due to the Ex11 eigenvalue

repartition (please see Figure A.1), θ4 tends to converge to λ5 instead of λ4. Until the

peak, θ4 has reach a relatively accurate approximation of λ5, the next restart θ4 starts to

converge to λ4, which explains the sudden convergence peak. Same behavior is observed

for the other restarts, but the "shift peaks" are less accentuated.

This observation is not necessarily true anymore with an another ERAM parame-

ter set, which emphasizes the complexity of �xing a pertinent ERAM parameter. As

an illustration, with an other m and or s value, the shift peak convergence would not

have necessarily be observed anymore. This strengthen the necessity to converge to an

ERAM whose parameters would be dynamically adapted to the numerical evolution of the

ERAM. In other terms, we need to build a Smart-Tuning heuristic that would optimize

the numerical parameters of the ERAM according to its convergence.

6.2.0.2 FissionDense&Fission215

We executed the same study with the Fission matrices presented in section 5.2.1.1.

This study has two objectives: evaluate the restarting strategies impact on one hand and

in a second hand, show the convergence similarities between the two generated matrices.

Indeed, we recall that Fission215 is an "extension" of the FissionDense matrix (cf section

5.2.1.1). Therefore we aim to show that extend the lowest part of the matrix spectrum

has a limited impact on the ERAM restarting strategies convergence.

The Figure 6.3 (respectively 6.4) presents the ERAM using EP = {m = 15, s = 4, γ =

4, CGSR, αX} (respectively EP = {m = 10, s = 4, γ = 4, CGSR, αX}).
The restarting strategies e�ciency are still pretty di�erent. We note that on Figure 6.4

(respectively Figure 6.3), αRes (respectively αDef ) and αLa have a very similar behavior,

while their coe�cients are very di�erent.

On Figure 6.4, the αLa restarting strategy converges at the restart 45, which is 2.3

times faster than αDef . We recall that using αLa or any other restarting strategy than

αDef does not imply neither parallel communications nor additional computation costs.

The convergence is pretty smooth for the αDef and αLa restarting strategies. The αLiRes
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restarting strategy almost reached the convergence: the reader may have noticed that

this restarting strategy particularly has a "chaotic" behavior, for almost all the matrices

presented in this thesis. We shall shortly return to this subject later.

Figure 6.3: Fission Dense Matrix, Restarting Strategies Convergence.

The ERAM has m = 10, s = 4 and a CGSR orthogonalization process for the Arnoldi Method.

We present the dominant2 eigenvalue residual evolution. We used 400 MPI tasks on thin nodes

(2 processors Intel R© Sandy-Bridge with 8 cores) of the PRACE Curie supercomputer. ERAMs

reach the convergence in the following order (according to the restarting strategies): αDef then

αLa. αLi, αLiRes, αLaRes and αRes did not reach the convergence.
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Figure 6.4: Fission215 Dense Matrix, ERAM Restarting Strategies Convergence.

The ERAM has m = 10, s = 4 and a CGSR orthogonalization process for the Arnoldi Method.

We present the dominant3 eigenvalue residual evolution. We used 400 MPI tasks on thin nodes

(2 processors Intel R© Sandy-Bridge with 8 cores) of the PRACE Curie supercomputer. ERAMs

reach the convergence in the following order (according to the restarting strategies): αLa, αRes,

αLaRes, αDef and αLi. αLiRes did not reach the convergence.

6.2.0.3 Mixtank_new & Mixtank_newDense

The Mixtank_new matrix (therefore Mixtank_newDense) has a complete di�erent

spectrum from the matrices studied above. We present on the Figures 6.5 and 6.6 the

ERAM convergence by using the following parameter set EP = {m = 15, s = 4, γ =

4, CGSR, αX}.
Both matrices have a convergence that we can characterize as a "plateau" convergence,

meaning that we alternate between a stagnation part and then a convergence. On the

Figure 6.5, the convergence is pretty slow and the reader may notice that for this matrix,

the αLiRes restarting strategy is relatively e�cient.

We executed the same test with the Mixtank_newDense matrix, the results are pre-

sented on the Figure 6.6. None of the restarting strategies could provide the convergence

at 10−14 threshold. Nevertheless, the reader may notice the similarities of ERAM conver-

gence with the original matrix Mixtank_new. In this con�guration, the αDef restarting

strategy o�ers the best performance.
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Figure 6.5: Mixtank_new Matrix, Restarting Strategies Convergence.

The ERAM has m = 15, s = 4 and a CGSR orthogonalization process for the Arnoldi Method.

We present the dominant eigenvalue residual evolution. We used a single thin node (2 processors

Intel R© Sandy-Bridge with 8 cores) of the PRACE Curie supercomputer. The ERAMs reach

the convergence in the following order (according to the restarting strategies): αLi, αLaRes and

αLiRes. αLa, αRes and αDef did not converge.
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Figure 6.6: Mixtank_new Dense Matrix, Restarting Strategies Convergence.

The ERAM has m = 15, s = 4 and a CGSR orthogonalization process for the Arnoldi Method.

We present the dominant eigenvalue residual evolution. We used 29 MPI tasks on thin nodes (2

processors Intel R© Sandy-Bridge with 8 cores) of the PRACE Curie supercomputer.
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6.2.0.4 Rim & RimDense

We present on the Figure 6.7 (respectively 6.8) the Rim (respectively RimDense)

matrix convergence with ERAMs using as parameter set EP = {m = 20, s = 4, γ =

4, CGSR, αX} (respectively EP = {m = 15, s = 4, γ = 4, CGSR, αX}).
For both matrices, the best convergence scheme is obtained with the αLi restarting

strategy, wile αDef restarting strategy has poor performances. The αLiRes restarting

strategy has still a chaotic behavior.

As a primary observation, the convergence behavior of RimDense is very similar to

the original matrix. The reader may notice that the convergence e�ciency is the same,

meaning that the restarting strategies reach the convergence in almost the same order:

αRes and αLi, then αLa, αLaRes and �nally αDef . For both matrices, αLiRes has a very

chaotic behavior.

Figure 6.7: Rim Matrix, Restarting Strategies Convergence.

The ERAM has m = 20, s = 4 and a CGSR orthogonalization process for the Arnoldi Method.

We present the dominant4 eigenvalue residual evolution. We used a single thin node (2 processors

Intel R© Sandy-Bridge with 8 cores) of the PRACE Curie supercomputer. ERAMs reach the

convergence in the following order (according to the restarting strategies): αLi, αLaRes, αRes,

αLa and αDef . αLiRes did not converge.
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Figure 6.8: Rim Dense Matrix, Restarting Strategies Convergence.

The ERAM has m = 15, s = 4 and a CGSR orthogonalization process for the Arnoldi Method.

We present the dominant eigenvalue residual evolution. We used 188 MPI tasks on thin nodes

(2 processors Intel R© Sandy-Bridge with 8 cores) of the PRACE Curie supercomputer. ERAMs

reach the convergence in the following order (according to the restarting strategies): αRes, αLi,

αLaRes, αLa and αDef . αLiRes did not converge.

6.2.0.5 Spec216 ,M4
t

The last but not the least, we present the ERAM restarting strategy behavior by using

one of the diagonal band matrices, issued from the Algorithm presented in section 5.3.1.

The observation listed in this section can be extended to all the diagonal band matrices

presented in this thesis. For each results presented below, we computed the 3 dominant

eigenpairs and used a CGSR orthogonalization process for the Arnoldi Method.
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Subspace Size αDef αRes αLi αLiRes αLa αLaRes

100 # # # # # 27

105 # # # # # 31

110 212 106 345 # 242 42

115 89 97 83 # 72 43

120 74 77 85 # 63 54

125 59 44 48 # 52 50

Table 6.3: We present the dominant eigenvalue residual evolution. We used 256 MPI

tasks on thin nodes (2 processors Intel R© Sandy-Bridge with 8 cores) of the PRACE

Curie supercomputer for each tests presented above. This Table summarizes the number

of restart to reach he convergence for each restarting strategy. # means that ERAM did

not converge.

The αLaRes e�ciency is de�nitely the best restarting strategy. Its behavior is very

similar to the Ex11 and Ex11Dense matrices. In fact, their sprectums have similarities in

terms of eigenvalue distribution and real modulus. We note that αLaRes is very e�cient

to converge to the exterior eigenvalues, while other restarting strategies such as αRes will

favors the dominant (in terms of real modulus) eigenvalues and have more trouble to

reach the convergence to the lowest eigenvalue.

6.2.1 The Restarting Strategy E�ciency
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Matrix EP αDef αRes αLi αLiRes αLa αLaRes

Ex11 {m = 20, s = 4, 1 3,29 0,65 # 2,69 14,8
γ = 4, CGSR, αX}

Ex11Dense {m = 20, s = 4, 1 1,05 2 0,42 0,67 3,88
γ = 4, CGSR, αX}

FissionDense {m = 15, s = 4, # # 0,15 # 0,58 #
γ = 4, CGSR, αX}

Fission216 {m = 10, s = 4, 1 1,98 0,55 # 2,3 1,49
γ = 4, CGSR, αX}

Mixtank_new {m = 15, s = 4, # # 2,27 1,84 # 2,15
γ = 4, CGSR, αX}

Rim {m = 20, s = 4, # # # # # #
γ = 4, CGSR, αX}

RimDense {m = 15, s = 4, 1 2,45 2,2 0,49 1,13 1,1
γ = 4, CGSR, αX}

Spec216 {m = 110, s = 3, 1 2 0,61 # 0,88 5,05
γ = 3, CGSR, αX}
{m = 115, s = 3, 1 0.92 1,07 # 1,24 2,07
γ = 3, CGSR, αX}
{m = 120, s = 3, 1 0,96 0,87 # 1,17 1,37
γ = 3, CGSR, αX}
{m = 125, s = 3, 1 1,34 1,23 # 1,13 1,18
γ = 3, CGSR, αX}

Table 6.4: We compare the e�ciency of restarting strategies compared to αDef . Each

restarting strategy e�ciency is computed by using
αDef

αX
. If αDef does not converge, we

take as a reference the maximum of ERAM restarts, which is 500.

We presented in this section some restarting strategies used to compute restarting

vector. The idea is to use di�erent pro�les, in terms of weight schemes but also in terms

of "contents", by using -or not- Ritz eigenpair information(s).

It results from our observations that αLaRes and αLa are pretty e�cient with eigen-

values whose spectrum is large (in terms of real modulus). Nevertheless, these restarting

strategies have more di�culties to reach the convergence to the inner desired eigen sub-

space, while uniform weight restarting strategies (such as αDef or αRes) are more sensitive

to the inner desired eigen subspace.

With a large subspace size (compared to the number of desired eigenpairs s), the

restarting strategy behavior is blurred. As restarting strategies do not imply neither

parallel communications nor additional computations, their use improves the ERAM con-
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vergence by using small subspace sizes: this aims to reduce the number of restarts to

reach the convergence without increasing the subspace size and therefore the number of

global/blocking communications and memory storage.

6.3 The Twin Restarting Strategies

The restarting coe�cients formula (cf Table 6.1.1) may be similar to other restarting

strategies coe�cients, depending on the Ritz eigenpairs accuracy. In the case that resTr
(i)
j

has a small value, |1 − resTr(i)
j | is very close from 1. Starting from this observation, we

have the following equations:



∀j ∈ [1, γ]N, lim
resTr

(i)
j →0

Residual(α(i)
j ) → Default(α(i)

j ),

∀j ∈ [1, γ]N, lim
resTr

(i)
j →0

Linear Residual(α(i)
j ) → Linear(α(i)

j ),

∀j ∈ [1, γ]N, lim
resTr

(i)
j →0

Lambda Residual(α(i)
j ) → Lambda(α

(i)
j ),

(6.4)

After a satis�able threshold, each restarting coe�cients pair veri�es the equation 6.4.

We qualify this behavior as the "Twin Restarting Strategies". Nevertheless, twin restart-

ing strategies may induce very di�erent convergence behavior, as presented in the previous

�gures. The matrices with large eigenvalues such as Ex11, Ex11Dense and the generated

Diagonal Band matrices tend to have twin restarting strategies whose convergence be-

havior is really di�erent. The matrices such as Mixtank_new or Rim (and their dense

versions) respect the twin restarting strategies principle, meaning that the convergence

evolutions are similar. This is illustrated on the Figure 6.9, Figure 6.10 and Figure 6.11.

These restarting strategies convergence have been presented before, we zoomed the twin

restarting strategies to emphasize the similarity behavior.
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Figure 6.9: Mixtank_new Dense, αRes & αDef .

Figure 6.10: Rim Dense, αRes & αDef .
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Figure 6.11: Rim Dense, αLa & αLaRes.

The twin restarting strategy behavior is interesting in the case we change the restarting

strategy during the runtime execution. With this in mind, we know that switching a

restarting strategy by its twin for the Mixtank_new or the Rim matrix may have a

limited impact. The opposite behavior will be observed for the matrices that are not

sensitive to the twin restarting strategies phenomena, such as the Ex11 one.
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Conclusion

In this Chapter, we presented the restarting strategies and their associated weight

schemes. We propose two "pro�les" as restarting strategies, one using the Ritz eigenpairs

information and one independent from it.

We proposed to emphasize the restarting strategy in�uence by using many target

matrices, issued from the University of Florida Matrix Collection [?] and from our matrix

generators presented in the Chapter 5.

This chapter emphasized the ERAM restarting strategies behavior and the possible

gain we may have (compared to a uniform scheme) in terms of number of restarts to reach

the convergence. Using the restarting coe�cients presented in the Table 6.1.1 implies

neither parallel communications nor operations, we recall that we just reuse the available

Ritz eigen information. As presented in the Table 6.2.1, choose the right restarting

strategy may be from 2 to 14 times faster in terms of number of restarts compared to the

uniform weight scheme Default.

We emphasized that some sprectrums are more sensitive to the "Twin restarting strat-
egy" behavior: by twin, this means that two restarting strategies such as Default and

Residual may have almost the same restarting coe�cients values. For some matrices

such as Mixtank_new or Rim (and their "Dense" versions issued from the dense ma-

trix generator) the twin restarting strategy behaves similarly, then we observe that the

two respective Krylov subspaces have a di�erent convergence direction. For the ma-

trices whose spectrum is very large such as Ex11 or the diagonal band matrices, the

twin restarting strategy behavior is annihilated: The Krylov subspace generated with

restarts Default and Residual have a complete di�erent convergence direction. A part

of the results presented in this chapter have been executed under the expert advisement

of M. Leroy Anthony Drummond at the Computer Science Department of the Lawrence

Berkeley National Laboratory.

As a conclusion, �nding the optimum parameter set among all the possibilities remain

very tricky. Nevertheless, we emphasized the impact of the restarting strategy in this

chapter, how this parameter can in�uence the ERAM convergence at no "computation
costs". The results presented in this chapter shown promising ERAM numerical conver-

gence acceleration but the results are heterogeneous, leading to the need of a dynamic

modi�cation of the ERAM restarting strategy.

We aim to dynamically adapt the restarting strategies so as to reduce the number

of restarts until convergence. Such smart-tuning implies to study the mixed restarting

strategy and ensure that mixing several restarting strategy can provide the convergence.

The next chapter focuses on the mixed restarting strategies.
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Chapter 7

ERAM with Mixed-Restarting

Strategies

The previous chapter presented the restarting strategies behavior and their impact on

the ERAM convergence. In this chapter, we focus on the mixed restarting strategy, id est

the investigation phase to outcome to a restarting strategy smart tuning ERAM.

Starting from the ERAM restarting strategies behavior (Chapter 6), we observed that

there is a need to dynamically change the restarting strategy to accelerate the convergence

to the desired eigen subspace.

All the following tests use the target matrices generated at the Chapter 5.

7.1 The ERAM Restarting Vector with Mixed Restart-

ing Strategies

As a �rst step, we need to precise how we use the restarting strategies. For each ERAM

con�guration presented in the previous chapter, we applied the Convergence Analysis

Algorithm 10. For each target matrix (summarized in the Table 7.1), we retain the

restarts reported by the Algorithm 10 and identify the divergence and stagnation status.

We recall that the aim of this study is to avoid such convergence behavior and lead to an

ERAM using with a smooth convergence.

Let's consider an ERAM using as parameter set EP =

{m, s, γ, orthogonalization, αX}. If the Algorithm 10 has detected at the ith restart a

divergence or stagnation behavior, we execute a new instance of the ERAM with the

same EP = {m, s, γ, orthogonalization, αX} and change its restarting strategy at the ith

restart by another one.

In this thesis, we used 6 restarting strategies, leading to 36 con�gurations for one

target matrix at a given restart i. We will limit our study to the Default restarting

strategy in this section, but the conclusion presented in this chapter can be extended to

the other restarting strategies.

This study has two main objectives: the �rst is to check if switching the restarting

strategy during the ERAM execution has an interest. If the answer is no, then there is

absolutely no interest to build an ERAM smart tuning based on the restarting strategies

modi�cations. If the answer is yes, then we are proving that an ERAM with restarting

strategies smart tuning can be developed. Then comes the second objective, id est is there

any combination or ERAM behavior that emerges of the mixed restarting strategies.
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Size nnz Source

Ex11Dense 16,614 275,991,771 Issued from A.0.2.1

FissionDense 10,000 99,980,003 Issued from 5.2.1.1

and CEA neutronic applications

Mixtank_newDense 29,957 897,361,938 Issued from A.0.2.2

RimDense 22,560 508,908,483 Issued from A.0.2.3

Spec215 ,Mt
4 16,384 181,403 Issued from 5.3.1

Table 7.1: Target Matrices to Test the Mixed Restarting Strategies.

All the following tests have been executed on the PRACE CURIE1 Supercomputer.

The Curie machine is located at the Très Grand Centre de Calcul (TGCC) and is the

26th most powerful supercomputer (according to [Meuer ]).

Curie is composed of 3 di�erent partitions each based on the X86-64 architecture.

The overall supercomputer peak (respectively theoretical peak) performance is about

1,359 (respectively 1,6672) PFlops.

In what follows, we use the Curie thin nodes partition. Each node is composed of 2

Intel R© Sandy-Bridge EP (E5-2680) processors and each processor has eight cores Intel R©
Xeon R©.

For each target matrix presented in the Table 7.1, we propose to execute an ERAM

with the αDef restarting strategy, as this restarting strategy is the reference, in the sense

that this restarting strategy is the most commonly used. During its execution, we apply

the convergence analysis Algorithm 10. Based on its results, we remain the ERAM restarts

where divergence or stagnation appears. The aim is to change the restarting strategy at

these restarts, and observe the ERAM with mixed restarting strategies behavior.

To illustrate our purpose, we consider that at the ith ERAM restart, the Algorithm

10 returned the "divergence" or "stagnation" status and was using so far the restarting

strategy αDef . At the restart i+ 1, we modify αDef by another one, getting to α
(i+1)
X with

the condition αDef
(i) 6= α

(i+1)
X .

The restarting strategy gives a condition on restarting coe�cients weight scheme, but

we did not explain which Ritz eigen-information we use to compute the restarting vector

with the mixed restarting strategy. Indeed, we have two possibilities to compute v
(i+1)
1 :

m The �rst possibility is to compute v
(i+1)
1 using {θ(i)

j , u
(i)
j , resTr

(i)
j } data.

m The second possibility is to compute v
(i+1)
1 using {θ(k)

j , u
(k)
j , resTr

(k)
j } data such that:

||Au(k)
j − u

(k)
j θ

(k)
j ||

|θ(k)
j |

= min
k∈[1,i]N

( max
j∈[1,s]N

(
||Au(k)

j − u
(k)
j θ

(k)
j ||

|θ(k)
j |

)), (7.1)

1A complete description of the Curie supercomputer can be found at http://www-

hpc.cea.fr/fr/complexe/tgcc-curie.htm
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In other terms, we use the Ritz eigen information coming from the kth restart, where

the convergence metric had the smallest value computed since the ERAM execution,

therefore the best convergence scheme.

In what follows, we successively tested every restarting strategies such that it di�ers

from αDef and use the equation 7.1 to compute the new restarting vector. This choice is

motivated by the fact that we aim to reduce the divergence and stagnation ERAM status,

therefore using the last most accurate eigenpairs is more relevant.

We will compare the results with the ERAM using αDef restarting strategy during

its complete execution. This reference will be represented by a blue line during all this

section.

7.2 The ERAM with Mixed Restarting Strategies Ex-

perimentations

7.2.0.1 Ex11Dense

We summarize the Algorithm 10 results in the Table 7.2.0.1. We indicate for both

status stagnation and divergence their detection interval(s) and the restarts that provided
(until the divergence or stagnation status) the most accurate Ritz eigenpairs.

Stagnation Divergence

Interval [21,24] [28,31] {35} {10} {13}

Lowest 6 25 25 6 6

Residual

Table 7.2: The ERAM has m = 15, s = 4 and a CGSR orthogonalization process for

the Arnoldi Method. We used 234 MPI tasks on thin nodes (2 processors Intel R© Sandy-

Bridge with 8 cores) of the PRACE Curie supercomputer. We summarize in this Table

the results of the Algorithm 10.

We listed the Algorithm 10 results for the �rst 30 restarts, not for the complete

ERAM execution. We recall that we want to intervene at the beginning of a divergence

or stagnation status.

In what follows, we will switch αDef by the other restarting strategies (presented in

the Table 6.1.1) at the restarts presented in the table above. The Algorithm 10 results

lead us to modify the restarting strategy at restarts 6 and 25 respectively.
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Figure 7.1: Ex11 Dense Matrix, αDef Mixed Restarting Strategies.

The ERAM hasm = 15, s = γ = 4, a CGSR orthogonalization process (s is the number of desired

eigenpairs while γ is the number of eigenpairs used to compute the restarting vector). All lines

on this �gure are the dominant eigenvalue residuals associated to diverse ERAM executions.

The blue line refers to the ERAM using αDef as a single restarting strategy during its complete

execution: its number of restart to reach the convergence (82) is the reference metric to estimate

the ERAM with mixed restarting strategies e�ciency. All other ERAMs start by using the

restarting strategy αDef as initial restarting strategy. We replaced αDef by other restarting

strategies at the restarts listed in the Table 7.2.0.1 above. We used 234 MPI tasks on thin nodes

(2 processors Intel R© Sandy-Bridge with 8 cores) of the PRACE Curie supercomputer. As a

comparison, the SLEPc Krylov-Schur (respectively Arnoldi) solver using m = 15 converges at

the 8th restart and m = 20 converges at the 6th restart (respectively 39 and 21 restarts).

We note that the mixed restarting strategies using αLaRes present a considerable con-

vergence but not su�cient to provide the Ritz eigenpairs with a satis�able threshold: The

ERAM with mixed restarting strategies stagnates then.

The second observation is that mixing αDef with αLa (at restart 6) accelerates the

original ERAM convergence compared to its original con�guration: We recall that on

Figure 6.2, the αLa had the worst convergence (converges at the 92th restart), meaning

that an ine�cient restarting strategy -used alone- can be turned to an e�cient one -if

mixed-.

The third observation is that some restarting strategies "force" the ERAM behavior:

we mean that the αDef restarting strategy behavior is then completely annihilated by

the new restarting strategy αNEW , getting a behavior similarly of an ERAM using αNEW
during its complete execution. If we compare the Figure 7.1 with the Figure 6.2, the mixed

restarting strategies αLaRes(6), αLa(25), αLi(6) and αRes(25) have a similar convergence

as the ERAM using respectively αLaRes, αLa, αLi and αRes. However, this behavior is not

the general case, as illustrated by the ERAM convergence using αLi(25) (Figure 7.1).
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From all the ERAM using a single restarting strategy (Figure 6.2) and mixed restarting

strategies (Figure 7.1), it Results that the best scheme remains the ERAM using EP =

{m = 20, s = 4, γ = 4, CGSR, αLaRes}.
The mixed restarting strategy have a considerable impact compared to the reference

restarting strategy αDef : note that the three mixed restarting strategies summarized in

the Table 7.2.0.3 above saves restarts for both con�gurations using m = 15 and m = 20.

Mix. RS/Single RS αDef αDef αRes αLi, αLiRes, αLa αLaRes
m = 15 m = 20 m = 20 m = 20 m = 20 m = 20 m = 20

{m = 15, αLi, it = 6} 1,63 1,27 1,2 0,63 2,98 1,88 0,33

{m = 15, αLa, it = 6} 1,54 1,19 1,13 0,6 2,81 1,77 0,31

{m = 15, αRes, it = 6} 1,27 0,98 0,94 0,49 2,32 1,46 0,25

Table 7.3: We compare the gain (in terms of number of restarts until convergence) of the

ERAM with mixed restarting strategies with the ERAM using a single restarting strategy

during its complete execution. Each column corresponds to one ERAM using a single

restarting strategy. Each line corresponds to one execution of the ERAM using mixed

restarting strategies (presented in Figure 7.1). This Table presents the gains (respectively

losses) in terms of number of restarts until the convergence for the ERAMs with mixed

restarting strategies versus the ERAMs using a single restarting strategy during their

complete execution.

The total �op used for the Arnoldi method using the CGSR orthogonalization scheme

is m(2nnz(A) + 4nm + 4n) ([Dubois 2011a]) where nnz(A) is the non-zeros elements of

the matrix. Project the s Hm,m eigenvectors onto the Krylov basis requires 2mns �oat-

ing point operations and �nally computing the residual associated to each Ritz eigen-

pair necessitates 4ns �oating point operations. Therefore one ERAM restarts computes

m(2nnz(A) + 4nm+ 4n+ 2ns) + 4ns �oating point operations. In this case, the matrix

size is 10,000 and its number of non zeros elements is 275,991,771.
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Mix. RS/Single RS αDef ,m = 15 αDef ,m = 20

GFlop Time GFlop Time

{m = 15, αLi, it = 6} 480 25,6 sec 505 2 min 57 sec

{m = 15, αLa, it = 6} 450 24 sec 475 2 min 56 sec

{m = 15, αRes, it = 6} 285 15,2 sec 310 2 min 47 sec

Table 7.4: We compare the e�ciency of the ERAM with mixed restarting strategies with

the ERAM using a single restarting strategy during its complete execution. Each column

corresponds to one ERAM using a single restarting strategy. Each line corresponds to one

execution of the ERAM using mixed restarting strategies (presented in Figure 7.1). We

summarized in this Table the GFlop and execution time saved by the mixed restarting

strategies compared to the ERAM using αDef for the global ERAM execution. We recall

that the ERAM executions presented in this Table are executed with 234 MPI tasks on

the PRACE Curie supercomputer. As a reference, the execution time of the ERAM using

αDef ,m = 20 (respectively αDef ,m = 15) is 3 min 42 sec (respectively 1 min 8 sec).

The ERAM with mixed restarting strategies presented in the Table 7.2.0.1 gains are

proportional to the number of restarts gained, if and only if we compare the ERAM

execution using the same subspace size. We recall that the ERAM execution time per

restart is constant whatever the restarting strategy for a �xed subspace size.

However, with di�erent subspace size, the gain in terms of execution time is not linear:

it depends on the data movement and the parallel communications, such parameters do

not evolve linearly compared to the number of ERAM restarts and/or the number of MPI

tasks used. This can be observed on the Table above, but it will be highlighted with the

Diagonal-Band matrices in what follows. The ERAM execution time with respect to the

subspace size depends on the parallel data distribution and the data movements (inside

a node and across the global MPI communicator).

7.2.0.2 FissionDense

We execute the exact same tests with the FissionDense matrix. We summarize in the

following Table 7.2.0.2 the results obtained by the Algorithm 10 with an ERAM using

the αDef restarting strategy.
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Divergence Stagnation

Interval {2} {6}

Lowest 1 1

Residual

Table 7.5: The ERAM has m = 10, s = γ = 4, a CGSR orthogonalization process and

the restarting strategy αDef . We used 400 MPI tasks on thin nodes (2 processors Intel R©
Sandy-Bridge with 8 cores) of the PRACE Curie supercomputer. We summarize in this

Table the results of the Algorithm 10.

We summarize on the Figure 7.2.0.2 the results obtained with the mixed restarting

strategies:

Figure 7.2: Fission Dense Matrix, Mixed Restarting Strategies Convergence with respect

to the number of restarts.
The ERAM has m = 10, s = γ = 4, a CGSR orthogonalization process and the restarting

strategy αDef . We present the dominant eigenvalue residuals. We used 400 MPI tasks on thin

nodes (2 processors Intel R© Sandy-Bridge with 8 cores) of the PRACE Curie supercomputer.

As a comparison, the SLEPc Krylov-Schur (respectively Arnoldi) solver converges at the 9th

(respectively 28th) restart. The blue line refers to the ERAM using αDef as a single restarting

strategy during its complete execution: its number of restart to reach the convergence is the

reference metric to estimate the ERAM with mixed restarting strategies e�ciency. All ERAMs

with mixed restarting strategies started with the αDef restarting strategy. The ERAM with the

mixed restarting strategy αLi(6) provides similar results as the SLEPc-Arnoldi eigensolver.

The results obtained with the mixed restarting strategy are variable for this matrix.

As an illustration, mixing αDef with αLi saves 15 restarts compared to the original ERAM.

The complete execution of the ERAM with the mixed restarting strategy αLi(6) saves 30

GFlop operations (for the complete ERAM execution) compared to the original ERAM

execution.
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One may note that the ERAM using the αLi restarting strategy during its complete

execution (using the same ERAM parameters CGSR,m = 10 and s = γ = 4, cf Figure

6.3) did not provide the convergence. In fact, its numerical performance was poor. Indeed,

we make the same observation for the αRes restarting strategy. We observed the same

behavior on the previous matrix Ex11Dense whose con�guration and properties are very

di�erent from the FissionDense matrix, leading to the conclusion that this observation is

not "matrix-dependant".

7.2.0.3 RimDense

We experimented the same tests on the Rim Dense matrix. We summarize in the

Table 7.2.0.3 the Algorithm 10 results:

Stagnation

Interval [9,15] [28,32] [43,52] [57,66] [69,78] [103,126]

Lowest 2 23 40 40 40 102

Residual

Table 7.6: The ERAM has m = 15, s = γ = 4, a CGSR orthogonalization process and

the restarting strategy αDef . We used 480 MPI tasks on thin nodes (2 processors Intel R©
Sandy-Bridge with 8 cores) of the PRACE Curie supercomputer. We summarize in this

Table the results of the Algorithm 10.
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Figure 7.3: Rim Dense Matrix, Mixed Restarting Strategies Convergence.

The ERAM has m = 15, s = γ = 4 (s is the number of desired eigenpairs while γ is the

number of eigenpairs used to compute the restarting vector), a CGSR orthogonalization process

and the restarting strategy αDef . We present the dominant eigenvalue residuals. We replaced

αDef by other restarting strategies at the restarts listed in the Table 7.2.0.1. We used 480

MPI tasks on thin nodes (2 processors Intel R© Sandy-Bridge with 8 cores) of the PRACE Curie

supercomputer. The blue line refers to the ERAM using αDef as a single restarting strategy

during its complete execution: its number of restart to reach the convergence is the reference

metric to estimate the ERAM with mixed restarting strategies e�ciency. All ERAMs with mixed

restarting strategies started with the αDef restarting strategy. As a comparison, the SLEPc

Krylov-Schur (respectively Arnoldi) solver converges at the 14th (respectively 30th) restart.

We summarize the mixed restarting strategy e�ciency compared to the ERAM using

a single restarting strategy (cf Figure 6.8) in the following Table.
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Mix. RS/Single RS αDef αRes αLi, αLa αLaRes

{αLaRes, it = 2} 2,59 1,07 1,17 2,33 2,33
{αRes, it = 2} 2,05 0,85 0,93 1,85 1,85
{αLi, it = 23} 1,88 0,78 0,85 1,69 1,69
{αLaRes, it = 23} 1,63 0,67 0,74 1,47 1,47
{αRes, it = 23} 1,28 0,53 0,58 1,15 1,15
{αLiRes, it = 23} 1,17 0,48 0,53 1,05 1,05
{αLa, it = 23} 1,1 0,46 0,5 0,99 0,99

Table 7.7: We compare the gains (in terms of number of restarts until convergence) of the

ERAM with mixed restarting strategies with ERAM using a single restarting strategy

during its complete execution. Each column corresponds to one ERAM using a single

restarting strategy (presented in Figure 6.8). Each line corresponds to one execution of

ERAM using mixed restarting strategies (presented in Figure 7.3). The ERAM using as

a single restarting strategy αLiRes, did not converged.

This matrix illustrates perfectly the mixed restarting strategies bene�ts: With the

ERAMs using a single restarting strategy, the restarting strategies such as αLaRes and

its twin αLa were not e�cient. Mixed with αDef , we reach the convergence at the 58

restarts, which is 2,3 times faster than the original con�guration (blue line). We recall

this is "free" gain, in terms of parallel communications and operations costs.

In the following Figure 7.4, we summarized the ERAM with mixed restarting strategies

gain (respectively lost) in terms of Floating point operations compared to the ERAM using

a single restarting strategy during its complete execution. It results from this Table that

the αLaRes at the second restart (αLaRes(2) on Figure 7.3) mixed with αDef can provide a

better ERAM convergence compared to each original con�guration.

Globally, the ERAM using αRes and αLi as single restarting strategies are not drasti-

cally improved by mixed restarting strategies in this case. Nevertheless, we recall that the

mixed restarting strategies start their process using the αDef restarting strategy, therefore

as a faire comparison we should use ERAM with mixed restarting strategies starting with

αRes and αLi respectively. In this context we may have observed a gain of the ERAM

with mixed restarting strategies.
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Figure 7.4: RimDense Mixed Restarting Strategies GFlop Gain/Losts.

We present on this �gure the GFlop gains and losses (for the complete ERAM execution) of

the ERAM with mixed restarting strategies compared to the ERAM using a single restarting

strategy during their complete execution. Abscissa refers to each ERAM execution using the

mixed restarting strategy. For each ERAM with mixed restarting strategies, we compare the

gains and losses in terms of GFlop operations for the complete ERAM execution with respect

to an ERAM using a single restarting strategy. Each stripe refers to an ERAM using a single

restarting strategy (see the legend). We recall that all the ERAMs using the mixed restarting

strategies start with αDef .
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Figure 7.5: RimDense Mixed Restarting Strategies Time (seconds) Gains/Losts.

We present on this �gure the Parallel Execution Time (seconds) gains and losses (for the complete

ERAM execution) of the ERAM with mixed restarting strategies compared to the ERAM using a

single restarting strategy during their complete execution. Each ERAM presented on this �gure

has been executed using 480 MPI tasks on the thin nodes of the PRACE Curie supercomputer.

Abscissa refers to each ERAM execution using the mixed restarting strategy. For each ERAM

with mixed restarting strategies, we compare the gains and losses in terms of time execution

(seconds) for the complete ERAM execution with respect to an ERAM using a single restarting

strategy. Each stripe refers to an ERAM using a single restarting strategy (see the legend).

We recall that all the ERAMs using the mixed restarting strategies start with αDef . The best

performance is obtained by switching αDef onto αLaRes at the second restart: it accelerates

every original ERAM con�gurations.
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7.2.0.4 Diagonal Band 215

The last but not the least, we used the mixed restarting strategies with the diagonal-

band matrix Spec215 .

Based on the results presented in the section 6.2.0.5, here are our expectations from

the mixed restarting strategies:

m The mixed restarting strategies using αLaRes will considerably improve the ERAM

convergence: This observation is based on the Figures presented in 6.2.0.5, on which

we observed the fast convergence of the ERAM using the αLaRes restarting strategy.

We expect that the ERAM using the αLaRes restarting strategy mixed with αDef
will behave as the ERAM using αLaRes during its complete execution.

These observations are strengthened by the spectrum of Spec215 , we already know

thanks to the previous chapter that αLaRes is the most e�cient restarting strategy

with very large real modulus eigenvalues.

m The mixed restarting strategies using αLiRes and αLi will provide poor performances.

Firstly, the αLiRes restarting strategy has a chaotic behavior for most of the tar-

get matrices presented in this thesis, except the Mixtank_new one. Secondly, the

matrices such as Ex11 and the diagonal-band matrices generated in this thesis are

more sensitive to the restarting strategies that use the Ritz eigen information to

compute their restarting coe�cients.

We recall that the diagonal-band matrix presented in this section is not the same
as the one presented in section 6.2.0.5. Nevertheless, their spectrum are similar leading

to the same (or very similar) behavior of the ERAM restarting strategies regarding the

diagonal-band matrices generated in this thesis.

We �rst summarize in the Table 7.2.0.4 the ERAM (using a single restarting strategy

during its complete execution) number of restart until convergence with respect to the

restarting strategies. We compute the 3 dominant eigenpairs with a CGSR orthogonal-

ization process.

This is not surprising to observe the spectacular e�ciency of αLaRes compared to the

other restarting strategies, as its e�ciency has been emphasized with the diagonal-band

216 matrix in the section 6.2. We recall that the diagonal-band 216 and diagonal-band 215

matrices do not have the same spectrum, nevertheless the eigenvalues real modulus and

their distribution are similar.

We did not expect to observe that the ERAM solving the diagonal-band matrix 215

eigenproblem would be that sensitive to the subspace-size value: The performance of the

ERAM using m = 150, m = 190 and m = 200 using the restarting strategy αLaRes are

comparable. The αRes and αLi restarting strategies are also sensitive to the subspace size:

the number of restarts until convergence does not necessarily decrease with the higher m

values.
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m αDef αRes αLi, αLiRes, αLa αLaRes SLEPc SLEPc

Krylov-Schur Arnoldi

150 # # # # # 12 8 44

160 # # # # # 17 7 24

170 # # # # # 14 7 29

180 249 155 211 # 215 14 6 44

190 144 237 88 # 177 12 6 25

200 88 100 110 # 98 10 6 21

Table 7.8: We compare the number of restart until convergence of ERAMs with a single

restarting strategy. Every ERAMs presented in this table has been executed using 256

MPI tasks on the thin nodes of the PRACE Curie supercomputer. The # symbols mean

that the ERAM did not reached the convergence, the desired threshold is 10−14. We used

s = γ = 3 and a CGSR orthogonalization process.

For each ERAM execution presented in the Table 7.2.0.4 we applied the Algorithm 10

to characterize the ERAM convergence. According to the Algorithm 10 results, we will

switch the restarting strategy αDef by another one at the restarts presented in the Table

7.2.0.4 below. We choose to study many con�gurations for the diagonal-band matrix as

the results presented below highlight the necessity to choose the "most adapted" restarting

strategy.
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m Stagnation Divergence

150 Interval {6} {79} [13,14] {10} {20} {37} [16,18]

Lowest Residual 4 61 7 7 15 25 15

160 Interval {12} {35} [15,16] [27,28] {9}

Lowest Residual 8 28 8 26 8

170 Interval {12} [8,9] [18,19] [25,26] [34,37] {11} {14}

Lowest Residual 10 4 10 10 27 10 10

180 Interval [17,19] {11} {36}

Lowest Residual 7 7 35

190 Interval [22,25] 4 9

Lowest Residual 16 3 8

200 Interval [8,9] 29

Lowest Residual 6 27

Table 7.9: The ERAM has s = γ = 3, a CGSR orthogonalization process and the

restarting strategy αDef . We used 256 MPI tasks on thin nodes (2 processors Intel R©
Sandy-Bridge with 8 cores) of the PRACE Curie supercomputer. We summarize in this

Table the results of the Algorithm 10.

In what follows, we detailed the ERAM with mixed restarting strategies using m=150

results with respect to the ERAM using a single restarting strategy (presented in the

Table 7.2.0.4).

The two tables below present the parallel execution time in second saved (respectively

lost) thanks to the ERAM with mixed restarting strategies (lines) compared to the ERAM

using a single restarting strategy during its complete execution (columns).
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PPPPPPPPPPMixed

Single
αDef αRes αLi

m=150 180 190 200 180 190 200 180 190 200

{αLaRes, it = 3} 46,33 26,64 15,55 27,84 45,55 18,03 38,86 15,25 20,09
{αLaRes, it = 6} 46,18 26,49 15,4 27,7 45,4 17,88 38,71 15,11 19,95
{αLaRes, it = 14} 44,57 24,88 13,79 26,08 43,79 16,27 37,1 13,49 18,33
{αLaRes, it = 24} 42,96 23,27 12,17 24,47 42,18 14,65 35,48 11,88 16,72
{αRes, it = 3} 23,74 4,05 -7,04 5,26 22,96 -4,56 16,27 -7,33 -2,49

{αRes, it = 14} 15,82 -3,87 -14,96 -2,66 15,04 -12,48 8,35 -15,25 -10,41

Table 7.10: Diagonal Band 215 Matrix, Mixed Restarting Strategies Execution Time

Gains/Losses.
We compare the parallel execution time saves and losses of the ERAMs with mixed

restarting strategies versus the ERAMs using a single restarting strategy. Every ERAMs

presented in this table has been executed using 256 MPI tasks on the thin nodes of the

PRACE Curie supercomputer. The ERAMs execution time saves/losses is in seconds.

PPPPPPPPPPMixed

Single
αLa αLaRes

m=150 180 190 200 150 160 170 180 190 200

{αLaRes, it = 3} 39,64 33,35 17,61 -0,88 0,25 -0,12 0,11 -0,2 -0,57

{αLaRes, it = 6} 39,5 33,2 17,47 -1,03 0,1 -0,27 -0,03 -0,35 -0,72

{αLaRes, it = 14} 37,88 31,59 15,85 -2,64 -1,51 -1,88 -1,65 -1,96 -2,33

{αLaRes, it = 24} 36,27 29,98 14,24 -4,25 -3,12 -3,49 -3,26 -3,57 -3,95

{αRes, it = 3} 17,06 10,76 -4,97 -23,47 -22,34 -22,71 -22,47 -22,79 -23,16

{αRes, it = 14} 9,14 -2,84 -12,89 -31,39 -30,26 -30,63 -30,39 -30,71 -31,08

Table 7.11: Diagonal Band 215 Matrix, Mixed Restarting Strategies Execution Time

Gains/Losses.
We compare the parallel execution time saves and losses of ERAMs with mixed

restarting strategies versus ERAMs using a single restarting strategy. Every ERAMs

presented in this table has been executed using 256 MPI tasks on the thin nodes of the

PRACE Curie supercomputer. ERAMs execution time saves/losses is in seconds.

Most of the original ERAM con�gurations are improved by the mixed restarting strate-

gies. The ERAM using αLaRes as a single restarting strategy is the only exception, as its

results are already very good.

As expected, the ERAM using αLaRes as a mixed restarting strategies provide the

best performances. The ERAM using αRes as a mixed restarting strategy results are
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more heterogeneous: the best gain is 22,96 seconds while the worst performance losses

31,08 seconds.

One may note that the ERAM parallel execution time gains/losses presented in the

tables 7.2.0.4 and 7.2.0.4 do not evolve linearly with the subspace size. This is all the

more true due to the random behavior of the ERAM with the Diagonal Band 215 Matrix.

The ERAM numerical performances may be better by using a smaller subspace (such as

presented in the Table 7.2.0.4). Additionally to the parallel execution time, we recall that

the memory storage and �oating point operations are also reduced thank to a smaller

subspace size. The comparison of such gains regarding the Diagonal Band 215 Matrix are

summarized in the Table B.0.2.5 and can be consulted in the appendix.

We executed many other tests with the subspace size 150, 160, 170, 180, 190 and

200 respectively. More results can be found in the annexe B.0.2.5 where we summarize,

for each ERAM con�guration, the ERAM with mixed restarting strategies e�ciency (in

terms of number of restarts until convergence) with respect to the ERAM using a single

restarting strategy presented in the Table 7.2.0.4).

125



ERAM with Mixed-Restarting Strategies

Conclusion

In this chapter, we studied the mixed restarting strategies: by mixed, we mean that

the ERAM may use two or more restarting strategies during its execution.

This study focus on the "Default" restarting strategy as this one remains the classic

one among the scienti�c literature.

From each target matrix results, we could highlight some behaviors of the mixed

restarting strategies. Whatever the target matrix, we observed that a "wrong" restarting

strategy can be turned to a very e�cient one thanks to the mixed restarting strategies:

this point is largely positive, meaning that we increase the probability to �nd a good

combination of mixed restarting strategies.

Secondly, some mixed restarting strategies can behave similarly to the last restarting

strategy used: the last one may annihilated all the other restarting strategies impact and

behave similarly as an ERAM using it as a single restarting strategy. That was especially

the case with αLaRes restarting strategy for the matrices Ex11Dense or the diagonal-band

matrices.

Finally the gain obtained with the mixed restarting strategies are free in terms of

parallel communications, parallel operations and memory storage.

Thanks to the convergence Algorithm and the ERAM restarting strategies behavior,

we could study the ERAM with mixed restarting strategies.

This chapter linked the convergence Algorithm to the restarting strategies e�ciency:

altogether, we can arrive to a "free" amelioration of the ERAM convergence.

However, getting such gains implies to choose the right restarting strategy and at the

right time: this illustrates the complexity of the mixed restarting strategies.

The results presented in this section shown the e�ciency of the mixed restarting

strategy, but also the random behavior according to each matrix and each ERAM con�g-

uration, therefore there is still not a better restarting strategy among all the one presented

in this thesis that would a�ord a gain for all ERAMs. This lead us to look for restarting

strategy auto-tuning so as to choose mixed restarting strategies combinations according

to ERAM numerical performances.

The next step is to �nd a smart-tune algorithm so as to get this free e�ciency and

the next chapter details our approach to build a restarting strategy smart-tuning ERAM

algorithm.
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Chapter 8

Toward an ERAM Restarting

Strategies Auto-Tuning

The previous chapter highlighted the mixed restarting strategies e�ciency according to

the numerical convergence evaluation of the ERAM.We are now interesting by automating

the mixed restarting strategies during the iterations.

8.1 The ERAMwith Auto-Tuned Restarting Strategies

We presented in the Chapter 6 the in�uence of the ERAM restarting strategies. In-

deed, the ERAM convergence is very sensitive to the ERAM restarting strategies, leading

to a considerable gain (or lost) in terms of number of restarts to reach the convergence

for the desired eigenpairs at the desired threshold.

Such gains are free in terms of parallel computation costs, as using a restarting strategy

has no impact neither on the parallel operations/execution time nor on the memory

storage. Each restarting strategy presented in this thesis only reuses the existing Ritz

eigen information, therefore "ready-to-use data".
Among all the test matrices we used to study the ERAM restarting strategy in�uence,

we could emphasized some trends of the restarting strategies behavior with respect to the

dominant eigenvalues distribution. Nevertheless, this trends are really limited as on the

other side, some matrices spectrums could not be correlated to the restarting strategy

e�ciency.

Due to the possible gains in terms of number of restarts to reach the convergence

thanks to the restarting strategy, we studied the ERAMwith mixed restarting strategies in

the Chapter 7. The objective of this chapter was to study the e�ciency of the ERAM with

mixed restarting strategy, id est an ERAM starting with a restarting strategy �xed by the

user (in this study, we choose the uniform weight scheme as the initial restarting strategy).

The idea is to use the ERAM convergence Algorithm (presented in the Chapter 4) so as

to detect the divergence and stagnation status of the ERAM during the execution time.

Then, we re-executed the same ERAM (with exactly the same input parameters) and

changed at the indicated restart the initial restarting strategy by a new one and observe

the ERAM convergence behavior with respect to the ERAM using a single restarting

strategy during its complete execution.

The results presented in the Chapter 7 lead us to study all the possibilities to get to

an ERAM with auto-tuned restarting strategies. As the ERAM with mixed restarting

strategies was manually changed, the possibility of mixing many restarting strategies was
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limited. This emphasizes the need to auto-tune this process, leading to a auto ERAM

that would change itself its restarting strategy during its execution, based on the analysis

of its convergence.

This chapter explores many possibilities of auto-tuning tools to improve the ERAM

convergence and focuses on the restarting strategies auto-tuning.

8.2 On the Choose of the ERAM Auto-Tuned Param-

eters

The previous chapter presented the mixed restarting strategy idea and its "proof of
concept". As we "manually" changed the restarting strategies, we emphasized that we

could not experiment many restarting strategies combinations:

At each stagnation or divergence status, we can choose among 5 restarting strategies,

therefore the combinations of multiple restarting strategies are very large and can not be

tested manually.

In this chapter, we aim to �nd mixed restarting strategies combinations automatically,

meaning that such mechanism will be executed at the runtime execution, without any

intervention of the user. As a �nal aim, we want to provide an auto-Tuned ERAM with

mixed restarting strategies.

Building an auto-Tuned ERAM with mixed restarting strategies implies to answer to

the three following questions:

m Question 1: "WHEN" shall we modify the ERAM parameter(s)?

m Question 2: "WHAT" shall we modify among the ERAM parameter(s)?

m Question 3: "HOW" shall we modify the ERAM parameter(s)?

Thanks to the previous chapters, we almost solve the problem:

m Question 1: The convergence metric determines the moment when we shall intervene
to improve the ERAM convergence. Thanks to the Algorithm 10, we answered this

question at the Chapter 4.

m Question 2: There are several possible answers to this question. In fact, each

ERAM parameter modi�cation could lead to an amelioration of the convergence,

but the way to succeed will be more or less costly regarding the ERAM parallel

execution. Let's expand further this study. Among the ERAM parameters, we

listed the following ones: EP = {m, s, γ, orthogonalization, αX}.

� As a �rst observation, s can not be modi�ed as this parameter is �xed by the

user. The only possibility to modify it would be by considering a MRAM such

that each ERAM member would compute a part of the s desired eigenpairs. In

this case, each RAM would have its own sk (∀k ∈ [1, µ]) such that
∑µ

k=1 sk ≥ s.

130



Toward an ERAM Restarting Strategies Auto-Tuning

� Modifying the subspace size is probably the most straightforward option. In-

deed, we know that the m value leads the ERAM convergence (according to

[Saad 2011]): therefore the most basic idea would be to increase the subspace

size in the case of a bad convergence detection. Nevertheless we recall that m

also leads, in the opposite direction as the numerical convergence, the paral-

lel execution time. The bigger m is, the more we will be faced to global and

blocking communications, default-cache operations etc... We emphasized the

parallel costs and energy consumption issue of the Krylov subspace size value

in the section 3.6.1.

Such auto-tuning methods are widely known for the GMRES solver, whose

subspace size value is dynamically �xed according to the GMRES conver-

gence. Many research has been done on this topic, we invite the reader to

consult [Baker 2005], [Baker 2009], [Aquilanti 2011b] and [Katagiri 2012] as

an illustration.

The same concept could be applied to the ERAM, if and only if the convergence

metric is adapted. However, we recall that due to the GMRES algorithm, only

the subspace size m value can be modi�ed (among the GMRES input param-

eters, otherwise we could modify the preconditioner as an example, but such

possibilities will not be detailed in this thesis). The restarting vector is �xed

by the method, therefore, regarding the GMRES parameters, the "freedom
degree" is very limited compared to the ERAM. As the ERAM o�ers many

other potential parameters whose modi�cation(s) has no impact on the paral-

lel execution time, we will not consider the subspace size auto-tuning in this

thesis.

� αX is the parameter we have chosen to focus on. Among the restarting strate-

gies presented in the Table 6.1.1, each of them have an impact on the ERAM

restarting strategy but absolutely not on the parallel execution time.
Even better, the restarting strategies we presented in this thesis re-use (or

not) the ERAM Ritz eigen information, therefore there is absolutely neither

additional communications nor operations to use a (new) restarting strategy.

Thanks to the chapters 6 and 7 we emphasized the ERAM convergence accel-

eration with respect to the (mixed) restarting strategies, leading to a gain at

no parallel computing costs.

� The γ parameter can be �xed according to the ERAM and the Ritz eigenpairs

accuracy. We may observe that computing more than s eigenpairs can increase

the s desired Ritz eigenpairs convergence. We recall that such scheme is not

surprising as the Restarted Arnoldi Method tends to favor the outer eigenpairs

convergence. Nevertheless, it requires to project γ − s additional eigenvectors
onto the Krylov basis and especially to compute their associated residuals

(which is quite costly as it requires the Euclidean norm-2 computation).

� The orthogonalization scheme is one interesting possibility. Modifying the

ERAM orthogonalization with respect to the ERAM convergence is one option
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among others and is particularly interesting if we switch the CGSR by the

CGS, as it saves many parallel blocking and global communications. Such auto-

tuning scheme has the same bene�ts and drawbacks as the subspace size value:

Getting more numerical accuracy will require more parallel operations that will

slow down the ERAM parallel execution, but on the other side, remaining in

this con�guration with a very slow or critical convergence is not satis�able.

Finally, we must add to the previous purpose that the opposite behavior may
be observed, as an illustration, switching the CGSR by a CGS may be more

e�cient.

Many auto-tuning options exist regarding the orthogonalization scheme, but

those are applied -again- in the case of the GMRES. Nevertheless, such as the

subspace size auto-tuning, these orthogonalization auto-tuning schemes could

be applied to the ERAM.

Among all the ERAM parameters listed above, the one that optimizes the ratio

convergence amelioration versus parallel performances downgrading is de�nitely the

restarting strategy αX .

m Question 3: That's the question we'll answer in this Chapter.

8.2.1 The ERAM with Mixed Restarting Strategies Auto-Tuning

Prerequisite

We previously presented the mixed restarting strategy using �rstly αDef . The conclu-

sion presented in the previous chapter for mixed restarting strategies starting from αDef
remain available for every restarting strategies presented in the Table 6.1.1.

The following Figure 8.1 illustrates this purpose:
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Figure 8.1: Bayer04 Matrix, αLaRes Mixed Restarting Strategies.

The Bayer04 matrix is issued from [Davis ]. The reference is the blue line denoted by αLaRes.

The ERAM has m = 15, s = γ = 4, a CGSR orthogonalization process and the restarting

strategy αLaRes as initial restarting strategy. We present the dominant eigenvalue residuals. We

replaced αLaRes at the restarts pointed out by the Algorithm 10. These ERAMs are executed

sequentially. For information purposes, the ERAM using αLaRes (blue line) as a single restarting

strategy was the best scheme among all the ERAMs members using a single restarting strategy.

This recall that the ERAM with mixed restarting strategy can be more e�cient than the best

ERAM using a single restarting strategy.

Such precision remains very important: this means that getting an ERAM with

restarting strategies auto-tuning can be e�cient whatever the input restarting strategy

is.

Secondly, this implicitly implies that a MERAM can be composed of auto tuned

ERAM, all with di�erent restarting strategy: then, all ERAM can be improved by the

restarting strategies auto tuning.

This prerequisite is very important as a restarting strategy auto-tuning e�cient with

the αDef restarting strategy only would seriously limit the possibilities of the ERAM with

mixed restarting strategies.
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8.2.2 The ERAM with Mixed Restarting Strategies Auto-Tuning

Choice

As illustrated in the previous chapters, there are several possibilities to dynamically

change the restarting strategy:

m Choice 1 : We recall that during the ERAM execution, we still measure the ERAM

convergence thanks to the Algorithm 10. One way to select e�ciently a new restart-

ing strategy would be to pick a new restarting strategy among the one that were

used during the "convergence" or "high convergence" status.

Therefore, picking a new restarting strategy implies �rst to test one by one each

restarting strategy, secondly to create an "historic" of the e�cient restarting strate-

gies. This algorithm will be detailed in what follows.

m Choice 2 : We randomly choose the restarting strategy among the available ones.

This scheme may seem surprising but it is far from that. The principal motivation

is that a restarting strategy used during a complete ERAM execution may be inef-

�cient and nevertheless very e�cient if mixed with other restarting strategies. This

random behavior can not be predicted, therefore choosing randomly the restarting

strategies allows to test more mixed restarting strategies combinations and a higher

probability to �nd a good mixed restarting strategies pro�le. We shall shortly return

to this point later.

m Choice 3 : We modify the restarting strategies of an ERAM thanks to the MERAM.

We will illustrate this purpose with a simple example. Let's consider a MERAM

with µ ERAMs components, each of them has di�erent ERAM parameters. In

the case that ERAMk (where k ∈ [1, µ]) receives more accurate results from the

ERAMl (where l ∈ [1, µ] and l 6= k), we could easily imagine that ERAMk picks the

restarting strategy of the ERAMl. This choice presents one advantage but a major

drawback from our perspective.

The MERAM has the bene�t to have many ERAMs components, therefore the

independent study of the ERAMs convergence allows to elect with precision the

best ERAM among the panel members. It is then intuitive to �x the ERAMs

to the "best restarting strategy scheme". Then comes the drawback: Such scheme

implies that all the ERAMs members will have in the short term the same restarting

strategy, leading to a MERAM whose "freedom degree" is only the subspace size.

From our perspective, this is not the optimum scheme, as optimum combinations

can be found if ERAM are independent but cooperative components, meaning that

each of them is focusing -thanks to pertinent ERAMs parameters- on a part of the

desired spectrum, and not altogether on the complete desired spectrum.
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8.3 A Basic Mixed Restarting Strategy Tuning Ad-

dressed to the ERAM

According to the previous results presented in this Thesis, we aim to dynamically

change the ERAM restarting strategy at the restarts pointed out by the Algorithm 10.

Basically, if a stagnation or divergence status is detected, we modify the ERAM restarting

strategy with respect to the choices mentioned above.

We present the most straightforward version of the ERAM with the Mixed Restarting

Strategies Tuning Algorithm 13:

Algorithm 13 Basic Restarting Strategy Tuning ERAM

Input: A ∈ Cn×n, v1 ∈ Cn, εArnoldi > 0, ε > 0, m ∈ [1, n]N, s ∈ [1,m]N,maxERAM ∈ N,
γ ∈ [s,m]N, (finf , fsup) ∈ ]0, 1[2, maxcount ∈ N∗, αX , orthogonalization
1: v1 = 1

||v1||v1

2: while (ε ≥ max
j∈[1,s]N

{resTrj}) or (maxERAM > i) do

3: Execute m-step Arnoldi Method using {A, v1, εArnoldi, m, orthogonalization}

4: Solve the eigen problem HmYm = ΘmYm
5: resThj = |hm+1,mym,j|,∀j ∈ [1, γ]N
6: Un,γ = Vn,mYm,γ
7: resTrj = ||Auj − ujθj||,∀j ∈ [1, γ]N

8: Convstatus =Multi-Levels Convergence Algorithm(res
(i)
CV , res

(i−1)
CV , finf , fsup,maxcount)

9: if Convstatus Diverges or Convstatus Stagnates then

10: switch α
(i)
X by α

(i+1)
new such that α

(i)
X 6= α

(i+1)
new

11: end if
12: v1 =

γ∑
j=1

α
(i+1)
new,ju

(i)
j

13: end while
Output: Un,s ∈ Cn×s,Θs ∈ Cs, ResTrs ∈ (R+)

s

Respectively to the previous comments, the step 10 of the Algorithm 13 can be detailed

as follows:

m Choice 1 : Try successively (random order) each restarting strategy among

{αDef ,αRes,αLi,αLiRes,αLa,αLaRes} once, then pick αnew among the restarting strate-

gies that could provide the convergence or high convergence status respectively to

the Algorithm 10.

To do so, we keep the restarting strategy and its associated convergence status.
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In fact, we choose to keep the complete ERAM parameters, as the restarting strategy

auto-tuning can be extended. In this thesis, we choose to intervene on the restarting

strategy parameter only, but here is absolutely no limits if we aim to modify several

ERAM parameters altogether at one "critical" ERAM restart. In this case, this is

not just one restarting strategy scheme that we must conserve, but the complete

ERAM scheme that could provide the convergence status.

Algorithm 14 ERAM Convergence Snapshot
1: if Convstatus is Convergence or Highly Convergence then

2: Keep the parameters {Convstatus ,m,αnew, γ, orthogonalization}

3: end if
4: Order the parameters with respect to the highest Convergence

Output: ERAM Parameters Historic

m Choice 2 : Pick randomly a new restarting strategy among

{αDef ,αRes,αLi,αLiRes,αLa,αLaRes} without considering the historic of the con-

vergence.

8.3.1 Basic Mixed Restarting Strategy Tuning Results

For all the following matrices, we imposed some additional conditions to dynamically

choose the restarting strategies. Such modi�cations intervene thanks to a previous study

of Algorithm 13.

m First of all, we deleted the restarting strategy αLiRes, meaning that at the

step 10 of the Algorithm 13 we choose a new restarting strategy among

{αDef ,αRes,αLi,αLa,αLaRes} instead of {αDef ,αRes,αLi,αLiRes,αLa,αLaRes}. This

choice is motivated by the chaotic behavior of αLiRes as observed in the previ-

ous chapters. The αLiRes restarting strategy performance is very poor if mixed with

others and tends to considerably disrupt the ERAM convergence, this motivated

our choice to delete it from the ERAM with the restarting strategies auto-tuning.

Nevertheless we allow the ERAM to start (and start only) its process with αLiRes.

m Secondly, we impose to the ERAM to keep a restarting strategy during 5 restarts

at least. This choice is motivated by the fact that the Krylov subspace direction is

changed thanks to the new restarting strategy: it takes few restarts to be stabilized

and therefore determine if the new restarting strategy could provide a pertinent

convergence direction. Deleting this option may lead to successive restarting strate-

gies changes and possibly avoid a good restarting strategy that could not proved its

e�ciency.
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m Finally, we suspend the restarting strategy change (id est the step 10 of the Algo-

rithm 13) if and only if the ERAM convergence is close to the desired threshold.

This order is relative to the ERAM execution itself. We compute the amplitude

between the residual computed at the very �rst restart and the desired threshold:

amplitude =
ε

max
j=1,s

(resTr
(1)
j )

, (8.1)

If the current residual max
j=1,s

(resTr
(i)
j ) is inferior to 3

4
amplitude, then we lock the

restarting strategy until the convergence. We observed thanks to previous results

that in most of the case, changing the restarting strategy while we remain close to

the desired threshold tends to disrupt rather than accelerate or maintain the ERAM

convergence.

All the points above have been decided thanks to initial restarting strategies tests.

In what follows, we present the ERAM with Mixed Restarting Strategy

Auto-Tuning (Algorithm 13) using as a �rst restarting strategy respectively

{αDef ,αRes,αLi,αLiRes,αLa,αLaRes}.

We �rst present the results of the Algorithm 13 by using the Choice 1 (id est by

considering the convergence evolution with respect to the ERAM) and explain why the

Choice 2 has not been retained.

For each �gure presented in this section, we indicated thanks to colored stripes the

number of restarts until convergence for each ERAM using as a single restarting strategy

{αDef ,αRes,αLi,αLiRes,αLa,αLaRes} respectively.

The target matrices properties are summarized in the following Table:

Size nnz Source

FissionDense 10,000 99,980,003 Issued from 5.2.1.1

and CEA neutronic applications

Fission215Dense 16,384 286,402,691 Issued from 5.2.1.1

and CEA neutronic applications

Ex11Dense 16,614 275,991,771 Issued from A.0.2.1

Mixtank_newDense 29,957 897,361,938 Issued from A.0.2.2

RimDense 22,560 508,908,483 Issued from A.0.2.3

Spec216 ,Mt
4 32,768 296,327 Issued from 5.3.1

Table 8.1: The Target Matrices to Test the ERAM with Mixed Restarting Strategies

Auto-Tuning.

We executed the Algorithm 13 with the target matrices listed in the Table 8.3.1

above. In what follows, we pick the new restarting strategy according to the Choice 1, id

est among the restarting strategies that proved their e�ciency.
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As a reference metric, we compare for each executions presented below the number of

restart until convergence: we recall that the ERAM execution time per restart remains

the same whatever the restarting strategy is. As the Algorithm 13 is not deterministic

(therefore we can not obtain an accurate execution time measure according to the nu-

merical results presented below due to the write in �le operations), the number of restart

until convergence is the most pertinent metric.

For each following �gure, we will present the Algorithm 13 results applied to every

ERAM restarting strategies studied in this thesis. For one restarting strategy, we will

execute several ERAM using the Algorithm 13 to emphasize the nondeterministic behavior

of the Algorithm itself and the di�erent convergence evolution with respect to the mixed

restarting strategies �xed by the Algorithm 13.

For a better reading and understanding, we present the ERAM using Algorithm 13

and starting with a speci�c restarting strategy separately. As an illustration, we will

present on the same graphic the ERAM starting with αDef and αRes and then separately

αLi and αLiRes.

We present on the Figure 8.2 the ERAM with Mixed Restarting Strategy Auto-Tuning

(Algorithm 13).
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Fission Dense, RS Tuning
m=10, s=gamma=5, CGSR, 400 MPI tasks
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Figure 8.2: Fission Dense Matrix, Mixed Restarting Strategies Tuning Choice 1.
The ERAM has m = 10, s = γ = 5, a CGSR orthogonalization process. We present the lowest

eigenvalue residuals. We used 400 MPI tasks on thin nodes (2 processors Intel R© Sandy-Bridge

with 8 cores) of the PRACE Curie supercomputer. Each stripe color corresponds to the ERAM

using respectively {αRes,αLiRes,αLi,αDef ,αLaRes } restarting strategy during its complete execu-

tion (αLa did not converge). We presented separately the twin restarting strategies (αDef ,αRes
then αLa, αLaRes and �nally αLi,αLiRes). For each restarting strategy, we present 3 di�erent

executions of the Algorithm 13 to show its nondeterministic behavior. As an illustration, Def

L1 refers to one execution of the Algorithm 13 starting with the αDef restarting strategy.

m The ERAM with mixed restarting strategies starting with the αRes restarting strat-

egy is not that e�cient compared to the ERAM using αRes during its complete
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execution. The Res L1 line (light-blue) saves 14 restarts compared to the origi-

nal con�guration while Res L2 (light-pink) and ResL3 (light-green) lost 70 and 15

restarts respectively. As a reminder, the ResL1 line performs better than the best

ERAM using a single restarting strategy during its complete execution.

m The results are very di�erent for the ERAM starting with the αLiRes restarting

strategy. Indeed, the ERAM with mixed restarting strategies LiRes L1, LiRes

L2 and LiRes L3 provides whether a great acceleration (LiRes L1, light-blue line)

whether comparable performances. There are no signi�cant degradation of the

initial performance, such as it was the case for the ERAM starting with the αRes
restarting strategy. In what follows, we will observe that the ERAM with mixed

restarting strategy auto-tuning is relatively e�cient when it starts with the αLiRes
restarting strategy. Note that in this case, the ERAM LiRes L1 o�ers the best

performances among the one presented on the Figure 8.2: The best gain compared

to the other ERAM with mixed restarting strategy (respectively using a single

restarting strategy) is from 1,3 to 3,4 (respectively from 1,5 to 3,5) times faster.

m The performance of the ERAm starting with αLi are very similar to the αLiRes
detailed above.

m The ERAM with mixed restarting strategies starting with αDef performances are

not very statis�able, especially for the Def L1 (red line) and Def L3 (dark-green

line): one may note that the ERAM has a chaotic behavior during 90 restarts,

which is not satis�able from our perspective. We will return to this point in what

follows.

m Finally, the ERAM with mixed restarting strategy starting with αLaRes ameliorates

the ERAM convergence for every con�gurations presented on the Figure 8.2. Never-

theless, the ERAM remains chaotic during too much restarts, such behavior should

be avoided.

In what follows, we will detail just a subset of the restarting strategies combina-

tion that could provide dramatic accelerations and on the opposite maintain the ERAM

chaotic behavior. The chaotic behavior is marked by a completely random choice of the

restarting strategy: this case appears when none of the restarting strategy has clearly

been identi�ed as a good performer. On the other side, we distinguish some restarting

strategy combinations that provided the good performances:

m Def L2: αLa,αDef ,αLa,

m Res L2: αLi,αDef ,αRes,

m La L2: αLi,αLa,αLi,αLa

m LiRes L1: αDef ,αLi,αRes,αLi
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m Li L2: αRes,αDef ,αLi.

These restarting strategy combinations greatly accelerated the ERAM performances,

we will compare these combinations with the following target matrices.

We recall that the execution time per restart for all the ERAM execution presented

above remains similar, as the execution time per restarts is independent from the restart-

ing strategy used. Whatever the restarting strategy is, the execution time to compute

a restarting coe�cient of the αRes restarting strategy is the same as the αLi restarting

strategy one. As a reference, the average execution time per restart for the ERAMs

con�gurations presented above is 2,11 seconds.

According to the previous paragraph, the best ERAM with auto-tuned restarting

strategy (id est ERAM LiRes L1 on the Figure 8.2) saves 1 min 10 seconds (respectively

4 min 23 seconds) compared to the best (respectively the worst) ERAM using a single

restarting strategy.

We executed the same tests with the Fission215 Dense Matrix and present the results

on the Figure 8.3.
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Fission Dense Ext., RS Tuning
m=10, s=gamma=5, CGSR, 256 MPI tasks
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Figure 8.3: Fission215 Dense Matrix, Mixed Restarting Strategies Tuning Choice 1.
The ERAM has m = 10, s = γ = 5, a CGSR orthogonalization process. We present the

dominant eigenvalue residuals. We used 256 MPI tasks on thin nodes (2 processors Intel R©
Sandy-Bridge with 8 cores) of the PRACE Curie supercomputer. Each stripe color corresponds

to the ERAM using respectively {αLi,αLiRes,αLa,αDef and αRes} restarting strategy during its

complete execution (the αLaRes did not converge). We presented separately the twin restarting

strategies (αDef ,αRes then αLa, αLaRes and �nally αLi,αLiRes). For each restarting strategy, we

present 4 di�erent executions of the Algorithm 13 to show its nondeterministic behavior. As an

illustration, Li L1 refers to one execution of the Algorithm 13 starting with the αLi restarting

strategy.
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The Fission215 Dense Matrix convergence is more spectacular than the Fission Dense

Matrix presented earlier. Most of the ERAM with mixed restarting strategy auto-tuning

provided great accelerations and the ERAM with chaotic behavior is much more limited.

However, due to the very good performance of the ERAM using αLi as a single restarting

strategy, it is more arduous to �nd better con�gurations with mixed restarting strategy

than the best ERAM using a single restarting strategy.

Globally, the best ERAM with mixed restarting strategy (Res L4, light-green line)

acceleration is from 1 to 5,6 (respectively from 1,16 to 3) compared to the other ERAM

with mixed restarting strategy (respectively using a single restarting strategy).

As a comparison with the Fission Dense Matrix, we list some successful restarting

strategy combinations:

m Res L4: αDef ,αLi,

m LaRes L2: αRes,αDef ,αLi,

m La L3: αLi,αDef ,αLa,αLi

m Li L2: αLi,αLa.

We note that these combinations remain close from the Fission Dense Matrix, which

is not surprising as the Fission215 Dense Matrix is an extension of the Fission Dense

Matrix.

We continue this study with the Ex11 Dense matrix, the results are presented on

the Figure 8.4. As a reminder, this matrix was particularly sensitive to the restarting

strategies αLa and αLaRes. We expect for this matrix that reaching the convergence will be

pretty easy and fast, as the Algorithm 13 will test αLa and αLaRes restarting strategies,

therefore we are sure that these will be identi�ed as e�cient restarting strategies and

chosen by the Algorithm 13.
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Ex11 Dense, RS Tuning
m=22, s=gamma=5, CGSR, 234 MPI tasks
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Figure 8.4: Ex11 Dense Matrix, Mixed Restarting Strategies Tuning Choice 1.
The ERAM has m = 22, s = γ = 5, a CGSR orthogonalization process. We present the

dominant eigenvalue residuals. We used 234 MPI tasks on thin nodes (2 processors Intel R©
Sandy-Bridge with 8 cores) of the PRACE Curie supercomputer. Each stripe color corresponds

to the ERAM using respectively {αRes,αLa,αDef ,αLaRes and αLi} restarting strategy during

its complete execution (αLiRes did not converge). We presented separately the twin restarting

strategies (αDef ,αRes then αLa, αLaRes and �nally αLi,αLiRes). For each restarting strategy, we

present 4 di�erent executions of the Algorithm 13 to show its nondeterministic behavior. As an

illustration, Li L1 refers to one execution of the Algorithm 13 starting with the αLi restarting

strategy.

The ERAM with mixed restarting strategy auto-tuning performances are very satisfy-

ing compared to the original con�gurations. We did not present the ERAM with αLaRes
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as initial restarting strategy as the Algorithm 10 does not indicate any stagnation or di-

vergence status for this con�guration, therefore, there is no need to change the restarting

strategy according to the Algorithm 13.

As mentioned above, the αLaRes restarting strategy provided great accelerations, most

of the dramatic convergences observed on the Figure 8.4 are due to the αLaRes restarting

strategy. As its convergence is pretty smooth, the ERAM keeps it until it reaches the

desired threshold. We recall that we imposed to the ERAM with mixed restarting strategy

auto-tuned to keep the restarting strategy when the current eigenpairs threshold remains

close to the desired threshold. As αLaRes provides almost "immediate" convergence, it

remains as the restarting strategy until the end of the process.

The gain of the best ERAM with mixed restarting strategy auto tuning La L3 (dark-

green line) is from 1 to 4 (respectively 1,3 to 4,9) faster than the other ERAM with mixed

restarting strategy auto (respectively using a single restarting strategy).

We present on the Figure 8.5 several ERAM executions solving the Mixtank_new

Dense matrix eigenvalue problem by using the Algorithm 13 and Choice 1 to pick the new

restarting strategy (meaning that we �rst execute all of the restarting strategies once).

We recall that this matrix was quite slow to converge, and only the αLiRes restarting

strategy provided the convergence.
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Mixtank_new Dense, RS Tuning
m=20, s=gamma=5, CGSR, 29 MPI tasks
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Figure 8.5: Mixtank_new Dense Matrix, Mixed Restarting Strategies Tuning Choice 1.
The ERAM hasm = 20, s = γ = 5, a CGSR orthogonalization process. We present the dominant

eigenvalue residuals. We used 29 MPI tasks on thin nodes (2 processors Intel R© Sandy-Bridge

with 8 cores) of the PRACE Curie supercomputer. The stripe color corresponds to the ERAM

using {αLiRes} restarting strategy during its complete execution (this con�guration is the only

one that could converge). We presented separately the twin restarting strategies (αDef ,αRes
then αLa, αLaRes and �nally αLi,αLiRes). For each restarting strategy, we present 2 di�erent

executions of the Algorithm 13 to show its nondeterministic behavior. As an illustration, La L1

refers to one execution of the Algorithm 13 starting with the αLa restarting strategy.

146



Toward an ERAM Restarting Strategies Auto-Tuning

The results obtained for the Mixtank_new Dense Matrix are more mixed. On one

side, great accelerations can be obtained thanks to the ERAM with mixed restarting

strategies, on the other side, the slow convergence scheme is still hard to avoid. The

dramatic acceleration observed on the Figure 8.5 such as LaRes L1, LaRes L2, LiRes L1

and LiRes L2 are obtained thanks to the participation of many restarting strategy: in

this case, there are no combinations that can be identi�ed, such as it was the case for the

Fission matrices or the Ex11 Dense one.

We present on the Figure 8.6 several ERAM executions solving the Rim Dense matrix

eigenvalue problem by using the Algorithm 13. The Rim Dense matrix has a pro�le

relatively close to the Mixtank_new matrix (however, the spectrums are di�erent): the

ERAM converges pretty slowly with many plateau and stagnation phasis. As a reminder,

only two ERAM could provide the convergence (using the restarting strategies αDef and

αLi respectively).
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Rim Dense, RS Tuning
m=20, s=gamma=5, CGSR, 480 MPI tasks
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Figure 8.6: Rim Dense Matrix, Mixed Restarting Strategies Tuning Choice 1.
The ERAM hasm = 20, s = γ = 5, a CGSR orthogonalization process. We present the dominant

eigenvalue residuals. We used 480 MPI tasks on thin nodes (2 processors Intel R© Sandy-Bridge

with 8 cores) of the PRACE Curie supercomputer. Each stripe color corresponds to the ERAM

using respectively {αDef and αLi} restarting strategy during its complete execution. The ERAMs

using αLaRes, αLiRes, αLa and αRes respectively as a single restarting strategy did not converge.

We presented separately the twin restarting strategies (αDef ,αRes then αLa, αLaRes and �nally

αLi,αLiRes). For each restarting strategy, we present 4 di�erent executions of the Algorithm 13

to show its undeterministic behavior. As an illustration, LaRes L1 refers to one execution of the

Algorithm 13 starting with the αLaRes restarting strategy.

Similarly to the Mixtank_new Dense Matrix, the Rim Dense eigen system is pretty

hard to converge. Nevertheless, the ERAM with mixed restarting strategy provides sat-
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is�able performances, as most of the initial schemes did not converged. We do not detail

the restarting strategy combinations in this case, as we do not observe drastic acceleration

as it was the case for the Fission matrices or the Ex11 one for example. The convergence

is accelerated but still the ERAM chaotic behavior is not fully avoided for this matrix.

The last but not the least, we executed the Algorithm 13 on the Diagonal-Band 216

Matrix by using di�erent subspace size con�gurations. We recall that this matrix was

very sensitive to the αLaRes restarting strategy behavior: therefore, such as the Ex11

matrix, we expect that most of the ERAM with mixed restarting strategy will reach the

convergence thanks to the αLaRes restarting strategy.

We also recall that the Diagonal-Band 216 Matrix numerical convergence did not

increased with the Krylov subspace size value: Indeed, we observed better performances

with small subspace size in the previous section, especially for the restarting strategy

αLaRes. The spectrum of the Diagonal-Band 216 matrix is very di�erent from the Ex11

Dense matrix, but their sensitivity to the αLaRes restarting strategy remains a common

point: indeed, they both have eigenvalues whose real modulus are very large. Such as the

Ex11 Dense matrix, we expect to obtain very good performances for this matrix as the

Algorithm 13 will identify the restart αLaRes as e�cient and it will be picked up as a new

restarting strategy.
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EV_Int_Random_Generator_32768_4_Mt, RS Tuning
m=115, s=gamma=3, CGSR, 256 MPI tasks
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Figure 8.7: Diagonal Band 216 Matrix, Mixed Restarting Strategies Tuning Choice 1.
The ERAM has m = 115, s = γ = 3, a CGSR orthogonalization process. We present the

dominant eigenvalue residuals. We used 256 MPI tasks on thin nodes (2 processors Intel R©
Sandy-Bridge with 8 cores) of the PRACE Curie supercomputer. Each stripe color corresponds

to the ERAM using respectively {αLaRes,αLa, αLi,αDef ,αRes} restarting strategy during its

complete execution. The ERAMs using αLiRes as a single restarting strategy did not converge.

We presented separately the twin restarting strategies (αDef ,αRes then αLa, αLaRes and �nally

αLi,αLiRes). For each restarting strategy, we present 4 di�erent executions of the Algorithm 13

to show its undeterministic behavior. As an illustration, LiRes L2 refers to one execution of the

Algorithm 13 starting with the αLiRes restarting strategy.
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EV_Int_Random_Generator_32768_4_Mt, RS Tuning
m=120, s=gamma=3, CGSR, 256 MPI tasks
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Figure 8.8: Diagonal Band 216 Matrix, Mixed Restarting Strategies Tuning Choice 1.
The ERAM has m = 120, s = γ = 3, a CGSR orthogonalization process. We present the

dominant eigenvalue residuals. We used 256 MPI tasks on thin nodes (2 processors Intel R© Sandy-

Bridge with 8 cores) of the PRACE Curie supercomputer. Each stripe color corresponds to the

ERAM using respectively {αLaRes,αLa,αDef ,αRes,αLi} restarting strategy during its complete

execution. The ERAMs using αLiRes as a single restarting strategy did not converge.

We presented separately the twin restarting strategies (αDef ,αRes then αLa, αLaRes and �nally

αLi,αLiRes). For each restarting strategy, we present 4 di�erent executions of the Algorithm 13

to show its nondeterministic behavior. As an illustration, LaRes L4 refers to one execution of

the Algorithm 13 starting with the αLaRes restarting strategy.
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EV_Int_Random_Generator_32768_4_Mt, RS Tuning
m=125, s=gamma=3, CGSR, 256 MPI tasks
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Figure 8.9: Diagonal Band 216 Matrix, Mixed Restarting Strategies Tuning Choice 1.
The ERAM has m = 125, s = γ = 3, a CGSR orthogonalization process. We present the

dominant eigenvalue residuals. We used 256 MPI tasks on thin nodes (2 processors Intel R©
Sandy-Bridge with 8 cores) of the PRACE Curie supercomputer. Each stripe color corresponds

to the ERAM using respectively {αRes, αLi, αLaRes, αDef and αLa} restarting strategy during

its complete execution. The ERAMs using αLiRes and αLa respectively as a single restarting

strategy did not converge.

We presented separately the twin restarting strategies (αDef ,αRes then αLa, αLaRes and �nally

αLi,αLiRes). For each restarting strategy, we present 4 di�erent executions of the Algorithm 13

to show its nondeterministic behavior. As an illustration, Def L4 refers to one execution of the

Algorithm 13 starting with the αDef restarting strategy.
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Globally, the best performances of the ERAM with mixed restarting strategy auto-

tuning is obtained with the subspace size value m = 120 (cf Figure 8.8): Most of the

ERAM auto-tuning increased the numerical convergence performances, while this is not

the case by using m = 115 (cf Figure 8.7) for example. This is due to the fact that the

ERAM performances for this matrix are not evolving according to the Krylov subspace

size value as mentioned earlier. Basically, the ERAM with mixed restarting strategy

auto-tuned whose subspace size is 115 performances are equivalent to the m=120 one.

On the last Figure 8.9, the ERAM with mixed restarting strategy auto-tuned perfor-

mance are very satisfying, we still note that some combinations are equivalent to the case

of ERAM with m = 115.

In this case, increasing m has not annihilated the convergence behavior, we would

have to considerably increase the Krylov subspace size value to observe such phenomena.

Due to the good performances with a small subspace size, such action has no interest. In

terms of numerical performances versus optimizing the parallel execution time, the best

scheme is obtained by using the smallest subspace size which is m=115.

Note that the large majority of the ERAMs with the con�gurations presented for the

Diagonal Band 216 matrix are improved by the mixed restarting strategies. In most of the

cases, picking αLaRes provides a spectacular acceleration of the ERAM convergence. Due

to the sensitivity of the Diagonal Band 216 matrix to the αLaRes restarting strategy, this

one largely contributes to the convergence accelerations presented in the �gures 8.7,8.8

and 8.9.

8.3.2 Improving the ERAM with Mixed-Restarting Strategy

Auto-Tuning

Thanks to the results presented above, we shown the e�ciency of the ERAM with

mixed restarting strategies auto tuning.

Thanks to the automation of the mixed restarting strategy, we could explore many

combinations and emphasize some pertinent restarting strategies combinations. Never-

theless, we also observe that some restarting strategy combinations could not avoid the

chaotic convergence of the ERAM.

We did not present the Algorithm 13 by using the Choice 2 (id est a completely random

restarting strategy) for the reason that it favors the chaotic convergence behavior.

We recall that in this chapter, we use the current eigenpairs to compute the restarting

vector (according to the Algorithm 13) while in the chapter 7, we restarted the ERAM

at the restart where the best convergence scheme had been detected.

In what follows, we aim to go further on the mixed restarting strategy and improve

their e�ciency by using Ritz eigenpairs issued from di�erent restarts.
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8.4 Compute the Restarting Vector According to the

ERAM Mixed Restarting Strategy

In the previous chapter, we emphasized that there are two possibilities to compute

the restarting vector in the context of mixed restarting strategies.

m The most straightforward possibility is simply to use the Equation 8.2 whose restart-

ing coe�cients are adapted to the new restarting strategy.

v1
(i+1) =

γ∑
j=1

α
(i)
j <(u

(i)
j ),

(8.2)

Where γ ∈ [1,m]N.

m The second possibility is to use the Ritz eigen information of the kth ERAM restart where

the Ritz eigenpairs had the smallest residual computed so far, as expressed in the following

equation:

∀j ∈ [1, γ]N, res
(Best)
j = min

i∈[1,current_restart]N
(
||Au(i)

j −θ
(i)
j u

(i)
j ||

|θ(i)j |
),

(8.3)

In this case, the ERAM will use eigenpairs provided by di�erent restarts. Note that

the algorithm remains deterministic. Somehow, this restarting strategy has the same

properties as the MERAM process. We recall that the MERAM asynchronously shares

the Ritz eigenpairs with every ERAM component. The ERAMl uses at the il + 1th restart

its own Ritz eigenpairs, the received eigenpairs or both of them. One ERAM will restart

its own process by using the "most accurate Ritz eigenpairs ever computed" whether

they come from an another ERAM or an another restart. As a di�erence, the MERAM

has an nondeterministic behavior. The equation 8.3 does not guarantee that each "Best
eigenpairs" will be computed at the same restart: we recall that the convergence for each

desired eigenpair is not uniform. This will be detailed in what follows.

The truth is, there are plenty of possibilities to compute the restarting vector, whether

we discuss about the mixed restarting strategy or a single restarting strategy.

The idea is to improve the Krylov subspace convergence without disrupting the Ritz

eigenpairs whose convergence is satisfactory. We introduce a new restarting vector that

uses Ritz eigenpairs issued from di�erent restarts. This study is issued from the results

of the section 7.2 essentially.

In what follows, we retain, at each restart, the "best Ritz eigenpairs", id est the Ritz

eigenpairs that have the smallest residual computed so far. These Ritz Eigenpairs verify

the equation 8.3. According to the Best Ritz Eigenpairs, the ERAM with Ritz eigenpairs

Selection Algorithm then becomes:
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Algorithm 15 ERAM with the Best Ritz Eigenpairs Algorithm

Input: A ∈ Cn×n, v1 ∈ Cn, εArnoldi > 0, ε > 0, m ∈ [1, n]N,maxERAM ∈ N, γ ∈ [s,m]N,

αX , orthogonalization

Un,s
(Best) ∈ Cn×s

Θs,1
(Best) ∈ Cs

ResTrs,1
(Best) ∈ R+s

1: v1 = 1
||v1||v1

2: while (ε ≥ max
j∈[1,s]N

{res(Best)
j }) or (maxERAM > i) do

3: Execute m-step Arnoldi Method using {A, v1, εArnoldi, m, orthogonalization}

4: Solve the eigen problem HmYm = ΘmYm
5: Un,γ = Vn,mYm,γ
6: resTrj = ||Auj − ujθj||,∀j ∈ [1, γ]N

7: if res
(Best)
j > resTr

(i)
j then

8: res
(Best)
j = resTr

(i)
j

9: θ
(Best)
j = θ

(i)
j

10: u
(Best)
j = u

(i)
j

11: end if
12: v

(i+1)
1 =

γ∑
j=1

α
(Best)
j u

(Best)
j

13: end while
Output: U (Best)

n,s ∈ Cn×s,Θ
(Best)
s ∈ Cs, ResTr

(Best)
s ∈ (R+)

s
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The Algorithm 15 raises many legitimate questions:

m The ERAM stopping condition:

The stop condition has changed compared to the original ERAM Algorithm 5.

The Algorithm 15 output returns Ritz eigenpairs that satisfy the equation 8.3 while

the Algorithm 5 returns {U
(i)
n,s ∈ Cn×s,Θ

(i)
s ∈ Cs, ResTr

(i)
s ∈ (R+)

s} where i is

the last restart executed by the ERAM (whether it has reached the convergence

or the maximum number of restarts allowed by the user). This is similar to the

ERAM with De�ation (respectively the MERAM), as the locked Ritz eigenpairs

are not necessarily issued from the same restarts (respectively and the same ERAM

component).

m Conserve an erroneous Ritz eigenpair:

The Algorithm 15 needs additional checking regarding the Best Ritz eigenpairs.

Indeed, during the �rst restarts, the Krylov subspaces are unstable, leading to

the convergence peak (such as presented in Figures 6.1 and 6.2 for example). Such

perturbations are due to the fact that the very �rst (in terms of ERAM restarts) Ritz

eigenpairs may have a relatively small residual (by relatively, we mean compared to

the previous restarts) but still not be close to the real eigenpairs.

In this particular case, one may remain in the Best Ritz eigenpairs an erroneous

eigenpair, forcing the successive Krylov subspaces to wrong convergence direction.

m Reproducibility: The eigen informations used to compute the restarting vector de-

pends on the approximated eigenpair residual value and/or evolution. This op-

eration depends on rounding and �oating point operations, therefore, from one

supercomputer to another one, the θ
(Best)
j , u

(Best)
j and resTr

(Best)
j evolution will

be di�erent. Even though the method is still deterministic, this problem must

be recalled, as we change the ERAM behavior with respect to hardware-sensitive

parameters.

m Potentially Cyclic Krylov Subspaces:

If we remain the Algorithm 15 as presented without any additional condition, we

can observe the case when the Ritz eigenpairs computed after the ith restart will

not improve the Best Ritz eignpairs anymore (K(i)
m,v1 provides less accurate eigen-

pairs than K(i−1)
m,v1 , ∀i ∈ [2, currentrestart]). Starting from the restarting vector v

(i+1)
1

computed as presented in the Algorithm 15, this means that we can not compute

{U
(i)
n,s ∈ Cn×s,Θ

(i)
s ∈ Cs} more accurate than {U

(Best)
n,s ∈ Cn×s,Θ

(Best)
s ∈ Cs}. In

this case, we will use the same v
(i+1)
1 vector constantly, leading to cyclic Krylov

subspaces: ∀(k, l) ∈ [i,maxERAM ]2N,K
(k)
m,v1 = K(l)

m,v1 . We will detail in what follows

our investigations to avoid such behavior. This paragraph will be detailed in what

follows.

In what follows, we will present some approaches to solve a subset of issues raised by

the Algorithm 15.
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8.4.1 Erase the Cyclic Krylov Subspaces

We illustrate the Cyclic Krylov Subspace issue with the matrix Ex11 Dense. We will

use the following Figure 8.10 to detail the phenomena.

Figure 8.10: Ex11 Dense, Cyclic Krylov Subspace Illustration.

This Figure illustrates the cyclic Krylov subspace in the case of the Algorithm 15. The ERAM

has m = 15, s = γ = 5, a CGSR orthogonalization process and the restarting strategy αDef .

The ERAM has been executed with 234 MPI tasks on thin nodes (2 processors Intel R© Sandy-

Bridge with 8 cores) of the PRACE Curie supercomputer. We present on this Figure the residual

associated to each dominant Ritz eigenpair. 1 refers to the dominant real modulus eigenvalue,

2 to the second dominant eigenvalue etc until the lowest one which is the �fth (5 on the �gure

above). Each circle refers to a local minimum respectively to each dominant eigenpair.

Let's consider that we compute v
(i+1)
1 according to the equations 8.3 and 8.2. The

explicit computation formula of v
(i+1)
1 i ∈ [2, 5] according to the Algorithm 15 is:

v1
(3) = <(u

(2)
1 ) + <(u

(2)
2 ) + <(u

(2)
3 ) + <(u

(2)
4 ) + <(u

(2)
5 ),

v1
(4) = <(u

(3)
1 ) + <(u

(3)
2 ) + <(u

(2)
3 ) + <(u

(2)
4 ) + <(u

(3)
5 ),

v1
(5) = <(u

(3)
1 ) + <(u

(3)
2 ) + <(u

(2)
3 ) + <(u

(2)
4 ) + <(u

(4)
5 ),

v1
(6) = <(u

(5)
1 ) + <(u

(5)
2 ) + <(u

(2)
3 ) + <(u

(2)
4 ) + <(u

(4)
5 ),

(8.4)
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During the �rst 10 restarts, there is at least one eigenpair whose residual is improved

in the Figure 8.10, therefore we do not observe the cyclic Krylov subspaces.

However, if at the 7th restart the lowest modulus Ritz eigenpair (yellow line on the

Figure 8.10) residual is higher than the 4th restart, then the v1
(7) formula is the same as

v1
(6) and therefore for all the following restarts.

As a remedy, we impose to the ERAM to change at least one of its parameter if a

least one of the current eigenpair has not a better residual than the previously computed

one id est:

∃j ∈ [1, γ] such that resTr
(Best)
j > resTr

(i)
j , (8.5)

Whatever the parameter you change, there is a necessity to study at each ERAM

restart if at least one of the "Best eigenpairs" had been changed, therefore we add to the

Algorithm 15:

Algorithm 16 Erase the Cyclic Krylov Subspaces

1: if ∀j ∈ [1, γ], resTr
(Best)
j ≤ resTr

(i)
j then

2: Change at least one parameter of the ERAM among {γ, αX , orthogonalization,m}
3: end if

8.4.2 Mixed Restarting Strategy & Best Ritz Eigenpairs Tuning

Results

According to the previous section, we converged to the following Algorithm which is

the combination of the Algorithms 15 and 13:
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Algorithm 17 the ERAM with Mixed Restarting Strategy and Best Ritz Eigenpairs

Tuning

Input: A ∈ Cn×n, v1 ∈ Cn, εArnoldi > 0, ε > 0, m ∈ [1, n]N, s ∈ [1,m]N,maxERAM ∈ N,
γ ∈ [s,m]N, (finf , fsup) ∈ ]0, 1[2, maxcount ∈ N∗, αX , orthogonalization

Un,s
(Best) ∈ Cn×s

Θs,1
(Best) ∈ Cs

ResTrs,1
(Best) ∈ R+s

1: v1 = 1
||v1||v1

2: while (ε ≥ max
j∈[1,s]N

{res(Best)
j }) or (maxERAM > i) do

3: Execute m-step Arnoldi Method using {A, v1, εArnoldi, m, orthogonalization}

4: Solve the eigen problem HmYm = ΘmYm
5: Un,γ = Vn,mYm,γ
6: resTrj = ||Auj − ujθj||,∀j ∈ [1, γ]N

7: Convstatus =Multi-Levels Convergence Algorithm(res
(i)
CV , res

(i−1)
CV , finf , fsup,maxcount)

8: if res
(Best)
j > resTr

(i)
j then

9: res
(Best)
j = resTr

(i)
j

10: θ
(Best)
j = θ

(i)
j

11: u
(Best)
j = u

(i)
j

12: end if
13: if Convstatus Diverges or Convstatus Stagnates or ∀j ∈ [1, γ], resTr

(Best)
j ≤ resTr

(i)
j

then

14: switch α
(i)
X by α

(i+1)
new such that α

(i)
X 6= α

(i+1)
new

15: end if
16: if i%5==0 then

17: v
(i+1)
1 =

γ∑
j=1

α
(Best)
j u

(Best)
j

18: else
19: v

(i+1)
1 =

γ∑
j=1

α
(i)
j u

(i)
j

20: end if
21: end while
Output: Un,s ∈ Cn×s,Θs ∈ Cs, ResTrs ∈ (R+)

s

We added the condition at step 16 of the Algorithm 17 for three reasons.

The �rst reason is that an ERAM must pursue its convergence by using its current
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Ritz eigenpairs to stabilize them and possibly improve its current Ritz eigenpairs: as an

illustration, one may note that the ERAM convergence is not smooth and most of the

time presents some small perturbations.

Finally, this also participates to avoid the cyclic Krlov subspace behavior.

The second is to reproduce as best as we can the MERAM behavior. In the case of a

MERAM, the ERAMk (k ∈ [1, µ]N where µ ∈ N∗ is the number of ERAMs components

of the MERAM) will not restart its own process by using Ritz information from the

other components. This is possible in practice but that means that the ERAMk has a

"eater" behavior: it does not participate to the amelioration of the Ritz eigenpairs. We

highlighted that this behavior is not satis�able from our point.

In what follows, we present the ERAM with Mixed Restarting Strategy

Auto-Tuning (Algorithm 17) using as a �rst restarting strategy respectively

{αDef ,αRes,αLi,αLiRes,αLa,αLaRes}. For each �gure presented in this section, we indicated

thanks to colored stripes the number of restarts until convergence for each ERAM using

as a single restarting strategy {αDef ,αRes,αLi,αLiRes,αLa,αLaRes} respectively.

We executed the Algorithm 17 with the target matrices list in the Table 8.3.1.

We present on the Figure 8.11 the Algorithm 17 results with the Fission Dense Matrix.

The residual evolution may seem more smooth on the Figure 8.11 , which is normal

as we present the residual associated to the best computed Ritz eigenpair and not to the

current Ritz eigenpair.

As a comparison with the Algorithm 13, the use of the Best Ritz Eigenpairs greatly

improved the ERAM convergence. The ERAM chaotic convergence is almost avoided,

only one con�guration remains not satis�able, which is the LiRes 2 (light-pink): its con-

vergence is worse than the original ERAM con�guration. We recall that the ERAM with

mixed restarting strategy tuning using the current Ritz eigenpairs (id est the Algorithm

13) had worst results especially for the ERAM starting with the αDef restarting strategy.

Using the best Ritz eigenpairs has a direct impact on the convergence: many ERAM

con�gurations presented in the Figure 8.3 converged many restarts after the best ERAM

using a single restarting strategy (here αRes). In this con�guration, only LiRes L2 per-

forms worst than the ERAM using αRes only.

As a comparison, the gain between the gain between the worst ERAM using respec-

tively the Algorithm 17 and the Algorithm 13 is about 58 restarts.
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Fission Dense, RS/BEP Tuning
m=10, s=gamma=5, CGSR, 400 MPI tasks
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Figure 8.11: Fission Dense Matrix, Mixed Restarting Strategies/Best Ritz Eigenpairs

Tuning.
The ERAM hasm = 10, s = γ = 5, a CGSR orthogonalization process. We present the dominant

eigenvalue residuals. We used 400 MPI tasks on thin nodes (2 processors Intel R© Sandy-Bridge

with 8 cores) of the PRACE Curie supercomputer. Each stripe color corresponds to the ERAM

using respectively {αRes,αLiRes,αLi,αDef ,αLaRes } restarting strategy during its complete execu-

tion (αLa did not converge). We presented separately the twin restarting strategies (αDef ,αRes
then αLa, αLaRes and �nally αLi,αLiRes). For each restarting strategy, we present 3 di�erent

executions of the Algorithm 17 to show its nondeterministic behavior. As an illustration, Res

L2 refers to one execution of the Algorithm 17 starting with the αRes restarting strategy.

We summarized in the following Table 8.4.2 the gains of the ERAMs with best Ritz

eigenpairs and auto-tuned restarting strategies (id est the ERAM using the Algorithm 17)
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versus the ERAMs using ONLY the auto-tuned restarting strategies (id est the ERAM

using the Algorithm 13). For each restarting strategy, we compare the average number

of restarts until the convergence. As an illustration, for both Algorithms 17 and 13, we

computed for the ERAMs starting with the

αDef αRes αLi, αLiRes, αLa αLaRes

Algorithm 17 65 91 60 86 66 81
Algorithm 13 148 120 123 91 94 149

Table 8.2: We summarized in the Table 8.4.2 the average number of restarts until the

convergence for each ERAMs using respectively the Algorithms 17 and 13. We computed

the average number of restarts for each restarting strategy. We recall that for both Algo-

rithms 17 and 13, the ERAMs start with the restarting strategies presented in this table

and then the restarting strategy is changed with respect to the auto-tuning algorithm.

On the Figure 8.12 we present the Algorithm 17 results with the Fission215 Dense

Matrix. The best Ritz eigenpairs also improved the ERAM with mixed restarting strate-

gies auto-tuning: the improvement compared to the Figure 8.3 is not as spectacular as

the Fission Dense matrix but still remain very interesting. All the original con�gurations

are improved excepted the ERAM using the αLi restarting strategy: its performance is

already very good, improving it more remains hard.

The major contribution is that the chaotic ERAM convergence is limited by the pos-

itive impact of the best Ritz eigenpairs.

As a comparison with the ERAM using the Algorithm 13, the con�gurations starting

with αDef , αRes, αLa and αLaRes are greatly ameliorated. Especially, the ERAM starting

with αDef and αRes provides better results than the ERAM using only these respective

restarting strategies during its complete execution, which was not the case by using the

previous Algorithm 13.

The ERAM starting with αRes have de�nitely more di�culties to converge than the

other restarting strategies: we recall that the ERAM using this restarting strategy during

its complete execution could not reach the convergence, therefore the ERAM using the 17

may have di�culties to stabilize the ERAM as it started to converge in a wrong direction.
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Fission Dense Ext., RS/BEP Tuning
m=10, s=gamma=5, CGSR, 256 MPI tasks
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Figure 8.12: Fission215 Dense Matrix, Mixed Restarting Strategies/Best Ritz Eigenpairs

Tuning.
The ERAM has m = 10, s = γ = 5, a CGSR orthogonalization process. We present the

dominant eigenvalue residuals. We used 256 MPI tasks on thin nodes (2 processors Intel R©
Sandy-Bridge with 8 cores) of the PRACE Curie supercomputer. Each stripe color corresponds

to the ERAM using respectively {αLi,αLiRes,αLa,αDef and αRes} restarting strategy during its

complete execution (the αLaRes did not converge).

We presented separately the twin restarting strategies (αDef ,αRes then αLa, αLaRes and �nally

αLi,αLiRes). For each restarting strategy, we present 4 di�erent executions of the Algorithm 17

to show its undeterministic behavior. As an illustration, LiRes L4 refers to one execution of the

Algorithm 17 starting with the αLiRes restarting strategy.
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We present on the Figure 8.13 the Algorithm 17 results applied to the Ex11 Dense

Matrix. The integration of the best Ritz eigenpairs globally improved the ERAM conver-

gence compared to the Algorithm 13 which uses only the mixed restarting strategies.

The best gains are obtained thanks to the ERAMs starting with αLi and αLiRes.

The Algorithm 17 still maintains this observation, meaning that the ERAM starting

with αLiRes provides very good performances, while the ERAM using αLiRes as a single

restarting strategy does not converge most of the time. Compared to the initial Algorithm

13, the ERAM starting with αLi and αLiRes convergence are clearly ameliorated (from 5

to 10 restarts).

The ERAM starting with the αDef and αRes respectively are improved (from 7 until

30 restarts).

The con�guration starting with αLa is already very e�cient (such as αRes) therefore

having a better performance or improving the ERAM using these restarting strategies

during their complete executions remains di�cult.
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Ex11 Dense, RS/BEP Tuning
m=22, s=gamma=5, CGSR, 234 MPI tasks
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Figure 8.13: Ex11 Dense Matrix, Mixed Restarting Strategies/Best Ritz Eigenpairs Tun-

ing.
The ERAM has m = 22, s = γ = 5, a CGSR orthogonalization process. We present the

dominant eigenvalue residuals. We used 234 MPI tasks on thin nodes (2 processors Intel R©
Sandy-Bridge with 8 cores) of the PRACE Curie supercomputer. Each stripe color corresponds

to the ERAM using respectively {αRes,αLa,αDef ,αLaRes and αLi} restarting strategy during its

complete execution (αLiRes did not converge) . We presented separately the twin restarting

strategies (αDef ,αRes then αLa, αLaRes and �nally αLi,αLiRes). For each restarting strategy, we

present 4 di�erent executions of the Algorithm 17 to show its nondeterministic behavior. As an

illustration, Res L4 refers to one execution of the Algorithm 17 starting with the αRes restarting

strategy. The ERAM Algorithm 17 starting with αLaRes is not presented as neither divergence

nor stagnation was detected.
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We present on the Figure 8.14 the results of the Algorithm 17 applied to the Mix-

tank_new Dense Matrix. The improvements regarding the αLa and αLaRes are consid-

erable compared to the basic ERAM with mixed restarting strategy auto-tuning (cf the

Figure 8.5).

The integration of the Best Ritz Eigenpairs have a large impact on this matrix, how-

ever, this is still not su�cient to avoid completely (such as the Fission Dense, Fission215

Dense or the Ex11 Dense matrices) the slow convergence behavior in every case but still it

is greatly limited compared to the original con�gurations and the �rst draft of the ERAM

with mixed restarting strategy auto-tuning.

All the ERAM (except the one starting with αDef ) using the Algorithm 17 convergence

are improved compared to the ERAM using the Algorithm 13.

The ERAM using the Algorithm 17 starting with αLaRes (respectively αLa) saved 10

(respectively 165) restarts compared to the ERAM using the Algorithm 13 and starting

with αLaRes (respectively αLa).

We believe that solving the eigen problem of such matrix by using ERAM would

be improved by hybrid methods such as the MERAM solver, more than a single ERAM.

Nevertheless, this is absolutely not a restriction as we could consider a MERAM composed

of auto-tuned ERAM.
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Mixtank_new Dense, RS/BEP Tuning
m=20, s=gamma=5, CGSR, 29 MPI tasks
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Figure 8.14: Mixtank_new Dense Matrix, Mixed Restarting Strategies/Best Ritz Eigen-

pairs Tuning.
The ERAM hasm = 20, s = γ = 5, a CGSR orthogonalization process. We present the dominant

eigenvalue residuals. We used 29 MPI tasks on thin nodes (2 processors Intel R© Sandy-Bridge

with 8 cores) of the PRACE Curie supercomputer. Each stripe color corresponds to the ERAM

using {αLiRes} restarting strategy during its complete execution (this con�guration is the only

one that could converge). We presented separately the twin restarting strategies (αDef ,αRes
then αLa, αLaRes and �nally αLi,αLiRes). For each restarting strategy, we present 2 di�erent

executions of the Algorithm 17 to show its nondeterministic behavior. As an illustration, Res

L2 refers to one execution of the Algorithm 17 starting with the αRes restarting strategy.

We present on the Figure 8.15 the Algorithm 17 results applied to the Rim Dense

Matrix. The Rim Dense matrix has a convergence pro�le that remains more close to
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the Mixtank_new Dense Matrix. Such as Mixtank_new Dense Matrix, using the Best

Ritz eigenpairs has a positive impact on the ERAM convergence. If some con�gurations

(such as La L1, LiRes L4, Def L2 as an illustration) are subject to the chaotic ERAM

convergence, it is limited by the best Ritz eigenpairs behavior.

The ERAM starting with αDef and αRes respectively convergence are greatly ame-

liorated by the use of the best Ritz eigenpairs: In the worst case, the gain between the

ERAM using the Algorithm 17 and Algorithm 13 is about 20 restarts for αDef and 50

restarts for the ERAM starting withαRes.

The ERAM starting with αLa and αLaRes performances are similar to the ERAM using

the Algorithm 13.

We notice that the Algorithm 17 improves the convergence of the ERAM starting with

αLiRes (compared to the Algorithm 13), the gain is about 15 restarts for the worst ERAM

convergence.
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Rim Dense, RS/BEP Tuning
m=20, s=gamma=5, CGSR, 480 MPI tasks
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Figure 8.15: Rim Dense Matrix, Mixed Restarting Strategies/Best Ritz Eigenpairs Tun-

ing.
The ERAM hasm = 20, s = γ = 5, a CGSR orthogonalization process. We present the dominant

eigenvalue residuals. We used 480 MPI tasks on thin nodes (2 processors Intel R© Sandy-Bridge

with 8 cores) of the PRACE Curie supercomputer. Each stripe color corresponds to the ERAM

using respectively {αDef and αLi} restarting strategy during its complete execution. The ERAMs

using αLaRes, αLiRes, αLa and αRes respectively as a single restarting strategy did not converge.

We presented separately the twin restarting strategies (αDef ,αRes then αLa, αLaRes and �nally

αLi,αLiRes). For each restarting strategy, we present 4 di�erent executions of the Algorithm 17

to show its undeterministic behavior. As an illustration, Def L2 refers to one execution of the

Algorithm 17 starting with the αDef restarting strategy.
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Finally, we executed the Algorithm 17 on the Diagonal Band 216 Matrix by using

several Krylov subspace sizes. The results are summarized on the �gures below.
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EV_Int_Random_Generator_32768_4_Mt, RS/BEP Tuning
m=115, s=gamma=3, CGSR, 256 MPI tasks
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Figure 8.16: Diagonal Band 216 Matrix, Mixed Restarting Strategies/Best Ritz Eigenpairs

Tuning.
The ERAM has m = 115, s = γ = 3, a CGSR orthogonalization process. We present the

dominant eigenvalue residuals. We used 256 MPI tasks on thin nodes (2 processors Intel R©
Sandy-Bridge with 8 cores) of the PRACE Curie supercomputer. Each stripe color corresponds

to the ERAM using respectively {αLaRes,αLa, αLi,αDef ,αRes} restarting strategy during its

complete execution. The ERAMs using αLiRes as a single restarting strategy did not converge.

We presented separately the twin restarting strategies (αDef ,αRes then αLa, αLaRes and �nally

αLi,αLiRes). For each restarting strategy, we present 4 di�erent executions of the Algorithm 17

to show its nondeterministic behavior. As an illustration, La L2 refers to one execution of the

Algorithm 17 starting with the αLa restarting strategy.
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EV_Int_Random_Generator_32768_4_Mt, RS/BEP Tuning
m=125, s=gamma=3, CGSR, 256 MPI tasks
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Figure 8.17: Diagonal Band 216 Matrix, Mixed Restarting Strategies/Best Ritz Eigenpairs

Tuning.
The ERAM has m = 125, s = γ = 3, a CGSR orthogonalization process. We present the

dominant eigenvalue residuals. We used 256 MPI tasks on thin nodes (2 processors Intel R©
Sandy-Bridge with 8 cores) of the PRACE Curie supercomputer. Each stripe color corresponds

to the ERAM using respectively {αRes, αLi, αLaRes, αDef and αLa} restarting strategy during

its complete execution. The ERAMs using αLiRes and αLa respectively as a single restarting

strategy did not converge. We presented separately the twin restarting strategies (αDef ,αRes
then αLa, αLaRes and �nally αLi,αLiRes). For each restarting strategy, we present 4 di�erent

executions of the Algorithm 17 to show its nondeterministic behavior. As an illustration, LaRes

L2 refers to one execution of the Algorithm 17 starting with the αLaRes restarting strategy.

The Best Ritz eigenpairs improved the three con�gurations presented below especially
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the con�gurations that use the subspace sizes 120 and 125. The con�guration with m =

115 is not deteriorated compared to the basic ERAm with mixed restarting strategy auto

tuning but the convergence acceleration is not as good as m = 120 and m = 125. For

the "classic" schemes, we would observe more convergence improvement for the smallest

subspace size con�gurations (as their convergence is supposed to be slower), but the

diagonal-band matrices pro�le de�nitely does not belong to such classic schemes.

The best Ritz eigenpairs impact is limited by the fact that the con�gurations presented

here have a relatively smooth convergence.

As an illustration, the case m = 115 (Figure 8.16) does not accelerate the best ERAM

using a single restarting strategy but considerably improved the other scheme by using

the αLaRes restarting strategy during its process.

As a comparison with the ERAM using the Algorithm 17, the ERAM starting with

αLaRes and αLa convergence is ameliorated compared to the ERAM using the Algorithm

13.

The other ERAMs (starting with αDef , αRes, αLi and αLiRes) have a similar conver-

gence whether we use the Algorithm 13 or 17.

We make the same observation for the ERAM using m = 120, the results are pretty

similar with the ERAM using the Algorithm 13. The reader can consult the Algorithm

17 results with m=120 in the appendix C.

The Algorithm 17 has more impact on the ERAM convergence by using m=125.

Basically, we aim to think that the ERAM using the largest subspace size will have

the best performances, but this is not the case with the Diagonal band matrices. The

performances do not evolve according with the subspace size value.

Therefore, this is not surprising with this matrix that the ERAM with m=125 has

a slower convergence than an ERAM with m=115 or 120. This also explains why this

con�guration is more sensitive to the ERAM with auto-tuned restarting strategies. Using

the best Ritz eigenpairs improved the ERAM starting with αRes and αLiRes. For the αRes
case, we save from 10 to 25 restarts compared to the ERAM using the Algorithm 13. The

ERAM starting with αLiRes convergence saves 5 restarts compared to the ERAM using

the Algorithm 13.

The Diagonal Band 216 matrix is less sensitive to the use of best Ritz Eigenpairs than

the Fission Dense matrix or the Mixtank_new one for example.

Nevertheless, compared to the �rst ERAM with restarting strategies auto-tuning Al-

gorithm 13, whether we obtain similar results (such as m=120 or m=115), whether we

improve the convergence (such as m=125).

The Algorithm 17 e�ciency has been tested on target matrices issued from the matrix

generators presented in the Chapter 5. We aim to use matrices whose spectrum are very

di�erent so as to study the right e�ciency of the Algorithm 17 on several eigenvalues

distribution. Nevertheless, the ERAM using the Algorithm 17 remains nondeterministic

and we may �nd a con�guration in which the Algorithm 17 may be ine�cient: the auto-

tuning remain based on observations that occur very often. The auto-tuning are in the

border of the computer science and mathematical properties, therefore this highlights the
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urge need to model and integrate the parallel computing parameters onto the theoretical

methods design. The theoretical study of the restarting strategy impact for the ERAM

is our next priority.

The Algorithm 17 e�ciency remains whether close or better to the initial restarting

strategy auto tuning Algorithm 13 presented in the previous paragraph. Conserve the

best Ritz eigenpair has the advantage to force the restart at the best con�guration we

"ever had so far". The use of a new restarting strategy guarantees that cyclic Krylov

subspaces will not arise. Additionally, we mentioned that using the best Ritz eigenpairs

to restart the ERAM process is a similar restart as the MERAM, as the Ritz eigenpairs

do not provide from the same restarts. Nevertheless, we recall that the ERAM with best

Ritz eigenpairs has a deterministic behavior, unlikely the MERAM.
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Conclusion

This chapter links the all work presented in this thesis. Building a complete auto-

tuning algorithm is not as simple as it may seem. Many questions must be solved before

the creation of a heuristic and each player of the auto tuning must be wisely chosen.

During the �rst chapters of this thesis, we answered to most of the auto-tuning ques-

tions, namely when shall we intervene in the ERAM convergence, and what shall we

change. We highlighted a method to study and characterize the ERAM convergence,

then emphasized the major role of the restarting strategies regarding the ERAM con-

vergence behavior. Thanks to the proof of concept of the ERAM with mixed restarting

strategies, we could propose several options to build an ERAM using mixed restarting

strategies with auto-tuning methods.

This chapter linked the two previous questions by explaining how shall we change the

ERAM restarting strategy.

We �rst proposed a "natural and straightforward" version of the ERAM with mixed

restarting strategies using auto tuning methods and emphasized the positive impact on

the ERAM convergence compared to the ERAM using a single restarting strategy.

Such tests have been made possible thanks to the matrix generators that provided

many matrices with di�erent spectrum schemes (values, distribution ...), allowing us to

conclude on a general e�ciency of the ERAM with mixed restarting strategy auto tuning.

According to the mixed restarting strategies tests presented in the Chapter 7, we

improved the auto-tuned ERAM by using an approach that can be compared to the

MERAM one (and in a larger sense, MRAM). We introduced the best Ritz eigenpairs, id

est the approximated eigenpairs whose residual is the lowest observed so far.

It results from the tests experimented on our target matrices that such Algorithm

improves the ERAM original con�gurations and performs better than the �rst version of

the ERAM with mixed restarting strategies auto-tuning. This leads to a smoother ERAM

convergence and a better gain in terms of number of restarts to reach the convergence.

This Algorithm can be improved by adding many other possibilities in terms of the

choice and "regulation" of the best Ritz eigenpairs and moreover by changing other ERAM
parameters such as the subspace size or the orthogonalization scheme, as we mentioned

in the very beginning of this chapter.

Finally, we think that the Algorithm 17 may have a large impact in the case of

the hybrid methods such as the MERAM or MRAM in a large sense. Indeed, we will

take advantage of more Best Ritz Eigenpairs thanks to the MRAM algorithms (the best

eigenpairs may come from the ERAM itself or an other ERAM) and each ERAM will

bene�t from its own restarting strategy auto-tuning acceleration.

175





Conclusion & Features

In this thesis we focused on the Krylov eigensolver ERAM as this method is well

adapted to compute a subset of the dominant eigenpairs. The good convergence of the

ERAM depends on the user ability to �x the right set of parameters.

Therefore, one lack of ERAM is that its convergence may drastically di�er depending

on its input parameters. We emphasized the preponderant role of the Krylov subspace

size m: this parameter is leading both the convergence e�ciency and the parallel exe-

cution time of the ERAM. Unfortunately, these two parameters evolve in the opposite

direction. We exposed the possibility to reduce the number of restarts of the ERAM by

using a pertinent restarting strategy. It appears that such parameter does not increase

the parallel execution time per restart neiher it requires any additionnal parallel commu-

nications nor operations. The ERAM restarting strategies is the basis of this study. The

�nality of this work is to propose an auto-adaptive ERAM, able to dynamically change

its own parameters. In complement of this study, we proposed two matrix generators that

present many qualities in the current context of ultra-scale computing. Such matrix gen-

erators allow to test the numerical validity and the parallel scalability of current/future

eigensolvers.

The �rst study presented at the Chapter 4 consists of assessing the ERAM conver-

gence. We exposed that the Krylov method GMRES used to solve linear systems dispose

of such method to appreciate its numerical convergence at the runtime execution. In the

case of the GMRES solver, the convergence metric is used to optimize the subspace size

value with the convergence rate: In the case of a strong convergence, the subspace size

will be decreased, so as to reduce the parallel execution time per restart while maintain-

ing the GMRES convergence at a statis�able rate. Conversely, the opposite modi�cation

will be done so as the GMRES can reach the convergence. Despite the solvers simi-

larity, the GMRES convergence criteria can not be transposed directly to the ERAM

method. The �rst step is to determine a convergence metric to appreciate the ERAM

convergence. Based on this metric, we presented an algorithm that detects the ERAM

convergence behavior. A part of this work has been executed during a summer internship

at the Computational Research Group of the Lawrence Berkeley National Laboratory

under the supervision of M. Leroy Anthony Drummond. We experimented this algorithm

on several matrices whose spectrums are widely di�erent, so as their convergence. For

each matrix, we experimented the algorithm with di�erent ERAM con�gurations to favor

slow/fast/chaotic convergence behavior. We �xed two priorities regarding the ERAM

convergence detection. First, the divergence or stagnation status must be quickly de-

tected. We aim to avoid such behavior by modifying ERAM parameters so as to reach

the convergence faster. This implies the second condition, which is properly detect the

convergence behavior. The results presented in this chapter shown the e�ciency of the

algorithm whatever the spectrum distribution. We presented many convergence schemes

and shown for each of them the e�cient detection of ERAM convergence.
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The Chapter 5 is dedicated to the study of two matrix generators. This work has

been motivated by the fact that we are missing of test matrices with known spectrum

that matches our requirement. Such matrices were needed so as to proceed to numerical

tests for the ERAM eigensolver. The matrix collections readily available do not propose

such matrices, or these do not have the required mathematical properties. In the context

of the French-Japanese collaboration for the Framework Programming for Post-Petascale
Computing (FP3C) Project, two matrix generators (developped by M. Hêrvé Galicher)

have been validated in this thesis. Both matrix generators provide matrices from an

imposed spectrum and verify that the generated matrix is non-Hermitian. Secondly, both

matrix generators have the advantage to provide large matrices, in terms of dimension

and/or number of non-zeros elements. These matrix generators where de�nitely needed

to realize this thesis, as we were craving of large non-Hermitian matrix, non con�dential

and with a known spectrum. The large majority of the results presented in this thesis use

matrices issued from the two matrix generators. In this chapter, we exposed the methods

and emphaiszed their bene�ts/drawbacks in terms of parallelism. We �nally conlude on

results that show the numerical e�ciency of both matrix generators.

The Chapter 6 is dedicated to the ERAM restarting strategies. In this chapter, we

will present some restarting strategies and emphasize their contribution to the ERAM

convergence. We experimented all the restarting strategies by using many ERAM con�g-

urations and argued on the considerable gain they may provide. Each experimentation

is executed on the PRACE CURIE Supercomputer (26th most powerfull supercomputer

according to the Top500 list of June 2014) by using matrices generated by both methods

presented in the Chapter 4. From these experimentations, we could emphasize some spec-

trum pro�les sensibility to speci�c restarting strategies. As a consequence, we introduced

the Twin restarting strategy behavior, meaning that some of the restarting strategies

presented in this thesis may behave the same way -or not-: the twin restarting strategy

behavior is linked with the spectrum distribution. As a complementary study, we present

some results on the restarting strategies e�ciency with respect to the orthogonalization

process scheme. It is known that the Krylov basis may su�er from a lack of orthogonality.

A reorthogonalization of the Krylov basis can be necessary to stabilize numerically the

Arnoldi Method. However, this reorthogonalization step is very greedy in terms of par-

allel computation costs: the problematic still remains on the numerical e�ciency versus

the execution time per restart.

Starting from all the restarting strategies behavior analyzed in the Chapter 6, we

used the ERAM convergence heuristic to manually change the restarting strategy and

observe if such proceeding could have an impact on the ERAM convergence. The results

presented in the Chapter 7 are promising, as the gain may be spectacular dpending on

the matrix spectrum of course. For each target matrix, we proceed to these changes

and conlude on an astonishing behavior that we did not expected: Mixing the restarting

strategies can turn an ine�cient restarting strategy (we mean ine�cient if used during the

complete ERAM execution) onto a very e�cient one. It means that there is the possibility

to �nd an optimum restarting strategy combination so as every ERAM could reach the
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convergence faster than its original con�guration. We recall that reducing the number of

restarts by using mixed restarting strategies is a "gain" compared to the subspace size

dynamic-adaptations. Indeed, the restarting coe�cients only reuse the Ritz eigenpairs

information: Therefore this requires neither parallel communications nor operations to

use them.

Finally, the Chapter 8 explores several topics to dynamically tune the ERAM restart-

ing strategy with respect to its convergence. Based on the results presented in the Chapter

7, we �rst study a basic version to smart-tune the ERAM restarting strategies with re-

spect to its convergence. We impose to the ERAM to switch its restarting strategy as

soon as a divergence or stagnation status has been detected thanks to the Algorithm pre-

sented in the Chapter 4. We �rst test all the restarting strategies one by one, and �nally

pick a new one among the restarting strategies that provided the convergence status. We

applied this algorithm to the matrices generated in the Chapter 5, thanks to the matrices

generators. We conclude on a good e�ciency of the ERAM with smart-tuned restarting

strategies, but still we can improve this algorithm.

In the second part of this study, we add to this smart-tuning version the possibility

to use a Ritz eigenpairs historic, meaning that we remain the Ritz eigenpairs with the

lowest residual and potentially mix them with current Ritz eigenpairs. This aims to go on

the ERAM convergence while maintaining the accuracy of the Ritz eigenpairs. We �nally

conclude on the good e�ciency of the ERAM using the restarting strategies with smart

tuned and best Ritz eigenpairs, as most of the ERAM convergence previously presented

had their convergence ameliorated.

We aim to explore some ways of improvement or possible extension in view of the

achieved work in this thesis.

We will �rst continue our matrix generator project. As a �rst observation, there is a

need to developp the diagonal-band and the dense matrix generators frameworks: Many

improvement in terms of parallel programmation can be added for both frameworks.

The diagonal-band matrix generators deserves to be optimized in terms of parallel data

distribution and parallel communications. As a second observation, the diagonal-band

matrix generator exact arithmetic must be sacri�ced to encompass more spectrums, not

only the integer ones. Finally, we would like to go on our study of the theoritical method

so as to generate random sparse shapes matrices. As an illustration, we aim to use our

matrix generators and then apply some transformation to ensure a random shape of the

matrix and conserve its eigenvalues. We recall that the �nal aim is to share these matrix

generators with the HPC community.

We are developping a MERAM version using the smart-tuned ERAMs presented in

this thesis. The aim is to outcome to many comethods with di�erent parameters all

along, each of them is focusing on accelerating di�erent part of the desired spectrum.

We do not aim to outcome to a MERAM where all ERAM have the same optimum

parameters: in this case, we lost the eigen information mixing which the heart of the

numerical acceleration convergence. The hybrid methods concept allow us to perform

many ameliorations both in terms of numerical and parallel communication e�ciency.
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In this context we want to extend the Hybrid co-method to the GMRES using the

smallest eigenvalues to build a preconditioner and accelerate the system convergence.

Such hybrid methods would �rst bene�t of accurate and asynchronously sent eigenval-

ues and then add the resiliency property to the GMRES method. If one component of

MERAM fails, then we would turn it into a GMRES and go on the solution convergence.

This future work is largely inspired from the MRAM methods presented in this thesis

and the works realized in [Aquilanti 2011a].

This achieved work during this thesis would have really been rendered real with the

Hybrid Multiple Krylov Restarted Method (whether it is a linear or eigen system) ongoing

research.
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Appendix A

The Dense Matrix Generator Results

A.0.2.1 The Ex11 Matrix

The Ex11 matrix is originally sparse with 1,096,948 non-zeros elements. Using its

spectrum as input parameter of the Algorithm 11 provide a Dense Ex11 matrix with

275, 991, 771 non-zeros elements. The Figure A.1 shows the Ex11 eigenvalues without

any modi�cation. This matrix is issued from [Davis ].

Figure A.1: The Ex11 Matrix Spectrum, Size is 16, 614

The presented spectrum contains the Ex11 matrix real modulus eigenvalues (blue line) without

any modi�cation. The red points present the distance between each successive real modulus

eigenvalue. The Eigenvalues and Distance metrics use both log10 scale to enhance the eigenvalues

distribution visibility.

The Figure A.2 presents the residuals (red line) obtained with the SLEPc eigen solvers

respectively and the relative errors (blue line). The parameters remains the same as the

Dense F ission matrix (cf Figure A.1). The precision regarding the residual is very

satisfying, however, the relative error for the last 20 eigenvalues is quite high. Indeed, the

Ex11 eigenvalues have a 108 order and 6 decimals. Getting the exact eigenvalues remains

complicated, this explains the relative error di�erence: the last eigenvalues are relatively
close to the real eigenvalues considering their order. For this matrix, the spectrum is
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conserved through the Algorithm 11 modulo the fact that rounding and �oating point

operations in�uence may be more important than the Dense F ission matrix due to the

Ex11 spectrum characteristics.

Figure A.2: Dense Ex11 Matrix, SLEPc Eigen Solvers Numerical Comparison

The blue line refers to the residual error while the red line refers to the SLEPc computed

eigenpairs residual. The SLEPc eigen solvers have been executed with 50 MPI tasks, using the

thin nodes (2 processors Intel R© Sandy-Bridge with 8 cores ) of the PRACE Curie supercomputer.

We �xed s = 200 and m = 400 (the default SLEPc value). The SLEPc Arnoldi (respectively

Krylov-Schur) eigen solver stopped after 3 (respectively 2) restarts.

A.0.2.2 The Mixtank_new Matrix

The Mixtank_new matrix is issued from the University of Florida matrices collection

[Davis ]. This matrix is originally sparse with 1,995,041 non-zeros elements. The Figure

A.3 shows the Mixtank_new eigenvalues distribution:
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Figure A.3: The Mixtank_new Matrix Spectrum, Size is 29, 957

The presented spectrum contains the original Mixtank_new matrix real modulus eigenvalues

(blue line). The red points present the distance between each successive real modulus eigenvalue.

The Eigenvalues and Distance metrics use both log10 scale to enhance the eigenvalues distribution

visibility.

Using the Mixtank_new spectrum as input parameter of the Algorithm 11 provides

a Dense Mixtank_new matrix with 897, 361, 938 non-zeros elements. We then com-

puted the 200 dominant eigenvalues of the Dense Mixtank_new matrix using the SLEPc

Arnoldi and Krylov-Schur eigen solvers. The tests have been executed with 50 MPI tasks

using the thin nodes of the PRACE Curie supercomputer. The subspace size is automat-

ically �xed to 400 by the SLEPc eigen solvers.
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Figure A.4: Dense Mixtank_new Matrix, SLEPc Eigen Solvers Numerical Comparison

The blue line refers to the residual error while the red line refers to the SLEPc computed

eigenpairs residual. The SLEPc eigen solvers have been executed with 50 MPI tasks, using the

thin nodes (2 processors Intel R© Sandy-Bridge with 8 cores ) of the PRACE Curie supercomputer.

We �xed s = 200 and m = 400 (the default SLEPc value). The SLEPc Arnoldi (respectively

Krylov-Schur) eigen solver reached the convergence after 6 (respectively 3) restarts.

The relative errors with respect to the associated residuals are satisfying, showing that

the Dense Mixtank_new matrix conserved the spectrum with respect to the Algorithm

11. The Mixtank_new eigenvalues are relatively small and simple, therefore the relative

error is not as disrupted as the Ex11 matrix (cf A.0.2.1).

A.0.2.3 The Rim Matrix

The Rim matrix is extracted from the University of Florida collection [Davis ]. This

matrix has originally 1, 014, 951 non-zeros elements. We present on the Figure A.5 the

Rim matrix spectrum.
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Figure A.5: The Rim Matrix Spectrum, Size is 22, 560

The presented spectrum contains the original Rim matrix real modulus eigenvalues (blue line)

without any modi�cation. The red points present the distance between each successive real

modulus eigenvalue. The Eigenvalues and Distance metrics use both log10 scale to enhance the

eigenvalues distribution visibility.

The matrix Dense Rim resulting from the Algorithm 11 has 508, 908, 483 non-zeros

elements. We compute the 200 dominant eigen values of Dense Rim matrix, using the

SLEPc Krylov-Schur and Arnoldi solvers. Both of them were executed with 50 MPI tasks

using the thin nodes (2 processors Intel R© Sandy-Bridge with 8 cores) of the PRACE

Curie supercomputer and reached the convergence after 112 restarts. The Figure A.6

shows satisfying residuals and relative errors regarding the 200 dominant eigenvalues.
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Figure A.6: Dense Rim Matrix, SLEPc Eigen Solvers Numerical Comparison

The blue line refers to the residual error while the red line refers to the SLEPc computed

eigenpairs residual. The SLEPc eigen solvers have been executed with 50 MPI tasks, using the

thin nodes (2 processors Intel R© Sandy-Bridge with 8 cores) of the PRACE Curie supercomputer.

We �xed s = 200 and m = 400 (the default SLEPc value). The SLEPc Arnoldi (respectively

Krylov-Schur) eigen solver reached the convergence after 20 (respectively 4) restarts.

According to the residuals values presented on Figure A.6 we admit that the Ritz

eigenpairs corresponds to the prescribed spectrum due to the relative error small values.
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The ERAM with Mixed-Restarting

Strategies

B.0.2.4 Mixtank_newDense

We continue our study with the Mixtank_new Dense matrix. We summarize in the

following Table B.0.2.4 the results obtained by the Algorithm 10 with an ERAM using

the αDef restarting strategy.

Stagnation

Interval {5} [22,27] [32,40] [47,77]

Lowest 4 18 31 41

Residual

Table B.1: The ERAM has m = 15, s = γ = 4, a CGSR orthogonalization process and

the restarting strategy αDef . We used 29 MPI tasks on thin nodes (2 processors Intel R©
Sandy-Bridge with 8 cores) of the PRACE Curie supercomputer. We summarize in this

Table the results of the Algorithm 10.

The results obtained for the Mixtank_new Dense matrix are not as satisfying as

the FissionDense or Ex11Dense matrices but still remain interesting. We recall that the

ERAM using a single strategy during its complete execution had the best convergence by

using the αDef restarting strategy (cf Figure 6.6).

Using the mixed restarting strategies improves the ERAM convergence but does not

provide the desired Ritz eigenpairs at the desired threshold (10−14).
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Figure B.1: Mixtank_new Dense Matrix, αDef/ αLa Mixed Restarting Strategies.

The ERAM has m = 15, s = γ = 4, a CGSR orthogonalization process and the restarting

strategy αDef . We present the dominant eigenvalue residuals. We replaced αDef by αLa at the

restarts listed in the Table 7.2.0.1. We used 29 MPI tasks on thin nodes (2 processors Intel R©
Sandy-Bridge with 8 cores) of the PRACE Curie supercomputer.

Figure B.2: Mixtank_new Dense Matrix, αDef/ αLaRes Mixed Restarting Strategies.

The ERAM has m = 15, s = γ = 4, a CGSR orthogonalization process and the restarting

strategy αDef . We present the dominant eigenvalue residuals. We replaced αDef by αLaRes at

the restarts listed in the Table 7.2.0.1. We used 29 MPI tasks on thin nodes (2 processors Intel R©
Sandy-Bridge with 8 cores) of the PRACE Curie supercomputer.
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Figure B.3: Mixtank_new Dense Matrix, αDef/ αLi Mixed Restarting Strategies.

The ERAM has m = 15, s = γ = 4, a CGSR orthogonalization process and the restarting

strategy αDef . We present the dominant eigenvalue residuals. We replaced αDef by αLi at the

restarts listed in the Table 7.2.0.1. We used 29 MPI tasks on thin nodes (2 processors Intel R©
Sandy-Bridge with 8 cores) of the PRACE Curie supercomputer.

Figure B.4: Mixtank_new Dense Matrix, αDef/ αLiRes Mixed Restarting Strategies.

The ERAM has m = 15, s = γ = 4, a CGSR orthogonalization process and the restarting

strategy αDef . We present the dominant eigenvalue residuals. We replaced αDef by αLiRes at

the restarts listed in the Table 7.2.0.1. We used 29 MPI tasks on thin nodes (2 processors Intel R©
Sandy-Bridge with 8 cores) of the PRACE Curie supercomputer.
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B.0.2.5 Diagonal Band 215

150 160 170 180 190 200

150 0,15 1,45 0,01 0,01 0,02 0,03 0,03 0,07 0,04 0,12 0,05 0,18
160 # # 0,16 1,64 0,01 0,01 0,02 0,03 0,03 0,07 0,04 0,12
170 # # # # 0,17 1,85 0,01 0,01 0,02 0,03 0,03 0,07
180 # # # # # # 0,18 2,07 0,01 0,01 0,02 0,03
190 # # # # # # # # 0,19 2,3 0,01 0,01
200 # # # # # # # # # # 0,2 2,54

Table B.2: We present in this Table the memory gain (Goctets) and the Flop gain
(GFlop) between each ERAM with respect to the subspace size we used. The diagonal

represents the global memory storage (respectively Flop) used for a complete ERAM

restart. All the other cases present the gain of a complete ERAM restart using two

di�erent subspace size.
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PPPPPPPPPPMixed

Single
αDef αRes αLi

180 190 200 180 190 200 180 190 200

{m = 150, αLaRes, it = 3} 13,83 8 4,89 8,61 13,17 5,56 11,72 4,89 6,11
{m = 150, αLaRes, it = 6} 13,11 7,58 4,63 8,16 12,47 5,26 11,11 4,63 5,79
{m = 150, αLaRes, it = 14} 8,3 4,8 2,93 5,17 7,9 3,33 7,03 2,93 3,67
{m = 150, αLaRes, it = 24} 6,07 3,51 2,15 3,78 5,78 2,44 5,15 2,15 2,68
{m = 150, αRes, it = 3} 1,45 0,84 0,51 0,9 1,38 0,58 1,23 0,51 0,64

{m = 150, αRes, it = 14} 1,1 0,64 0,39 0,69 1,05 0,44 0,93 0,39 0,49

{m = 160, αLaRes, it = 25} 6,07 3,51 2,15 3,78 5,78 2,44 5,15 2,15 2,68
{m = 160, αLaRes, it = 27} 6,07 3,51 2,15 3,78 5,78 2,44 5,15 2,15 2,68

{m = 170, αLi, it = 3} 1,05 0,61 0,37 0,65 1 0,42 0,89 0,37 0,46

{m = 180, αLa, it = 6} 1,38 0,8 0,49 0,86 1,32 0,56 1,17 0,49 0,61

{m = 180, αLa, it = 13} 1 0,58 0,35 0,62 0,95 0,4 0,84 0,35 0,44

{m = 180, αLa, it = 34} 1,39 0,8 0,49 0,87 1,32 0,56 1,18 0,49 0,61

{m = 180, αLaRes, it = 6} 13,11 7,58 4,63 8,16 12,47 5,26 11,11 4,63 5,79
{m = 180, αLaRes, it = 13} 10,83 6,26 3,83 6,74 10,3 4,35 9,17 3,83 4,78
{m = 180, αLaRes, it = 34} 5,53 3,2 1,96 3,44 5,27 2,22 4,69 1,96 2,44
{m = 180, αLi, it = 6} 0,93 0,54 0,33 0,58 0,88 0,37 0,79 0,33 0,41

{m = 180, αLi, it = 13} 0,97 0,56 0,34 0,6 0,92 0,39 0,82 0,34 0,43

{m = 180, αRes, it = 6} 1,31 0,76 0,46 0,82 1,25 0,53 1,11 0,46 0,58

{m = 180, αRes, it = 13} 1,07 0,62 0,38 0,67 1,02 0,43 0,91 0,38 0,47

{m = 190, αLa, it = 2} 1,48 0,86 0,52 0,92 1,41 0,6 1,26 0,52 0,65

{m = 190, αLa, it = 7} 1,46 0,84 0,51 0,91 1,39 0,58 1,23 0,51 0,64

{m = 190, αLa, it = 15} 1 0,58 0,35 0,63 0,96 0,4 0,85 0,35 0,44

{m = 190, αLaRes, it = 2} 20,75 12 7,33 12,92 19,75 8,33 17,58 7,33 9,17
{m = 190, αLaRes, it = 7} 15,56 9 5,5 9,69 14,81 6,25 13,19 5,5 6,88
{m = 190, αLaRes, it = 15} 9,96 5,76 3,52 6,2 9,48 4 8,44 3,52 4,4
{m = 190, αLi, it = 2} 1,77 1,02 0,62 1,1 1,68 0,71 1,5 0,62 0,78

{m = 190, αLi, it = 7} 2,65 1,53 0,94 1,65 2,52 1,06 2,24 0,94 1,17
{m = 190, αLi, it = 15} 2,24 1,3 0,79 1,4 2,14 0,9 1,9 0,79 0,99

{m = 190, αRes, it = 15} 2,52 1,45 0,89 1,57 2,39 1,01 2,13 0,89 1,11

{m = 200, αLa, it = 5} 2,83 1,64 1 1,76 2,69 1,14 2,4 1 1,25
{m = 200, αLa, it = 26} 2,71 1,57 0,96 1,68 2,58 1,09 2,29 0,96 1,2
{m = 200, αLaRes, it = 5} 17,79 10,29 6,29 11,07 16,93 7,14 15,07 6,29 7,86
{m = 200, αLaRes, it = 26} 7,78 4,5 2,75 4,84 7,41 3,13 6,59 2,75 3,44
{m = 200, αLi, it = 5} 2,57 1,48 0,91 1,6 2,44 1,03 2,18 0,91 1,13
{m = 200, αLi, it = 26} 2,71 1,57 0,96 1,68 2,58 1,09 2,29 0,96 1,2
{m = 200, αRes, it = 26} 4,29 2,48 1,52 2,67 4,09 1,72 3,64 1,52 1,9

Table B.3: Diagonal Band 215 Matrix, Mixed Restarting Strategies Mixed Restarting

Strategies Gains/Losses.
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We compare the gains/losses (in terms of number of restarts until the convergence)

of ERAM with mixed restarting strategies with ERAM using a single restarting strategy

during its complete execution. Each column corresponds to one ERAM using a sin-

gle restarting strategy. Each line corresponds to one execution of ERAM using mixed

restarting strategies (presented in Figure 7.3).
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PPPPPPPPPPMixed

Single
αLa

180 190 200

{m = 150, αLaRes, it = 3} 11,94 9,83 5,44
{m = 150, αLaRes, it = 6} 11,32 9,32 5,16
{m = 150, αLaRes, it = 14} 7,17 5,9 3,27
{m = 150, αLaRes, it = 24} 5,24 4,32 2,39
{m = 150, αRes, it = 3} 1,25 1,03 0,57

{m = 150, αRes, it = 14} 0,95 0,78 0,43

{m = 160, αLaRes, it = 25} 5,24 4,32 2,39
{m = 160, αLaRes, it = 27} 5,24 4,32 2,39

{m = 170, αLi, it = 3} 0,91 0,75 0,41

{m = 180, αLa, it = 6} 1,19 0,98 0,54

{m = 180, αLa, it = 13} 0,86 0,71 0,39

{m = 180, αLaRes, it = 6} 1,2 0,99 0,55

{m = 180, αLaRes, it = 13} 11,32 9,32 5,16
{m = 180, αLaRes, it = 34} 9,35 7,7 4,26
{m = 180, αLi, it = 6} 4,78 3,93 2,18
{m = 180, αLi, it = 13} 0,8 0,66 0,37

{m = 180, αRes, it = 6} 0,84 0,69 0,38

{m = 180, αRes, it = 13} 1,13 0,93 0,52

{m = 180, αRes, it = 34} 0,93 0,76 0,42

{m = 190, αLa, it = 2} 1,28 1,05 0,58

{m = 190, αLa, it = 7} 1,26 1,04 0,57

{m = 190, αLa, it = 15} 0,87 0,71 0,4

{m = 190, αLaRes, it = 2} 17,92 14,75 8,17
{m = 190, αLaRes, it = 7} 13,44 11,06 6,13
{m = 190, αLaRes, it = 15} 8,6 7,08 3,92
{m = 190, αLi, it = 2} 1,52 1,26 0,7

{m = 190, αLi, it = 7} 2,29 1,88 1,04
{m = 190, αLi, it = 15} 1,94 1,59 0,88

{m = 190, αRes, it = 15} 2,17 1,79 0,99

{m = 200, αLa, it = 5} 2,44 2,01 1,11
{m = 200, αLa, it = 26} 2,34 1,92 1,07
{m = 200, αLaRes, it = 5} 15,36 12,64 7
{m = 200, αLaRes, it = 26} 6,72 5,53 3,06
{m = 200, αLi, it = 5} 2,22 1,82 1,01
{m = 200, αLi, it = 26} 2,34 1,92 1,07
{m = 200, αRes, it = 26} 3,71 3,05 1,69

Table B.4: Diagonal Band 215 , Mixed Restarting Strategies Gains/Losses.
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We compare the gains/losses (in terms of number of restarts until the convergence)

of ERAM with mixed restarting strategies with ERAM using a single restarting strategy

during its complete execution. Each column corresponds to one ERAM using a sin-

gle restarting strategy. Each line corresponds to one execution of ERAM using mixed

restarting strategies (presented in Figure 7.3).
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The ERAM with Mixed-Restarting

Strategies Smart-Tuning

C.0.2.6 Diagonal Band 216 Matrix
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EV_Int_Random_Generator_32768_4_Mt, RS/BEP Tuning
m=120, s=gamma=3, CGSR, 256 MPI tasks
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Figure C.1: Diagonal Band 216 Matrix, Mixed Restarting Strategies/Best Ritz Eigenpairs

Tuning.
The ERAM has m = 120, s = γ = 3, a CGSR orthogonalization process. We present the

dominant eigenvalue residuals. We used 256 MPI tasks on thin nodes (2 processors Intel R©
Sandy-Bridge with 8 cores) of the PRACE Curie supercomputer. Each stripe color corresponds

to the ERAM using respectively {αLaRes,αLa,αDef ,αRes,αLi} restarting strategy during its com-

plete execution. The ERAMs using αLiRes as a single restarting strategy did not converge.

We presented separately the twin restarting strategies (αDef ,αRes then αLa, αLaRes and �nally

αLi,αLiRes). For each restarting strategy, we present 4 di�erent executions of the Algorithm 17

to show its nondeterministic behavior. As an illustration, La L1 refers to one execution of the

Algorithm 17 starting with the αLa restarting strategy.
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