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General introduction 

Flexible or organic electronics consist in building electronic circuits by depositing 

electronic components onto flexible substrates. Among the drivers for the development of 

flexible electronics one can mention the possibility of high volume manufacturing, the low 

cost potential and the ease of device integration. Motivated by these promises, a great 

attention has been given to this technology in the past years. The application field of flexible 

electronics is extremely large and encompasses next generation of consumer electronics, 

healthcare, lightning, energy and so on. The high potential of flexible electronics is expected 

to allow large scale development in a near future. Flexible displays, cell phones, flexible and 

washable textiles with embedded electronics are well identified applications. Nevertheless, 

challenges in terms of design and fabrication, life time issues of organic materials, 

performance and standardized testing are still to be overcome.  In this framework, polymer 

materials are playing a significant role thanks to their properties. Actually, their mechanical, 

optical and chemical properties such as high flexibility, optical clarity, high exploitation 

temperatures and robustness render them important materials for flexible electronics. Polymer 

materials are known to have high electrical resistivity and low thermal conductivity therefore 

they are widely used as dielectrics in the electronic industries. Their applications range from 

insulators and intermetallic dielectric layers to encapsulants and adhesives. Moreover, they 

are extensively used as resists during lithography process.  

In all electronic systems thermal management is one of the main concerns. In organic 

electronics it is particularly true and the material used must either prevent heat transfer or be a 

good thermal conductor depending on the aim of the application. So, there is a need to know 

the material thermal conductivity. There are many methods available to measure the thermal 

conductivity which vary between steady state and transient. The most popular methods are the 

guarded hot plate method, the hot wire method, the time domain thermo-reflectance 

technique, and the three omega method. However, due to its simplicity and accuracy, the three 

omega method is the method of our choice. It requires the deposition of a metallic line 

conductor on the surface of the material to be tested. Initially, an alternating current at 

frequency ω is passed through the metallic line conductor. The metallic line acts as both a 

resistive heater and a thermometer. Due to Joule’s effect, heat will be generated in the 

metallic line producing temperature oscillations at frequency 2ω. Consequently fluctuations 

in the resistance of the metallic line at frequency 2ω are produced. This leads to a third 



 4 General introduction 

harmonic voltage at frequency 3ω through which we can deduce the thermal conductivity of 

material under test.  

 The thermal conductivity of different polymers such as polyimide, polyaniline, and 

polymethyl methacrylate has been successfully measured by the three omega method. 

Nevertheless, the application of the three omega method on several kinds of polymers is 

difficult due to the inability to deposit metallic line conductors on polymers surface by 

conventional photolithography. In fact, photolithography is not the most suitable process for 

flexible electronics. Multiple and expensive steps are needed to deposit a metallic line 

conductor on surface of material. Moreover, it requires the use of different chemical products 

that might destroy most of polymeric substrates. Also, photolithography is considered to be 

time consuming and material wasting. Therefore, there is a need to find an alternative process, 

friendly on soft materials and capable of lowering time and cost.   

In this work, we demonstrate the possibility of using the three omega method when 

metallic line conductors are prepared by means of an inkjet printing technology. Inkjet 

printing method is a non-contact and maskless approach since it has the ability to deposit the 

metal based ink in one single step on the surface of materials. Using this technology, cost, 

time and material wastage are reduced.   

This dissertation is divided into four chapters. 

In chapter I, we recall the different modes of heat transfer and several thermal material 

properties such as the thermal conductivity, thermal diffusivity and thermal effusivity. Also, 

we present the heat equation and the initial and boundary conditions that have to be set to 

solve such a differential equation. Different steady state and transient methods to measure the 

thermal conductivity of materials are briefly discussed. In a last section, we consider the 

theoretical basis and principles of the three omega method. Cahill’s integral formula is 

presented together with an approximate solution to calculate the thermal conductivity of 

material.      

In a second chapter, we present the three omega method-based experimental setup built in 

the laboratory. Each element constituting the setup is described. Before starting any three 

omega measurements, the sample must be prepared. To that end a metallic line conductor is 

deposited on the surface of substrate to be tested using photolithography. Two common mode 

cancellation techniques, the Wheatstone bridge and the differential amplifier circuits are 

implemented to extract the third harmonic voltage produced across the metallic line. The three 
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omega method-based experimental setup is validated by performing measurements on four 

materials of different thermal conductivities. An experimental-theoretical (Cahill) comparison 

is done. Finally, the measurement precision of the experimental setup is investigated. 

Chapter III is dedicated to the simulation of the three omega method using finite element 

method (FEM). A metallic line-on-substrate structure holding Cahill’s constraints is 

numerically simulated. In this treatment, different steps including boundary conditions, 

meshing, and heat source location are applied. Then, a theoretical study is also performed on a 

two layer model consisting of a film-on-substrate system. The three omega differential 

technique for measuring the thermal conductivity of thin films is implemented. Experimental 

results are then compared to both Cahill’s formalism and FEM numerical simulations.  

In the last chapter, the thermal conductivities of different polymer materials, polyimide 

(PI), polydimethyl siloxane (PDMS) and polyetherether ketone (PEEK), are measured using 

the three omega method. Firstly, PI sample preparation is done using conventional 

photolithography process. PDMS sample is prepared by applying a special procedure where 

the metallic line conductor is embedded onto its surface. An improved model for PDMS 

sample using finite element method is performed. Due to the incompatibility of 

photolithography with this kind of soft materials, we present an alternative to this process 

based on inkjet printing technology. The procedure to apply this technology is described. 

Several metallic lines are then printed on the surfaces of PI and PEEK polymer materials. To 

verify the compatibility of the three omega method with the inkjet printing technology, the 

thermal conductivity measurements are performed on PI and PEEK samples. FEM modelling 

for inkjet printed metallic lines on the surface of polymers are implemented.  
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Introduction 

In the recent years, there has been a growing interest for flexible materials as electronic 

substrates to be used in flexible electronics. One of the important parameters to be known for 

this kind of materials is their thermal conductivity to ascertain their usefulness for specific 

applications. A low thermal conductivity renders difficult the penetration of heat into the 

material. Conversely, a material with high thermal conductivity conducts heat more easily. 

Different methods, altering between steady state and transient, exist for measuring thermal 

conductivity. Generally, transient methods are considered to be faster than steady state ones 

and are more appropriate for specimens of small thickness. Among the transient methods we 

find the 3 omega technique which was originally developed by Cahill [CAH 1990]. This 

method has several advantages over other transient methods that will be explained in this 

chapter. Given these benefits, we have chosen the three omega method to determine the 

thermal conductivity of the materials of interest in this study. 

In section I of the chapter, the different heat transfer modes are presented. Several physical 

properties of materials that will appear throughout the chapter are defined. Then, Fourier’s 

heat conduction equation is given together with the resolution methods and boundary 

conditions used to solve this equation.  

Section II is dedicated to the presentation of the various steady state and transient methods 

for measuring the thermal conductivity of materials. The advantages and drawbacks of these 

methods are examined. 

The last section considers the theoretical basis of the three omega method. It discusses the 

principles of this method and shows the derivation of Cahill’s integral formula of the steady 

state temperature oscillations. Then, we demonstrate how the thermal conductivity of the 

material under test is retrieved from an approximate solution of the integral formula. At the 

end of this section, as an example, Cahill’s formula is applied to two kinds of materials, 

kapton which is a thermal insulator and silicon which is a good thermal conductor.   
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I. Basic concepts 

I.1. Introduction 

The transfer of heat between two physical systems occurs through three different 

mechanisms: conduction, convection and radiation. Each of these mechanisms takes place 

according to the type of systems exchanging heat. Heat is transferred by conduction according 

to Fourier’s law of conduction.  Moreover, the degree of the ability of heat to be conducted 

through a system is determined by its physical properties such as the thermal conductivity, 

thermal diffusivity and thermal effusivity. The rate of heat conducted in a system is 

determined by the resolution of Fourier’s equation. This latter can be solved using finite 

element methods (FEM) or finite difference methods (FDM). The different modes of heat 

transfer are described thereafter. 

I.2. Heat transfer 

Heat transfer is the transport of thermal energy from one system to another under the 

influence of a temperature gradient. In general, heat transfer occurs in three different ways: by 

conduction when heat is exchanged between two solid systems due to the movement of their 

elementary particles, by convection when a fluid medium is responsible of carrying heat from 

one region to another, and finally by radiation when heat is transmitted in the form of 

electromagnetic waves.  

I.2.a. Heat Conduction 

Conduction is defined as the transfer of heat in a solid from a high temperature medium to 

a low temperature medium due to the existence of a temperature gradient in the solid body. 

dt
dQ

L

A

T1T2

T1>T2

 

Figure 1.1: Heat conducted through a material of thickness L. 
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Molecules near the hot medium are heated and start to vibrate at high speed. They bounce 

off the neighboring molecules causing them to vibrate faster. Thus, heat is transferred from 

more to less energetic molecules due to the presence of an energetic gradient.  

Actually, heat is transferred by both lattice vibration waves (phonons) and free electrons. 

Phonons transport thermal energy from high temperature to low temperature mediums. 

Moreover, free electrons in high temperature mediums possess kinetic energy. During their 

migration to colder regions collisions occur with phonons or imperfections present in the 

material causing some of the free electron’s kinetic energy to be transferred to colder atoms as 

vibrational energy and consequently generating heat.  

Thermal conduction is properly described by Fourier’s law of conduction. It states that the 

amount of heat conducted per unit time in a certain direction of a homogeneous solid material 

is equal to the product of the conducting area perpendicular to the heat flow path, the 

temperature gradient along this path, and the thermal conductivity of the solid material. This 

is expressed as in the following equation [JIJ 2009]: 

                                                        
dx
dTkA

dt
dQqW                                                        (1.1) 

where qW is the rate of heat transferred in W. 

           Q is the heat or thermal energy in J. 

           k is the thermal conductivity of solid material in W/m.K. 

          A is the surface area of material perpendicular to flow of heat in m2.  

          dT/dx is the temperature gradient through the conducting material. 

The negative sign in equation 1.1 indicates the flow of heat from hot to cold regions. Fourier’s 

heat equation is applicable when the heat flux (in W/m2) is constant with time. 

I.2.b. Heat Convection 

Convection is defined as the heat transfer in fluids (liquids or a gas) by the circulation of 

heat currents from one region to another. This heat transfer can be due to either natural or 

forced convection. In natural convection, the current circulation is due to existence of a 

temperature gradient that affects the density of fluid. To better understand convection, let us 

take an example of a hot object subjected to cold air. Initially, heat is transferred at the 

boundary between the object and the fluid. Therefore, the temperature of the hot object will 

drop and the air adjacent to its surface becomes warmer. The temperature of air adjacent to 

the hot object is higher than the upper layers of cold air, therefore it possesses lower density. 
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This causes the heated air to rise where then it will be replaced by cold air. In case of forced 

convection, the fluid is forced across the object’s surface through pumps or fans.  An increase 

in the rate of heat exchange results when using forced convection. 

Convection can be neglected in the following cases: 

 When the temperature gradient between the object and the surrounding fluid is 

negligible. 

 When the surface area of the object in contact with the fluid is very small.  

Heat transfer by convection can be described by Newton’s law of cooling. For a constant heat 

transfer coefficient, Newton’s law states that the heat lost by an object due to convection is 

proportional to the gradient of temperature between the object and its surrounding medium 

[JIJ 2009]. 

                                                            )( 0TThAqW                                                          (1.2) 

where qW is the rate of heat transfer in W. 

           h is the convective heat transfer coefficient in W/m2.K. 

          A is the exposed surface area in m2.  

         T is the temperature of the object at the surface. 

         T0 is the temperature of surrounding fluid. 

In the absence of convection, the convective heat transfer coefficient h is equal to zero.  

I.2.c. Radiation 

Radiation is defined as the transfer of heat by means of electromagnetic waves.  Unlike 

conduction and convection, it does not require any movement or interaction of materials. 

Moreover, radiation can occur in vacuum (i.e. in the absence of a physical medium). 

Normally, energy is radiated by all objects possessing temperatures greater than absolute zero 

in different directions where then this energy travels at the speed of light to the point of 

absorption. An example of thermal radiation is the sun’s energy travelling through the 

vacuum existing between the space and the earth’s atmosphere [SIE 2002].  A good absorber 

of incident energy is defined as a body of low surface reflectivity with a high capability of 

absorption in order to prevent the radiations from travelling through. A perfect absorber is 

known as a blackbody.  
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The total energy radiated by a body per unit of time at a temperature T is given by Stefan-

Boltzmann’s law as follows [JIJ 2009]: 

                                                    4TAqW                                                              (1.3) 

where qW is the rate of heat transfer in W. 

          A is the surface area of the body in m2.  

          ε is the surface emissivity (unitless). 

         σ is the Stefan-Boltzmann constant and is equal to 5.6704*10-8 J/s.m2.K4. 

In the case of a blackbody, the emissivity ε=1.  

I.3. Parameters definition 

In this section, different thermal material properties such as thermal conductivity, thermal 

diffusivity, and thermal effusivity are defined.  

I.3.a. Thermal conductivity 

The thermal conductivity can be defined as the quantity of heat per unit of time that would 

flow through a one square meter of a material where a temperature gradient exists in the 

direction of heat flow. All in all, it is a physical property that describes the facility or 

difficulty of transfer of heat energy through the material by conduction. It is given as the 

coefficient (k) in Fourier’s law of conduction (equation 1.1). Materials of high thermal 

conductivities are frequently used as heat sinks, while those having a low thermal 

conductivity are used as thermal insulators.  

 The thermal conductivity (k) is controlled by the combination of the contributions of 

phonons and free electrons. Therefore: 

                                                            pe kkk                                                       (1.4) 

where ke is the free electron thermal conductivity and kp is the phonon thermal conductivity. 

In metals, the number of free electrons is significant. In addition, free electrons are not as 

easily scattered as phonons and they possess higher velocities. Thus, their contribution to heat 

transport process predominates in metals. For this reason, metals are known to be extremely 

good conductors of heat. Introduction of impurities in metals renders the free electrons less 

efficient due to the existence of scattering centers and consequently causes a reduction in the 

thermal conductivity. On the other hand, the number of free electrons in ceramics or non-
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metals is unimportant and in that case the phonons are responsible of heat conduction. 

Therefore, in ceramics, the phonon thermal conductivity kp is higher than the free electron 

thermal conductivity ke. In ceramics, the phonons are more scattered due to the lattice 

imperfections which result in a less efficient transport of thermal energy. Finally, in polymers 

the thermal conductivity is no more controlled by phonons and free electrons. It is the 

molecules chains that undergo vibrations and torsional rotations resulting in thermal energy 

transfer. Nevertheless, the large size of such chains leads to low mobility. So, polymers have 

low thermal conductivities and are often used as thermal insulators [CAM 2008, MES 2011].  

The thermal conductivity values of metals, ceramics, and polymers are given as follows: 

 Metals: 20 to 400 W/m.K. 

 Ceramics: 2 to 50 W/m.K. 

 Polymers: < 1 W/m.K. 

I.3.b. Thermal diffusivity 

The thermal diffusivity is the speed of propagation of energy in a material as its 

temperature changes. It can be calculated by dividing the material thermal conductivity by its 

specific heat capacity times its density.  

                                                                 
pc

k


                                                              (1.5) 

where α is the thermal diffusivity in m2/s.  

          k is the thermal conductivity in W/m.K. 

           ρ is the density in Kg/m3. 

         cp is the specific heat capacity in J/Kg.K. 

Less time is needed for the heat to penetrate and flow inside a material having a high thermal 

diffusivity [FRA 1993].  

  I.3.c. Thermal effusivity 

 The thermal effusivity e also known as the “thermal admittance” or “contact coefficient” 

is defined as the square root of the product of the thermal conductivity of material by its 

volumetric heat capacity” [MAR 2007]. 
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

 kcke p                                                (1.6) 

where e is the thermal effusivity in J/m2.K.s0.5. 

            k is the thermal conductivity in W/m.K. 

           α is the thermal diffusivity in m2/s. 

Diffusivity is the rate at which a material can absorb heat. Through this parameter the contact 

temperature of two bodies at different temperatures in contact with each other can be 

calculated [MOA 2011].  

I.4. Fourier’s equation 

The rate of heat qW conducted through a medium in a certain direction is given by Fourier’s 

law of conduction (1D) according to equation 1.1. 

z

x

Az
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R

An isothermal surface

qWz

qWx

qWy

qWn

y

Ay

 

Figure 1.2: The normal heat flux at the surface of a medium. 

Let us consider a point R on an isothermal surface with unit normal vector n in a medium 

as shown in figure 1.2. Consequently, according to Fourier’s law, the rate of heat conduction 

at point R is [LEW 1996]: 

                                                               
dn
dTkAq nW                                                         (1.7) 

Consequently, the heat flux at point R, defined as the rate of heat transfer per unit area, is 

given by the following equation [LIE 2008]: 

                                                            
dn
dTk

A
q nW                                                          (1.8) 
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The heat flux qWn /A is expressed in W/m2. It is orthogonal to the surface at point R in the 

decreasing temperature direction.  

Fourier’s law of heat conduction can be expressed in rectangular coordinates as in equation 

1.9 where the temperature distribution in the medium is three dimensional.  

                                                 


 wqvquqq zWyWxWnW                                                (1.9) 

where 

u ,


v , and 


w are the unit vectors and qWx, qWy, and qWz are the magnitudes of the heat 

transfer rates in the x, y, and z directions respectively:  

                            
dx
dTkAq xxW  , 

dy
dTkAq yyW  , and 

dz
dTkAq zzW                          (1.10)   

where Ax, Ay, and Az are the surface areas perpendicular to the x, y, and z planes respectively.    

From Fourier’s law of heat conduction, a partial differential equation of the second order 

that defines the distribution of temperature with respect to time can be derived. This equation 

is known as the heat equation. In Cartesian coordinates, the heat equation is given by: 
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                                (1.11) 

where egen is the rate of heat generation inside the medium per unit volume in W/m3. 

In cylindrical coordinates, the heat equation is written as follows: 
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I.4.a. Boundary conditions and initial conditions 

In order to solve the heat equation, boundary conditions which specify the value of 

temperature with respect to position and time on the boundaries of the medium are required. 

In addition, initial condition is needed at time t=0. For example, at x=x0 the boundary 

conditions can be chosen to be among the following possibilities: 

 The first boundary condition known as Dirichlet condition assumes a constant 

temperature at the surface of the medium: 

                                                         T(x0,t)=T0(t)                                                    (1.13) 
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 Second, the heat flux at the boundary of the medium is set to be constant. This is 

known as Neumann boundary condition: 

                                                     )(),( 00 tqtxq WW                                                (1.14) 

 The third is a convective boundary condition: 

                                          )),((),( 00 eqW TtxThAtxq                                          (1.15) 

            where Teq is the equivalent temperature of the surrounding medium far away from the     

surface as explained in section I.2.b. (equation 1.2). 

 Another condition is the interface boundary condition. It requires the heat flux to be 

continuous at the interface from one medium to another and the temperature at the 

area of contact between two mediums to be equal. This is illustrated in figure 1.3. 

This means that for two mediums 1 and 2 of temperatures T1 and T2 respectively, in 

contact with each other at x=x0: 

                                                                T1(x0,t)=T2(x0,t)                                                   (1.16) 

                                qW1(x0,t)=qW2(x0,t)→ dx
txdTk

dx
txdTk ),(),( 02

2
01

1                            (1.17) 

where k1 and k2 are the thermal conductivities of mediums 1 and 2 respectively. 

Medium 1 Medium 2

T1(x,t) T2(x,t)

x0

T1(x0,t)=T2(x0,t)

conduction

 

Figure 1.3: Temperature and flux continuity at the interface between two mediums. 

 The last boundary condition is symmetry. This condition is applied when the thermal 

pattern in a medium is symmetrical around a central plane.  
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Figure 1.4: Symmetrical temperature distribution around the central plane of material.  

 
      At the point P belonging to the central plane, where x=x0, the temperature can be 

maximum or minimum. Consequently, the slope at P is zero. Therefore, 

                                                        0),( 0 
dx

txdT                                                  (1.18) 

Actually, the differential equation specifies, given the initial conditions, how a system will 

evolve with time. Generally, the initial condition has the form T(x,0)=T0(x) for all values of x 

belonging to the medium.  

All in all, the heat equation can be solved uniquely when provided with the boundary and 

initial conditions [BRO 2002, HAN 2012].   

I.4.b. Resolution methods 

Several resolution methods exist for solving the partial differential heat equation among 

which are the finite element method (FEM) and finite difference method (FDM). 

The finite element method has rapidly grown as a numerical analysis technique to solve 

and simulate problems in different fields of engineering concerned with partial differential 

equations that define different physical processes. It is based on accurately presenting a 

complex geometry and defining the boundary conditions, initial conditions and the physical 

properties of materials. It can be applied for two or three dimensional problems. FEM 

subdivides the original geometric structure into a large number of very small shapes (triangles 

in case of 2D dimensional problems and tetrahedrons in case of 3D dimensional problems) 

known as finite elements. This process is identified as finite element discretization. Thus, a 
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complex problem is divided into smaller problems that are solved separately [RAO 2005]. 

Before the introduction of FEM, engineers have used the FDM to solve the differential 

equations. The difference between the two methods is that the FDM requires small cubes 

when subdividing a structure. Moreover, FDM can only handle rectangular shape structures 

whereas, FEM has the ability to handle complicated geometries.   

I.5. Conclusion 

In this section we have summarized some basic concepts starting with the different modes 

of heat transfer, then defining some of the physical parameters of a material and ending with 

the resolution of Fourier’s heat conduction equation. Among these parameters is the thermal 

conductivity that describes the ability of heat to be transferred through a material. Different 

methods to measure the thermal conductivity are available, in this work we are interested in 

the three omega method for which only the heat transfer through conduction is taken into 

account. As initial approximation, the other two modes, convection and radiation, are 

considered to be negligible. The material structure can be numerically simulated using finite 

element methods thanks to software like Comsol multiphysics and Matlab. Initial and 

boundary conditions are applied in order to solve the equation of heat conduction. 

Before presenting the three omega method, we briefly describe several methods used to 

measure materials thermal conductivity.  

II. Methods used for measuring the thermal conductivity of materials 

II.1. Introduction 

Methods for determining the thermal conductivity of materials can be divided into two 

categories: steady state and transient methods. Actually, transient methods have some 

advantages over the steady state methods. They are faster and considered to be simpler in 

design.  In this section different steady state and transient methods for measuring the thermal 

conductivity are presented. 

II.2.  Steady state methods 

Steady state methods are based on the steady state heat flow equation (Fourier’s law of 

heat conduction equation 1.1) [SAL 2001]. In such measurements, heat is passed through the 

material of surface area A normal to the heat flow direction as shown in figure 1.1. Then, 

temperature is measured at different points using thermocouples. Knowing the distance 

between thermocouples, the thermal conductivity can be determined. For steady state 
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methods, the measurements are taken after reaching thermal equilibrium, so a long time is 

needed. Also, they are used to measure thermal conductivities of low to average values of 

large size specimens [JAN 2010, SAL 2001]. The most common steady state techniques are 

the guarded hot plate and radial heat flow methods. 

II.2.a.   Guarded hot plate method (GHP) 

The guarded hot plate method (GHP) method is designed to measure thermal 

conductivities of slab or plate sample forms [DET 1989].  

InsulationInsulation

Sample

Sample

Guard Heater 

Main heater

Cold Water 
In

Cold Water 
Out

Cold Water 
In

Cold Water 
Out  

Figure 1.5: The guarded hot plate experimental setup. 

Two identical samples, made of the same material and having the same dimensions, are 

placed between the main heater and a cooling plate as presented in figure 1.5. 

In the case of heat conduction, heat flows from a medium of high temperature to a medium 

of lower one; so heat flows from the main heater through the sample to the cooling plate. In 

order to ensure a unidirectional uniform heat transfer in a direction perpendicular to the 

sample’s surface area, two guard heaters are placed at the lateral edges of the main heater 

[SOM 1951]. This minimizes heat losses from the lateral edges of the main heater. Also, 

insulation is set at the samples lateral edges, which almost plays the same role as the guard 

heaters.  A certain number of thermocouples are placed on the sample sides, the main heater 

side and the cooling plate side. When temperature distribution through the sample keeps the 

same with time, this means that steady state is established. At this moment, the temperature 

gradient can be estimated.  Subsequently, the thermal conductivity is determined according to 

equation 1.1. 
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II.2.b.   Radial heat flow method 

Unlike the GHP method, the radial heat flow method considers heat transfer in radial 

direction. In such a method, measurements are done over hollow cylindrical shaped samples. 

A heated wire or cylinder is embedded in the center of the sample. Thermocouples are placed 

at two different distances from the central heater at the mid-section of the sample. An electric 

current is applied to the central heater where heat is generated radially outwards. This 

produces a temperature difference at the thermocouples placed throughout the sample. When 

thermal equilibrium is reached, the thermocouples’ temperatures are recorded and the thermal 

conductivity of the sample can be determined according to equation 1.19.  

Normally, temperature measurements are done at the mid-section of the sample where a 

uniform heat flux is radially generated. Heat losses in the upwards and downwards directions 

might occur causing a change in the temperatures of the thermocouples. Therefore, to provide 

accuracy, it is better for the length of the sample to be large compared to its radius. In this 

way a uniform radial heat flow at the mid-section of the sample is ensured [FLY 1963, IYE 

2009].  

                                                  
dr
dTrLk

dx
dTkAqW )2(                                              (1.19) 

where L is the length of the hollow cylindrical shaped sample and A=2πrL is the surface area 

of the cylinder.    

Thermocouples

Sample

Insulation

Central 
Heater

r0

ri

Top view

L

 
Figure 1.6: The radial heat flow method 
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Ti and To are the temperatures measured at different radii ri and ro as shown in figure 1.6. 

The radial heat flow method is one of the simplest methods to measure thermal 

conductivities. However, it is limited to samples with cylindrical shapes only. As large size 

samples are required, it is costly and might produce longer time to reach thermal equilibrium. 

II.3. Transient methods 

As presented above, the steady state techniques require samples of large size and specific 

form. Transient methods were then introduced to allow smaller sample sizes to be tested. 

Also, such methods are known to be rapid and able to directly measure different materials 

thermal properties like thermal diffusivity and heat capacity. In addition, they are considered 

to be simple methods through their concept and design [TYE 2005]. Transient methods 

became more popular than steady state ones since the equilibration times are reduced to few 

minutes or seconds [MAT 2000]. Several transient methods are briefly discussed below. 

II.3.a. Transient hot wire method 

Basically, the transient hot wire method is a transient radial flow technique used to 

measure the thermal conductivity of different materials and especially refractories such as 

insulating bricks and powders or fibrous materials [DOS 2003, SAI 2009, MER 2012]. It 

consists of a linear heat source (metallic hot wire) embedded in the material under test. When 

passing an electrical current through the wire, the wire temperature begins to increase rapidly 

with respect to time and heat will be transferred to the surrounding material. Then a moment 

is reached where the rate of temperature rise in the wire becomes constant. Heat is entirely 

stored in the material and then some heat losses occur at the outer boundary of the material 

causing a cease in temperature rise. The thermal conductivity can be deduced by plotting 

temperature versus time (from the linear portion of this curve). The equation of temperature 

rise is derived from the non-stationary heat diffusion Fourier equation in cylindrical 

coordinates (equation 1.12) where the metallic hot wire is considered to be infinitely long, 

surrounded by an isotropic medium of a constant initial temperature [CAR 1959]. Heating the 

metallic wire with a constant heat flux qW per unit length of the metallic wire and neglecting 
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heat losses by convection and radiation, the temperature rise at a radial distance r is given by 

[VOZ 1996]: 

                                                 )4ln(
4

),( 2Cr
t

k
qtrT W 


                                            (1.21) 

where C=exp(γ), γ=0.5772 is Euler’s constant, k is the thermal conductivity of the material 

and α is the thermal diffusivity of material.  

A Sample

Hot wire

Thermocouple

r

 
Figure 1.7: Hot wire embedded in the sample at a distance r from the thermocouple. 

According to equation 1.21, plotting the temperature T(t) with respect to the natural logarithm 

of measurement time ln(t) results in a slope s=qW/4πk. Consequently, the thermal conductivity 

can be calculated as follows: 

                                                                 
s

qk W

4
                                                               (1.22) 

The sample preparation for measuring the thermal conductivity of solids using the transient 

hot wire method is considered to be somehow difficult. It consists of two cuboids or half 

cylinders of the same material where the heat source is sandwiched between them. The size of 

the samples is considered to be large [SAI 2009]. For example, in the case of soil and granular 

materials, the measurement is done by filling long cylindrical tubes or cells [MER 2012] 

[ALV 2012] where the hot wire is implanted inside.  

II.3.b. Time domain thermo-reflectance technique 

Another transient method used to measure the thermal conductivity of materials is the time 

domain thermo-reflectance (TDTR). A schematic of TDTR experimental setup is shown in 

figure 1.8.  
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Basically in this technique the sample is heated through a probe (pump beam) that 

generates ultra-short laser pulses [KOM 2004]. Another time delayed probe beam is used to 

monitor the changes in the surface reflectivity of the heated sample. Actually, the surface of 

the sample is covered with a thin layer of metal which permits the incident energy to transmit 

through the sample as heat flux. For most metals, the changes in surface temperature can be 

deduced from the change in its surface reflectivity [SMI 2000]. The change in the reflectivity 

of the probe beam is recorded by a photodiode and a lock-in-amplifier. The thermo physical 

properties of the sample such as the thermal conductivity can then be deduced from the 

temporal temperature data related to the detected reflectivity [HOP 2010].  

 

Figure 1.8: Time domain thermo-reflectance experimental setup [PER 2011] 

The TDTR method offers picosecond time resolution which can produce nanometric thermal 

penetration depths. Consequently, thin film samples measurements can be directly performed 

using such technique [CAH 2003]. Nevertheless, the laser probes and the optical equipment 

used to build the TDTR experimental setup are expensive rendering TDTR a relatively costly 

technique.  

II.3.c. The three omega method 

The three omega method was originally developed by Cahill [CAH 1990]. At first, this 

method was applied on different amorphous solids (glass) of low thermal conductivity [CAH 

1987]. Then it was used to measure the thermal conductivity of thin films of hundred nano 

meters to several micrometers thickness with low thermal conductivities, deposited on 

substrates possessing a high thermal conductivity compared to those of the thin films [CAH 
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1994].  Recently, Shen et al, have succeeded in measuring thermal conductivity of amorphous 

multilayer films using the three omega method [SHE 2013].  

The three omega method is an AC technique and it is somehow similar to the hot wire 

method. Both techniques use a metallic element that heats the material to be tested and serves 

as a sensor too. However, in the case of three omega technique this metallic element of micro-

meter thickness is deposited on the surface of the material. Measurements using the transient 

hot wire method are done in the time domain, while those using the three omega method are 

performed in the frequency domain by introducing a lock-in-amplifier during manipulation 

[CAH 1987].   

II.4. Conclusion 

Different steady state and transient methods used for the measurement of the thermal 

conductivity of materials have been described. The guarded hot plate and the radial heat flow 

methods are steady state methods which require long measuring time and large sample size. In 

case of transient methods, the time needed for measurements is reduced to few minutes. 

Despite this advantage, the transient hot wire method has some drawbacks. The sample 

preparation in case of solids is considered to be difficult. Also, the fragility of the long thin 

wire is another problem when the method is applied on solids and fluids [WAK 2000]. The 

time domain thermo-reflectance and the three omega methods are both transient methods that 

can measure the thermal conductivities of thin films in the order of several nanometers to 

several micrometers. However, for the thermo-reflectance method, the equipment used to 

build up the experimental setup is expensive rendering this method a relatively costly one. It 

is for this reason that our choice fell on the three omega method for measuring the thermal 

conductivity of materials. One can mention that there exist other techniques capable of 

mapping thermal conductivity images on the surface of materials [GUO 2006, GRO 2007]. 

III. Theoretical considerations of the three omega method 

III.1. Introduction 

As it has been said before in the case of three omega technique, a metallic element of 

micro-meter thickness is deposited on the surface of the material to be tested. The metallic 

line has two contact pads whose dimensions are: a width 2b and a length l (figure 1.9).  
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Figure 1.9: Metallic line with two contact pads deposited on surface of material of thickness ts.   

When passing an AC current at an angular frequency  through it, heat will be generated 

due to Joule’s effect producing temperature oscillations at an angular frequency of 2. 

Consequently fluctuations in the resistance of the metallic line are produced. This leads to a 

third harmonic voltage V3 through which we can deduce the temperature oscillation 

amplitude. A plot of temperature oscillation amplitude versus excitation frequency is analyzed 

to calculate the thermal conductivity of the material. 

III.2. The three omega method theoretical basis 

The resistance of the metallic line on the surface of the material under test is given by 

equation 1.23: 

                                                             R  
l
A

                                                                  (1.23) 

where R is the resistance in ohms, l is the length of the metallic line in meters, A is the cross-

sectional area in m2, and  is the static resistivity in .m supposed to be constant along the 

length l. 

For the three omega measurements, the metallic lines are made of a pure metal whose 

resistance varies with temperature changes as shown in equation 1.24: 

                                                        )1(0 TRR h                                                          (1.24) 

where R0 is the resistance (in Ω) of the metallic line at room temperature (T0) and h is the 

temperature coefficient of resistance of the metallic line in K-1. Normally, the metal of our 

heating element has a high temperature coefficient of resistance. 

According to Joule’s first law, the passage of a current through a conductor will result in 

dissipation of heat which is proportional to the square of this current multiplied by the 
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conductor’s resistance. Consequently, at temperature T0 the power dissipated by the metallic 

line is given by: 

                                                      )()( 2
0 tIRtP                                                                 (1.25) 

If we consider an AC current I(t) of angular frequency  passing through the metallic line,  

                                                      I(t)  I0 cos(t)                                                              (1.26) 

then,               ACDC PPtIRIRtIRtP  )2cos(
2
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1)(cos)( 2

00
2
00

22
00                      (1.27) 

We can notice that the dissipated power consists of a time independent component PDC and an 

oscillating component PAC. Actually, PDC can be denoted by the rms (root mean square) power 

dissipated by the metallic line: 

                                              DCrmsrms PIRIRP  2
00

2
0 2

1                                               (1.28) 

As the metallic line is heated the temperature oscillations produced at frequency 2ω are given 

in equation 1.29: 

                                 )2cos(   tTTTTT ACDCACDC                              (1.29) 

where ∆T is the rise in global temperature with respect to the initial temperature T0, TDC is 

the steady state temperature increase due to time independent component of power PDC, TAC 

is the steady state temperature oscillations due to the oscillating component of power PAC(t), 

and   is the phase angle between the oscillating power PAC of frequency 2ω and the 

temperature oscillations. 

Substituting equation (1.29) in equation (1.24), the resistance of the metallic line due to 

temperature increase is: 

                                    ))2cos(1()( 0   tTTRtR AChDCh                               (1.30) 

The voltage drop across the metal line is obtained by multiplying the metal line current by its 

resistance i.e. multiplying equations (1.26) and (1.30): 
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Examining equation 1.31, it represents the sum of three terms. Generally, the value of the 

temperature coefficient of resistance βh is very small. Therefore, the first term is considered to 

be much larger than the other two terms. ∆TAC does not appear in the first term rendering it 
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useless in determining the AC temperature oscillations. Next, the first two terms possess the 

same angular frequency ω. As the amplitude of the second term is considered to be very small 

compared to that of the first term it is difficult to extract ∆TAC and ϕ from the second term. 

Consequently, only the third harmonic component can lead us to the values of ∆TAC and ϕ as 

demonstrated in equation (1.32). 

                                                         )3cos(
2
1

03   ACh TVV                                                (1.32) 

                                            ACh TVV   03 2
1  and  )( 3VArg                                  (1.33) 

where V0=R0I0 is the peak amplitude metallic line voltage at angular frequency  measured at 

room temperature.  

Each of the third harmonic voltage V3ω and the temperature oscillation ∆TAC is composed 

of an in-phase (real) component and an out of phase (imaginary) one. 

                                              phaseoutphasein iVVV    333                                                 (1.34) 

 So,                                     phaseoutACphaseinACAC TiTT                                             (1.35) 

where )cos(ACphaseinAC TT    

          )sin(ACphaseoutAC TT    

Experimentally, the first term in equation 1.31 will be cancelled by common mode 

cancellation techniques as will be explained later. The very small third harmonic voltage will 

then be detected by a special instrument called the lock-in-amplifier.  

Cahill has found a solution for the temperature oscillations by considering a radial flow of 

heat from a line source of heat on the surface of a half volume semi-infinite cylinder [CAH 

1990]. He initiated his work by the use of the heat conduction equation in cylindrical 

coordinates given by Carslaw and Jaeger [CAR 1959]. In the following section, we present 

the complete solution starting from the heat conduction equation till finding the temperature 

oscillation exact equation through which the thermal conductivity of the specimen can be 

determined. The heat source is first considered as a narrow line heater inside an infinite 

cylinder. The infinite cylinder is cut longitudinally to half to produce a heat source on the 

surface of a semi-infinite specimen. The solution is further developed for a finite heat source 

of width 2b.  
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III.3. Cahill’s formula 

Starting with Carslaw and Jaeger equation of heat conduction of an infinite heat source 

inside an infinite cylinder and considering the constraints given by Cahill, we can derive 

Cahill’s formula for AC temperature oscillations.  This cylinder is then cut longitudinally into 

half to study the effect of a linear source of heat at the surface of a semi-infinite material 

(figure 1.10). This produces temperature oscillations having the form of zero order modified 

Bessel function of the second kind as shown in equation 1.35. This equation is derived in 

appendix A. 

 

 

Figure 1.10: A cross section of a semi-infinite cylindrical sample.  
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where q is the wave number (equation A11). 
           prms is the root mean square power applied in W/m. 

           k is the thermal conductivity of the material in W/m.K. 
           K0 is a zero order modified Bessel function of the second kind.  

              and  are the real and imaginary parts of K0 respectively. 

The thermal penetration depth is a measure of how deep the thermal waves penetrate inside 

the specimen. It is defined as [CAH 1990]: 
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                                               (1.37)                                                       

The thermal penetration depth is expressed in meters.        
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III.3.a. Heater of finite width 

Equation 1.36 is derived for a one dimensional line heater on the surface of the specimen. 

For a heater with a finite width 2b, we have to consider an infinite number of one-dimensional 

lines over the width of the heater. 

b
y

x

M(x,y)
r

 

Figure 1.11: The finite width line heater on the surface of the semi-infinite sample. 

Mathematically this is done by taking a Fourier transform of equation 1.36 with respect to x-

coordinate. Only the oscillations at the surface are important, so y = 0. Consequently,  

                                                          xyxr  22                                                        (1.38) 
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In equations 1.39 and 1.40, η is defined as the wave number. Bessel function of an odd integer 

order is considered an odd function while a Bessel function of an even integer order is an even 

function. Thus, equations 1.39 and 1.40 are reduced to the cosine Fourier transform since the 

temperature field is an even function: 
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Then the temperature oscillations in Fourier space η will be [ERD 1954]:  

                                            TAC () 
prms

2k
1

2  q2









                                                     (1.43)   



 32 Chapter I: The three omega method: Theoretical considerations 

The heat is assumed to enter the specimen uniformly across the finite line width 2b. This 

behavior can be expressed as a rectangular function with values 1for x<b and 0 elsewhere. 

Then the Fourier transform of the heat source of finite width 2b is given by: 

                                         rect(x)cos(x)dx 
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b

                                                  (1.44) 

In order to include the finite width of the heater, equation 1.44 is multiplied by equation 1.43 

giving: 
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 Performing the inverse Fourier transform of equation 1.43 by applying equation 1.42 we can 

find the steady state temperature difference in real space: 
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Equation 1.46 is then integrated over the line width 2b and averaged by dividing by 2b: 
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Finally, by solving equation 1.47 we can obtain the magnitude of the temperature oscillations 

of a finite width line on the surface of the specimen [CAH 1990]. 
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III.4. Solution of the exact equation 

The integral in equation 1.48 is solved using an adaptive Simpson quadrature algorithm in 

MATLAB. The integration was carried out for  varying between 10-10 and 1010. The integral 

was solved assuming the rms power prms= 1W/m, the metallic line half width b= 10m, the 

specimen’s thermal conductivity k= 1W/m.K, and the thermal diffusivity = 1mm2/s. These 

parameter values are in the same order as those measured when performing manipulations.  
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Figure 1.12 exhibits a linear regime at low frequencies and a planar regime at high 

frequencies. Between these two extremes there is a transition regime. 

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

1.E-03 1.E-01 1.E+01 1.E+03 1.E+05 1.E+07

dtacx

dtacy

∆TACin-phase

∆TACout-phase

2ω

Te
m

pe
ra

tu
re

 o
sc

ill
at

io
ns

 ∆
T A

C
(°

C
)

Linear regime Transition 
regime

Planar 
regime

 

Figure 1.12: The in-phase and out of phase components of the temperature oscillations versus the thermal 

excitation frequency 2 . 

III.4.a. Finding the approximate equation for linear regime 

As presented in figure 1.12, the linear regime is that part where the in-phase temperature 

oscillations decay linearly with respect to the thermal excitation frequency 2ω and where the 

out of phase temperature oscillations component is negative and constant. This regime is 

defined for low frequencies when the thermal penetration depth is high compared to the half 

width of the metallic line,  >>b.  

For very small values of b,                     lim
b0

sin(b)
(b)

1                                                     (1.49) 

So, equation 1.48 is dominated by wavenumber η varying between 1/ and 1/b. Substituting 

equation 1.49 in equation 1.48 and integrating with an upper bound equals to 1/b, we obtain: 

                               



b

rmsrms
AC qb

k
pd

qk
pT

/1

0
22

))(ln(1)2( 





                            (1.50) 

where  is a fitting constant equal to 0.923 [LEE 1997, MOO 1996]. 

Substituting  

2iq   in the equation 1.50 gives a relation between the temperature 

oscillation magnitude and the excitation frequency 2: 
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                                      TAC  
prms

2k
(ln(

b2


)  ln(2)  2 )  i prms

4k
                                  (1.51) 

Equation 1.51 is plotted for prms= 1W/m, metallic line half width b=10 µm, thermal 

conductivity k=1 W/m.K, and thermal diffusivity α=1 mm2/s (Figure 1.13). 
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Figure 1.13: Temperature oscillations with respect to the natural logarithm of the thermal excitation 
frequency 2ω for linear regime. 

This figure (obtained from equation 1.51) proves that for the linear regime, the in-phase 

component decays logarithmically with respect to 2ω. However, over the same frequency 

range, the out-of-phase temperature oscillations keep the same magnitude.  

Substituting equation 1.51 in equation 1.32 yields the third harmonic voltage V3: 

                                V3  
V0

3h

4lkR0

(ln(2)  ln(
b2


) 2)  i

V0
3h

8lkR0

                                 (1.52) 

Finding the slope (Figure 1.13) of the linear relation between the in-phase harmonic voltage 

and the natural logarithm of the thermal excitation frequency 2ω, we can calculate the thermal 

conductivity as follows:     

                                                        
slopelR

V
k h 1*

4 0

3
0




                                                     (1.53) 

The thermal conductivity can also be calculated using the out of phase component of the third 

harmonic voltage. Nevertheless, Cahill has found that computing the value of k using the 

slope of the in-phase component is more reliable [CAH 1990].  
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III.4.b. Finding the approximate equation for the planar regime 

For in-phase and out-of-phase temperature oscillations equal in magnitude but opposite in 

signs, we can define a planar regime at higher frequencies where the thermal penetration 

depth is considered to be lower than the metallic line half width ( << b). So we can write 

[MOO 1996]: 

                                                )(
)sin(
)sin(1lim

2

















b
bb

                                                  (1.54) 

Substituting equation 1.54 in equation 1.47 we obtain: 

                                   
bkq
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Given that
2

1 ii 
 , equation 1.55 can be written as: 

                                                 )
4

exp(
22

)2( 




 i
bk

pT rms
AC                                         (1.56) 

We can notice a –π/4 phase shift which indicates a phase delay between the temperature 

oscillations and power PAC. Also, equation 1.56 shows that the real and imaginary parts of 

temperature oscillations have the same magnitude while their signs are opposite. 

Substituting equation 1.56 in equation 1.32 yields: 

                                                  )1(
224 0

3
0

3 i
bklR

VV h 





                                             (1.57) 

The approximate solutions are compared with the exact solution by plotting equations 1.48, 

1.51 and 1.56 (Figure 1.14). The rms power, the metal line half width, the thermal 

conductivity and the thermal diffusivity are the same as in figure 1.13. 

The solid lines are the exact solutions while the dotted lines are the approximate solutions for 

the planar regime and the dashed lines are the approximate solutions for the linear regime. 

The blue lines represent the in-phase temperature oscillations while the red lines represent the 

out-of-phase ones.   
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Figure 1.14: Comparison between the exact and approximate solutions for the linear and planar regimes.  

In order to calculate the thermal conductivity, measurements must be done at frequencies 

belonging to the linear zone. In the next section, we determine the conditions that must be 

applied to define the linear regime boundaries.  

III.4.c. Linear regime boundaries 

Cahill’s integral formula of temperature oscillations considers a sample of semi-infinite 

thickness as explained in section III.3. However, in reality, the sample has a finite thickness. 

Therefore, the boundaries of the linear regime must be determined according to the thickness 

of the sample and the width of the metallic line. In order to accurately define the boundary 

conditions for linear regime, an error analysis was made. It was found that for λ>5b the in-

phase temperature oscillation rms error is less than 0.25 %.  

Merging the condition in the above paragraph with equation 1.37, the boundaries of the linear 

regime become: 

                                                                 5
st  5b                                                         (1.58) 

                                                          →         ts25b                                                           (1.59)   

Finally, equation 1.59 provides the maximum metallic line width possible for a given 

specimen thickness to perform measurements by means of the three omega method. 
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III.4.d. Estimation of the linear regime frequency interval for a sample of known 

thickness 

The linear regime can be defined as the part where the in-phase temperature oscillations 

decay logarithmically with respect to the thermal excitation frequency 2ω and where the out-

of-phase temperature oscillations are constant. Its upper and lower frequency limits can be 

calculated by substituting equation 1.36 in equation 1.58. Thus, these frequency limits of the 

linear regime are given: 

                                                        24
25

st
 < linearf < 2100 b

                                                (1.60) 

Practically, equation 1.60 is applied to determine the range of frequencies where the 

measurements will be achieved. However, this equation requires the knowledge of the thermal 

diffusivity of material and consequently the knowledge of the thermal conductivity. 

Therefore, initially the values of the thermal conductivity, specific heat capacity and density 

of the material to be tested are taken from literature and substituted in equation 1.60 in order 

to have a first estimation of the linear frequency zone.  

III.5. Examples of temperature oscillations and third harmonic voltages for bulk 

materials 

After the theoretical developments presented before, in this section simulations based on 

the three omega method are proposed for two different kind of materials, kapton® and silicon. 

Kapton® is a polyimide film created by DuPont company. It is widely used in flexible 

printed circuits. Moreover, due to its low thermal conductivity it is mostly used as an 

insulator. Jacquot et al. have found out a thermal conductivity of 0.32 W/m.K for kapton® 

[JAC 2002]. The density and the specific heat capacity of kapton® are equal to 1420 Kg/m3 

and 1090 J.Kg-1.K-1 respectively. Substituting all these parameters in equation 1.48 and 

solving it using MATLAB, we can find the temperature oscillations for kapton® versus the 

natural logarithm of the thermal excitation frequency as shown in figure 1.15.  The rms power 

and the metallic line width are assumed to be 1 W/m and 20 µm respectively. Actually, the 

highest widths possible for 1000 µm and 400 µm thick substrates are 32 µm and 80 µm 

respectively.  
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Figure 1.15: In-phase and out-of-phase component of temperature oscillations for kapton®. 

On the other hand, silicon is a semiconductor, mostly used in integrated circuits and 

microchips. It has a density, specific heat capacity, and thermal conductivity of 2330 Kg/m3, 

711 J.Kg-1.K-1 and 148 W.m-1.K-1 respectively. Figure 1.16 is plotted for rms power       

prms=1 W/m and the metal line width 2b= 20 µm. 
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Figure 1.16:  In-phase and out-of-phase component of temperature oscillations for silicon. 

Comparing figures 1.15 and 1.16, the temperature oscillations for kapton® is higher than 

that for silicon. This is due to the fact that the thermal conductivity of silicon is higher than 

the one of kapton®, i.e. silicon is a much better thermal conductor.  

The upper and lower frequency limits of the linear regime for both silicon and kapton® are 

determined according to equation 1.60. The thermal diffusivities of kapton® and silicon are 

found to be 2.067E-7 m2/s and 8.934E-5 m2/s respectively. For 2b= 20 µm the upper limit 

frequency for kapton® and silicon are given in table 1.2. 
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The lower frequency limit changes with the thickness of specimen. The larger is the thickness 

of the specimen the wider is the linear frequency zone. For a 20 µm width metallic line the 

minimum specimen thickness according to equation 1.59 is 250 µm. This thickness results in 

a very narrow linear regime. Consequently larger thicknesses are considered in table 1.1. 

Table 1.1: The lower frequency limit for a width 2b=20 µm and different specimen thickness ts. 

ts (µm) 400 600 800 1000 

fkapton lower limit (Hz) 2.6 1.1 0.6 0.4 

fsilicon lower limit (Hz) 1110.8 493.7 277.7 177.7 

 

Fixing the specimen’s thickness to 400 µm, the maximum metallic line width allowed is       

32 µm. Table 1.2 shows the variation of the upper frequency limits for kapton® and silicon 

for different metallic line widths. The lower is the metallic line width, the higher is the upper 

frequency limit. A 32 µm width metallic line cannot be considered since a linear regime of the 

same upper and lower frequency limits will be produced.  

Table 1.2: The upper frequency limit for a thickness ts=400 µm and different metallic line widths 2b. 

2b (µm) 5 10 15 20 

fkapton upper limit (Hz) 105.3 26.3 11.7 6.6 

fsilicon upper limit (Hz) 45 499 11 374 5 055 2 843 

 

Tables 1.3 and 1.4 summarize the values of the lower and upper frequency limits for 

figures 1.15 and 1.16 where the width of metallic line is fixed to 20 µm and two thicknesses 

of the sample are considered.  
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Table 1.3: The lower and upper frequency limits in case of kapton® (figure 1.15) 

ts(µm) 400 1000 

fkapton-lower limit (Hz) 2.6 0.4 

fkapton-upper limit (Hz) 6.6 6.6 

 

Table 1.4: The lower and upper frequency limits in case of silicon (figure 1.16).  

ts(µm) 400 1000 

fsilicon-lower limit (Hz) 1110.8 177.7 

fsilicon-upper limit (Hz) 2843.7 2843.7 

 

In order to determine the thermal conductivity of a material, a wide linear regime would be 

better. The higher the number of third harmonic voltages measured, the more accurate we can 

calculate the slope of the linear zone. Consequently, from the theoretical study done 

considering  kapton® and silicon we can conclude that the higher is the thickness of the 

sample and the lower is the width of the metallic line the wider is the linear regime. 

Nevertheless, sometimes it is not possible to fabricate metallic lines of very small width 

(example 2b= 0.5 µm, 1 µm). Also, samples of large thickness (example ts=1000 µm) might 

not be commercially available. Moreover, in case of measuring the thermal conductivity of 

very thin films, another technique called the differential three omega method is applied as will 

be explained in chapter three.  

The third harmonic voltages for kapton® and silicon can be calculated according to 

equation 1.32. Figures 1.17 and 1.18 show the in phase and out of phase third harmonic 

voltages plotted with respect to the natural logarithm of 2ω. For example, the thickness of the 

samples is taken to be ts= 1000 µm. The metallic lines on both silicon and kapton® are 

assumed to have a width of 20 µm, a length of 3 mm and a thickness of 400 nm. The 

temperature coefficient of resistance and the resistivity of the golden lines are fixed to   

0.0034 /°C and 2.44E-8 Ωm respectively. The applied rms power is 1W/m. 
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Figure 1.17: The in-phase and out-of-phase third harmonic voltages for kapton®. 
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Figure 1.18: The in-phase and out-of-phase third harmonic voltages for silicon. 

Since kapton is an insulator and silicon is a good thermal conductor, the resulted third 

harmonic voltages for kapton are higher than those of silicon. We can notice that the third 

harmonic voltages in the case of silicon are in the micro volts range. If vibrations exist in the 

3based experimental setup due to the surrounding environment, we might face some 

difficulties in measuring such small range voltages using the lock-in amplifier. 

III.6. Conclusion 

In section III, we have theoretically shown how the thermal conductivity of a material can 

be determined when using the three omega method. The steady state temperature oscillations 

were first determined by considering a one dimensional line heater inside an infinite cylinder. 

This infinite cylinder is then cut into half to produce a line heater on the surface of a semi-

infinite cylinder. Afterwards, the single one dimensional line heater is replaced by an infinite 
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number of one dimensional line heaters where the temperature oscillations are averaged over 

a 2b width line. This leads to Cahill’s formula of steady state temperature oscillations over a 

finite width line deposited on the surface of the material under test. An approximate equation 

for a linear regime is derived. Through this equation we can directly obtain the thermal 

conductivity from the slope of the in-phase temperature oscillations. The frequency limits of 

the linear regime are determined for thermal penetration depth greater than the heater’s half 

width and much lower than the sample’s thickness. The three omega method has several 

advantages over other conventional techniques used to measure the thermal conductivity. In 

particular, it can directly determine the thermal conductivity of materials with a high accuracy 

[WOJ 2009]. Moreover, errors from the blackbody radiations can be eliminated thanks to the 

small surface area of the metallic line heater [CAH 1990]. Finally, the three omega method is 

a transient technique. Thus the long equilibration time that lasts for hours in case of steady 

state techniques is reduced to a few minutes.   

Simulations using MATLAB are performed for kapton® and silicon. The AC temperature 

oscillations are plotted with respect to Ln(2) for a large range of frequencies for both 

materials. The temperature oscillations of kapton are higher than those of silicon since the 

former is an insulator while the latter is a semiconductor. The linear regime frequency limits 

have been calculated for kapton® and silicon by assuming different metallic line widths and 

substrate thicknesses. We have concluded that the higher is the thickness of the substrate and 

the lower is the width of the metallic line the wider is the linear regime.  

 

 

 

 

 

 

 

 

 



 

 

 

43 Chapter I: The three omega method: Theoretical considerations 

Conclusion 

In this chapter we have presented several steady state and transient methods used to 

measure the thermal conductivity of materials. Transient measurements can be performed on 

commercially available samples and are considered to be faster than steady state ones. Among 

the transient techniques is the three omega method that makes use of a metallic line to 

produce heat on surface of specimen and consequently measure its thermal conductivity. The 

metallic line is heated through an alternating current at angular frequency ω. This yields 

metallic line resistance fluctuation at angular frequency 2ω and consequently a third harmonic 

voltage at angular frequency 3ω across the metallic line. We have derived the temperature 

oscillations integral formula found by Cahill. We have started by assuming, as Cahill, a line 

heater embedded in an infinite cylinder and then developing the solution for a finite width 

heater on the surface of a semi-infinite specimen. The linear regime upper and lower 

frequency limits were determined. It is in this region that the third harmonic voltage 

measurements must be done in order to deduce the thermal conductivity of the specimen 

under test. Initially, a three omega experimental setup must be constructed to measure 

accurately the third harmonic voltage across the heater. Therefore, any spurious signals at 

angular frequency 3ω that might appear due to any apparatus in the three omega experimental 

setup must be eliminated. Samples for the three omega measurements are prepared so that the 

metallic line heater is in intimate contact with the material’s surface. So, the thermal 

resistance between the metallic line and the surface of material is considered to be negligible.  

After this theoretical chapter presenting the implementation of the mathematical tools for the 

three omega method, in following chapter, the metallic line heater fabrication process will be 

presented. In addition, the three omega method experimental setup will be described together 

with the common mode cancellation techniques used to get rid of spurious signals at angular 

frequency 3ω. 
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Introduction 

After the first chapter mainly devoted to the description of the basics of heat transfer and 

the different methods available for measuring the thermal conductivity of materials, this 

chapter is entirely dedicated to the three omega method and its implementation in our 

laboratory. Briefly speaking, the method consists in using a function generator to produce an 

AC signal at a frequency ω which passes through a metallic line deposited on the surface of 

the material under test. In order to measure the third harmonic voltage generated by the 

metallic line, it is placed in one of the arms of a Wheatstone bridge circuit or in series with a 

potentiometer in a differential amplifier circuit. Both circuits are used as common mode 

cancellation techniques to suppress the undesired harmonics of the function generator. All the 

instrumentation used in the three omega experimental setup is described in section I.  

As mentioned in chapter I, the metallic line must be made of a material possessing a high 

temperature coefficient of resistance in order to produce measurable third harmonic voltages. 

Section II explains all the steps needed to deposit the metallic line on the surface of the 

substrate. Moreover, the 2-wire and 4-wire methods to measure the resistance of the metallic 

line are presented. The hot plate method for measuring the temperature coefficient of 

resistance is also described in this part of the chapter.  

In section III, we present the principles and the designs of each of the Wheatstone bridge 

and the differential amplifier circuits. 

In section IV, the three omega method-based experimental setup is validated through 

investigations on several types of materials. Finally, we terminate this chapter by an error 

analysis to estimate the precision of the experimental setup and to evaluate the error produced 

on the measured thermal conductivity. 
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I. The 3ω method-based experimental setup 

I.1. Introduction 

To build up the three omega method setup, initially, a low distortion function generator is 

used to supply the metallic line deposited on the surface of the sample with an AC current. As 

explained in chapter I, joule’s heating results in a third harmonic signal at the level of the 

metallic line. In order to detect this signal, the metallic line is put in a Wheatstone bridge or a 

differential amplifier circuit. Then the output of such circuits is measured by means of a   

lock-in amplifier (Figure 2.1). The objective is to measure the in-phase and out-of-phase third 

harmonic voltages through which the thermal conductivity can be deduced. Therefore, any 

other third harmonics that might be produced by any measuring instrument or resistive 

component must be eliminated. Figure 2.2 shows the three omega experimental setup built in 

the laboratory.   

 

Figure 2.1: Schematic Diagram of the 3ω experimental setup. 

 

Figure 2.2: The 3ω method experimental setup. 
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In the following sections, the function of each instrument used in the three omega 

measurements is described. 

I.2. Lock-in amplifier SR830 

In order to measure the third harmonic voltage a Standford Research SR830 Lock-in 

amplifier (LIA) is used. This instrument is a narrow band detector that can accurately 

determine the real and imaginary parts of a very small voltage signal at a certain frequency 

even if it is flooded by a noise signal. To achieve this, a phase sensitive detection technique is 

introduced. The phase sensitive detector multiplies the input signal by a reference one. Then, 

the LIA will respond only to the part of the input signal that occurs at the reference frequency. 

In figure 2.3 is shown the functional block diagram of the lock-in amplifier with two phase 

sensitive detectors. For the three omega measurements, two input signals are differentiated by 

the LIA by switching it to the A-B mode. The reference signal is a synchronous one provided 

by an Agilent 33210A function generator used to supply the metallic line with an AC current. 

A phase locked loop (PLL) then locks the internal oscillator to the reference frequency ωr 

producing a reference signal at frequency ωr with a phase shift of Өr: 

                                                        )sin( rrrreference tVV                                                  (2.1) 

 

 

Figure 2.3: Functional block diagram of the lock-in amplifier. 

The input signal is given by equation 2.2. The output of the phase shift detector PSD1 results 

in the multiplication of equation 2.1 with 2.2 as shown in equation 2.3. 

                                                       )sin( iiiinput tVV                                                        (2.2) 
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When ωr=ωi equation 2.3 becomes: 
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Following the phase sensitive detector PSD1 by a low pass filter (LPF) and dividing out half 

the reference voltage amplitude, what remains from equation 2.4 is the DC signal: 

                                                               )cos(iVX                                                                       (2.5) 

where ri    (for simplification r is set to 0 ). 

We can notice that equation 2.5 represents the real or in-phase component of the input signal. 

In order to determine the out-of-phase component, a second phase sensitive detector         

(PSD2) is used where the input signal is multiplied by the reference signal phase shifted by 

90°. Therefore the output of PSD2 followed by a LPF is: 

                                                                 )sin(iVY                                                           (2.6)  

The magnitude R and the phase Ө of the measured signal are calculated as follows: 

                                                                22 YXR                                                         (2.7) 

                                                               )(tan 1

X
Y                                                           (2.8) 

As explained above, the low pass filter removes the AC signal at 2ωr. The bandwidth of the 

low pass filter is determined by setting the value of the time constant tc. It is defined by: 

                                                                 
c

c f
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2
1

                                                              (2.9) 

where fc is the cutoff frequency and defined as the point where the power of signal is 3 dB 

below its maximum value. The low pass filter attenuates signals with frequencies higher than 

the cut off frequency.  By increasing the time constant, the cutoff frequency becomes lower 

and the AC signal at 2ωr will be better attenuated. Therefore, the time constant is chosen in a 

way where the cutoff frequency is equal to or less than the reference frequency. For SR830 

lock-in amplifier the time constant can be set between 10 µs and 30 ks which is equivalent to 

cutoff frequencies between 5.3 E-6 Hz and 15915.5 Hz. Another parameter which describes 
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the performance of the low pass filter is the roll-off-rate. It defines the rate of loss or 

attenuation of the power of the filtered signal above the cutoff frequency.  The roll-off-rate 

changes with different filter order. The SR830 Lock-in amplifier can achieve up to 4 stages of 

filtering (fourth order low pass filter) where the roll-off-rate reaches 24 dB/octave [SR 830].   

I.3. Microscope and Micromanipulators 

As presented in Figure 2.2, a probe station to hold four micromanipulators, a 

stereomicroscope, and the sample holder, was built of a metallic plate with four aluminum 

legs fixed on a wooden block. Two boards of foam were placed under the wooden block to 

help in absorbing vibrations. The metallic plate was cut by laser in a way that it surrounds the 

base of the stereomicroscope. DPP105-AI-S CascadeMicrotech micromanipulators are used 

which provide good accuracy and excellent repeatability. It offers a linear travel in X and Y 

positions over 7 mm and 8 mm respectively and a Z vertical displacement over 25 mm. It has 

a resolution down to 20 µm rendering it convenient for probing pads down to 100 µm x 100 

µm. The micromanipulator tips are held at the end of the micromanipulator’s arm (probe 

holder) through clamping. They are made of tungsten and have a radius of 7 µm at the 

extremity.    

The sample under test is mounted on the plate of a CLASSMAG 36 stereomicroscope. It 

offers a 10 times or 20 times magnification, consequently precise manipulation of the tips on 

the surface of the sample is provided.  

I.4.  Function generator and measurement meters 

The experimental setup for the three omega method measurement is supplied by an Agilent 

33210A Function/Arbitrary Waveform Generator. It provides sine waveforms of 7 mVrms till 

7.07 Vrms amplitude with a frequency range from 1 mHz to 10 MHz. One of the important 

concerns is the third harmonic noise produced by the function generator. Such harmonic 

might add to the third harmonic voltage generated by the metallic line on the surface of the 

sample and would cause errors when calculating the thermal conductivity.  

The total harmonic distortion (THD) is a parameter that specifies the quantity of harmonic 

noise of an electronic instrument. It is defined as the ratio of the sum of all harmonic 

components of the voltage produced to the fundamental component of the voltage. It is given 

by the following equation [SHM 2005]: 
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where Vω is the amplitude of the fundamental voltage and Vnω (n>1) is the amplitude of the 

voltages produced at higher harmonic frequencies.  

The total harmonic distortion of the function generator is equal to 0.04% [HP 2008]. 

                                                           





2

2500
n

nVV                                                       (2.11) 

We can notice that the harmonic noise is 2500 smaller than the fundamental voltage. For a 

fundamental voltage Vω = 1 Vrms and for n=3, the third harmonic voltage V3ω produced by the 

function generator is equivalent to 0.4 mVrms. This harmonic is in the same order of 

magnitude as the third harmonic voltage produced by the metallic line. Thus it has to be 

removed. This can be done by common mode cancellation techniques like the Wheatstone 

bridge or the differential amplifier circuit as explained in section III.  

The multimeter used to measure the initial voltage V0 across the metallic line is an Agilent 

34411A digital multimeter. Moreover, an Agilent 34420A micro-ohm meter is used to 

measure the resistance of the metallic lines. The characteristics of both the ohm-meter and the 

multimeter will be discussed in a later section together with the precision measurements.  

I.5. Conclusion 

We have introduced in this section different instruments needed to perform the three 

omega measurements. As we have explained, the function generator produces harmonics that 

results in errors when measuring the third harmonic voltages. This problem can be solved by 

techniques that are introduced in a later section.   

After constructing the three omega method experimental setup, thermal characterization of 

materials can be achieved. This requires the deposition of a metallic line or heater on the 

surface of the material to be tested by a special process called photolithography. The steps of 

this process are explained in the following section. 

The cost of the three omega method experimental setup built in the laboratory is around 

20K euros. The quality of such a setup is considered to be good with respect to its price. Also, 

the materials to be tested can either be commercially found or fabricated and the thermal 

conductivity values measured by using this set-up, as will be shown in a later section are quite 

acceptable.   
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II. Sample preparation for the 3ω method  

II.1. Introduction 

Metallic line resistances of high temperature coefficient of resistance are needed for the 

three omega measurements in order to generate third harmonic voltages and consequently 

determine the thermal conductivity. These lines are prepared by optical lithography or 

photolithography process. This process requires the design of an optical mask and then the 

application of different steps on the surface of the material to be characterized which lead to 

the desired metallic line. 

II.2. Sample design 

Metallic lines of width 2b and length l are required to be deposited on the sample under 

test to perform the three omega measurements. As discussed in the first chapter, the width 2b 

and the length l are chosen according to the thickness of the sample. The metallic lines are 

designed to have two or four contact pads. These pads serve in passing the current through the 

metallic line and at the same time measuring the voltage across it. Simple software called 

CleWin [CLE 2002] is used to create a photolithographic mask layout consisting of different 

metallic line patterns. A 4 inch mask with the metallic line patterns designed by CleWin is 

represented in figure 2.4. 

 

Figure 2.4: A 4 inch mask of 4-pads and 2-pads metallic lines.  
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The circle in figure 2.4 represents the surface of the substrate or sample which is in most 

cases 3 inch in diameter. Patterns are always kept away from the edge of the substrate to 

insure complete metallic lines and to easily manipulate the substrate by tweezers.  

The metallic lines must be made of a metal possessing a high temperature coefficient of 

resistance (TCR) to produce a measurable change in its resistance as a function of 

temperature. Gold is the metal of choice. For small temperature variations, remarkable 

changes in the resistivity of gold can be produced since it has a high TCR of                   

0.0034 °C-1 [BOY 2010]. In addition, gold maintains without oxidation in air and is not too 

expensive compared to other metals like platinum for example. However, gold is a metal that 

does not adhere well to the surface of substrates. To improve adhesion, a small layer of 

chromium is deposited in between. It has a very small thickness compared to that of the 

golden layer so that its effect can be neglected during measurements. The next section 

describes the different steps followed for the deposition of the gold metallic lines on the 

surface of solid substrates. 

II.3. Sample preparation by process of optical lithography 

II.3.a Cleaning substrate surface 

Prior to any deposition technique, the substrate surface must be well cleaned from any 

organic or inorganic contaminations. This must be done to insure good adhesion between the 

metal and the substrate and to minimize thermal interface resistance. Initially, the substrate is 

immersed in acetone and cleaned with ultrasonic agitation for 5 minutes. It is known that 

acetone leaves its residues behind. In order to remove such residues, the substrate is treated 

ultrasonically in propanol-2 for 5 minutes then rinsed thoroughly by distilled water. Finally, 

the substrate is blown dry by compressed nitrogen.   

II.3.b Photolithography 

Photolithography is a process that uses a photomask to transfer a desired pattern to a light 

sensitive material called photoresist just placed on the surface of substrate. This process starts 

with a prebake or soft bake where the substrate is heated on a hot plate at 110 °C for 5 

minutes to insure the absence of any water molecule on the surface. Following this step is the 

development of a photoresist layer on the substrate’s surface. First, an HMDS 

(Hexamethyldisilazane) solution is applied on the substrate and spin coated for 20 seconds at 

2000 rpm. The substrate is then covered by a liquid photoresist (AZnLOF 2020 from AZ 
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Electronic Materials) by spin coating at 2500 rpm for 20 seconds. This produces a 1 µm 

uniform thick layer of photoresist. The initial application of HMDS is to promote the adhesion 

of the photoresist to the substrate. After photoresist coating, the solid substrate is prebaked at 

110 °C for 1 minute to remove excess photoresist solvent. A negative optical mask is placed 

over the photoresist where it is exposed to ultraviolet light (λ=365 nm, intensity=11 mW/cm2) 

for 3.5 seconds. Before development, the substrate is reheated at 110 °C for another 1 minute. 

This step is usually called post-exposure bake (PEB). Holding the substrate vertically in AZ 

326 MIF developer (AZ Electronic Materials) for around 1 minute and 15 seconds, the 

negative photoresist that was not exposed to ultraviolet light is dissolved therefore leaving 

behind the desired pattern. Afterwards, the substrate is directly placed in diluted water for 20 

seconds and dried with compressed nitrogen gas. Figure 2.5 demonstrates the steps followed 

during the photolithography process. 

 

Figure 2.5: Photolithography procedure. 

II.3.c. Metal deposition 

One of the techniques used to deposit the material on the surface of specimen is evaporation. 

Such a technique takes place inside a vacuum chamber. Initially, the metal is heated by means 

of a resistive wire till it evaporates. Afterwards, the vapor particles travel freely through the 

chamber and condense on the surface of the substrate as illustrated in Figure 2.6.  
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Figure 2.6: Metal evaporation in vacuum chamber. 

 Evaporation process is performed in a vacuum chamber to make sure that no other 

particles will add to the metal vapor.  

In Figure 2.7 we can notice that thin metallic films are produced covering the photoresist 

and the areas where the photoresist has been dissolved. The evaporation process is initiated 

with chromium and continues with gold. The thickness of the deposited layer depends on the 

value of power applied to heat the metal and on the deposition rate.  

 

 
Figure 2.7: Gold and chromium deposition by evaporation after photolithography process. 

 

II.3.d. Liftoff process 

Following the metal deposition is the liftoff process. The substrate is fixed in a special 

holder and placed in a beaker containing SVC-14 remover with its metallized face 

downwards. The beaker is heated at 75 °C and a thermocouple is immersed inside the solvent 

to control temperature. Agitation can be introduced during liftoff; in that case a magnetic 

agitator is placed inside the beaker to rotate at 250 rpm. The photoresist will be dissolved in 

SVC-14 solution taking away the metallic layer that has been created above it. What will 

remain is the metallic film in good adhesion with the substrate (Figure 2.8). At the end of the 
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liftoff process, the substrate is rinsed with acetone and isopropanol and finally blown dry with 

compressed nitrogen.  

 

Figure 2.8: Metallic patterns deposited on the surface of the substrate. 

II.4. Resistances of the fabricated metallic lines 

The value of the resistance of the metallic line at room temperature is an important factor 

in calculating the thermal conductivity of the substrate. This resistance can be simply 

measured by a 2-wire method. However, such a method causes measurement errors. We can 

remove these errors by using a 4-wire method that employs four connections to the resistance 

instead of two as shown in Figure 2.9. The Agilent 34420A micro-ohm meter is used to 

perform such measurements. 

 

Figure 2.9: 2-wire and 4-wire resistance connections to the micro-ometer.  

The error problem aroused in the 2-wire method is due to the series resistance of each of the 

wire connections. Only two wire connections are used through which the multimeter sends a 

source current and across which the voltage in the loop is measured. So, the wire resistance 

voltage drop adds to that across R0 and error is produced. While applying the 4-wire method, 

two connections are used to pass the source current through resistance R0 and another two to 
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measure the voltage across. The voltage input of a multimeter has very high input impedance. 

Therefore the injected current through the wire connections (green and grey) is very small and 

the voltage across them can be neglected. On the other hand, the wire resistances (red and 

black) have no effect on the source current supplied by the multimeter. Consequently, the 

resistance R0 can be calculated by applying Ohm’s law: 

sourceI
VR 0  

where Isource is the current supplied by the multimeter and V is the voltage measured across the 

resistance R0.  

The ohm-meter is connected to the metallic line through four micromanipulators. When 

reading the resistance value, we can notice some small fluctuations varying between a 

minimum and a maximum value. This might be explained by the existence of some small 

vibrations due to the fact that measurements are done on an ordinary table and not on an anti-

vibratory one. Therefore, statistics are enabled to record the minimum, maximum and average 

value of the metallic line resistance. Table 2.1 shows the width 2b, length l and the measured 

resistances at room temperature of three metallic lines deposited on the surface of borosilicate 

substrate. Also, the percentage variations of the minimum and maximum resistances with 

respect to the average, % varmin and % varmax respectively, are calculated. 

Table 2.1: Average, minimum, and maximum measured resistances for several metallic lines. 

Metallic 

line 

2b (µm) l (mm) R0 avg (Ω) R0 min (Ω) % varmin R0 max (Ω) %varmax 

1 10 5 32.2984 32.29714 -0.0039% 32.29947 0.0033% 

2 30 18 40.6959 40.6857 -0.0250% 40.7055 0.0236% 

3 10 7.2 45.5721 45.5652 -0.0151% 45.5767 0.0101% 

 

When substituting the values given in table 2.1 in equation 2.12, the resistivity of gold can be 

calculated for a 450 nm metal thickness. 

                                                               
l
AR0                                                               (2.12) 

where ρ is the resistivity of metal in Ω.m. 

            l is the length of the metallic line in m. 
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           A is the cross sectional area of the metallic line in m2. 

Table 2.2: Metal resistivity of each of the metallic lines.   

Metallic line Resistivity ρ (Ω.m) 

1 2.91E-8 

2 3.05E-8 

3 2.85E-8 

 

We can notice that the calculated resistivities in table 2.2 are close to the values given in 

literature [WIS 2007].  

II.5. Thermal coefficient measurement method 

The temperature coefficient of resistance (TCR) is defined as the change in the value of 

resistance when the temperature is changed by one degree kelvin. It is given by: 

                                                              
T
R

Rh 



0

1                                                           (2.13) 

where βh is the temperature coefficient of resistance in °C-1, R0 is the metallic line resistance 

at room temperature in ohm and ∆R is the change in resistance at a temperature T.  

The more accurate we measure the temperature coefficient of resistance the more precise 

we can determine the thermal conductivity. One of the techniques to measure βh is the hot 

plate method. Placing the substrate on a hot plate and increasing the temperature between one 

reading and another, the resistance of the metallic line is measured for every temperature by 

means of the Agilent 34420A micro-ohm meter. The temperature measurements are 

accomplished by the use of several thermocouples connected by thermal paste just near the 

metal line. The temperature and resistance values are noted after around 15 minutes when 

both appear to be stable (i.e. the temperature when each of the thermocouple readings does 

not vary by more or less than 0.5 °C). Consequently, plotting the variation of resistance versus 

average temperature, the coefficient of resistance can be calculated.  
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Figure 2.10: Measurements of resistance versus temperature of a metallic line.  

Figure 2.10 represents the linear increase of the resistance of a gold metallic line with 

respect to temperature of metallic line 2 (table 2.1). The temperature coefficient of resistance 

for this metallic line is calculated to be βh=0.00313 /°C. We can find that this value agrees 

well with the temperature coefficient of resistance of gold (βh=0.0034 /°C) found in literature. 

II.6. Conclusion 

Metallic lines of different length and width and around 450 nm thick were prepared by 

photolithography. Two of the characteristics of these metallic lines are important to determine 

for the thermal conductivity calculations: the resistance and the temperature coefficient of 

resistance. First, the metallic line resistance is measured by the aide of a micro-ohm meter by 

applying the 4-wire method. Then, the temperature coefficient of resistance is determined 

using the hot plate method. We still need to measure the third harmonic voltages across the 

metallic line over the linear regime frequency range. These voltages are extracted through 

common mode cancellation techniques: the Wheatstone bridge or the differential amplifier 

circuit. 

III. Experimental procedure of the 3ω measurement 

III.1. Introduction 

As mentioned in section I, the function generator used in our experimental setup has a total 

harmonic distortion of 0.04 %, therefore generating voltages at different harmonics. This 

causes the addition of a voltage at frequency 3ω to the three omega measurements. In order to 

prevent this, two circuits are designed which serve in cancelling the third harmonic voltage 
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due to the generator and therefore measuring separately the metallic line third harmonic 

voltage. The following sections describe the design and the function of the Wheatstone bridge 

and the differential amplifier circuits. 

III.2. Wheatstone bridge method 

III.2.a. Principle  

The Wheatstone bridge (Figure 2.11.a) is an electrical circuit with two known resistances 

R1 and R2, one variable resistance R3v and an unknown one Rx. 

 

Figure 2.11: (a) Wheatstone bridge. (b) Schematic diagram of the three omega apparatus using the 
Wheatstone bridge. 

Wheatstone bridge is commonly used to measure resistances of unknown values. This is 

achieved by balancing the bridge where the variable resistance is tuned till reading a zero 

voltage VA-VB (Figure 2.11). Consequently, the ratios R3v/R1 and Rx/R2 are equal.  

The aim of using the Wheatstone bridge in the three omega experimental setup is to 

suppress the harmonics produced by the function generator in order to be capable of 

measuring only the induced third harmonic voltage in the metallic line. The metallic line 

resistance is placed in one of the arms of the Wheatstone bridge as shown in Figure 2.11.b. It 

is the only element that generates third harmonic voltage during operation. Therefore, R1, R2 

and R3v are chosen to have a very small temperature coefficient of resistance compared to that 

of the metallic line resistance. Generally, the metallic lines are made of gold. A first 

measurement of the TCR of the gold metallic lines resulted in a value of βh= 0.00313 /°C 

(section II.5).  
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III.2.b. Wheatstone bridge design 

To produce a measureable third harmonic voltage it is preferable to direct most of the 

current supplied by the function generator in the arm where the metallic line resistance is 

installed. In this case we have chosen R2 to be 50 times smaller than R1 (R1=5 KΩ and 

R2=100 Ω) therefore directing 98% of the current through the metallic line resistance.  

In figure 2.12 is given the circuit of the designed Wheatstone bridge. 

 

Figure 2.12: The Wheatstone bridge electrical circuit. 

The metallic line resistances are deposited on the material under test by photolithography as 

explained in section II. The values of the resistances were found to vary between 9 Ω and     

48 Ω.  

9 Ω < Rmetallic-line < 48 Ω  

One of our concerns is to have a variable resistance R3v with a good resolution in order to 

accurately balance the Wheatstone bridge.  

                                                               
2

1
3 R

RRR x
v                                                           (2.14) 

                                                         →          500 Ω < R3v < 2400 Ω 

Previous works [BIR 1987] have used decade resistors of wide ranges up to 10 KΩ and a 

resolution of 0.01 Ω. However such a device is costly. Consequently, a variable resistance 
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with fine and basic adjustments was built using resistances and potentiometers of low TCR as 

shown in the following figure: 

 

Figure 2.13: Equivalent circuit of the variable resistance R3v. 

As calculated above, the variable resistance R3v varies between 500 Ω and 2400 Ω. 

Initially, R3,1= 10 Ω is set in parallel to a potentiometer R3,2 of minimum and maximum 

resistance of approximately 1 Ω and 100 Ω respectively. This forms the fine tuning that varies 

between ~0.9 Ω and ~9 Ω. R3,3 and R3,4 are chosen to be equal to 100 Ω and 350 Ω 

respectively and are placed in series to the fine tuning. The basic adjustment is a 

potentiometer R3,5 of  ~1 Ω minimum resistance and  2 KΩ maximum resistance. As a result, 

the equivalent minimum and maximum resistances of the above circuit are around 450 Ω and 

2460 Ω respectively. Consequently, we have achieved the variable resistance needed to 

balance the Wheatstone bridge.  The following table summarizes the values of the Wheatstone 

bridge resistances and potentiometers together with their TCR in parts per million per degrees 

Celsius (ppm/°C). 

Table 2.3: The values of resistances and their TCR used in designing the Wheatstone bridge. 

Resistor or potentiometer Resistance (Ω) TCR (ppm/°C) 

R1 5 K ±0.2 

R2 100 ±0.2 

R3,1 10 ±3 

R3,3 100 ±0.2 

R3,4 350 ±3 

R3,2 (10 turn potentiometer) 100 ±20 

R3,5 (10 turn potentiometer) 2 K ±20 
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The TCR values for the resistances and potentiometers are the minimum available at 

different distributors. We can observe that all of these values are less than one percent of that 

of the metallic line (βh= 0.00313 /°C).  

III.2.c. Third harmonic voltage measurement 

Balancing the Wheatstone bridge, the third harmonic voltage W3ω at the output can be 

measured through the differential input (A-B) of the lock-in amplifier. The induced third 

harmonic voltage in the metallic line is then calculated by considering the Wheatstone bridge 

as a voltage divider with the input source Vsource replaced by the 50 Ω resistance of the 

function generator (Figure 2.14). 

 

Figure 2.14: The effective circuit for the measurement of the third harmonic voltage at the output of the 
Wheatstone bridge.  

To determine the voltage VA-VB we first calculate the voltages at points A and B respectively. 
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Therefore, the third harmonic voltage W3ω, measured by the lock-in amplifier at the output 

of the Wheatstone bridge, is multiplied by the factor (R2+50+Rmetallic-line)/(R2+50) as shown in 
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equation 2.17 to obtain the third harmonic voltage V3ω which serves in calculating the thermal 

conductivity of material. 

III.3. Differential amplifier circuit 

III.3.a. Principle 

The differential amplifier circuit consists of a variable resistance in series with the metallic 

line resistance as presented in Figure 2.15. 

  

Figure 2.15: Schematic diagram of the three omega apparatus using the differential amplifier circuit. 

Two AD 624 differential amplifiers of gain=1 are used to isolate the voltages across Rv and 

Rmetallic line.  These differential amplifiers are of high precision and low noise of 0.2 µVp-p 

between 0.1 Hz and 10 Hz. The outputs of the differential amplifiers are connected to the 

inputs A and B of the lock-in amplifier and differentiated through (A-B) mode. The variable 

resistance Rv is tuned till acquiring a zero voltage at frequency ω at the output of the lock-in 

amplifier. At this moment the variable resistance Rv is equal to the resistance of the metallic 

line Rmetallic-line. The harmonics produced by the function generator and that exist in both Rv 

and Rmetallic line are differentiated and will no more appear in the final measurements. Switching 

the lock-in amplifier harmonic detect number to 3, the third harmonic voltage V3ω only 

generated by the metallic line can be measured. The thermal conductivity of the sample under 

test can then be calculated. 
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III.3.b. The circuit design 

As for the Wheatstone bridge, the components of the differential amplifier circuit are 

chosen to have a small TCR. Also, the variable resistance is designed to have a resistance 

range similar to that of the metallic line. Figure 2.16 shows the equivalent arrangement of Rv. 

 

Figure 2.16: The equivalent circuit of the variable resistance Rv. 

We can see that Rv can be varied between a minimum of ~2 Ω and a maximum of ~60 Ω. 

The following table shows a list of the resistances and potentiometers used to build the circuit 

and their TCR values. 

Table 2.4: The values of the resistances and their TCR used in designing the differential amplifier circuit. 

Resistor or potentiometer Resistance (Ω) TCR (ppm/°C) 

Rv,1 10 ±3 

Rv,2 and Rv,4 (10 turn 
potentiometers) 100 ±20 

Rv,3 100 ±0.2 

 

III.4. Conclusion 

After designing the Wheatstone bridge and the differential amplifier circuits, we are able 

to measure separately the third harmonic voltage induced by the metallic line and 

consequently measuring the thermal conductivity of different materials. To make sure that our 

experimental setup is working correctly, measurements are done on several samples of 

different thermal conductivities and then compared to literature values.  
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IV. Validation of the 3ω method-based experimental setup 

IV.1. Introduction 

Different samples are prepared with metallic line resistances deposited on their surface. To 

validate the three omega-based experimental setup, measurements are performed on these 

samples of different thermal conductivity. Measurements are done using both the Wheatstone 

bridge and the differential amplifier circuits. Results are then compared to Cahill’s solution.   

IV.2. Thermal conductivity measurement of different materials 

The three omega measurements are applied on Borosilicate (BrSiO2), Gallium Arsenide 

(GaAs), Indium Phosphide (InP) and high resistivity Silicon (Si (HR)) substrates.  

Borosilicate is a kind of glass normally made of silica and boron oxide. It has an excellent 

thermal resistance and mostly used in electroluminescent displays, thin film devices, solar 

cells, and electronic substrates. The three omega method has been performed on a 50 µm 

thick  borosilicate glass by Hartung et al. [HAR 2012] and the thermal conductivity found 

was around 1.14 W/m.K at room temperature.   

Gallium arsenide is a semiconductor belonging to III-V group. This material is mostly used 

in the design of optoelectronic and microelectronic devices. One of its constraints is its 

inability to resist excessive temperature which influences the device performance and 

reliability [LUO 2013]. Multiple literature citations for thermal conductivity of Gallium 

arsenide at room temperature exist. A thermal conductivity of 46 W/m.K was reported by Sze 

et al. [SZE 1985], while Blakemore [BLA 1987] has given a higher value of 55 W/m.K. Iny et 

al. [INY 2003] have mentioned a reasonable average value of 50 W/m.K. Different essays 

were done to enhance the thermal conductivity of GaAs through Ga isotopes enrichment. Iny 

at al. [INY 2003] have measured the thermal conductivity at 300 K of natural GaAs and 

enriched GaAs to be 47 W/m.K and 49.3 W/m.K respectively. These measurements were 

done by the standard steady state longitudinal method. However, the thermal conductivities of 

natural and isotope-enriched GaAs calculated by the first-principles lattice dynamics were 

found  to be higher by 7% to 10% and 14% to 20% respectively over the temperature range of 

95 K to 400 K [LUO 2013].   

Indium phosphide is another semiconductor possessing a thermal conductivity higher than 

that of GaAs. This renders InP more favorable than GaAs in solar cell and continuous wave 

applications, light emitting diodes, and electronic devices [SRI 2008]. Moreover, InP has 

appeared as an important material in the growth of lattice-matched epitaxial layers of 
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GaInPAs [BAC 1981].  Adachi has reported an InP thermal conductivity value of 68 W/m.K 

at room temperature [ADA 2009]. Kud et al. have determined a thermal conductivity of 68 

W/m.K at 300 K [KUD 1963].  Moreover, the 3 omega method was applied to measure the 

thermal conductivity of InGaAs/InP superlattice. Through these measurements they were able 

to deduce the thermal conductivity of InP substrate. It was found to be around 68 W/m.K 

[HUX 1999]. Another work showed the interest in characterizing porous InP due to its 

importance in optoelectronics [SRI 2008]. It was observed that the thermal conductivity 

decreases with increasing porosity.  

Another semiconductor widely spread in microelectronics is silicon (Si). Actually, its high 

thermal conductivity renders it an important material in microelectronic systems [HOP 2011]. 

In 1964, Glassbrenner et al. have measured the thermal conductivity of silicon single crystal 

from 300 °K till the melting point using a longitudinal heat flow apparatus. It was found to be 

around 150 W/m.K at 300 °K [GLA 1964]. Also, silicon has been used as a heat sink 

substrate in organic light emitting diodes (OLEDs) due to its good thermal conductivity 

compared to other materials [CHU 2009]. Moreover, Jacquot et al. have performed 

experimental measurements using the three omega method to measure the thermal 

conductivity of a SiO2 film placed on a silicon substrate. For such measurements, the thermal 

conductivity of silicon was considered to be 148 W/m.K [JAC 2002]. 

Table 2.5: Thermal conductivities of BrSiO2, GaAs, InP, and high resistivity Si given in literature. 

Material Reference Thermal conductivity k 

(W/m.K) 

BrSiO2 [HAR 2012] 1.14 

 

GaAs 

[SZE 1985] 46 

[BLA 1987] 55 

[INY 2003] 47 

 

InP 

[ADA 2009] 68 

[KUD 1963] 68 

[HUX 1999] 68 

 

Si (HR) 

[GLA 1964] 150 

[JAC 2002] 148 
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The thickness ts of BrSiO2, GaAs, InP and Si (HR) substrates used in the three omega method 

measurements are 700 µm, 350 µm, 355 µm, and 500 µm respectively (table 2.6). 

IV.3. Linear regression analysis in linear regime 

In order to calculate the thermal conductivity, the in-phase and out-of-phase third harmonic 

voltages are measured for the linear region frequency range. A linear fit is then plotted for the 

in-phase third harmonic voltage experimental data. The thermal conductivity is deduced 

through the slope of this linear fit.   

As explained in chapter 1, the in-phase third harmonic voltage measured in the linear 

regime by means of the differential amplifier or Wheatstone bridge circuit is linearly 

proportional to the natural logarithm of the thermal excitation frequency 2ω over the linear 

regime frequency range as follows: 
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The above equation has the form of a straight line in a plot y=f(ln(2ω)): 
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As presented in chapter 1, the thermal conductivity k is calculated as follows: 
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where V0 is the initial voltage measured across the metallic line in V. 

          βh is the temperature coefficient of resistance in °C-1. 

          l is the length of the metallic line in m. 

         R0 is the resistance of the metallic line in Ω at initial temperature T0. 
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IV.4. Experimental measurements 

The substrate under test is mounted on a copper plate placed under the microscope’s 

binoculars. The metallic line is connected to the Wheatstone bridge or to the differential 

amplifier circuits by the use of four micromanipulators. The linear regime for the metallic line 

is initially calculated by applying equation 1.60 where the value of the thermal conductivity is 

taken from literature. The function generator is turned on with appropriate voltage amplitude 

at a frequency corresponding to the higher frequency in the linear regime. Several minutes are 

needed till the substrate reaches thermal equilibrium. Then, the Wheatstone bridge or the 

differential amplifier circuit is balanced by tuning the variable resistor such that the 

differential lock-in amplifier’s output at fundamental frequency ω is zero. The lock-in 

amplifier is then switched to harmonic 3 and the in-phase and out-of-phase voltages at 

frequency 3ω are recorded. These steps are repeated for a large number of frequencies 

included in the linear regime. Normally, we start at the highest frequency since the time 

constant is smaller and manipulations can be done faster. Afterwards, we start decreasing the 

frequency till the lowest value in the linear regime. At the beginning of every manipulation, 

the metallic line resistance R0 is measured by the 4 wire method at room temperature.   

After the three omega measurements, the substrate under test is taken off the copper plate 

and placed on a hot plate for the temperature coefficient of resistance measurements.  

In the following section, we present the third harmonic voltage measurements performed 

using the Wheatstone bridge and differential amplifier circuits for each of borosilicate, 

gallium arsenide, indium phosphide, and silicon substrates. 

IV.5. Wheatstone bridge and differential amplifier measurements 

Measurements are done on several metallic lines of different dimensions by the use of both 

the Wheatstone bridge (WB) and differential amplifier (DA) circuits among which are those 

listed in table 2.6. We present the average resistance measured at room temperature, the initial 

voltage, the measured temperature coefficient of resistance and the applied power on each of 

the metallic lines. Initially, measurements are performed by the use of DA circuit. Afterwards, 

the micromanipulator cables are slowly disconnected from the DA circuit and connected to 

the WB circuit without displacing the micromanipulator tips on the pads of the metallic line 

under test. The same power per unit length is applied on the metallic line to compare the three 

omega measurements carried out by each of the circuits. 
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Table 2.6: Dimensions and properties of different metallic lines deposited on BrSiO2, GaAs, InP, and Si. 

Material Line 2b (µm) l (mm) R0 (Ω) V0 (V) β (/°C) prms 

(W/m) 

 

BrSiO2 

ts= 700 µm 

1 10 5 32.2984 0.5528 0.003068 1.8920 

2 30 18 40.6959 0.4268 0.0031303 0.2487 

3 10 7.2 45.5721 0.4661 0.003178 0.6622 

 

GaAS 
ts= 350 µm 

4 20 5 19.3343 0.4374 0.003072 1.9792 

5 20 3 11.9441 0.1475 0.003058 0.6070 

6 10 5 39.5784 0.4175 0.003044 0.8810 

 

InP 
ts= 355 µm 

7 10 5 27.6405 1.0689 0.003301 8.2667 

8 20 5 15.5386 0.6059 0.003282 4.7245 

9 20 5 15.1167 0.5945 0.003386 4.6761 

 

Si 
ts= 500 µm 

10 20 5 17.32056 0.8080 0.003131 7.5377 

11 10 5 31.9190 1.3693 0.003165 11.7484 

12 30 9.2 21.2112 1.3350 0.003126 9.1332 

 

Figures 2.17, 2.18, 2.19, and 2.20 represent the in-phase and out-of-phase third harmonic 

voltages measured in the linear regime versus the natural logarithm of the thermal excitation 

frequency 2ω for BrSiO2, GaAs, InP, and Si respectively. The squares and circles in red 

represent the measurements done by the DA circuit while the triangles and crosses in black 

correspond to those performed by the WB. Moreover, theoretical values are shown in blue for 

every metallic line by applying Cahill’s solution (equation 1.48). The values of the heat 

capacity and density used for each material are listed in table 2.7. Cahill’s solution is plotted 

for a thermal conductivity equivalent to the average value taken over the calculated thermal 

conductivities using each of the WB and DA circuits (table 2.8).  

Table 2.7: The values of heat capacities, densities and thermal diffusion of BrSiO2, GaAs, InP, and Si taken from 
literature. 

Material Heat capacity 
(J/Kg.K) 

Density (Kg/m3) Thermal 
diffusion α (m2/s) 

Borosilicate 750 2230 6.82E-7 
Gallium Arsenide 327 5320 3.16E-5 

Indium Phosphide 310 4810 4.56E-5 

Silicon 710 2329 9.07E-5 
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Figure 2.17: The in-phase and out-of-phase third harmonic voltages measured on borosilicate substrate 
using both DA and WB circuits. The third harmonic voltages in blue correspond to Cahill’s solution. 
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Figure 2.18: The in-phase and out-of-phase third harmonic voltages measured on gallium arsenide 
substrate using both DA and WB circuits. The third harmonic voltages in blue correspond to Cahill’s 
solution. 
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Figure 2.19: The in-phase and out-of-phase third harmonic voltages measured on indium phosphide 
substrate using both DA and WB circuits. The third harmonic voltages in blue correspond to Cahill’s 
solution. 
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Figure 2.20: The in-phase and out-of-phase third harmonic voltages measured on high resistivity silicon 
substrate using both DA and WB circuits. The third harmonic voltages in blue correspond to Cahill’s 
solution. 
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For each of the four materials studied we can observe that the values of the third harmonic 

voltages measured by both the Wheatstone bridge and the differential amplifier circuits are 

close. Also, the slopes of the linear relationship between the real third harmonic voltages and 

Ln(2ω) for both circuits are practically the same. Furthermore, a good agreement between our 

measurements and the data obtained from Cahill’s solution is observed for all the materials 

tested. We can also notice that the experimental measurements for in-phase voltages (in red 

and black) are always lower than the theoretical measurements (in blue) except for metallic 

line 3 on borosilicate, metallic line 6 on gallium arsenide and metallic lines 7 and 8 on indium 

phosphide. Moreover, we can observe an increase of the out-of-phase third harmonic voltages 

in the linear frequency zone for metallic line 11. This increase can be explained by the 

existence of parasitic effect in the DA circuit. Such an effect appears as we go higher in 

frequency. In table 2.8, we can find the thermal conductivities kWB and kDA determined using 

the Wheatstone bridge and the differential amplifier circuits respectively. Also, the average 

thermal conductivity kavg for the whole measurements done on different metallic lines for 

every material investigated is calculated. 

Table 2.8: The values of the thermal conductivities for each material measured by the wheatstone bridge and 
differential amplifier circuits. 

Material Line kWB (W/m.K) and 
% difference with 

respect to kavg 

kDA (W/m.K) and 
% difference with 

respect to kavg 

kavg 

(W/m.K) 

 

BrSiO2 

1 1.1725 -10.51% 1.3294 1.47%  

1.31 
2 1.292 -1.4% 1.331 1.56% 

3 1.394 6.37% 1.343 2.51% 

 

GaAs 

4 52.614 5.69% 50.266 0.97%  

49.78 
5 49.269 -1.03% 49.699 -0.17% 

6 48.041 -3.5% 48.81 -1.95% 

 

InP 

7 74.848 3.35% 70.782 -2.26%  

72.42 8 71.2656 -1.6% 70.488 -2.67% 

9 75.191 3.82% 71.958 -0.64% 

 

Si 

10 162.963 -0.11% 166.475 2.04%  

163.1 
11 169.33 3.79% 159.289 -2.37% 

12 158.432 -2.89% 162.402 -0.46% 
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The percentage difference in the values of kWB and kDA corresponding to each metallic line 

are calculated with respect to the average thermal conductivity kavg. First, we can notice that 

the values kAD for every material are more reproducible. Moreover, the percentage differences 

calculated for kAD are lower than those of kWB. 

In appendix B, a linear regression analysis is done for the third harmonic voltage 

measurements performed on BrSiO2, GaAs, InP, and Si (HR). We can observe in tables B.1, 

B.2, B.3, and B.4 that the coefficient of determination R2 for every measurement is 

approximately equal to 1 which shows that V3ω in-phase is strongly linear with respect to 

Ln(2ω). In addition, examining the slopes B̂ estimated for the measurements performed using 

the Wheatstone bridge and the differential amplifier circuits for every metallic line, we can 

find that they are close in value.  

IV.6. Conclusion 

In order to validate the constructed three omega method-based experimental setup, 

measurements were performed using both the Wheatstone bridge and the differential amplifier 

circuits on four different samples of different thermal conductivities. We have found out that 

the measured in-phase third harmonic voltages using both circuits are in good agreement with 

Cahill’s theoretical data. In addition, the calculated average thermal conductivity for each 

sample agrees well with the value found in literature. To determine the slope, a linear 

regression analysis was done. The coefficient of determination was found to be approximately 

equal to 1 thus indicating a good linear relation between the in-phase third harmonic voltages 

and the natural logarithm of the thermal excitation frequency. The percentage differences of 

the thermal conductivities kWB and kDA with respect to the average value kavg were calculated 

for each metallic line. It was found that these percentages in kDA are lower than those in kWB. 

Also, we have noticed that the values kDA for each material are more repetitive. For these 

reasons, we can conclude that it is more reliable to use the differential amplifier circuit in the 

experimental setup. Therefore, in chapters 3 and 4 only the measurements done using the DA 

circuit will be presented.  
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V. The 3ω experimental setup measurement precision  

V.1. Introduction 

An error analysis over the three omega method experimental setup is proposed thereafter. 

Initially, repeatability measurements are performed and the repeatability standard deviation is 

calculated. Afterwards, the precision of measurement of each of the instruments used in the 

experimental setup is determined together with its effect on the value of the thermal 

conductivity. Finally, it was found that parasitic capacitance exists in the Wheatstone bridge 

and the differential amplifier electronic circuits.  

V.2. Repeatability measurements 

Repeatability is defined by the degree to which an experimental measurement can be 

accurately repeated by the same observer using the same procedure at the same location and 

within a short period of time. Normally it is represented by the repeatability standard 

deviation Sr [SUR 2010]: 

                                                   
1

)( 2




 

n
xx

S i
r                                                      (2.21) 

where x  is the mean value of ix  and n is the number of data measured. 

Repeatability measurements were done for the three omega method-based experimental setup. 

For example, thermal conductivity measurements were repeated for several times on metallic 

line 1 of 10 µm width and 5 mm length for borosilicate substrate. Table 2.9 shows the 

properties of the metallic line. 

Table 2.9: Properties of metallic line used for repeatability measurements on borosilicate substrate. 

Metallic line 2b (µm) l (mm) R0 (Ω) βh (°C-1) 

1 10 5 32.2984 0.003068 

 

 The micromanipulator tips were placed in the correct position at the beginning of the 

experiment and were never repositioned between one measurement and another therefore 

keeping the same value of the metallic line resistance for all trials. Such measurements were 

performed in around two hours at a room temperature of 25 °C. The manipulations were 
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repeated by applying two different values of power prms on the metallic line. Figure 2.21 

shows six repeated measurements over the metallic line on borosilicate substrate. For Figure 

2.21.a the average applied power is 1.891 W/m.K for trials 1, 2 and 3 and for Figure 2.21.b 

the average power per unit length is 4.537 W/m for each of the trials 4, 5, and 6. For both 

cases, we can notice similar slopes for the linear relation between the third harmonic voltages 

versus the natural logarithm of the thermal excitation frequency.  

 

Figure 2.21: Third harmonic voltages versus natural logarithm of 2ω for six repeated measurements on 
the same metallic line for borosilicate substrate when using the DA circuit (a) prms=1.891 W/m (b) 
prms=4.537 W/m. 

In tables 2.10 and 2.11 we can see the values of the thermal conductivities obtained together 

with the power applied in each trial when measurements are done using the differential 

amplifier circuit and the Wheatstone bridge respectively. Trial 0 corresponds to the initial 

measurements done on BrSiO2 substrate over metallic line 1 (see tables 2.6 and 2.8). 
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Table 2.10: The power applied and the corresponding thermal conductivity calculated for each trial when 
using the differential amplifier circuit. 

Trial  0 1 2 3 4 5 6 

prms (W/m) 1.8920 1.8887 1.8935 1.8901 4.5370 4.5370 4.5375 

k (W/m.K) 1.3294 1.3231 1.3226 1.3204 1.3241 1.3254 1.3231 

 

Table 2.11: The power applied and the corresponding thermal conductivity calculated for each trial when 
using the Wheatstone bridge circuit. 

Trial  0 1 2 3 4 5 6 

prms (W/m) 1.8920 1.8798 1.8832 1.8874 4.5410 4.5407 4.5409 

k (W/m.K) 1.1725 1.1851 1.1875 1.1941 1.2011 1.2008 1.2008 

 

We can notice that the thermal conductivities are very close in value for both rms applied 

average powers. The repeatability standard deviation was calculated according to equation 

2.21. It was found that the measured thermal conductivities for borosilicate deviate by Sr = 

0.00167 W/m.K and by Sr = 0.0072 W/m.K around the mean value when using the DA circuit 

and the WB circuit respectively. These repeatability measurements showed average thermal 

conductivities kDA = 1.3231 ±0.127 % W/m.K and kWB = 1.1937 ±0.6 % W/m.K for 

borosilicate substrate in case of metallic line 1. Repeatability measurements were also 

performed on gallium arsenide, indium phosphide and silicon substrates. These measurements 

showed thermal conductivity errors which are always less that 1% with respect to the average 

value. Also, as for BrSiO2, the repeatability measurements showed less error when using the 

DA circuit than when using the WB circuit. 

V.3. Systematic errors and measurement precision 

In this section we discuss the systematic errors that occur during the measurements and 

affect the thermal conductivity value. The measurement precision of the initial voltage V0, the 

metallic line resistance R0, and the temperature coefficient of resistance βh are also 

determined. 
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V.3.a. The metallic line resistance R0 

As mentioned in section II.4, the metallic line resistance is measured by the 4-wire 

method using an Agilent 34420A micro-ohm meter. Moreover, the minimum Rmin, maximum 

Rmax, and average resistance R0 values were measured due to the existence of fluctuations 

aroused because of the contact between the micromanipulator tips and the metallic pads.  

Let us consider metallic line 12 (table 2.6) which is deposited on Si substrate. The ohm- 

meter was left connected for around one hour to the metallic line where at the same time 

statistics option was enabled. In the table below we can see the values of the minimum, 

maximum and average resistances of this metallic line.  

Table 2.12: Minimum, maximum and average resistance values of metallic line 12 on Si substrate. 

Metallic line 2b (µm) l (mm) Rmin (Ω) R0 (Ω) Rmax (Ω) 

12 30 9.2 21.1927 21.2112 21.2227 

 

The ohm-meter has precision specifications of ± (0.0015% of reading +0.0002% of range) for 

a resistance in the range of 100 Ω [HP 2003]. Thus, the total resistance error calculated when 

measuring the metallic line average resistance using the ohm meter is Re=±0.5181 mΩ. This 

results in an error E1 of ±0.0024% on the values of the thermal conductivities measured by 

both the Wheatstone bridge and the differential amplifier circuits. Consequently, one can 

consider the error introduced due to ohm meter precision measurements to be negligible. 

Now, let us study the error produced due to the minimum and maximum values of the metallic 

line resistance. Table 2.13 shows the values of the errors, % e1, that affect the thermal 

conductivity considering the ohm meter’s error Re on one hand and neglecting it on the other 

hand. Although the resulting errors are higher than E1, they are still low in value and their 

impact on the thermal conductivity can be dismissed.  

Table 2.13: %errors produced due to minimum and maximum metallic line resistances. 

 Rmin-Re Rmin Rmax Rmax+Re 

Resistance (Ω) 21.1921 21.1927 21.2227 21.2232 

% e1 0.0898% 0.0873% -0.0541% -0.0565% 
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The same study was done on all the metallic lines used in our measurements and the 

percentage error was always found to be insignificant.  

V.3.b. The initial voltage V0 

The initial voltage V0 across the metallic line has to be measured just at the beginning of 

the experiment before the metallic line starts to heat up. Crocodile clip connectors are 

attached to the micromanipulator tips to achieve the parallel connection between the 

multimeter and the metallic line resistance. The multimeter used is an Agilent 34411A 6 ½ 

digit. It is important to know the measurement precision of the multimeter since V0 is cubed 

when calculating the thermal conductivity of materials. In addition, this precision changes as 

frequency changes. Table 2.14 shows the multimeter’s precision specifications with respect to 

frequency [HP 2013]. 

Table 2.14: AC voltage precision specifications of the multimeter. 

Frequency ±(% of reading + % of range) 

3 Hz – 5 Hz 0.5% of reading + 0.02% of range 

5 Hz – 10 Hz 0.10% of reading + 0.02% of range 

10 Hz – 20 KHz 0.02% of reading + 0.02% of range 

 

For GaAs, measurements are done for frequencies higher than 10 Hz. Just at the beginning 

of manipulations, the initial voltage V0 measured by the multimeter across metallic line 4 is 

equal to 0.4374 V. Therefore, the calculated voltage error Ve is: 

Ve = ±(0.4374 V *0.02%)+(1 V *0.02%) =  ±0.287 mV 

This leads to an error e2 = ±0.197% on the thermal conductivity value.  

For borosilicate substrate, sometimes measurements are done for frequencies lower than   

5 Hz. For example, for metallic line 2, we initiated our third harmonic voltage measurements 

at a frequency equals to 3.5 Hz. The calculated error produced on the thermal conductivity 

value is found to be e2 = ±1.65 %.  
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The same calculations were performed on all the metallic lines over BrSiO2, GaAs, InP 

and Si. For the four materials, the highest thermal conductivity percentage error aroused due 

to the multimeter precision measurement was found to be ±1.65 %.  

V.3.c. The temperature coefficient of resistance βh 

The temperature coefficient of resistance has been measured using the hot plate method. 

Temperature of the metallic line resistance was monitored by attaching the thermocouples 

over the substrate’s surface near the metallic line by the use of thermal paste. The 

thermocouples were held in their position by the aide of adhesive tape. This method produces 

several systematic errors in addition to uncertainties in the value of βh.  

One of the systematic errors is due to the fact that the metallic line is heated through the 

substrate underneath. If this substrate is of a low thermal conductivity, it will need a long time 

to reach thermal equilibrium. Moreover, the temperature of the hot plate is adjusted manually. 

Varying the hot plate temperature might cause the micromanipulators tips to move a little 

from their original place on the metallic line pads and consequently resulting in a change in 

the value of the metallic line resistance.  

The uncertainty in the value of βh is due to the small variations around an average value in 

the metallic line resistance and its temperature. The thermometer used to measure the 

temperature of the metallic line is a DIGI-SENSE 12 channel thermocouple scanning 

thermometer with an accuracy measurement of E = ±0.5 °C ±0.1 % of reading at temperatures 

above -150°C [DIGI DOC]. The thermometer’s channels are enabled in order to read the 

different temperatures of the thermocouples taped on the surface of the substrate. Table 2.15 

shows the average, minimum, and maximum resistances of metallic line 3 (see table 2.6) at 

different average temperatures (average temperature of the thermocouples) together with the 

minimum Tmin and maximum Tmax temperatures measured between these thermocouples. 

(Tmin-E) and (Tmax+E) are calculated in order to be able to plot the minimum and the 

maximum slopes as will be shown.  
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Table 2.15: Rmin, Rmax and Ravg at different temperatures measured for metallic line 3 on BrSiO2 substrate for the 
determination of βh.  

Tmin (°C) Tavg (°C) Tmax (°C) Rmin (Ω) Ravg (Ω) Rmax (Ω) Tmin-E  

(°C) 

Tmax+E 

(°C) 

23 23.13 23.2 44.5107 44.5219 44.5324 22.47 23.72 

38.5 39.1 39.5 46.7645 46.7763 46.7873 37.96 40.04 

48.1 48.5 49 48.0777 48.0897 48.1011 47.55 49.54 

57.1 57.73 57.9 49.4087 49.4211 49.4328 56.54 58.45 

67 67.23 67.5 50.7058 50.7185 50.7305 66.43 68.06 

75.8 76.1 76.3 52.0240 52.0371 52.0494 75.22 76.87 

 

In the above table, the ohm meter’s measurement precision error is neglected. Figure 2.22 

presents the linear increase of the average resistance of metallic line 3 with respect to the 

average temperature. The slope is then calculated in order to determine the temperature 

coefficient of resistance βh.  

 

Figure 2.22: Average resistance versus average temperature for metallic line 3 on BrSiO2 substrate. 

Dividing the slope by the average resistance of metallic line 3 over BrSiO2 substrate at room 

temperature gives a temperature coefficient of resistance βh=0.003178 /°C. The vertical and 

horizontal error bars corresponding to the resistance and temperature measurement errors are 

plotted in figure 2.23. Accordingly, we can obtain the uncertainty in the slope and 

consequently in the value of βh. 
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Figure 2.23: Slope variation corresponding to measurement error of average resistance and temperature.  

The maximum slope is plotted in violet for R1= Rmin at T1= (Tmax+E) = 23.72 °C and 

R2=Rmax at T 2= (Tmin-E)= 75.22 °C. While the minimum slope is traced in blue for R3= Rmax 

at T3 = (Tmin-E)=  22.47 °C and R4= Rmin at T4 = (Tmax+E)=  76.87 °C. In table 2.16 we can 

observe the change in the value of the temperature coefficient of resistance as the value of the 

slope varies. This change corresponds to an error e3 of -2.65 % to +3.48 % on the average 

thermal conductivity kavg of the material.  

Table 2.16:  Variation of βh, kDA, and kWB with respect to the slope. 

 Minimum average maximum 

Slope (Ω/°C) 0.1377 0.1415 0.1463 

β (/°C) 0.003094 0.003178 0.003288 

kDA (W/m.K) 1.307 1.343 1.390 

kWB (W/m.K) 1.357 1.394 1.442 

% e3 w.r.t. kavg -2.65 % — +3.48 % 

 

In some cases, while measuring the resistance during the TCR measurements, some 

vibrations might occur causing the resistance value to jump and then retain its original value. 

This jump is memorized as a maximum according to the ohm meter’s statistics. This results in 

a higher slope variation and consequently adds higher error to the thermal conductivity value 

which might reach 10%. Such a problem can be solved by collecting the ohm meter’s 
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measurement data and omitting the undesired value. The data can be saved by connecting the 

ohm meter to a personal computer possessing a special kind of programs such as LabVIEW. 

This error analysis was performed on all the metallic lines over BrSiO2, GaAs, InP, and Si 

substrates. The maximum for e3 is found to be ±6%. 

In conclusion, the above mentioned systematic errors can be reduced by heating the 

metallic line in a precise temperature controlled oven instead of using a hot plate. The benefits 

of using such oven are: 

1) the metallic line is heated by surrounding air rather than through underneath the 

substrate,  

2) no thermocouples are needed to be connected to the metallic line, 

3) no vibrations are generated when varying the oven’s temperature.  

V.3.d. The effect of V3ω in phase versus Ln(2ω) on the thermal conductivity value 

The SR830 lock-in amplifier used in measuring the third harmonic voltages across the 

metallic line has a measurements precision of ±1 % of reading. This precision is given after 

calibration done by Standford Research laboratories on the lock-in amplifier. Therefore, an 

error analysis was done to check the influence of this measurement precision on the slope of 

the linear relation between the in-phase third harmonic voltage and the natural logarithm of 

2ω.  

Let us recall the equation used in calculating the material thermal conductivity (equation 

2.20): 

BlR
Vk h 1*
4 0

3
0




  

The vertical error bars corresponding to the in-phase third harmonic voltage (V3ω in-phase DA 

and V3ω in-phase WB) measurement precision are plotted for metallic line 3 on BrSiO2 substrate 

as shown in Figure 2.24. Consequently, the minimum and maximum slopes are determined 

for each of the measurements done by the differential amplifier circuit and the Wheatstone 

bridge. According to equation 2.20, a minimum thermal conductivity is calculated for a 

maximum slope and vice versa. Table 2.17 summarizes the values of the slopes, the resulting 

thermal conductivities and the errors e4 with respect to the average thermal conductivity 

produced due to the slope variation.  
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Figure 2.24: The variation of the slope due to the precision measurements of the lock-in amplifier. 

Table 2.17: The slope and thermal conductivity variations for measurements done on metallic line 3 using DA and 
WB circuits. 

  Minimum average maximum 

 

DA circuit 

Slope  0.05571 0.05817 0.06062 

kDA (W/m.K) 1.289 1.343 1.402 

% e4 -4.05 % — +4.41 % 

 

WB circuit 

Slope  0.05359 0.05596 0.05833 

kWB (W/m.K) 1.337 1.394 1.455 

% e4 -4.06 % — +4.43 % 
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We can notice in table 2.17 that the percentage error e4 is the same for both the DA and WB 

circuits. The highest percentage error e4 produced when applying this error analysis on all the 

measurements done over BrSiO2, GaAs, InP, and Si is ±6.5 %.   

V.3.e. The effect of V0, R0, βh and slope measurement errors 

After studying the effect of each of R0 (error e1), V0 (error e2), βh (error e3), and slope (error 

e4) measurement errors separately, we evaluate the contribution of these errors altogether on 

the value of the thermal conductivity of materials.  

The maximum error over the thermal conductivity is calculated by taking the maximum error 

over the factors present in the numerator (V0 and βh) of equation 2.20 and the minimum error 

over those found in the denominator (R0 and slope) of the same equation. This is 

demonstrated in equation 2.22: 
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where Ve is the voltage error produced when measuring V0 due to the multimeter precision 

measurement, βh max is the maximum temperature coefficient of resistance of metallic line 

(section V.3.c.), Rmin is the minimum metallic line resistance detected by the micro-ohm meter 

(section V.3.a.), and slopemin is the minimum slope obtained for a ±1 % measurement 

precision of the in-phase third harmonic voltages measured by the lock-in amplifier.  

Inversely, the minimum value of the thermal conductivity is calculated as follows: 
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The following table represents a summary of the percentage errors e1, e2, e3, and e4 produced 

due to R0, V0, βh, and slope measurement errors respectively. Also we can find eT which is the 

error due to the total contribution of e1, e2, e3, and e4 on the value of the thermal conductivity 

of materials. We present the error results corresponding to metallic lines 3, 4, 7, and 11 on 

BrSiO2, GaAs, InP, and Si (HR) respectively. These metallic lines have the lowest percentage 

errors calculated over each material. 
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Table 2.18: Percentage errors e1, e2, e3, e4 and eT for metallic lines 3, 4, 7, and 11. 

Metallic line % e1 % e2 % e3 % e4 % eT 

3  

BrSiO2 

±0.00194 % ±1.60 % -2.65 % 

+3.48 % 

-4.06 % 

+4.43 % 

-8.12 % 

+9.83 % 

4 

GaAs 

±0.00253 % ±0.197 % -3.24 % 

+3.58 % 

-5.66 % 

+5.21 % 

-9.85 % 

+10.53 % 

7 

InP 

-0.023 % 

+0.025 % 

±0.62 % -3.50 % 

+4.67 % 

-5.76 % 

+5.50 % 

-9.6 % 

+10.2 % 

11 

Si (HR) 

±0.00213 % ±0.5 % -5.64 % 

+5.93 % 

-4.37% 

+4.79 % 

-10.22 % 

+10.57 % 

 

As mentioned before, the percentage error e1 is minimal and can be ignored. The error e2 

aroused due to the multimeter’s measurements is considered to be small where it affects 

slightly the thermal conductivity value. We can notice that accordingly, the error is mostly 

due to measurement of the temperature coefficient of resistance βh and the lock-in amplifier’s 

precision measurement. The total error eT on the values of the thermal conductivities 

determined using both the differential amplifier and the Wheatstone bridge circuits is 

calculated to be around ±10 %.  

V.4. Electronic circuits parasitic effects 

As discussed before, the common mode cancellation techniques (WB and DA) are used to 

eliminate the third harmonic voltage produced by the function generator. This is done by 

balancing the Wheatstone bridge or the differential amplifier circuit. Normally, at the output, 

a zero voltage at angular excitation frequency ω must be acquired. Nevertheless, while 

balancing the experimental setup (WB or DA), an out-of-phase voltage is detected. In fact, 

only the real part of the voltage Vω at angular frequency ω is attenuated. Consequently, we 

can conclude that reactive parasitic elements, inductive or capacitive, exist in the electronic 

circuit.  

Actually, we cannot perform a complete study over the experimental circuit, since it is 

difficult to quantify the influence of the ground plane or every line belonging to the electronic 
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circuit on the experimental measurements. However, the presence of the reactive parasitic 

elements corresponding to every passive component in the electronic circuit can be 

investigated. Therefore, we were able to measure the value of these parasitic elements on each 

component by the aide of two impedance analyzers (FLUKE PM6306 and AGILENT 

4294A). The results given by both instruments are the same, particularly when the capacitive 

elements measured are superior to 10 pF. The measuring instruments have a common 

disadvantage. The FLUKE PM6306 and AGILENT 4294A cannot measure impedances for 

frequencies lower than 50 Hz and 40 Hz respectively. So, impedance measurements cannot be 

done for materials possessing high thermal conductivities whose linear zone limits are at 

around ten Hz.  

This study is presented on line 4 belonging to GaAs substrate (table 2.6). We can find in 

table 2.19 and 2.20 the values of the parasitic elements measured at 700 Hz. This frequency 

corresponds approximately to the central frequency of the linear zone of metallic line 4. 

However, we have to keep in mind that the values of the parasitic elements change with 

frequency. The impedance measurements are done for potentiometers R3,v (WB) and Rv (DA) 

as a whole. They are not performed on every passive element constituting these variable 

resistances.   

Table 2.19: Parasitic element corresponding to each passive element constituting the WB. 

Resistor or potentiometer Parasitic element 

R2 Capacitor in parallel < 1pF 

R1 Capacitor in parallel ~ 20 pF 

R3,v Capacitor in parallel ~ 150 pF 

 
Table 2.20: Parasitic element corresponding to each passive element constituting the DA. 

Resistor or potentiometer Parasitic element 

Rv Capacitor in parallel ~ 120 pF 

 

Impedance measurements are done for many metallic lines of different lengths and widths 

deposited on the material under-test. The real part of the impedance changes according to the 

resistance measured, while its imaginary part is found to be quasi constant and corresponds to 
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an average inductance in series equals to 4 µH. The impedance measurements for the metallic 

line consider the micromanipulator needles and their coaxial cables.  

After characterizing the passive elements, we simulate the behavior of the WB and DA 

circuits using the electro-kinetic equations operating in a permanent sinusoidal regime (figure 

2.25(a) and 2.25(b)).  Also, these equations are inserted in MATLAB in order to calculate  

VA-VB. The voltage at the generator is fixed to 2 Vrms. The capacitive effect over R2 is 

neglected and the differential amplifiers AD624 are assumed to be ideal. As we have done 

experimentally, the real part of the complex impedance measured across the potentiometers 

R3,v and R3 is adjusted in a way that the real part of the voltage VA-VB is equal to zero.  

 

Figure 2.25: Parasitic effects presents in the (a) WB and (b) DA circuits.  

Figure 2.26 represents a theoretical-experimental comparison for the WB and DA circuits. We 

can notice in both cases an increase in the imaginary part of VA-VB similar to the rise in 

experimental measurements with respect to frequency. However, the experimental 

measurements are always superior to theoretical ones. The study done here is a first approach 

where only certain reactive elements are taken into account. As shown in figure 2.26, the 

values of VA-VB obtained are less than 1 mV which indicates that the generator’s voltage at 

frequency ω set at 2 Vrms is attenuated by a factor superior to 2000. Also, if any third 

harmonic voltage is produced by the generator, it will be highly attenuated and consequently 

negligible when measuring VA-VB. 
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Figure 2.26: Theoretical-experimental comparison of out of phase VA-VB for WB and DA circuits. 

In the following, the influence of the parasitic elements on the third harmonic voltage is 

studied. For the WB and DA circuits, a generator operating at frequency 3ω possessing an 

electromotive force given by Cahill’s equation (equations 1.51 and 1.52) when translated into 

voltage is placed in series with the metallic line. The simulated electric circuits are shown in 

figure 2.27(a) and 2.27(b). 

 

Figure 2.27: A generator at frequency 3ω placed in series with the metallic line for the (a) WB and (b) DA 
circuits. 
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Figure 2.28: The in-phase (a) and out of phase (b) VA-VB voltages when considering and when neglecting 
the parasitic effects. 

Figure 2.28(a) and 2.28(b) represent respectively the theoretical in-phase and out of phase 

values of the voltage VA-VB (in the linear regime) for the WB and DA circuits where the 

components are purely resistive on one hand and where the parasitic effects are taken into 

account on the other hand. We can clearly notice that the parasitic elements have no influence 

on the voltage VA-VB when the measurements are done for frequencies between 500 Hz and 

1000 Hz which correspond to Ln(2) equal to 8.745 and 9.438 respectively. 

V.5. Conclusion 

The instrumentation measurement precision and its influence on the thermal conductivity 

value have been studied. The error e1 due to measuring the metallic line resistance R0 was 

found to be negligible. Also, the error e2 produced due to the measurement of the initial 

voltage V0 has a slight influence on the thermal conductivity value. It is the measurement 

errors e3 and e4, aroused when determining the temperature coefficient of resistance βh and the 

slope of linearity respectively that have stronger effects on the value of the thermal 

conductivity. Finally an error analysis combining all ohm-meter, multimeter, hot plate method 

and lock-in amplifier measurement errors has been performed. This error eT was calculated to 

be around ±10 %.The presence of parasitic reactive elements in the WB and DA circuits has 
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caused the appearance of an out-of-phase voltage at frequency ω. We were not able to cancel 

such voltage. However, we were able to perform a study through which we have shown that 

the reactive elements have practically no effect on the measured voltage VA-VB.  
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Conclusion 

The three omega method-based experimental setup was built up. It consists of a function 

generator that feeds the metallic line with an alternating current and a lock-in amplifier to 

measure the in-phase and out-of-phase third harmonic voltages produced by the metallic line. 

The lock-in amplifier was connected to the output of a Wheatstone bridge or a differential 

amplifier circuit used to isolate the third harmonic voltage across the metallic line and to 

suppress any other third harmonic signal that might add to the measurements. The metallic 

line was chosen to be made of gold since this metal has a high TCR. It was deposited on the 

surface of the material under test through photolithography process. The Wheatstone bridge 

and the differential amplifier circuit were designed such that all their components possess a 

very small TCR compared to the one of the metallic line. It is important to precisely measure 

the resistance of the metallic line at room temperature, its temperature coefficient of 

resistance, and the initial voltage across the metallic line before it starts to heat up.  

The three omega method-based experimental setup was validated. Measurements were 

performed on four kinds of materials, borosilicate, gallium arsenide, indium phosphide, and 

silicon. The average thermal conductivities measured for these materials agreed well with the 

values found in literature. The thermal conductivities measured when using the differential 

amplifier circuit were found to be repetitive and with lower error with respect to the average 

thermal conductivity when compared to the Wheatstone bridge. An error analysis for the three 

omega method-based experimental setup was done. The errors due to ohm-meter and the 

multimeter measurements were found to be negligible. It was found that the measurement of 

the temperature coefficient of resistance of the metallic line using the hot plate method 

produces an average error of -3 % to +4 % on the value of the thermal conductivity. Also, 

measuring the third harmonic voltage by the aide of the SR830 lock-in amplifier, produces an 

error of -5.7 % to +6.5 %. Taking into account the effect of all the errors produced by the 

instruments used in the 3 omega method-based experimental setup results in a total error eT of 

around ±10 %.  

Using the differential amplifier circuit in the experimental setup has shown better results 

than when using the Wheatstone bridge. Therefore, in the coming chapters we will only 

present the third harmonic voltage measurements done by means of the differential amplifier 

circuit.    
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Introduction 

In the previous chapter, the thermal conductivities of different solid materials have been 

measured by the three omega method and compared to Cahill’s analytical solution. Cahill’s 

solution stands over several assumptions such as a substrate of semi-infinite thickness, a 

metallic line of infinite length and negligible thickness. In reality, the samples prepared for 

the three omega measurements are of finite thickness and the metallic lines deposited on their 

surfaces are very thin and of finite length. Consequently, we have thought of a second 

theoretical study capable of examining the sample with its real dimensions.  

In the past, the three omega method has been theoretically investigated using numerical 

simulation based on finite volume method (FVM) [JAC 2002]. In this study Jacquot et al. 

have developed their own home-made software. In this chapter, we develop another numerical 

simulation based on finite element method (FEM) in order to calculate the temperature 

oscillations at the level of the metallic line. Both FVM and FEM can adapt to all geometrical 

structures. The choice of a FEM technique has been mainly motivated by the availability of 

efficient and user friendly software. The FEM theoretical simulation results are then 

compared to the experimental data and Cahill’s analytical solution.  

In a second step, numerical simulations using FEM are applied to a two layer model 

consisting in a thin film is deposited on the substrate surface. In this chapter an alternative 

method to study the transfer of heat in a metallic line on substrate structure is developed. The 

three omega method has been used extensively to measure the thermal properties of thin film 

materials. It is worth to notice that Cahill et al. have also expanded the three omega method to 

obtain the thermal conductivity of a thin film on substrate [CAH 1994]. Initially, they have 

measured experimentally the temperature response produced because of the film-on-substrate 

system. Then, the temperature oscillations due to the substrate alone are calculated using 

Cahill’s formula. The difference of the temperature responses between the two cases is then 

attributed to the presence of the thin film.  

In a first part of the chapter, numerical simulations using finite element method are 

implemented to study the influence of Cahill’s assumptions on the evolution of temperature of 

a heater deposited on the surface of a material. A structure consisting of a semi-infinite 

substrate with an infinitely thin metallic line deposited on its surface is initially designed.  

Then, the numerical simulations are turned on to determine the evolution of temperature with 

respect to time at the metallic line level. Afterwards, the FEM results are compared to those 
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obtained by Cahill’s formalism and then the influence of the finite thickness substrate, the thin 

metallic line, and the heat convection at the surface are studied.    

In section II, the three omega differential technique for measuring the thermal 

conductivities of thin films is briefly described. Two thin film-on-substrate systems are 

studied using this technique. The first is a dielectric thin SiO2 film deposited over a boron 

doped Silicon substrate. The second film is an epitaxial grown layer on gallium arsenide 

substrate. Numerical simulations are performed for both samples. Then, the measurement data 

are compared to the results obtained by means of Cahill’s formalism and by FEM treatment. 

Finally, conclusions are drawn for these comparisons. 
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I. Numerical simulation by Finite Element Method (FEM) 

I.1. Introduction 

In chapter 1, we have used analytical equations to determine the evolution of the 

temperature oscillations amplitude over the metallic line with respect to frequency. 

Nevertheless, these equations stand over a number of assumptions. First, Cahill considers a 

substrate of a semi-infinite thickness when solving Carslaw and Jaeger’s equation of heat 

conduction. Then, the metallic line is assumed to be infinitely thin. Finally, heat convection at 

the surface of the substrate is neglected. In order to study the effect of these assumptions, we 

have developed a numerical simulation based on a finite element method in time domain 

using COMSOL® Multiphysics software which permits the determination of the evolution of 

temperature rise on every point in space. The finite element method is briefly recalled and the 

steps needed to apply this method are described. Then numerical simulations are performed 

for a structure similar to Cahill’s model and the results are compared to the analytical 

solution. The impact of different parameters related to the metallic line and the substrate are 

then studied. The influence of heat convection on the surface of the sample is also 

investigated.    

I.2. FEM and COMSOL® Multiphysics Software 

Originally the finite element method has been developed to study a given structure from a 

mechanical point of view, but since it has been extended to different physical domains such as 

heat transfer analysis in many materials [CUI 2011, DHA 2005]. In the case of a thermal 

study, we need to determine the distribution of temperature in space, T(x, y, z) inside a 

volume having a closed boundary The objective is to find an approximate solution to a 

given problem defined by its boundary and initial conditions. When solving thermal problems 

using the finite element method, boundary conditions (mentioned in chapter 1, section I.4) can 

be defined at the boundary  (figure 3.1) [LEW 1996].   

When performing simulations using the finite element method, the continuous space to be 

studied must be replaced by a discrete structure. Therefore, meshing is applied and so the 

domain is divided into simple geometric elements such as triangles. The finite elements 

produced have a common vertex, a common side or a common surface with the neighboring 

element. The vertices formed are called nodes. The solution of a given problem is calculated 

at these nodes. Theoretically, the dimensions of the finite elements must tend to zero, however 

this is not possible. A finite number of elements must be tested in order to estimate the error 
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due to the applied meshing and consequently the precision of the results. Figure 3.1 shows a 

two dimensional region subdivided into finite elements. 

 

Figure 3.1: Two-dimensional region subdivided in finite elements. 

For two dimensional structures, meshing is simply applied and the 2D problem is easily 

solved. However, tetrahedral meshing for three dimensional objects results in structures which 

are complex to solve even by using efficient software. This becomes even more complicated 

when the elements to be simulated possess high lengths but very low thicknesses. If the size 

of the meshing elements is successfully adapted to the smallest dimension of a given object, 

then meshing is well applied, however the total number of the tetrahedrons constituting the 

object is too high. Consequently, it is not possible to easily numerically simulate such a 

problem. The same difficulty exists when we need to simulate the three omega method for a 

three dimensional structure. The heating element is considered to be long (several 

millimeters) and has a thickness lower than one micrometer. All in all, the 3D finite element 

method simulations can become costly in terms of both computational time and memory 

requirements. 

Modeling using FEM consists of several steps as presented in figure 3.2. Initially, the exact 

geometry of the structure to be studied is created. Then, meshing is applied on the structure 

(triangular for 2D structures). Afterwards, physical conditions such as boundary and initial 

conditions are required. The material and its physical properties (density, heat capacity, 

thermal conductivity…) are also specified. Numerical simulations can then be initiated and 

the computational time depends on the size of the structure and meshing. Finally, distribution 

of temperature (in case of thermal problem) in the structure is obtained. 
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Figure 3.2: Steps needed to perform modelling using FEM.  
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Nowadays, different software have been developed and used in a large number of scientific 

research domains. The FEM-based software used in this work is COMSOL® Multiphysics. 

Many problems of different physical fields are solved using this software by applying the 

equations corresponding to the desired domain.  Examples of such physical domains are heat 

transfer, expansion of fluids, electromagnetism, acoustics, mechanics of structures… This 

multiphysical capacity permits the user to mix different physical domains (such as 

electromagnetism and heat transfer) to solve a particular problem. COMSOL® has been 

created by M. Svante Littmarck and M. Farhad [COM 2009] in Sweden in 1986 and now 

distributed all around the world. COMSOL® facilitates the simulations by FEM since all the 

steps needed for the structure’s modelling are accessible with a friendly graphical interface: 

geometry design, definition of physical domain, initial and boundary conditions, material 

choice, meshing, calculation and post treatment of results [CUI 2011]. The studied structure 

can be one dimensional, two dimensional, or three dimensional. Simulation in stationary or 

transient regimes can be carried out.  

I.3. Comparison between Cahill’s solution and simulation by FEM 

In this study, a structure using FEM is simulated by applying the same approximations 

used to obtain Cahill’s formula: infinitely thin metallic line, semi-infinite substrate, and 

thermal isolation on the surface of structure.  

In order to validate experimentally the numerical simulations, we have chosen a reference 

metallic line that will be used all over sections I.3 and I.4 of this chapter. Therefore, it will be 

easier for the reader to follow the influence of various parameters. We have chosen metallic 

line 2 deposited on borosilicate substrate. We recall the properties of this metallic line in table 

3.1. The thickness of the metallic line and the substrate are 0.4 µm and 700 µm respectively. 

The average thermal conductivity of BrSiO2 measured using metallic line 2 is 1.31 W/m.K. 

Table 3.1: Properties of metallic line 2 at room temperature( T0= 24.7 °C) deposited on BrSiO2. 

Line 2b (µm) l (mm) R0 (Ω) V0 (V) β (/°C) prms (W/m) 

2 30 18 40.6959 0.4268 0.0031303 0.2487 

 

Metallic line 2 has been selected among other metallic lines since the amplitude of the in-

phase third harmonic voltages obtained using the Wheatstone bridge corresponds well to the 

results found when using the differential amplifier circuit (figure 2.17). Moreover, the 
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measured values of the third harmonics (~ one hundred microvolts) represent approximately 

the average value of the measurements done for the 4 materials (BrSiO2, GaAs, InP, Si HR). 

The results of modelling using metallic line 2 are presented in the following section. It can be 

also noted that the numerical simulations have been tested on other metallic lines deposited 

over different materials. 

I.3.a. Description of the studied structure 

Numerical simulations of the 3ω method based on the FEM give the possibility to take into 

account the exact geometry of the heater (metallic line), the materials underneath the heater 

and the physical properties of these different materials. Normally the problem should be 

solved using a 3D geometry as shown in figure 3.3(a). We can notice a copper plate placed 

under the substrate under-test. During manipulations, this plate has been used as a heat sink. 

Its role is to keep its surrounding temperature equal to ambient one. In the case of a very long 

metal strip (l >> 2b), the 3D problem can be reduced to a 2D problem considering only a 

plane perpendicular to the metallic line (Figure 3.3(b)).  

 

Figure 3.3: (a) 3D and (b) 2D geometry of the metallic line deposited on the substrate under-test. 

Figure 3.4 presents the simplified structure proposed in figure 3.3(b) that is similar to 

Cahill’s model. The metallic line no more exits and it is replaced by a boundary element 

which behaves like a heat source. Also, the convection existing at the upper surface of the 

structure is replaced by thermal isolation where no heat flux crosses the boundary (equation 

1.14). However, a problem lies in the fact that a semi-infinite substrate must be simulated, 

whereas simulations by finite element method can only be done for a closed structure.  
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Figure 3.4: (a) Cahill’s assumptions on the structure to be simulated. (b) Symmetry condition. 

Before going forward in simulations, we can notice symmetry along the normal line to the 

metallic strip. Consequently only half of the structure is considered as shown in figure 3.4(b). 

Thermal isolation boundary conditions exist at the axis of symmetry. Therefore, no 

temperature gradient exits at the symmetry axis. Using the symmetry conditions reduces the 

memory size and the calculation time needed.  

I.3.b. Boundary conditions 

Most of the times, the structures simulated using finite element method have no 

boundaries. In this case it is said to be an open structure. Simulating an infinite structure is 

possible if it can be transformed to a finite one. A first solution is to increase the size of the 

finite structure as much as possible in order to cancel the influence of the boundary conditions 

set at its extremities. This approach creates useless meshing elements that might render the 

simulations impractical in terms of computational time and memory size. Another solution 

consists of using regions or layers called “infinites”.  These layers are made of elements that 

make the simulations in an infinite space possible without increasing the number of meshing 

elements. Moreover, the “infinite” layer possesses a thickness that is lower than that of the 

substrate. An “infinite” layer surrounds the open structure transforming it into a closed 

structure compatible with the finite element method. COMSOL® Multiphysics software 

permits the use of “infinite” layers when simulating the heat equation [COM 2012].  
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Figure 3.5: The use of “infinite” layers to produce a finite structure. 

We can find in figure 3.5 the “infinite” layers added in the simulated structure. The 

“infinite” layers can be terminated by temperature conditions or thermal isolation. In fact, the 

extremities of the “infinite” layers are not of importance since they are supposed to be at 

infinity. They have no influence on the simulation results. The “infinite” layers are placed at a 

distance on the vertical axis equal to the thickness of the tested substrate (ts= 700 µm for 

BrSiO2 substrate) and at a distance on the horizontal axis equal to 1.2ts (half width of substrate 

superior to ts) from the center of the heat source. Numerical simulation study has been done to 

study the effect of the thickness of the “infinite” layer on the FEM results when it is varied 

between 0.1ts and 2ts. It was found that thicknesses superior to 0.3ts do not affect the 

simulation results. Consequently, the “infinite” layer thickness is fixed to 0.5ts (thickness of 

the “infinite” layer greater than 0.3ts by taking into account the appropriate memory size) for 

the structure shown in figure 3.5.  

At the surface and at the symmetry axis of the structure, thermal isolation boundary 

conditions are set. At last, a heat source must be set before turning on simulations.      

I.3.c. The heat source 

One of the important issues when starting thermal simulation problems is to add a heat 

source in order to produce temperature rise inside the structure. In the previous model (figure 

3.5(a) or 3.5(b)) we have considered a metallic line of a negligible thickness. Consequently 

the heat source is located on a boundary element which represents the metallic line conductor. 

This boundary element behaving as a heat source corresponds to a thermal heat flux (in 
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W/m2) entering the domain. To determine the value of the heat source, we start with an initial 

voltage V0 across the metallic line and its measured resistance R0 at temperature T0 (see table 

3.1). The evolution of current passing through the metallic line with respect to time is then 

deduced. Figure 3.6 represents the current i(t) over three periods of time at frequency F= 10 

Hz for metallic line 2 over BrSiO2 substrate. This frequency is included in the linear regime 

frequency zone of the metallic line 2 (Flower ≈ 3.2 Hz and Fupper ≈ 11.1 Hz). 

 

Figure 3.6: Time evolution of current at frequency 10 Hz. 

According to equation 1.27, the evolution of power p(t) with respect to time can be 

deduced (figure 3.7). The line in red corresponds to the average value p(t) and is equal to Prms 

(see chapter I). We can observe that the frequency of p(t) is twice that of i(t).  

 

Figure 3.7: Evolution of power with respect to time at frequency 10 Hz. Average power in red = Prms. 

The heat source boundary element is represented by Qb(t) (in W/m2). Qb(t) can be 
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The time evolution of Qb(t) for metallic line 2 over BrSiO2 substrate is shown in figure 3.8. 

 

Figure 3.8: Time evolution of the heat source boundary element Qb(t) for line 2. 

Similarly, we can notice that Qb(t) has a frequency two times that of the alternating current 

i(t). 

Before presenting the simulations performed to solve the problem and to determine the 

characteristics of temperature oscillations, the meshing applied on the structure is briefly 

discussed in the following section.  

I.3.d. Meshing of the structure 

As it has been mentioned before, the finite element method requires the creation of mesh 

for the studied structure.  

 

Figure 3.9: (a) Coarse meshing and (b) fine meshing of the structure. 
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It is possible to use coarse meshing (figure 3.9(a)) but it is better to apply fine meshing to 

produce a more reliable heat transfer modeling (figure 3.9(b)).   

The most important part in the studied structure is the boundary element which supplies the 

system with heat. Therefore, meshing of good quality must be applied on this segment. In the 

case of coarse meshing, the boundary element of width b= 15 µm for line 2, is divided only 

into three elements (figure 3.10(a)). Such division produces unsatisfactory modelling of the 

physical phenomenon. On the other hand, in the case of fine meshing, the boundary element is 

divided for example into 10 elements (figure 3.10(b)) which is obviously better. Fine meshing 

is always more preferable than coarse meshing, but a compromise must be found between the 

precision of results, the computational time, and the memory size.  

 

Figure 3.10: Coarse (a) and fine meshing (b) of the heat source boundary element.  

I.3.e. Determination of the temperature oscillations ∆TAC 

The numerical simulations must be performed with respect to time since the heat source is 

sinusoidal at frequency 2ω knowing that ω is the generator’s frequency. The amplitude of the 

temperature oscillations ∆TAC at frequency 2ω must be determined together with its phase 

shift with respect to the heat source Qb(t). At t= 0, the heat source is applied. A certain period 

of time or a certain number of periods of the excitation signal passes before reaching a 

sinusoidal permanent regime. When performing manipulations, such a period of time is 

estimated to be around ten seconds which is acceptable. However, in the case of theoretical 

simulations, this period corresponds to a computational time which is long and useless for the 

determination of the temperature oscillations of the metallic line. In fact, when performing 

simulations, two steps are followed. The first step consists of a stationary study where the 

derivatives with respect to time are equal to zero. Therefore, the metallic line is fed by 

continuous power PDC equals to Prms. In this case, the initial temperature of the structure is set 
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to ambient temperature. The final thermal pattern obtained serves as the initial conditions of 

the second step which consists of a time dependent study. Consequently, the time dependent 

study initiates at a temperature T0 equals to the temperature obtained at the end of the 

stationary study (figure 3.11(a)). In this way time needed to perform theoretical simulations in 

the transient regime is reduced. Moreover, the transient regime that appears during the time 

dependent simulations is very short. We present in figure 3.11(a) the time evolution of the 

temperature oscillations ∆TAC obtained theoretically in case of line 2 for 10 signal periods 

supplied by the generator (f= 10 Hz).  

       The temperature oscillation ∆TAC is calculated by taking the average value of the heating 

boundary element temperature at each time step (∆T) calculation. The time step calculated 

and set for this simulation and all other simulations presented in this thesis, is equal to T/200 

where T is the period of the generator. Therefore, 100 calculation points permit to construct 

one period of temperature oscillations (frequency 2ω).  

 

Figure 3.11: (a) Temperature evolution of the temperature oscillations ∆TAC for line 2. (b) A zoom of the 
temperature oscillations at the beginning of the transient regime.  

Figure 3.11(b) shows a zoom over temperature oscillations in the transient regime which 

appears at the beginning of the calculation. This transient regime is short. We have estimated 
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after three periods T supplied by the generator. Therefore in this case it begins at 0.3 s. Then 

for times superior to 3T, we can determine the temperature oscillation amplitude and phase 

with respect to the power oscillation at 2ω where the reference phase is that of the heat source 

Qb(t).  

Having designed the structure, set the boundary and initial conditions, located a heat 

source, applied meshing, started the calculations and obtained the expected results, we still 

need to determine the amplitude and phase of the temperature oscillations at the level of the 

heating element. This is the last step to be considered in this simulation. 

To determine the parameters AT and T of equation 3.2, the results in figure 3.11(a) 

corresponding to the permanent sinusoidal regime, are considered. The temperature 

oscillations ∆TAC(t) represent the evolution of temperature oscillations for metallic line with 

respect to time at frequency 2. 

                                                   )2cos()( TTAC tAtT                                            (3.2) 

The two parameters AT and T are adjusted in a way that equation 3.2 corresponds to the 

maximum possible number of points of temperature oscillations found by FEM simulations. 

For this purpose, we use an optimization algorithm available in the Optimization toolbox of 

MATLAB called “lsqcurvefit” which stands for least square curve fit [MATLAB].  

 

Figure 3.12: Example of random sampling that permits the determination of AT and T. 

To calculate AT and T, the following procedure is applied. Initially, at the end of the 

transient regime at 3T, all the points needed to perform calculations are saved for a 5T period 

of time. Therefore, for a time step T/200, 1000 points are obtained. Afterwards, a random 
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optimization procedure. Around 40 random draws of this set of points are done. For every 

random draw AT and T are determined and finally their average values over all the draws are 

calculated. 

In figure 3.12, we present the temperature oscillations ∆TAC and an example of random 

sampling of 20 points. This graph is obtained for metallic line 2 at frequency F= 10 Hz. 

Thanks to the FEM simulations, AT and T are found to be equal to 0.163 °C and -0.283 rad 

respectively. 

I.3.f. Validation of FEM modelling 

In order to compare our numerical model to the analytical solution proposed by Cahill 

[CAH 1990], we study the results obtained for the temperature oscillations calculated at the 

level of the heating element over a large range of frequencies starting from 0.01 Hz to 1 MHz.  

 

Figure 3.13: The in-phase and out-of-phase temperature oscillations plotted with respect to FEM and 
Cahill’s solution for metallic line 2. 

We can notice in figure 3.13 that the same results are obtained by Cahill’s formula and the 

numerical modelling by FEM. This result was predictable since the structure simulated by 

FEM is similar to that considered in Cahill’s formalism. For both theoretical studies, the same 

approximations are applied. In figure 3.13(b), a zoom is made on the important part of the 
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graph through which we can deduce the thermal conductivity of materials by the three omega 

method. This part of the curve corresponds to the evolution of the in-phase temperature 

oscillations in the linear regime. We can always notice no difference between the two results.  

At this stage of the study, it is necessary to verify if the hypothesis of the uniformity of the 

distribution of temperature over the boundary element (infinitely thin metallic line) is correct. 

Till now, we always consider an average temperature on the half width of the heating element 

which is equal to the average temperature on the whole heating element. In figure 3.14, the 

evolution of temperature along the upper edge of the structure including the heating element 

(y=0 mm) is plotted at two different instants of time for metallic line 2 at F= 10 Hz. 

 

Figure 3.14: Temperature at two instants of time at y= 0 mm. 

The plot in red corresponds to the temperature when ∆TAC(t) is maximum while the one in 

blue is plotted for ∆TAC(t) minimum (see figure 3.11(a)). When ∆TAC(t) is maximum, the 

variation in temperature at a distance equal to the half width of the heating element (b= 15 

µm) from the axis of symmetry is around 0.07 °C. However, when ∆TAC(t) is minimum, the 

temperature variation is inferior to 0.01 °C. The average values of temperature are calculated 

for both instants of time (minimum and maximum ∆TAC(t)) and are found to be equal to  

25.39 °C and 25.06 °C respectively.  

As a result, the temperature all along the width of the heating element is found to be 

uniform. Consequently our results are identical to Cahill’s solution which also consists in 

calculating the average temperature over the metallic line in order to determine ∆TAC(t). As 

the frequency decreases, the temperature of the heating element becomes less uniform 

whereas it is more uniform as the frequency increases.    
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We present in the following figures the thermal patterns of a half structure obtained at the 

instants when ∆TAC(t) is maximum (figure 3.15) and minimum (figure 3.16).  

 

Figure 3.15: (a) Thermal pattern of a half structure at ∆TAC maximum. (b) A zoom around the heating 
element. 

 

Figure 3.16: (a) Thermal pattern of a half structure at ∆TAC minimum. (b) A zoom around the heating 
element. 

 

We can notice a very low rise in temperature, inferior to 1 °C, with respect to the initial 

temperature (T0= 24.7 °C) as previously noted in figure 3.11(a). Moreover, we can observe a 
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very small “hot” zone of low thickness situated under the heating element. Also, the isotherms 

shown in the substrate are perfectly circular proving the effectiveness of the “infinite” layers 

applied during the simulations. However at the level of the “infinite” layers these isotherms 

become parallel, indicating the presence of planar thermal waves in this zone.  

I.4. Modelling improvement 

In this section the influence on the AC temperature oscillations of different parameters 

related to the structure are studied. First, the effect of a finite thickness substrate is examined. 

Simulations are performed for a metallic line of different widths deposited on material and the 

results are compared to Cahill’s solution. Similarly, the variation of the metallic line thickness 

is investigated. Finally, the real structure is simulated considering heat convection at the 

surface of substrate placed on a thick copper plate. 

I.4.a. Influence of a finite thickness substrate 

In the analytical solution proposed by Cahill, the approximation which seems to be 

questionable is the fact that the metallic line must be deposited on a semi-infinite substrate. 

Therefore, the influence of a substrate of finite thickness on the amplitude of temperature 

oscillations is initially studied for that purpose. The “infinite” layers discussed in the previous 

studied structure are removed. Consequently, a boundary condition must be set at the 

structure’s limits (figure 3.17).  An isothermal condition considering a constant room 

temperature is selected. This condition is considered to be the most appropriate since the 

substrate is placed over a thick copper plate where the temperature is said to be quasi constant 

throughout the measurements. The influence on the heat transfer inside the structure initially 

appears at the substrate boundary situated just under the heating element. At the upper side of 

the substrate, thermal isolation boundary condition is set. Also, the thickness of the metallic 

line is considered to be infinitely thin.  
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Figure 3.17: (a) Structure to be simulated with isothermal conditions. (b) Symmetry condition. 

Figure 3.18 represents the thermal pattern obtained for these simulation conditions for 

metallic line 2 at frequency F= 10 Hz. We recall that the thickness of the substrate is equal to 

700 µm. We can notice the influence of the isothermal condition at the lower boundary of the 

substrate. Moreover, we can observe the flattening of the isotherms as we approach to this 

boundary. 

 

Figure 3.18: Isotherm flattening due to the isothermal condition at the lower boundary of the substrate. 

By applying the methods presented in section 1.3. of this chapter, we can calculate the 

temperature oscillations at the level of the metallic line for a large range of frequencies 
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starting at 0.01 Hz up to 1 MHz. The results are compared to those calculated by Cahill’s 

solution (figure 3.19).  

 

Figure 3.19: Temperature oscillations of a structure of finite thickness simulated using FEM compared to 
Cahill’s solution (ts= 700 µm). 

The influence of the finite thickness of the substrate on the in-phase and out-of-phase 

temperature oscillations at low frequencies is clearly noticed. At these frequencies, the in-

phase temperature oscillation obtained by FEM are constant while the out-of-phase one tends 

to zero and consequently, the phase shift no more exists between the temperature oscillations 

and the heat source. When getting higher in frequency, we can observe that the temperature 

oscillations calculated by Cahill’s analytical formula and the finite element method are equal.  

 

Figure 3.20: Temperature oscillations obtained by FEM for 500 µm, 700 µm and 900 µm thick substrate. 

In order to better understand this phenomenon at low frequencies, we present in figure 3.20 

a comparison between the temperature oscillations previously obtained for a 700 µm thick 

BrSiO2 substrate and those calculated for two other substrate thicknesses, 500 µm and 900 
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µm. Metallic line 2 is used in this study. The parameters used to obtain each plot are all 

identical except for the thickness of the substrate.  

We can observe that the larger is the thickness of the substrate the closer are the 

temperature oscillations obtained by FEM to those calculated by Cahill’s analytical 

formalism. This phenomenon at low frequencies explains the existence of a lower frequency 

limit (see chapter 1) for the linear regime through which we can deduce the thermal 

conductivity of substrate. The frequency limits of the linear zone have been defined in chapter 

I. The lower frequency limit is inversely proportional to the thickness ts of the substrate. The 

lower is the substrate thickness the higher is this frequency limit resulting in a smaller range 

of frequencies in the linear zone.  

 

Figure 3.21: The in-phase temperature oscillations plotted for 500 µm, 700 µm and 900 µm thick substrate 
in the linear zone. 

In figure 3.21, we focus on the in-phase temperature oscillations in the linear zone of 

metallic line 2. The linear zone upper and lower frequency limits (see chapter I) are indicated 

in the figure for a substrate of 700 µm thick. The in-phase temperature oscillations for the 

three different thicknesses mentioned previously are plotted together with Cahill’s solution for 

a substrate thickness of 700 µm. We can notice that all the plots are superimposed which 

means that the substrate thickness has no influence on the results in the linear zone. Moreover, 

it is possible to perform measurements for frequencies slightly outside the linear zone which 

is defined by Cahill without affecting the value of the thermal conductivity of the substrate.   

I.4.b. Influence of the characteristics of the heating element 

A second study consists of determining the influence of the heating element on the AC 

temperature oscillations. This heating element has a width equals to 2b, a very small thickness 

0.12

0.14

0.16

0.18

0.2

0.22

0.24

2.5 3 3.5 4 4.5 5 5.5 6

Série1

Série2

Série3

Série6

Te
m

pe
ra

tu
re

 o
sc

ill
at

io
ns

 (°
C

)

Ln(2)

Linear zone

∆TAC in-phase FEM ts= 900 µm 
∆TAC in-phase FEM ts= 700 µm 
∆TAC in-phase FEM ts= 500 µm 

∆TAC in-phase Cahill ts= 700 µm 



 132 Chapter III: Numerical simulations using FEM:  The 3ω differential technique for film-on-substrate system. 

(tavg~ 0.4 µm), and is made of gold which, like the substrate under test, has a certain thermal 

conductivity. 

 

Figure 3.22: (a) The simulated structure considering the thickness of the heating element. (b) Symmetry 
conditions. 

The structure simulated here is identical to the one presented in figure 3.17. The only 

difference is the addition of the heating element of a non-negligible thickness to the structure 

(figure 3.22(a)). As usual, in order to reduce computational time, only half of the structure is 

simulated (figure 3.22(b)). Also, as done for the whole structure, this element possessing a 

small size must be correctly meshed. Consequently, this element is decomposed into two 

layers of triangles (figure 3.23).    

 

Figure 3.23: Meshing applied on the heating element.  

There are two differences between the simulations performed in this study and the ones 

presented in section I.3, the calculation method of ∆TAC(t)  and the application of the heat 

source. Actually, ∆TAC(t) is calculated by taking at every time step the average value of 

temperature over the lateral surface of the heating element. Moreover, the heating source can 

no more be considered as a thermal flux. In this study it is set as a volume heat source that 
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exists inside the heating element. Thereby, equation 3.1 is modified in order to express Q(t) in 

W/m3. 

                                                                
avgtbl

tptQ
*2*
)()(                                                    (3.3) 

Figure 3.24 presents the evolution of the temperature oscillations with respect to Ln(2) 

for three different cases. The first corresponds to the results obtained by Cahill’s analytical 

equation. The second case considers an infinitely thin metallic line placed on the surface of a 

700 µm thick substrate. The final case consists of a metallic line of thickness tavg equals to 0.4 

µm on a 700 µm thick substrate. The first two cases have already been presented in figure 

3.19. The study done for the third case permits the evaluation of the influence of the thickness 

of the heating element. We can notice no influence on the out-of-phase temperature 

oscillations. However, we observe that the in-phase temperature oscillations plotted for the 

third case are a little bit lower than those obtained for the other two plots. 

 
Figure 3.24: Temperature oscillations plotted for Cahill’s solution and FEM simulations for an infinitely 
thin metallic line (t= 0) and metallic line of thickness tavg= 0.4 µm.  

The metallic line thickness tavg= 0.4 µm considered in the preceding simulation is the same 

thickness obtained when depositing gold by evaporation on the surface of material under test. 

Measurements using a profilometer on several metallic lines have showed a certain disparity 

over the thickness values of deposited gold. Moreover, the thickness of gold might not be 

uniform all over the length of the tested metallic line. So, in order to investigate the influence 

of this parameter, two studies considering two different thicknesses tA= 0.2 µm and tB= 0.6 

µm are performed. In the case of 2D modelling, the thickness stays constant throughout the 

length of the metallic line. The non-uniformity of the metallization thickness over the length 

of the metallic line can only be studied by applying 3D modelling. The results obtained for 
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each of the three thicknesses tavg, tA, and tB are compared by considering the same applied 

power on the metallic line (prms= 0.2487 W/m) and the same substrate thickness (ts= 700 µm). 

Figure 3.25 represents the in-phase temperature oscillations in the linear zone between 3.2 Hz 

and 11 Hz, obtained when considering three metallic line thicknesses, Cahill’s solution and 

FEM for an infinitely thin metallic line. We observe similar results for Cahill’s solution and 

FEM modeling (FEM t= 0). As the thickness of the heating element becomes superior to zero, 

we can notice that the in-phase temperature oscillations are slightly lower than those obtained 

by Cahill’s formalism and FEM for an infinitely thin metallic line (FEM t= 0).  However, the 

exact value of the metallization thickness of this heating element is of little importance.        

 
Figure 3.25: The in-phase temperature oscillations plotted for Cahill’s solution and FEM with metallic 
line of thicknesses t= 0, tavg= 0.4 µm, tA= 0.2 µm and tB= 0.6 µm. 

On the other hand, the width of the metallic line fabricated by photolithography process is 

not strictly uniform. Therefore, we have estimated a precision of ±1 µm for the width of the 

deposited metallic lines. A metallic line on substrate having the same characteristics as that of 

metallic line 2 is numerically simulated where the width is varied from 2b1= 29 µm to 2bavg= 

30 µm and to 2b2= 31 µm. Figure 3.26 indicates that the in-phase temperature oscillations 

plotted in the linear regime increase as the width of the metallic line decreases and vice versa. 

It is important to note that the three linear plots are parallel. Consequently, the slope between 

the temperature oscillations and the natural logarithm of 2 keeps its value when varying the 

metallic line width. Therefore, a slight inaccuracy in the width of the metallic line has no 

effect when determining the value of the thermal conductivity of material.     
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Figure 3.26: The in-phase temperature oscillations plotted in the linear regime for Cahill’s solution and 
for FEM with three different metallic line widths.   

Moreover, the heating element fabricated by photolithography is made up of gold. The 

thermal conductivity of gold considered throughout the study is equal to k= 317 W/m.K. 

Also, its specific heat capacity and density are set to cp= 129 J/Kg.K and ρ= 19300 Kg/m3 

respectively. These values correspond to bulk gold material and may not necessarily be the 

same for the deposited thin gold metallic line. Consequently, we have carried out two distinct 

studies. The first consists of a gold metallic line on substrate possessing the same physical 

property values (k, cp, and ρ) mentioned just above. For the second study, we suppose that 

these physical property values are lower than those given for a bulk material. Therefore, we 

have thought of multiplying them, for example, by a factor of 0.8. Consequently the following 

values: k= 253.6 W/m.K, cp= 103.2 J/Kg.K, and ρ= 15440 Kg/m3 are obtained.  

 

Figure 3.27: Temperature oscillations plotted for physical properties of bulk gold in blue and physical 
properties of bulk gold multiplied by 0.8 in red. 
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Figure 3.27 shows the temperature oscillations obtained by FEM for the two studies. 

Metallic line 2 is always considered to be the reference line of width 2bavg= 30 µm, thickness 

tavg= 0.4 µm deposited on a substrate of thickness ts= 700 µm. We can observe that the in-

phase temperature oscillations plotted for the given physical properties of bulk gold agree 

with those calculated for the same physical properties multiplied by a factor of 0.8. 

Consequently, variation in the values of the thermal conductivity, heat capacity and density of 

the metal deposited on the material under test has insignificant effect on the calculation of the 

thermal conductivity of the material under test.   

I.4.c. Real structure modelling 

After studying the effects of the metallic line width and thickness variation on the AC 

temperature oscillations and the thermal conductivity of material, a real structure model is 

simulated in this section. To that end heat convection at the surface of substrate and a copper 

plate underneath the sample similar to the one used during the experimental measurements are 

considered (figure 3.28(a)).   

 

Figure 3.28: (a) The simulated structure with a substrate placed on a copper plate and a heat convection 
boundary condition on the surface. (b) Symmetry condition. 

As in the previous numerical simulations presented during this chapter, symmetry 

conditions are applied to the structure as shown in figure 3.28(b). The copper plate has a 

thickness of 3 mm. Its thermal conductivity, specific heat capacity and density are equal to 

390 W/m.K, 390 J/Kg.K, and 8960 Kg/m3 respectively. On lateral faces and bottom of our 

structure, the temperature is fixed to ambient temperature. Heat is conducted inside the 

material; however it is convective on the upper surface of the substrate. Therefore, heat 
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exchange with the surrounding is presented by a coefficient of thermal convection (H=3 

W.m2.°C-1). It corresponds to a natural convection over a horizontal surface for a low 

temperature difference between the heated medium and ambient temperature.  

 
Figure 3.29: The AC temperature oscillations plotted with respect to Cahill and FEM when considering 
the copper plate and heat convection on the surface of substrate. 

In figure 3.29, we present the AC temperature oscillations obtained by the numerical 

simulations performed for the real structure (Cu plate and heat convection on the surface) and 

by Cahill’s analytical solution for a large range of frequencies. The in-phase and out-of-phase 

temperature oscillations for both cases are in good agreement.  

We present in figure 3.30 a recapitulative of the studies performed throughout this section 

by plotting the in-phase temperature oscillations obtained for four FEM modellings together 

with Cahill’s analytical solution.  

 
Figure 3.30: A recapitulative plot of the numerical simulations performed throughout section I.  

The first model considers the constraints imposed by Cahill’s formalism while the second 

is done for an infinitely thin metallic line but a finite substrate of 700 µm thickness. Model 

three takes into account the thicknesses of both the metallic line and substrate of 0.4 µm and 
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700 µm respectively. Finally model four represents the real structure where natural heat 

convection is present at the surface and the sample is placed on a 3 mm copper plate. 

We can notice a good agreement between Cahill’s formalism and the FEM results for 

models 1 and 2. As we start taking the thickness of the metallic line into consideration, the 

AC temperature oscillations decrease slightly as shown for models 3 and 4. The results plotted 

for models 3 and 4 are superimposed demonstrating that the heat convection at the surface of 

the substrate has no effect on the obtained AC temperature oscillations.  

 

Figure 3.31: The experimental third harmonic voltages measured by WB and DA circuits compared to the 
theoretical ones obtained by FEM for models 1 and 2. 

The in-phase third harmonic voltages measured by the Wheatstone bridge (WB) and 

differential amplifier (DA) circuits are compared to those obtained by FEM for models 1 and 

4 (figure 3.31). The experimental measurements are closer to the results found by FEM for 

model 4 than those obtained by FEM for model 1. We can conclude that FEM allows to better 

reflect reality. Whereas, a major advantage of Chill’s solution is that it is analytic. There is no 

need for important IT resources to simulate such solution.  

At the end of the experimental measurements, the linearity slope of the in-phase 

temperature oscillations plotted with respect to Ln(2) is determined and we are able to 

calculate the thermal conductivity of material.  In a last study we suppose that we are not sure 

of the values of the specific heat capacity cp and density ρ of material used in the beginning of 

manipulations. We assume an error of ±20 % on these values. Consequently, the simulations 

are turned on once for specific heat capacity and density multiplied by a factor of 0.8 and 

another by a factor of 1.2.   
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Figure 3.32: The AC temperature oscillations obtained when multiplying both BrSiO2 density and specific 
heat capacity by 0.8 and 1.2.  

We can notice in figure 3.32 an increase in the in-phase temperature oscillations for a 

density and specific heat capacity lower than the original values used at the beginning of the 

experimental measurements and vice versa. Moreover, we observe similar slopes for the three 

linear graphs plotted in the linear regime. Consequently, one can conclude that the inaccuracy 

in the values of the density and specific heat capacity of material under test do not affect the 

calculated thermal conductivity.  

   I.5. Conclusion 

Numerical simulations using finite element method were briefly described. The different 

steps applied on a given structure to perform modelling by FEM were also defined. Numerical 

simulations were performed to study the assumptions of Cahill’s solution on a metallic line-

on-substrate system. This study was done for metallic line 2 deposited on borosilicate 

substrate. Initially, “infinite” layers are added to the simulated structure to represent a semi-

infinite substrate. Then, a boundary element is placed on the surface of the substrate which 

behaves as a heat source. Meshing is applied to the structure and afterwards the simulations 

are turned on to calculate the AC temperature oscillations. Actually, two studies, stationary 

and time dependent, were performed to reduce the computational time when calculating 

∆TAC. The stationary study final results are considered to be the initial conditions for the time 

dependent investigation. The results obtained for the simulated structure holding Cahill’s 

constraints agreed very well with those given by Cahill’s analytical solution. The effects of a 

finite substrate and of the characteristics of the heating were examined with respect to Cahill’s 

solution. The influence of a finite substrate appears at low frequencies. At these frequencies, 

we observe that the in-phase temperature oscillation stays constant and the out-of-phase one 
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tends to zero. The non-zero metallic line thickness showed a decrease in the temperature 

oscillations. However, the variation of the thickness of the substrate has no effect on the slope 

in the linear zone. The inaccuracy in the value of the physical properties of both the heating 

element and the material under test was found to be of insignificant effect. The real structure 

considering the heat convection on the surface of the substrate is finally simulated. The 

substrate is placed on a copper plate similar to the one used during the experimental 

measurements. We found out that the addition of heat convection condition at the surface of 

material does not affect the results.  

II. Application to a two layer model 

II.1. Introduction 

Free standing thin films are extensively used in many applications such as microelectronic 

[HOR 2010], micromechanical systems (MEMS) [MAI 2009] and thermoelectric [FAN 

2006]. One of the crucial parameters linked to the electronic device performance is the 

thermal conductivity. Actually, the thermal conductivity of thin films is smaller than that of 

bulk substrates of the same material. This is due to a variety of reasons including size effects 

and structure imperfections [CAH 2003]. Many methods have been used to measure the 

thermal conductivity of thin films among which the three omega differential technique has 

been widely used.  The first extension of the three omega method was proposed in 1994 by 

Cahill. He has measured the thermal conductivity of thin films deposited on the surface of a 

substrate. Specifically he was able to determine the thermal conductivity of sputtered a-Si:H 

thin films of thicknesses between 0.2 µm and 1.5 µm on MgO substrate using the 3ω 

differential technique [CAH 1994]. In this section, the thermal conductivity of a 180 nm thick 

SiO2 thin film placed on a boron doped silicon substrate is determined. Also, the thermal 

conductivity of a 250 nm epitaxial grown layer on GaAs substrate is measured using the 3ω 

differential technique. Finally, the experimental results are compared to theoretical data 

obtained by FEM method.  

II.2. The 3ω differential technique 

Let us consider a thin film of thickness tf and thermal conductivity kf deposited on the 

surface of a substrate of thickness ts and thermal conductivity ks (figure 3.33). 
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Figure 3.33: A thin film of thermal conductivity kf deposited on a substrate of thermal conductivity ks. 

When the film thickness tf is far smaller than the width of the heater 2b (tf << 2b), a one 

dimensional heat flow will occur perpendicular to the film/heater interface. 

Moreover, if the thin film thermal conductivity kf is smaller than the substrate’s thermal 

conductivity ks (kf << ks), the thin film can be considered as an added thermal resistance. 

Consequently, a frequency independent temperature rise ∆Tf due to the thin film adds to 

the in-phase temperature oscillations across the metallic line. This temperature rise can be 

expressed as the heat flux amplitude multiplied by the resistance of the thin film [BOR 2001, 

TON 2006]. 

                                              
f

frms
f

rms
f k

t
b

pR
b

pT
2

*
2

                                              (3.4) 

where prms is the rms power per unit length in W/m. 

          2b is the width of the metallic line in meters. 

          Rf is the thermal resistance of the thin film in m2.K/W. 

           tf is the thickness of the thin film in meters. 

          kf is the thermal conductivity of the thin film in W/m.K. 

The temperature ∆TAC at the level of the metallic line is expressed as: 

                                                    fsAC TTT                                                (3.5)  

    where ∆TS is the temperature rise due to substrate. 

               ∆Tf is the temperature rise due to thin film. 

The temperature rise ∆Tf due to thin film is a real value consequently increasing the in-

phase part of the temperature oscillations ∆Ts. The result is the complex (in-phase and out-of-

phase) temperature oscillation ∆TAC. 
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Initially, the third harmonic voltages are measured for a film-on-substrate structure. The in-

phase third harmonic voltage decreases linearly with respect to ln(2ω) and the out-of-phase 

voltage is constant all over the linear zone. The slope of V3ω in-phase versus ln(2ω) yields the 

thermal conductivity ks of the substrate. The temperature response ∆TAC of a film-on-substrate 

system is deduced from the measured in-phase third harmonic voltages (equation 1.33). These 

temperature oscillations ∆TAC are then plotted with respect to Ln(2). Then, the temperature 

rise due to the substrate is either measured (if the substrate alone is available) or calculated by 

using Cahill’s formula considering the value of the substrate thermal conductivity ks 

calculated previously. The difference between the two responses leads to the temperature rise 

due to the presence of the thin film and the thermal conductivity kf can be determined (figure 

3.34).  

 

Figure 3.34: Determining the temperature rise ∆Tf through which we can calculate the thermal 
conductivity of thin film. 

II.3. Measurement of the thermal conductivity of a SiO2 thin film 

In chapter 2, the thermal conductivity of high resistivity silicon has been measured using 

the three omega method. It was found to be 163 W/m.K. The sample used here is boron doped 

silicon substrate of thickness ts= 380 µm. Its electrical resistivity is given by ρ= 0.0014 Ω.cm. 

An SiO2 dielectric layer of unknown thermal conductivity kf is deposited over this Si doped 

substrate. The SiO2 layer is of a thickness tf= 180 nm.  

The three omega method cannot be performed directly on an electrically conductor 

material. This causes a leak in the current applied on the metallic line inside the conducting 

material leading to false measurements. In our case, since the Si boron doped substrate is of 
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low electrical resistivity, a SiO2 dielectric layer is deposited on its surface to prevent current 

leakage through the sample.   

 

Figure 3.35: SiO2 thin film over Si doped substrate.  

Figure 3.35 shows a SiO2 film deposited over p-type Si substrate. The resistivity ρ= 0.0014 

Ω.cm of p-type Si corresponds to impurity concentration p~1020 atom/cm3. Different works 

have been done to measure the thermal conductivity at 300 K of impure silicon with different 

doping levels. For example, Slack has used a steady state longitudinal heat flow method to 

determine the thermal conductivity of boron doped silicon. He found thermal conductivities of 

50 W/m.K and 40 W/m.K for impurity concentration of 3x1020 atom/cm3 and 5x1020 

atom/cm3 respectively [SLA 1964]. Moreover, Asheghi et al. have theoretically interpreted 

the thermal conductivity value of boron doped silicon with different concentrations [ASH 

2002]. For p=1019 atom/cm3 and p=1020 atom/cm3, the thermal conductivity was calculated to 

be around 100 W/m.K and 80 W/m.K respectively.  

In this study, different metallic lines are deposited on the surface of the sample using 

photolithography. The three omega method was applied on different metallic lines among 

which are those presented in table 3.2.  

Table 3.2: Properties of metallic lines deposited on boron doped Si substrate. 

Metallic line 2b (µm) l (mm) R0 (Ω) prms (W/m) β (°C-1) T0 (°C) 

13 10 5 30.05 24.14 0.00348 24.7 

14 20 8 23.74 7.37 0.00362 19.2 

15 20 3 9.59 31.97 0.00347 24.7 

 

The in-phase and out of phase third harmonic voltages are measured for metallic lines 13, 14, 

and 15 over the linear zone as presented in figure 3.36.  

Si p++ ks

SiO2 kf

ts= 380 µm

tf =180 nm
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Figure 3.36: The in-phase and out-of-phase third harmonic voltages for lines 13, 14, and 15. 
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Table 3.3 presents the thermal conductivity values obtained for metallic lines 13, 14, and 15.  

Table 3.3: Thermal conductivity values measured using lines 13, 14, and 15. 

Metallic line 13 14 15 

Thermal conductivity 

ks (W/m.K) 
86.11 86.55 84.76 

 

For carrier concentrations p of around 1020 atom/cm3, the average thermal conductivity of 

the boron doped silicon substrate measured using the three omega method was found to be          

ks avg= 85.81 W/m.K. We can notice that this value is in good agreement with Asheghi et al. 

interpretations for a carrier concentration of p= 1020 atom/cm3 [ASH 2002].  

In order to calculate the thermal conductivity of SiO2 film, the temperature oscillations ∆Ts 

over the boron doped Si substrate are calculated according to Cahill using MATLAB for each 

of the metallic lines. Figure 3.37 presents Cahill’s theoretical data plotted in black for metallic 

line 13. The experimental temperature oscillations are presented in red (∆TAC=∆Tf + ∆Ts). 

They are deduced from the measured third harmonic voltages using equation 3.6. 
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Figure 3.37: Frequency independent temperature oscillation ∆Tf for metallic line 13.  

We can notice that the presence of a SiO2 film over Si substrate produces a frequency-

independent increase ∆Tf on the in-phase temperature oscillations ∆Ts in-phase. No change in the 

out-of-phase measurements is observed. Consequently, ∆Tf  can be calculated as follows: 
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                                                  phaseinsphaseinACf TTT                                             (3.7) 

The thermal conductivity of SiO2 can then be deduced from equation 3.4. Table 3.4 represents 

∆Tf obtained for metallic lines 13, 14, and 15 and the corresponding thermal conductivities. 

Also, the thermal resistance of the thin film is calculated. 

Table 3.4: ∆Tf , kf and Rf calculated for metallic lines 13, 14, and 15. 

Metallic line ∆Tf (°C) kf  (W/m.K) Rf (m2.K/W) 

13 0.2983 1.42 1.236E-7 

14 0.0461 1.4 1.251E-7 

15 0.2087 1.34 1.305E-7 

 

The average thermal conductivity of SiO2, kf avg= 1.38 W/m.K, measured using Cahill’s 

differential method agrees well with the values found in literature [LEE 1996].  

After performing the three omega differential technique measurements for SiO2/Si p++ 

sample, the percentage error on the value of the thermal conductivity produced due to 

instrumentation measurement precision is calculated. As presented in equation 3.6, the AC 

temperature oscillations depend on three parameters, the third harmonic voltage V3, the 

initial voltage V0 measured across the metallic line, and the temperature coefficient of 

resistance βh. As explained in chapter II, the error when measuring V0 is small and can be 

neglected. Only the uncertainties in the value of βh (maximum error of ~ ±6 %) and the lock-

in amplifier measurement precision of ±1 % are taken into account (see chapter II sections 

V.3.c. and V.3.d.). The maximum in-phase AC temperature oscillations are calculated as 

follows: 

min0

max3
max

2

h

phasein
phaseinAC V

V
T


 

   

Similarly, the minimum AC temperature oscillations are obtained for minimum in-phase 

third harmonic voltages and maximum measured temperature coefficient of resistance βh. 

Figure 3.38 shows the minimum and maximum temperature responses found due to the 

presence of the thin film.  
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Figure 3.38: Maximum and minimum temperature responses obtained due to the thin film deposited on 
substrate for metallic line 13. 

The following table presents the experimental, minimum and maximum values for βh and 

∆Tf and the corresponding thin film thermal conductivities kf when the measurements are 

done on metallic line 13.  

Table 3.5: Experimental, minimum and maximum valued of βh, ∆Tf, and kf (metallic line 13). 

 minimum experimental maximum 

βh (/°C) 0.00337 0.00348 0.00357 

∆Tf (°C) 0.2780 0.2983 0.3220 

kf (W/m.K) 1.31 1.42 1.52 

 

The error on the measured thermal conductivity value of SiO2 thin film is found to be around 

± 7.3 %.  

II.4. Measurement of the thermal conductivity of a low temperature epitaxial grown 
GaAs layer on GaAs substrate 

In the previous section, the thermal conductivity of a SiO2 thin film placed on boron doped 

Si substrate was successfully measured using the three omega method. Another thin film-on-

substrate system is considered in this section where the ratio of the thermal conductivity of 

substrate to thin film is lower than in the case of SiO2/Si p++. The goal is to study the three 

omega differential technique for different substrate to film thermal conductivity ratios (ks/kf) 

and to examine the effect of this ratio on the AC temperature oscillations.  
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The sample here consists of a 250 nm epitaxial grown layer on a 470 µm GaAs substrate 

(Figure 3.39). Such process has been performed at low temperature (LT) and has 

consequently produced defects at the level of the LT GaAs grown layer. In addition, this layer 

possesses a high electrical resistivity of 1017 Ω.cm. The thermal conductivities of GaAs found 

in literature have been given in chapter II. These values vary between 46 W/m.K and 55 

W/m.K at 300 K. Moreover, the thermal conductivity of a GaAs substrate has been measured 

in chapter II using the three omega method and was found to be 49.78 W/m.K. Jackson et al. 

have measured the thermal conductivity of 1 µm thick LT GaAs layer at room temperature 

using a self-heated photolithographic patterned aluminum wire on the surface of the sample 

[JAC 1999]. A value equals to 46 % of the thermal conductivity of GaAs substrate was 

obtained. Also, the thermal conductivities of polycrystalline grown GaAs thin films on 

polycrystalline chemical vapor deposition (CVD) diamond by low temperature molecular 

beam epitaxy have been determined using the pump probe time domain thermoreflectance 

method [CLA 2011]. The thermal conductivities were found to be 14.5 W/m.K, 10.4 W/m.K 

and 8.1 W/m.K for 1 µm, 500 nm and 100 nm thick GaAs films respectively.      

 

Figure 3.39: Thin film of impure GaAs deposited over GaAs substrate. 

The three omega measurements are performed to retrieve the thermal conductivities of LT 

GaAs layer and GaAs substrate. In table 3.6 are given the properties of metallic lines 16, 17, 

and 18 deposited on the surface of the sample.  

Table 3.6: Properties of metallic lines 16, 17, and 18. 

Metallic line 2b (µm) l (mm) R0 (Ω) prms (W/m) β (°C-1) 

16 10 6 39.88 18.99 0.00335 

17 15 6.5 29.09 17.72 0.00339 

18 10 5 9.59 33.43 0.00334 

 

GaAs ks

LT GaAs kf

ts= 470 µm

tf=250 nm
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The in-phase and out-of-phase third harmonic voltages are measured over the linear regime 

frequency range as presented in figure 3.40. The thermal conductivities extracted for GaAs 

substrate are listed in table 3.7. 

 

 

 

Figure 3.40: In-phase and out of phase third harmonic voltages measured by lines 16, 17, and 18. 
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Table 3.7: Thermal conductivities measured for GaAs substrate. 

Metallic line 16 17 18 

Thermal conductivity 

ks (W/m.K) 
44.86 44.07 44.25 

 

The average thermal conductivity of gallium arsenide obtained is ks avg= 44.39 W/m.K. 

This value corresponds well to the thermal conductivities measured by Sze et al. [SZE 1985] 

and Iny at al. [INY 2003] of 46 W/m.K and 47 W/m.K respectively. 

Then, the thermal conductivity kf of LT GaAs layer is calculated by the three omega 

differential technique. Cahill’s AC temperature oscillations ∆Ts for GaAs substrate of  ks avg= 

44.39 W/m.K are plotted in figure 3.41 for metallic line 16.  

 

Figure 3.41: Frequency independent temperature oscillation ∆Tf for metallic line 16. 

∆Tf is calculated according to equation 3.7 for each metallic line and the thermal conductivity 

kf (table 3.8) of LT GaAs thin layer is determined using equation 3.4. The resulting thermal 

resistance value is also given in the following table. 

Table 3.8: ∆Tf  and  kf  obtained by metallic lines 16, 17, and 18. 

Metallic line ∆Tf (°C) kf  (W/m.K) Rf (m2.K/W) 

16 0.0431 11.02 2.269E-8 

17 0.0239 12.35 2.024E-8 

18 0.0505 11.48 2.177E-8 
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Consequently, the average thermal conductivity of the 250 nm layer of LT GaAs measured 

using the three omega differential technique is found to be kf avg= 11.62 W/m.K.  The thermal 

conductivity of LT GaAs film is expected to be smaller than that of GaAs substrate due to the 

presence of defects which increase the phonon scattering inside the thin layer. The thermal 

conductivity of around 21 W/m.K was obtained by Jackson et al. for a 1 µm thick LT GaAs 

film [JAC 1999]. However, in our case we have found a smaller thermal conductivity value of 

kf avg= 11.62 W/m.K for LT GaAS layer due to its lower thickness which is equal to 250 nm. 

Actually, as the film thickness becomes smaller, the size effects increase producing a rise in 

the phonon scattering event and consequently reducing the value of the thermal conductivity 

[CAH 2003].  

Comparing the epitaxy process performed at IEMN with the work done on epitaxial grown 

polycrystalline GaAs on polycrystalline CVD diamond at low temperature, we can find that 

the experimental conditions set for each process are not the same. Moreover, the method used 

to measure the thermal conductivity of polycrystalline GaAs films is pump probe time domain 

thermoreflectance method. Thermal conductivities of 10.4 W/m.K and 8.1 W/m.K were found 

for 500 nm and 100 nm thick films respectively [CLA 2011] which are not far from the value 

measured by the three omega method of 11.62 W/m.K for a 250 nm thick film.  

 

Figure 3.42: Variation of the thermal conductivity kf of thin film with respect to thickness tf. 

The calculation for the thermal conductivity kf of LT GaAs layer has been done for a 

thickness tf= 250 nm. However, we are not sure of the exact thickness of the layer grown on 

GaAs substrate. Therefore, a study is performed by varying the thickness tf between 200 nm 

and 300 nm to observe the change in the value of the thermal conductivity kf. The temperature 
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rise ∆Tf due to the thin film is kept constant. We can notice in figure 3.42 that kf increases 

linearly with respect to the thickness tf according to the following equation: 

                                                                f
f

rms
f t

Tb
pk *
*2 

                                              (3.8) 

The thermal conductivity kf varies by ±20 % for a thickness tf= 250 nm ± 20 %. This 

variation is considered to be large. In conclusion, it is of great importance to measure 

precisely the thickness of a uniformly deposited thin film on a substrate in order to obtain an 

accurate thin film thermal conductivity value when applying the three omega differential 

technique.  

Now that the thermal conductivities of the thin films SiO2 and LT GaAs have been 

measured, a theoretical study based on FEM is done. This permits the comparison between 

experimental measurements and theoretical data obtained. Cahill’s solution is also considered 

during this study.  

II.5. Numerical simulation 

Numerical simulation using finite element method is done for a thin film-on-substrate 

model as in the case of SiO2/Si p++ and LT GaAs/GaAs in the previous sections. The same 

steps needed to perform modelling using FEM are followed for both samples. In figure 3.43, 

meshing is applied on the two layer structure for SiO2/Si p++. We recall the thermal 

conductivities of the SiO2 thin film and Si p++ substrate which are equal to kf= 1.38 W/m.K 

ks= 85.81 W/m.K respectively. This simulation study is done for metallic line 13. 

 

Figure 3.43: Two layer structure meshing for SiO2/Si p++. 

Fine meshing is applied on the metallic line and the thin layer of SiO2. As mentioned 

before this produces a more reliable heat transfer modeling. FEM is done for two models, thin 

film on semi-infinite substrate (FEM semi-inf sub) and thin film on a substrate placed on a 
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copper plate (FEM sub + Cu plate). For the second model, the heat convection on the surface 

of substrate is taken into consideration. These two models are compared to Cahill’s solution 

when considering the thin film-on-substrate on one hand (Cahill + ∆Tf) and a substrate-only 

system on the other hand. This comparison is presented in figure 3.44. 

 

Figure 3.44: Comparison of AC temperature oscillations with respect to Cahill and FEM for metallic line 
13 deposited on SiO2/Si p++. 

The AC temperature oscillations plotted for Cahill’s solution for a thin film-on-substrate 

system is at an offset ∆Tf from those plotted for a substrate-only system all over the frequency 

range.  In the linear zone we can notice a good agreement between the in-phase and out-of-

phase temperature oscillations plotted for Cahill + ∆Tf, FEM semi-inf sub, and FEM sub + Cu 

plate. For frequencies higher than the linear zone upper frequency limit the three plots no 

more correspond.  

 

Figure 3.45: Theoretical and experimental in-phase third harmonic voltages for line 13.  
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In figure 3.45, the theoretical (Cahill + ∆Tf, FEM semi-inf sub, and FEM sub + Cu plate) 

in-phase third harmonic voltages are plotted with respect to Ln(2) in the linear zone for 

metallic line 13. Also, the measurement data are reported on the figure for comparison 

reasons. We can observe that the four plots are approximately similar.  

The same numerical simulation study is done for the second case investigated, epitaxialy 

grown GaAs layer on GaAs substrate at low temperature (figure 3.46). The thermal 

conductivities of LT GaAs film and GaAs substrate measured using the three omega method 

were found to be 11.62 W/m.K and 44.39 W/m.K respectively. Metallic line 16 is used for 

this simulation study.  

 

Figure 3.46: Comparison of AC temperature oscillations with respect to Cahill and FEM for metallic line 
16 deposited on LT GaAS/GaAs. 

The temperature rise ∆Tf due to the thin layer is smaller in this case than for SiO2/Si p++ 

sample, since the thermal conductivity of LT GaAs is higher than that of SiO2 thin film. 

Similar results as for SiO2/Si p++ are obtained when comparison is done in the linear zone. 

However, we can notice better agreement than the former sample at frequencies higher than 

the linear zone upper frequency limit. This might be due to the fact that SiO2 has a thermal 

conductivity far smaller than that of Si p++, whereas the difference between the thin layer and 

substrate thermal conductivities in the case of LT GaAs/GaAs is quite smaller than for 

SiO2/Si p++. The following figure presents the theoretical and experimental in-phase third 

harmonic voltages obtained in the linear regime for metallic line 16 on LT GaAs/GaAs 

sample.   
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Figure 3.47: Theoretical and experimental in-phase third harmonic voltages for line 16.  

We can observe similar results for theoretical (Cahill+ ∆Tf, FEM semi-inf sub, and FEM + Cu 

plate) and experimental data.  

II.6. Conclusion 

In this section, the three omega differential technique has been described. It gives the 

possibility to measure the thermal conductivities of thin films deposited on substrate. This can 

be done on condition that the thickness of the deposited film is far smaller than the width of 

the metallic line on the surface of sample. Consequently a 1D heat flow is produced in the 

direction perpendicular to the metallic line-film interface. Moreover, the thermal conductivity 

of the thin film must be smaller than that of the substrate. The three omega differential 

technique has been tested successfully on two samples, SiO2 placed over boron doped Si 

substrate of resistivity 0.0014 Ω.cm and epitaxial grown layer on GaAs substrate at low 

temperature. The average thermal conductivities of Si and GaAs substrates are found to be 

85.81 W/m.K and 44.39 W/m.K respectively. On the other hand thermal conductivities of 

1.38 W/m.K and 11.62 W/m.K are obtained for a thin film of SiO2 and LT GaAs layer 

respectively. Consequently the ratio ks/kf is 61 and 4 for SiO2/Si p++ and LT GaAs/GaAs 

samples respectively. We have successfully applied the three omega differential technique 

given by Cahill on LT GaAs/GaAs sample of ks/kf ratio much smaller than that of SiO2/Si p++.  

Numerical simulations have also been performed for both samples. In case of FEM 

simulations two configurations are investigated, one considering a semi-infinite substrate and 

another close to the real structure. These simulations are compared to Cahill’s solution with 

and without taking the thin film into account. Cahill’s solution temperature oscillations for a 

thin film-on-substrate system are always higher by ∆Tf than those of a substrate-only system. 
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In the linear zones a good agreement between the numerical simulations and Cahill’s solution 

for both samples has been found. Whereas, for frequencies above the linear zone upper 

frequency limit, the results do not agree well in the case of SiO2/Si p++ sample. This is due to 

the fact that the thermal resistance Rf of the SiO2 thin film is more important than that of LT 

GaAs layer.  
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Conclusion 

A theoretical study using finite element method has been done for the three omega method. 

Cahill’s constraints have been added to metallic-line-on substrate system and the structure has 

been simulated by applying FEM. Temperature oscillations obtained by FEM have been 

plotted with respect to the natural logarithm of the thermal excitation frequency 2 and 

compared to Cahill’s analytical solution.  The results have showed very good agreement for 

both theoretical studies. A structure consisting of a finite thickness substrate is simulated 

using FEM. The effect of a finite substrate appears at low frequencies when compared to 

Cahill’s solution. The FEM in-phase temperature oscillations stay constant while the out-of-

phase ones tend to zero at these frequencies. The variation of the thickness of the substrate has 

shown no influence when compared to Cahill’s solution in the linear zone. However, an 

increase in the thickness of the metallic line conductor decreases the value of the temperature 

oscillations obtained by Cahill. A variation in the value of the thermal conductivity of the 

heating element has no influence on the temperature oscillations.  In addition a heat 

convection condition on the surface of substrate is of insignificant effect.  

The three omega differential technique has been also theoretically tested using the finite 

element method. The thermal conductivity of SiO2 thin film deposited on boron doped Si 

substrate was measured to be 1.38 W/m.K. Also, a thermal conductivity of 11.62 W/m.K was 

obtained for an epitaxial grown GaAs layer on GaAs substrate at low temperatures. These 

thermal conductivity values correspond to the values found in literature. Two models have 

been numerically simulated for a thin film-on-substrate system: the first for a thin film 

deposited over an infinite substrate and the second for a system placed on a copper plate. 

Temperature oscillations plotted for the first and the second model and with respect to 

Cahill’s solution have shown good agreement in the linear regime frequency zones for both 

two layer samples. For frequencies higher than the linear zone upper frequency, the 

temperature oscillations no more correspond in the case of SiO2/Si p++ sample, while for LT 

GaAs/GaAs sample, we have found better agreement. This is due to the fact that the 

difference between the thermal conductivities of the thin film and the substrate underneath is 

lower in the case of LT GaAs/GaAs than for SiO2/Si p++. 

We can conclude from this chapter that Cahill’s analytical solution is an approach method 

whereas, FEM is considered to be a more precise way to simulate the real structure.     

Experimental measurements and numerical simulations have been performed for a metallic 

line deposited on one layer and two layer materials. In the next chapter, the three omega 
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method is tested on soft materials. Theoretical studies based on Cahill’s analytical formalism 

and numerical simulations by FEM are implemented. The materials tested in this study are in 

the micro or sub-micro scales. But the three omega method is also efficient for nano-scale 

samples [XIN 2014]. 
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Introduction 

The three omega method has proven the ability to measure accurately the thermal 

conductivity of solid and soft materials. Nevertheless, in case of soft materials the application 

of the three omega method is still challenging because up to now it generally requires 

techniques that are time consuming and costly such as photolithography and shadow mask. In 

this chapter we present an alternative for this kind of materials based on inkjet printing 

technology. To evaluate the performance of the technique proposed, polyimide (PI) samples 

have been prepared by using two methods, photolithography and inkjet printing. We show 

that the thermal conductivities retrieved in both cases by means of the three omega method 

are very close; demonstrating that inkjet printing technology is a good candidate for 

characterization of flexible materials in terms of thermal conductivity. 

In a first section, physical properties such as glass transition temperature and thermal 

conductivity of polymers are defined. In section II, the application of photolithography on PI 

is described. The thermal conductivity of PI is then measured at different temperatures using 

the three omega method. On the other hand, a special procedure is used to prepare metallic 

line on the surface of polydimethyl siloxane (PDMS) for the three omega measurements. 

Afterwards, its thermal conductivity is determined at different temperatures. Numerical 

simulations are performed for both samples and then theoretical to experimental comparisons 

are done.    

Section III introduces inkjet printing technology as an alternative to photolithography 

process. This technology is applied on two kind of polymers, PI and polyetherether ketone 

(PEEK). The compatibility of the three omega method with inkjet printing technology is 

tested. Next, both samples with printed metallic lines are numerically simulated using FEM.   

 

 

 

 

 

 

 

 



 166 Chapter IV: Inkjet printing technology for polymer testing by the 3-omega method. 

  



 

 
 

167                                             Chapter IV: Inkjet printing technology for polymer testing by the 3-omega method. 

I. Polymers 

I.1. Introduction 

Polymers exist naturally in living plants and animals under the form of DNA, proteins, 

polysaccharides… They are extracted to fabricate clothing, shelter, weapons, and other human 

necessities. However it was in 1920 that the scientists started to understand the different 

properties of polymers. Hermann Staudinger has discovered that polymers are of a 

macromolecular structure [RIN 2004]. They are made of very large molecules containing a 

large number of small molecules connected together by covalent bonds. During the last 20 

years, it is the synthetic polymers that emerge highly into commercial industries such as 

nylons, polyethylene, polystyrene, silicones, and so on. Synthetic polymers are produced 

through a process called polymerization. Polymerization is linking together a set of small 

identical molecules, usually called monomers, by applying different chemical reactions, to 

form macromolecules or polymers. Most of the synthetic polymers are organic made up of 

covalent compounds of carbon. However certain synthetic polymers are made up of inorganic 

atoms such as silicon [YOU 1991]. Nowadays, polymers attract a strong attention due to the 

large number of applications offered extending from foams and coatings to electronic and 

biomedical devices.  

I.2. Structure of Polymers 

As previously mentioned, polymers are made of repeated units of molecules to form large 

or macromolecules. Normally, macromolecules have a linear structure. However, they can 

also possess a non-linear structure depending on the method of polymerization. Therefore, the 

structure of polymers can also be branched or cross-linked as shown in figure 4.1. 

 

Figure 4.1: Linear and non-linear structures of polymers 

A polymer’s structure is said to be branched when a number of side chain molecules is 

connected to the main chain molecule at branch points. While, the cross-linked polymers are 

Linear Branched Cross-linked

Branch points
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formed of a set of several polymer chains which are connected or held together through 

covalent bonds. 

Polymers exhibit two types of morphologies: amorphous and crystalline. In their 

amorphous state, polymers have disordered chain structure where molecules are oriented 

randomly. On the contrary in case of crystalline polymers, molecules are arranged closely in a 

discernible order. Semi-crystalline polymers form crystalline regions in some area within an 

amorphous structure [GOO 2004].  

 The knowledge of the polymers structure can help in determining the group to which the 

polymer belongs as will be explained in the following section. 

I.3. Classification of polymers 

Polymers are divided into three different groups: thermoplastics, elastomers and thermosets. 

Moreover, thermoplastics can be semi-crystalline or amorphous (Figure 4.2).  

 

Figure 4.2: Polymers classification  

I.3.a. Thermoplastics 

Thermoplastics are polymers that have a linear or branched structure. This kind of 

polymers can be easily processed. At first they are softened by heating to the melting 

temperature. Then, they can be given any shape by applying high pressure through different 

processing techniques such as extrusion or moulding. Finally they are cooled down to room 

temperature to keep the desired shape [YOU 1991]. High intermolecular forces exist between 

chains in case of thermoplastics. Consequently, molecules are strongly sustained together and 

the polymer will be solid at room temperature. Some examples of thermoplastics are 

polyimide (PI) and poly(ether ether ketone) (PEEK).They are classified as high performance 

polymers as they are able to resist high temperatures, have low flammability and low smoke 

emission, and possess high rigidity and hardness.  PEEK is known to have high wearing 
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properties and is mostly used in aerospace industry [STU 2002]. When a thermoplastic 

polymer is subjected to extremely high temperatures, it will undergo plastic flow and the 

chain molecules start to slip over one another. This causes the polymer to lose its strength. 

Thermoplastics can be amorphous or semi-crystalline.  

I.3.b. Elastomers 

Elastomers are rubbery polymers with cross-linked structure. They are amorphous. These 

polymers can be highly stretched when stressed. When removing this stress, the polymer can 

recover its original dimensions. This phenomenon is explained by the low cross link density 

structure of the polymer. Upon stretching, the polymer chains are extended but are kept held 

together through crosslinks. When the stress is released, they will move back and maintain 

their original position. An example of elastomers is silicone which is thermally stable and has 

a high resistivity to water. They are mostly used as electrical insulators and in medical 

implants. 

 I.3.c. Thermosets 

Thermosets are amorphous polymers with cross-linked structure. This type of polymers 

irreversibly cures. It can be cured by heating at high temperatures or by applying chemical 

reactions. Once cooled thermosets harden permanently. They cannot be reshaped again. If re-

heated, such kind of polymers will degrade instead of melting. They possess an excellent 

rigidity since the molecular chains are well connected through a high degree of crosslinking. 

Examples of thermosets are: phenolic resins, amino resins, polyester resins, and 

polyurethanes. Thermosets are not studied in this chapter. 

I.4. Chemical properties of polymers 

The resistance of polymers to chemicals highly depends on their molecular structure. 

Polymers of carbon-carbon backbones with hydrophobic groups attached to the main chain 

are known to have good oxidation resistance and low moisture absorption. Hydrophobic 

groups are chemical groups that do not interact with water molecules since they are non-polar 

and do not form hydrogen bonds. As a result, this kind of polymers can highly resist 

aggressive aqueous solutions. On the other hand, polymers of carbon-carbon backbones with 

ester or amide groups attached to the main chain have high moisture absorption. This causes 

strong acids and alkalis to be soaked by the polymer and consequently destroying it. All in all, 

moisture and aqueous solution sensitivities increase with the existence of hydrophilic groups 
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(polar groups that dissolve in water or other solvents) in the polymer’s main chain [GOO 

2000].  

Surface adhesion is another chemical property which greatly occurs in the presence of 

polar groups in the main chain or side groups of a polymer. Being hydrophilic, polar groups 

cause absorption of moisture. This results in building hydrogen bonds and consequently 

leading to good adhesion properties [GOO 2000].  

I.5. Physical properties 

In this section we present several physical properties of polymers. It is important to 

understand such properties to be able to explain the results obtained after applying the three 

omega method. Thermal conductivity and glass transition temperature are two important 

physical properties that must be taken into consideration when choosing a polymer for a 

particular electronic or biomedical application. 

I.5.a. Volume resistivity and electrical conductivity 

Electrical resistivity of a given material can be defined by the following equation: 

A
LR   

where R is the electrical resistance in Ω, L is the length in m, A is the area in m2 and ρ is the 

electrical resistivity in Ω m. Consequently, the volume resistivity is the electrical resistance 

through one centimeter or meter cube of material. It is expressed in Ω cm or Ω m. 

Polymers are known to be excellent insulators therefore possessing a high volume 

resistivity in the order of 1012 Ω cm [GOO 2000].  

Electrical conductivity is a measure of the material’s ability to conduct an electrical 

current. Basically, it is the reciprocal of the electrical resistivity: 


 1
  

where σ is the electrical conductivity in Siemens per meter (S/m). Since polymers are 

classified to have the very high electrical resistivity characteristics of insulators, they possess 

very low electrical conductivities.  
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I.5.b. Specific heat capacity 

The specific heat capacity is a fundamental property that defines the amount of heat needed 

to change the temperature of a one unit mass of a given material by one degree. It is given in 

the following equation: 

Tm
QC



                                                       

where C is the specific heat capacity in J/(Kg.K), ∆Q is the amount of heat required in Joules 

(J), m is the mass of material in Kg and ∆T is the temperature gradient in kelvin (K).  

Specific heat capacity can be given at constant external pressure (Cp) or when maintaining 

constant material volume (Cv). Basically, at room temperature, Cp and Cv are slightly different 

for most solid materials.                                                              

The heat capacity has a weak temperature dependence at high temperatures (above the Debye 

temperature ӨD) while it decreases down to zero as the temperature approaches the zero 

kelvin. This is illustrated in figure 4.3. For most polymers, the Debye temperature is below 

room temperature [GUN 1994]. 

 

Figure 4.3: The temperature dependence of heat capacity. 

Moreover, the heat capacity depends on the state of the polymer if it is crystalline, amorphous 

or semi-crystalline and if it is melt or glassy [MAR 2007].  
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I.5.c. Glass transition temperature 

The glass transition temperature Tg is one of the most important properties that defines a 

polymer. The glass transition temperature is the temperature range where a polymers changes 

from a brittle glassy state to a more pliable or rubbery state. Consequently a polymer having a 

glass transition temperature above room temperature will act in a brittle manner. However if 

Tg is below room temperature then the polymer is known to be an elastomer. 

 

Figure 4.4: Specific volume of various states of polymers as affected by temperature. 

Figure 4.4 represents the different states of a polymer with respect to its transition 

temperature Tg. The specific volume of a polymer is the ratio of volume to its mass and is 

expressed in m3/Kg. Upon cooling, an amorphous polymer passes from a liquid/rubbery like 

to a solid/ glassy like state. We can notice that in the rubbery state, the slope of the curve of 

the specific volume versus temperature is higher than that in the glassy state. Tg is the 

temperature defined by the intersection of the two slopes of the rubbery and glassy states.  

I.5.d. Thermal conductivity 

Thermal conductivity of polymers is an important property for polymers processing and 

application design. Typically, the polymer’s thermal conductivity is lower than that of metals 

and ceramics and thus explaining the behavior of polymers as insulators. In polymers, only 

phonons are responsible for transfer of heat because of the absence of the free movement of 

electrons. The thermal conductivity of polymers is given by Debye equation [POH 1963]: 

Liquid

Rubbery 
State

Glassy State

Tg

Temperature

Sp
ec

ifi
c V

ol
um

e

Solid



 

 
 

173                                             Chapter IV: Inkjet printing technology for polymer testing by the 3-omega method. 

3
lC

k p  

where k is the thermal conductivity in W/(m.K), Cp is the specific heat capacity per unit 

volume in J/Kg.K , ν is the average phonon velocity in m/s and l is the phonon mean free path 

in meters. Generally, polymers have low thermal conductivities ranging from 0.1 W/(m.K) to 

0.6 W/(m.K) [MAR 2007].  

 The thermal conductivity of polymers has been studied for temperatures below and above 

the glass transition temperature Tg [DAS 1996, HAN 2011].  

- Thermal conductivity in the region below the glass transition temperature: 

In this region, the thermal conductivity of polymers depends on phonons mean free path; 

the higher the mean free path the lower is the thermal resistance of polymer and the higher is 

the thermal conductivity.   

In the region below Tg and upon rising the temperature, the polymer’s chains will 

straighten causing the phonon mean free path to increase and the phonons are less scattered. 

Consequently the thermal resistance of polymer decreases linearly as temperature increases. 

So, in the region below Tg, the thermal conductivity of polymer increases linearly with the rise 

in temperature.   

- Thermal conductivity in the region above the glass transition temperature: 

In this region, the thermal conductivity is controlled by the vibrational motion of the 

polymer chains. As temperature rises, the polymer passes to its rubbery state. The chain 

segments start to experience thermal motion and large torsional rotation and slide past each 

other. This phenomenon has two consequences: 

a. The movement of the chains might cause the appearance of microvoids. This results in 

scattering of phonons. As temperature rises, the number of microvoids increases and 

the thermal resistance of polymer increases too.   

b. During vibration, the chain segments might become closer therefore increasing their 

mobility. This causes a linear decrease of thermal resistance. 

 Polymers which have strong bonding and heavy chain segments and where the probability 

of chain entanglement is high, undergo consequence type (a). In this case, the thermal 

conductivity decreases as temperature rises. Examples of such polymers are a number of 
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synthetic rubbers and PVC (polyvinyl chloride). However, polymers of weak bonding and 

light chain segments, undergo consequence type (b). In that case, the thermal conductivity 

increases with increasing temperature. All in all, polymers react differently at temperatures 

above Tg.   

I.6. Polymers in flexible electronics 

Flexible electronics technology is rapidly growing and finds applications in different fields 

such as lightning, radio frequency identification circuitry, displays and photovoltaic [ZAR 

2011, YUA 2011, PIER 2008, JAN 2011]. Polymers exhibit different mechanical, optical and 

chemical properties which render them competitors in such flexible electronic applications. 

Among these properties are optical clarity, high exploitation temperatures, high flexibility, 

and robustness that are essential in fabricating flexible electronic devices. Some of the 

polymers which have mostly emerged in the field of flexible electronics are polycarbonate 

(PC) [KO 2012], polyethylene terephthalate (PET) [ZAR 2011, MAC 2007], polyethylene 

naphthalate (PEN) [ZAR 2011, MAC 2007], polyetheretherketone (PEEK) [SUN 2007], 

polydimethylsiloxane (PDMS) [HAG 2009] and polyimide (PI) [XU 2011]. Thermal 

management is necessary in many applications. The material used must either prevent heat 

transfer or be a good thermal conductor. For example, low thermal conductivity materials are 

required in thermoelectric fields [SHE 2013]. However, materials of high thermal 

conductivity are desired to achieve heat dissipation in different electronic applications [CHU 

2001]. So, there is a need to know the material thermal conductivity of polymers. The three 

omega method is a good way to carry out this task.  

I.7. Conclusion 

Polymers structure and classification were briefly described in this section. Polymers can 

have linear, branched or cross-linked structures. Moreover, they are classified as 

thermoplastics, elastomers, or thermosets according to their structure. Also, the chemical and 

physical properties of polymers were recalled. Polymers possess low electrical and thermal 

conductivities. The glass transition temperature (Tg) identifies the polymer’s state. At 

temperatures higher than Tg, the polymer is in its rubbery state, while for temperatures lower 

than Tg, the polymer is in its glassy state. As temperature rises the thermal conductivity of 

polymers possessing strong bonding and heavy segment chains increases in the glassy region 

and then decreases slowly in the rubbery region. The thermal conductivity of polymers having 

weak bonding and light structure continues to increase in the rubbery region.  
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In order to identify the polymer suitable for a particular electronic application, it is 

necessary to determine the polymer’s thermal conductivity. Thermal conductivity of different 

polymers such as polyimide [KUR 1999], polyaniline [KAU 2007], and polymethyl 

methacrylate [PUT 2003] has been successfully measured by the three omega method.  

In the coming section, the three omega method is used to measure the thermal 

conductivities of PI at temperatures below its Tg and PDMS at temperatures above its Tg.  

II. Measurement of the thermal conductivity of polymers using the 3ω method by 
preparing samples using photolithography 

 II.1. Introduction   

Polyimide (PI) and polydimethylsiloxane (PDMS) are polymers that possess different 

properties which render them important materials in different electronic and biomedical 

applications [TIE 2006, PAT 2008, GHO 1996]. The thermal conductivity of these polymers 

is measured using the three omega method. Preparing samples for the three omega method is 

done using photolithography. Metallic lines are deposited over PI using conventional 

photolithography. In case of PDMS, a special photolithography process is applied to fabricate 

metallic lines embedded close to the surface of PDMS. Finally, numerical simulation is 

performed using FEM method. In particular, an improved model is designed for PDMS 

substrate for which the metallic lines are embedded in its surface.  

II.2. Thermal conductivity measurement of Polyimide 

The material used here is a black opaque polyimide sheet of 1 mm thick bought from 

Goodfellow Company. As already said, polyimide is a polymer possessing unique thermal, 

chemical, and mechanical characteristics. It has high chemical resistance to alcohols, 

acetones, diluted acids, and halogens. Its maximum exploitation temperature reaches 320°C. 

Therefore, polyimide is compatible with photolithography. The polyimide sample from 

Goodfellow is an MTB opaque black version of MT; MT is aluminum oxide filled with 

increased thermal conductivity of 0.45 W/m.K. In order to measure the rugosity of the sample 

surface, an analysis has been made by using a scanning probe microscope. The rugosity was 

found to be around ±250 nm with respect to an average value.  
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II.2.a. Sample preparation using photolithography 

The steps described here consist of the known basic procedure of photolithography that has 

been applied to different kind of materials (chapter 2). Initially, the polyimide substrate is 

cleaned ultrasonically in acetone for 5 minutes and then in propanol-2 for 5 minutes. Then it 

is blown dry by compressed nitrogen. To ensure the absence of any water molecule, 

dehydration is performed by placing the substrate on a 110 °C hot plate for 5 minutes. Next, a 

liquid photoresist (AZnLOF 2020) from AZ Electronic Materials is applied on the substrate’s 

surface and spin coated at 2500 rpm for 20 seconds. This operation results in a 1 µm uniform 

thick layer of photoresist. Then, after photoresist coating, the polyimide substrate is placed in 

a 110 °C oven for 10 minutes to remove excess photoresist solvent and to promote adhesion 

between the photoresist and the substrate. An oven is used to ensure more uniform heating. A 

negative optical mask (the same as the one used in chapter 2) is placed over the photoresist 

where it is exposed to ultra violet light for 5 seconds (λ=365 nm, intensity=11 mW/cm2). 

Before development, the substrate is reheated in an oven at 110 °C for another 10 minutes. 

This step is usually called post-exposure bake (PEB). Holding the substrate vertically in AZ 

326 MIF developer (AZ Electronic Materials) for about 3 minutes, the negative photoresist 

that was not exposed to ultraviolet light is dissolved. Afterwards, the substrate is directly 

placed in diluted water for 20 seconds and dried with compressed nitrogen gas. After these 

different steps, the polyimide substrate is ready for metallization. A 400 nm layer of gold is 

deposited on polyimide surface by evaporation with a 10 nm layer of chromium to ensure 

adhesion between the metallic lines and polyimide surface. The procedure is terminated with 

liftoff through which the remaining and un-needed photoresist is removed. Figure 4.5 shows a 

microscope image of a metallic line deposited on polyimide substrate by photolithography. 

 

Figure 4.5: A metallic line of 20 µm width prepared by photolithography. 
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The measurement by means of an optical microscope demonstrates a 19.67 µm-width line 

instead of the 20 µm targeted. 

II.2.b. Measuring the thermal conductivity at different temperatures 

Measurements using the three omega method were done on different metallic lines 

deposited by photolithography on polyimide. Table 4.1 summarizes the properties of three of 

the metallic lines (19, 20, and 21). These properties include the width 2b, length l, resistance 

R0 at room temperature (25.4 °C), the temperature coefficient of resistance βh and the rms 

power per meter applied on each metallic line. The temperature coefficient of resistance was 

measured using the hot plate method as described in chapter 2.  

Table 4.1: Properties of metallic lines 19, 20, and 21. 

line 2b (µm) l (mm) R0 (Ω) βh (°C-1) Power rms 
(W/m) 

19 10 3 24.253 3.26E-3 3.19 

20 20 10 38.806 3.55E-3 0.932 

21 10 5 39.6509 3.58E-3 1.8 

 

To start the three omega method measurements, the potentiometer Rv of the differential 

amplifier circuit is varied till reading a minimum fundamental voltage at frequency ω at the 

lock-in amplifier’s output as described in chapter 2. Correspondingly, the third harmonic 

voltage V3ω at frequency 3ω is measured. Measurements are done for the linear regime 

frequency range. This frequency range is calculated from the data given by Goodfellow: 

thermal conductivity of 0.45W/m.K, a density of 1420 Kg/m3 and a specific heat capacity of 

1090 J/Kg.K. The lower frequency limit is the same for the three metallic lines since it 

depends on the thickness of the substrate and is calculated to be 0.578 Hz. However, the 

higher frequency limit changes according to the width of the metallic line. Lines 19 and 21 

have the same width and their higher frequency limit found to be 37 Hz. For line 20 it is 

calculated to be 9.25 Hz. 
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Figure 4.6: The in-phase and out-of-phase third harmonic voltages measured over polyimide for lines 19, 
20, and 21. 
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Figure 4.6 represents the in-phase and out-of-phase third harmonic voltages measured in 

the linear regime for each of the lines 19, 20 and 21. The squares and circles in red represent 

the in-phase and out-of-phase measurements done by the differential amplifier circuit. We can 

notice that the in-phase third harmonic voltages measured over the linear regime are linear 

with respect to Ln(2ω). Correspondingly the out-of-phase voltages are constant. The slopes of 

linearity are determined for each metallic line and then the thermal conductivities are 

calculated. 

In table 4.2 we can find the thermal conductivity values of polyimide over metallic lines 

19, 20, and 21 at room temperature (T0= 25.4 °C). 

Table 4.2: Calculated thermal conductivities of polyimide at T0= 25.4 °C. 

Metallic line Thermal conductivity k (W/m.K) 

19 0.491 

20 0.495 

21 0.508 

 

The average thermal conductivity over polyimide is found to be 0.498 W/m.K. We can see 

that the thermal conductivities measured using the three omega method are in good agreement 

with the value given by the supplier. Moreover, an error analysis was done and a 

measurement precision of about ± 7 % was found for the three metallic lines. 

Thermal conductivity measurements of polyimide at different temperatures using the three 

omega method are done. The PI sheet is placed on a hot plate where several thermocouples 

are attached to the sample’s surface to record its temperature. The objective is to measure the 

thermal conductivity of PI at 40 °C, 100 °C and 160 °C. Actually, we did not use the metallic 

lines presented in table 4.1 for the thermal conductivity measurements at different 

temperatures. These metallic lines were used several times for repeatability measurements. 

Consequently their pads were deformed and they are no longer suitable for further 

measurements. For this reason, thermal conductivities are calculated at   40 °C, 100 °C and 

160 °C using new metallic lines of properties listed in table 4.3. For the same purpose, the 

measurement of the thermal conductivity of PI is redone at room temperature which is equal 

to T0= 20 °C in this case.   

 



 180 Chapter IV: Inkjet printing technology for polymer testing by the 3-omega method. 

Table 4.3: Properties of metallic lines 22, 23, and 24 deposited on polyimide at T0= 20 °C. 

Metallic 
line 

2b (µm) l (mm) R0 (Ω) βh (°C-1) Power 
rms 

(W/m) 

T0 (°C) 

22 30 9.2 19.68 3.87E-3 1.03 20 

23 20 9.2 30.98 3.65E-3 2.43 20 

24 20 9.2 30.25 3.87E-3 1.11 20 

 

For every metallic line, measurements are initially done at room temperature T0 where the 

resistance R0 is measured by the use of the 4-wire method. Then, power is applied on the 

metallic line and the third harmonic voltages are measured at different frequencies included in 

the linear regime. Afterwards, the hot plate’s temperature is increased manually. The 

resistance of the metallic line is recorded when the thermocouple readings appear to be 

somehow stable (variation around ± 0.5 °C) and the third harmonic voltage measurements are 

repeated for the same linear regime.  

 
Figure 4.7: The in-phase third harmonic voltages measured over PI at different temperatures (metallic 
line 23). 

We have noticed that the temperatures measured at the surface of polyimide near the 

desired metallic line are not equal to the temperatures set by the hot plate. Therefore, at 40 °C, 

100 °C and 160 °C the average temperatures recorded by the thermocouples are 40 °C, 90 °C 

and 135 °C respectively. 

At initial temperature T0, the rms powers per unit length applied to the metallic lines are as 

listed in table 4.3. As temperature rises, the metallic line resistance increases causing the rms 

power to slightly change from its initial value. Consequently, at every temperature, the 

generator’s input is adjusted in order to keep the same rms power for all measurements.   
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Figure 4.7 represents the in-phase third harmonic voltages measured at different 

temperatures by the use of the differential amplifier circuit for metallic line 23. These voltages 

are plotted versus ln(2ω) for the linear regime corresponding to the thermal conductivity 

obtained at each temperature. We can notice that the amplitude of V3ω in-phase decreases as 

temperature rises. Similarly, the slope of linearity between V3ω in-phase and Ln(2ω) decreases 

with temperature resulting in an increase in the thermal conductivity of polyimide. The 

change in the value of the thermal conductivity with temperature causes a change in the linear 

regime frequency limits. As a result, the linear zones are not the same for the measurements 

done at the four different temperatures. 

Table 4.4 shows the values of the resistances of each metallic line at different temperatures 

together with the values of the calculated thermal conductivities. The temperatures listed in 

this table are the average measured temperatures of the thermocouples connected on the 

surface of the polyimide sample near the metallic line.   

Table 4.4: The resistances of the metallic lines and the thermal conductivities of Polyimide at different temperatures. 

Metallic line Temperature (°C) Metallic line 

Resistance (Ω) 

Thermal 

conductivity 

(W/m.K) 

 

22 

20 19.68 0.488 

40 21.08 0.522 

90 24.91 0.639 

135 28.56 0.710 

 

23 

 

 

20 30.98 0.492 

40 32.85 0.541 

90 38.58 0.640 

135 43.84 0.706 

 

24 

20 30.25 0.498 

40 32.19 0.527 

90 38.03 0.628 

135 43.61 0.727 
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Figure 4.8: Thermal conductivities measured by lines 22, 23, and 24 at different temperatures. 

Table 4.5 represents the average thermal conductivities of polyimide determined at different 

temperatures. 

Table 4.5: Average thermal conductivity of Polyimide at different temperatures. 

T (°C) 20 40 90 135 

kavg (W/m.K) 0.492 0.530 0.635 0.714 

 
In figure 4.8, we can notice that the thermal conductivities measured at each temperature 

by metallic lines 22, 23 and 24 are in good agreement. The average thermal conductivity of 

polyimide measured using the three omega method is found to be 0.492 W/m.K at 20 °C. The 

average thermal conductivity of PI obtained at 25.4 °C is 0.498 W/m.K as presented before in 

table 4.2. Moreover, we can observe that the thermal conductivity of polyimide increases with 

temperature. This is due to the fact that the thermal conductivity is measured at temperatures 

below the glass transition temperature Tg ~ 320 °C of polyimide. As explained in section I.5.c, 

in the regions below Tg, the thermal conductivity of a polymer increases as temperature rises.  

 
II.2.c. Comparison using Cahill’s formula 

 
After measuring experimentally the thermal conductivity of PI at different temperatures 

using the three omega method, Cahill’s formula is applied for comparison. The thermal 

conductivities measured over line 24 at 20 °C, 40 °C, 90 °C and 135 °C are substituted in 

Cahill’s formula (equation 4.1) and the experimental third harmonic voltages are compared to 

the theoretical ones (equation 4.2). The following equations have been extensively detailed in 

chapter 1. 
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Figure 4.9: Comparison of experimental and theoretical (Cahill) third harmonic voltages at (a) 20 °C and 
90 °C and at (b) 40 °C and 135 °C for line 24.  

Figure 4.9 shows the experimental third harmonic voltages measured at different temperatures 

using the three omega method over line 24 in black. The data in red are those extracted from 

Cahill’s formula. We have chosen a common linear zone (fmin= 1 Hz and    fmax= 10 Hz) for 

the four measurements to make the figure clearer and easier to compare between theoretical 

and experimental results. We can notice that at each temperature both findings are in good 

agreement.  

Cahill’s formula (equation 4.1) depends mainly on the material’s thermal conductivity and 

on the rms power per unit length applied on the metallic line deposited on the surface of 

material. However, we can see that it is independent on the temperature T0 at which we 

initiate the manipulations. 
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II.3. Thermal conductivity measurement of Polydimethylsiloxane (PDMS) 

PDMS is a popular silicon based polymer that is used in different electronic and medical 

applications. PDMS offers many advantages like simplicity of fabrication and high flexibility 

making it suitable to serve as a substrate in flexible electronics.  Recently, microwave 

applications where PDMS is used as a dielectric substrate possessing appropriate mechanical 

properties have been addressed. Reconfigurable and deformable antennas have been realized 

using this material [TIE 2006, HAG 2009]. On the other hand, in medical fields, PDMS is 

valued for its optical transparency, chemical inertness, impermeability to water, and non-

toxicity. This makes it a suitable material for example to fabricate microfluidic devices [KUN 

2006, COO 2002] such as capillary electrophoretic separation devices [HON 2001], and to build 

neural implant wireless devices [HAS 2011]. In addition to the aforementioned physical and 

chemical properties, thermal conductivity is an important property to control for PDMS 

processing and for accurate application design [DAW 2006]. The polymer material used here is 

a Dow Corning 184 silicon elastomer.  

II.3.a. Sample preparation 

Metallic deposition on PDMS by conventional techniques such as sputtering and evaporation 

is found to be impractical [LEE 2005]. PDMS undergoes a low surface energy which results in 

poor adhesion of metals to its surface.  Hage-Ali et al. [HAG 2009] have proposed a metal 

fabrication procedure which results in metallic patterns embedded close to the surface of PDMS 

where an adhesion mechanism is used as an intermediate between the metal layer and PDMS 

surface. 

Initially, a 100 nm layer of molybdenum is sputtered on the surface of a 3 inch silicon 

substrate (fig 4.10a). This is followed by a photolithography process where a positive resist is 

patterned for the deposition of a 20 nm seed gold layer (fig 4.10b). This patterning is done 

through an optical mask with the desired line patterns of different lengths and of 10 µm and 20 

µm width.  Similar to the previous step, a photoresist is fabricated by photolithography. 

Afterwards, an electroplating process of a 500 nm layer of gold on the top of the seed layer is 

performed (fig 4.10c). The adhesion mechanism consists of sputtering a 50 nm layer of titanium 

followed by the deposition of a 50 nm layer of SiO2 by plasma enhanced vapor deposition 

(PECVD). The final thickness of the metallic line conductor is equal to 0.5 µm. A 430 µm 

PDMS frame is bonded to a 20 µm thick PDMS membrane which was initially deposited by 

spin coating as shown in figures 4.10e and 4.10f. This procedure is then terminated by removing 

the molybdenum layer through etching and the desired PDMS sample to be characterized is 
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released (figure 4.10g).  

 
 

 

Figure 4.10: Main procedure steps for the fabrication of metallic line conductors embedded in the surface 
of PDMS. 

 

The procedure followed here results in metallic lines embedded in the surface of PDMS 

unlike the conventional photolithography used to deposit the metallic lines on the surface of 

material. The PDMS sample is placed on a high resistivity silicon substrate for the ease of 

manipulation. A metallic line conductor is presented by means of an optical microscopy image 

in figure 4.11. 

 

 

a) Molybdenum sputtering

b) Gold seed layer

c) Gold electoplating

d) Adhesion layer deposition

e) PDMS spin coating

f) Thick PDMS layer bonding

g) Molybdenum etching and release

Si Mo Au Photoresist

PDMS Ti/Si02
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Figure 4.11: A microscopy image of a metallic line conductor embedded in PDMS surface. 

 

II.3.b. Measuring the thermal conductivity at different temperatures 
 

Different powers are applied to three different metallic lines (25, 26, and 27) embedded in 

PDMS to measure the thermal conductivity using the three omega method. In table 4.6 are 

given the dimensions (2b and l) of these lines, the resistance R0 at T0= 22 °C, βh, and prms 

applied on each metallic line. 

Table 4.6: Different properties of lines 25, 26, and 27. 

line 2b (µm) l (mm) R0 (Ω) βh (°C-1) Power rms 
(W/m) 

25 20 5 13.585 2.93E-3 0.95 

26 20 12 34.582 2.85E-3 0.783 

27 10 5 24.646 2.87E-3 1.78 

 

The third harmonic voltage is measured at T0 for frequencies between 1.4 Hz and 4.5 Hz 

for lines 25 and 26, and between 1.4 Hz and 18 Hz for line 27. These frequencies are 

determined for thermal conductivity value extracted from literature k= 0.2 W/m.K [HON 

2010], density of 965 Kg/m3, specific heat capacity of 1460 J/Kg.K, and PDMS sample 

thickness of 450 µm.  

Figure 4.12 represents the third harmonic voltages measured in the linear regime for 

metallic lines 25, 26, and 27. 
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Figure 4.12: Third harmonic voltages measured in the linear regime for lines 25, 26, and 27. 

For the three metallic lines, we can observe that the in-phase component is linear as a function 

of Ln(2ω) and the out-of-phase is constant all over the linear zone.  
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In table 4.7 are given the thermal conductivity values obtained at T0 for each of the 

metallic lines. 

Table 4.7: Thermal conductivity values measured at T0=22 °C.  

Metallic line Thermal conductivity k (W/m.K) 

25 0.213 

26 0.204 

27 0.213 

 

The average thermal conductivity of PDMS obtained kavg= 0.21 W/m.K corresponds to the 

values given in literature. Moreover, an error analysis was performed and resulted in a 

measurement precision of ~ ±9 %.  

The thermal conductivity of PDMS is also measured at different temperatures using the 

three omega method. It was determined at 60 °C and 100 °C, which are temperatures higher 

than PDMS glass transition temperature Tg= -125 °C. Measurements are done on three or 

more metallic lines at each temperature. The following table summarizes the thermal 

conductivity values (minimal, maximum, and average) obtained at 60 °C and 100 °C. 

Table 4.8: Thermal conductivity values at 60 °C and 100 °C. 

Temperature (°C) kmin kavg kmax 

60 0.22 0.225 0.229 

100 0.244 0.257 0.267 

   

Table 4.8 shows that the thermal conductivity of PDMS increases with temperature. But, 

PDMS is known to have a long and strong bonding between silicon and oxygen atoms in its 

molecular chain. Therefore, PDMS must follow consequence type (a) as stated in section 

I.5.d. That is to say, the thermal conductivity of PDMS decreases with increasing 

temperatures at the region above the glass transition temperature.  

Systematic errors are aroused while measuring the thermal conductivity of PDMS at different 

temperatures using the three omega method: 

- Measurements were done over PDMS in its rubbery state. A problem occurred between the 

micromanipulator needles and PDMS surface. As mentioned in chapter 2, the needles have 
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a radius of 7 µm at one of its extremities. Such needles are not compatible with a polymer 

material in its rubbery state. When their extremity is placed on a metallic line pad, it might 

cause deformation of the pad and the surface of PDMS underneath equally. One of the 

possible solutions was to use the other extremity of the needle which is larger and less 

needle-like. But, this solution produces unstable measurements and consequently 

uncertainties in the value of the thermal conductivity. 

- The hot plate used to heat the PDMS sample is the one used when performing the 

temperature coefficient of resistance measurements. As explained in chapter 2, vibrations 

and variations in metallic line resistance value are produced when setting the hot plate’s 

temperature. This variation in the metallic line resistance changes the value of the initial 

voltage V0 and consequently the value of the power across the metallic line. 

The increase in the thermal conductivity of PDMS produced with increasing temperature 

might be due to the systematic errors produced by the micromanipulator needles and the hot 

plate.  

The variations of the thermal conductivity of PDMS as a function of temperature are very 

slight when compared to the changes obtained in the value of the thermal conductivity of 

polyimide. Till now, such variations cannot be measured by the three omega method 

experimental setup built in the laboratory which precision measurement is ~ ± 10 %.  

These errors can be reduced by: 

- Using micromanipulator needles with circular extremity (larger extremity) therefore 

eliminating the possibility of sample’s deformation and unstable measurements.  

- Using an oven instead of a hot plate. Consequently, no vibrations are generated when 

changing the temperature. 

- Generally, improving the three omega method experimental setup measurement precision. 

II.3.c. Comparison with Cahill’s formula 

In this section, the experimental results of the three omega method measurements done on 

PDMS at room temperature are compared to Cahill’s solution. The density, specific heat 

capacity and average thermal conductivity of PDMS are taken to be 965 Kg/m3, 1460 J/Kg.K, 

and 0.21 W/m.K respectively.  
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Figure 4.13 shows a comparison between the real third harmonic voltages obtained in the 

linear regime experimentally and according to Cahill for line 27 (see table 4.6). 

 

Figure 4.13: Experimental and theoretical in-phase and out-of-phase third harmonic voltages for metallic 
line 27. 

We can notice that V3ω in-phase determined by Cahill are higher in magnitude. An explanation 

for this difference can be partially found in the fact that Cahill’s solution is defined for a 

metallic line deposited on the surface of material while our sample consists of metallic lines 

integrated in the PDMS membrane where a SiO2 layer is introduced for adhesion purposes. 

II.4. Modeling improvement using FEM method 

II.4.a. Applying numerical simulation to Polyimide sample 

As described in chapter 3, numerical simulations of the 3ω method based on the FEM take 

into account the exact geometry of the heater, the materials underneath the heater and the 

physical properties of these different materials. Furthermore, FEM requires the knowledge of 

the structure’s initial temperature before starting any simulation. The choice of this parameter 

allows us to simulate the behavior of a metallic line fed by a power p(t) and placed over  a 

polymer substrate heated to a temperature of 135 °C as in the case, for example, of the 

experimental study. 

 Numerical simulation using COMSOL® has been discussed in details in chapter 3. We just 

recall that due to symmetry along normal line to the metallic strip, we only need to consider a 

half structure as presented in figure 4.14. Thus the boundary conditions for the temperature 
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are taken to be the following: isothermal on the bottom and on lateral faces and natural 

convective cooling on the top of the structure.   

 

Figure 4.14: Simulated structure (not to scale). T0= 20 °C, 40 °C, 90 °C, or 135 °C.  

To perform the numerical simulations, we proceed as follows. Initially, we begin with a 

preliminary static study on the structure where the initial temperature is considered to be 

uniform only in the copper plate. This study is done in steady state since no power is supplied 

to the metallic line p(t)=0. In order to perform the needed calculations, we use the average 

thermal conductivity values of PI measured for the four temperatures (20 °C, 40 °C, 90 °C 

and 135 °C) corresponding to four possible temperature values of the copper plate. This first 

calculation allows us to determine the initial temperature distribution in the structure. The 

temperature distribution obtained is very close to uniform distribution. Afterwards, simulation 

in time domain is done to determine the temperature evolution with respect to time in the 

metallic line conductor and consequently to deduce the amplitude of the third harmonic 

voltage.  

Figure 4.15 shows the experimental third harmonic voltages, in black, measured at 

different temperatures using the three omega method over line 24. The data in red are those 

obtained from FEM simulation. 
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Figure 4.15: Comparison of experimental data and FEM solution at (a) 20 °C and 90 °C and at (b) 40 °C 
and 135 °C for line 24. 

In the four cases, we can observe that the experimental results and theoretical data obtained 

by numerical simulation are very close. Also, as we have seen in figure 4.9, Cahill’s solution 

agrees with the obtained experimental data. As Cahill assumes, the magnitude of the 

temperature variations at the level of the metallic line are independent of the substrate’s initial 

temperature. It is only the value of the thermal conductivity of the material under test that 

varies with temperature. 

II.4.b New FEM model designed for PDMS sample 

In this section we are interested in the resolution of the problem dealing with diffusion of 

heat into a medium from an oscillating heater located near the surface but embedded in the 

medium under test. 

As explained in section II.3.a, the sample for the three omega measurements was prepared 

through a procedure which differs from conventional ways applied to solid materials. At the 

end of the fabrication process, the heating element which consists of two conductors (gold and 
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titanium) is inserted in the medium under test. Let us also recall that under the heater there is a 

very thin layer (50 nm) of SiO2 (Figure 4.16). 

 

Figure 4.16: Heater embedded in PDMS. 

As explained in chapter 3, in Cahill’s formalism, it is supposed that an infinitely long 

heater with a width equal to 2b, is placed on the surface of a semi-infinite medium. In 

addition, to obtain Cahill’s integral formula, an infinitely thin layer is assumed. For our 

model, it is obvious that assumptions made by Cahill are not all taken into consideration. 

These approximations can justify the difference observed between the experimental and 

theoretical data (Figure 2.13), so simulations using the finite element method (FEM) are 

performed. 

Due to symmetry along normal line to the metallic strip, we only need to consider a half 

structure as presented in figure 4.17.  

 

Figure 4.17: The simulated structure (not to scale). 

The boundary conditions for the temperature are taken to be the following: isothermal on 

the bottom and on lateral faces and natural convective cooling on the top of the structure. The 

silicon substrate (350 µm thick) used for manipulation purposes, has a high thermal 

conductivity compared to that of PDMS. Therefore, this substrate can be considered as a heat 
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sink at ambient temperature similar to the copper plate used in the preceding section (figure 

4.14) to perform experimental measurements.  

The finite element method requires the creation of a mesh for the studied structure. One 

can mention that fine meshing is applied on thin layers (heater and SiO2 adhesion layer) to 

achieve a more reliable heat transfer modeling (Figure 4.18). 

 

Figure 4.18: Cross-sectional view of the grid near the heater. 

In order to compare temperature oscillations obtained by the two simulation studies 

(Cahill’s formula and FEM), we use for the calculations the measured average value of the 

thermal conductivity of PDMS kavg= 0.21 W/m.K (density of 965 Kg/m3, specific heat 

capacity of 1460 J/Kg.K). For FEM modeling, the knowledge of the thermal properties of 

gold (thermal conductivity: 317 W/m.K, density: 19300 Kg/m3, specific heat capacity: 129 

J/Kg.K) and high resistivity silicon (thermal conductivity: 148 W/m.K, density: 2330 Kg/m3, 

specific heat capacity: 700 J/Kg.K, thickness: 350 µm) is required. The effect of the titanium 

layer is not taken into account in this study. For simplicity, the 50 nm layer of titanium is 

united with the 400 nm layer of gold and a conducting element made of gold possessing a 

thickness of 450 nm is considered. The density, specific heat capacity, and thermal 

conductivity values used in simulation for the SiO2 layer are 2500 Kg/m3, 775 J/Kg.K , and 

1.4 W/m.K respectively. Other parameters needed while performing simulations by FEM such 

as power are found in table 4.6 (lines 25, 26, and 27).  

Initially, we have set a frequency variation of 0.01 Hz to 10 MHz. Figure 4.19 shows a plot 

of temperature oscillations obtained for line 27 as a function of the natural logarithm of the 

thermal excitation frequency 2ω. 



 

 
 

195                                             Chapter IV: Inkjet printing technology for polymer testing by the 3-omega method. 

 

Figure 4.19: A plot of the real and imaginary parts of temperature oscillations with respect to 2ω for line 
27 at room temperature. 

As described in chapter 3, for the lower frequencies we can see the influence of the high 

resistivity silicon substrate [RAU 2003, JAC 2002, WAN 2009]. In the linear regime, the 

slope of the curve calculated by Cahill’s formula and the one given by numerical simulation 

are identical. So, the determination of the thermal conductivity when the metallic line is 

embedded in the surface of material is possible with 3ω method. Moreover, the presence of 

the SiO2 thin layer seems to have no impact on the slope of the curve. We can notice in the 

linear zone that the in-phase temperature oscillations found by FEM are lower in magnitude 

than those calculated by Cahill ‘s method. This is a good indication when observing figure 

4.13 where the experimental measurements are also lower in magnitude than Cahill’s 

solution.  

To be more precise, we uniquely focus on the in-phase third harmonic voltages as a 

function of Ln(2ω). In figure 4.20 the in-phase third harmonic voltages are plotted in the 

linear regime with respect to experimental results, Cahill, and COMSOL® simulation for line 

27. In order to study the influence of the fact that the metallic line is embedded near the 

surface of PDMS and that a thin layer of SiO2 exists between the metallic line and PDMS, 

different numerical simulations using FEM have been performed. In a first simulation, called 

“model 1”, the metallic line is deposited on the surface of substrate as if conventional 

photolithography has been used for fabrication. For a second simulation called “model 2”, the 

metallic line is embedded near the surface of the substrate. “Model 3” is simply “model 2” on 

which the thin layer of SiO2 is added between the metallic line and the substrate surface. 
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“Model 3” is equivalent to the real structure. For all the above models, we have simulated the 

PDMS substrate placed on the silicon substrate of high thermal conductivity. 

 
Figure 4.20 Amplitude of the in-phase third harmonic voltages for line 27 plotted with respect to Cahill 
formula, models 1, 2, 3 and experimental measurements. 

As noted in section II.3.c, Cahill method always overestimates the experimental 

measurements. We can observe that the more the simulated structure approaches the real 

structure under-test, the more the theoretical curve becomes close to the experimental one. 

The fact that the metallic line has a certain thickness (model 2) has decreased the in-phase 

third harmonic voltage V3ω. This decrease will be enhanced if the metallic line is embedded 

near the surface of substrate. However, the presence of the SiO2 layer of 50 nm thickness has 

no influence. But, at the end, the theoretical values are always higher by 10 % to 15 % than 

the experimental values.  

     
 II.5. Conclusion 

Metallic lines were successfully deposited over polyimide polymer using photolithography. 

Measurements were performed at different temperatures to measure the thermal conductivity 

of polyimide using the three omega method. The average thermal conductivities of polyimide 

were found to be 0.492 W/m.K, 0.498 W/m.K, 0.530 W/m.K, 0.635 W/m.K, and 0.714 

W/m.K at 20 °C, 25.4 °C, 40 °C, 90 °C and 135 °C respectively. For temperatures below its 

glass transition temperature, polyimide’s thermal conductivity increases with increasing 

temperature. On the other hand, a special procedure was applied for PDMS sample 

preparation. Instead of depositing the metallic lines on the surface of PDMS, they were 

embedded in its surface. The average thermal conductivity of PDMS was found to be 0.21 

W/m.K at room temperature when using the three omega method. The average thermal 
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conductivities at 60 °C and 100 °C were measured to be 0.225 W/m.K and 0.257 W/m.K 

respectively. We have found that the thermal conductivity of PDMS increases with increasing 

temperature in the regions above its glass transition temperature. Cahill’s solution was 

compared to experimental results over PDMS. Also, numerical simulations using FEM 

method were performed for metallic lines embedded near the surface of PDMS. Cahill’s 

solution overestimated the experimental measurements, while the data found by FEM method 

showed a better agreement with the experimental results. However, Cahill’s analytical 

solution remains a reliable method to examine the experimental results in a short period of 

time.  

For PI, the sample was prepared using conventional photolithography while a special 

procedure was applied for PDMS sample preparation. In the following section, inkjet printing 

technology will be used for sample preparation instead of photolithography. This technology 

competes photolithography process in terms of time and cost. 

III.  Characterization of polymers using the 3ω method by preparing samples using 
inkjet printing technology 

III.1. Introduction  

During the last decade, inkjet printing technology has emerged in the field of electronics 

and especially in the fabrication of plastic electronic devices. It has appeared as a competitor 

to photolithography because of its simplicity of use. Lithography employs a basic procedure 

of multiple and expensive steps. Moreover, it includes the use of different kind of chemical 

products that might be harsh on some kind of polymers. In this section, we present the 

feasibility of the three omega method when metallic line conductors are prepared by means of 

an inkjet printing technology. When applying such technology, the metal-based ink is directly 

printed on the substrate where no chemical and solvent application is required and no mask 

patterning is needed. In this way, the number of processing steps and the amount of material 

used is reduced which implies reduction of time, cost and waste [PER 2010]. It is the first 

time, to the best of our knowledge, that the three omega method is associated to the inkjet 

printing technology for the measurement of thermal conductivity.  

The compatibility of inkjet printing technology with the three omega method is tested on 

PI and PEEK. Experimental measurements are then compared to Cahill’s solution. Finally, an 

improved model is designed using FEM method.  
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III.2. Applying inkjet printing technology on PI and PEEK 

III.2.a. Sample preparation by inkjet printing technology 

In this study, the inkjet printer used is a DMP-2800 from FUJIFILM Dimatix. It has a 

platinum plate of 210x315 mm printing surface area that can be controlled in X, Y and θ 

directions. This plate is equipped with a vacuum system to tightly hold the substrate. 

Furthermore, the printer has an alignment camera that permits to choose the starting point of 

printing and to observe preceding printed patterns. DMP-2800 inkjet printer employs the 

piezoelectric drop on demand method that provides small drops and high placement accuracy. 

A printing head of 16 piezoelectric nozzles which operates in a bend mode is used. One of the 

walls of the ink chamber is made of a piezoelectric ceramic material. When a firing voltage is 

applied, this wall is bended causing droplet ejection as presented in figure 4.21 [PER 2010].  

 
Figure 4.21: Piezoelectric bending mode [PER 2010].  

The printing ink used to prepare the metallic lines is solvent based silver nanoparticles 

from SunTronic. Before starting the printing process, the substrate was cleaned in isopropanol 

under ultrasound waves for 5 minutes. Then, the substrate was loaded in the printing machine 

and aligned correctly on the platinum plate. The desired metallic lines pattern for the three 

omega measurements were designed on DMP’s pattern editor program. The firing voltage of 

the piezoelectric nozzles was set to 30 volts. At the end of the printing process, the substrate 

was unloaded and sintering process was performed at 200°C for 30 minutes.  
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Figure 4.22: Space between two ink droplets. 

The available printing head used in the study has nozzles of 40 µm diameter. The first trials 

were done on polyimide substrate. On the pattern editor program, the metallic lines were 

designed to have a width equivalent to two droplets with a drop space set to 25 µm (figure 

4.22). Actually, the average droplet diameter produced when printed on the polyimide 

substrate is equal to 35 µm.  Figure 4.23(a) shows a metallic line printed by the DMP-2800 

inkjet printer on PI substrate. The average metallic line width measured under an optical 

microscope is found to be approximately 58 µm.  

On the other hand, on PEEK substrate, one drop was set for the metallic line width. This 

resulted in an average width of 37 µm. Figure 4.23(b) show a metallic line printed on PEEK 

substrate.  

 

Figure 4.23: Metallic lines printed by inkjet technology on PI (a) and PEEK (b). 

Drop space
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Once the design of metallic lines on the samples by inkjet printing technology is well 

controlled, we have investigated the measurement of the thermal conductivity of this kind of 

samples. 

III.2.b. Thermal conductivity measurement of PI 

The thermal conductivity measurements were done on several metallic lines printed on the 

surface of Polyimide at room temperature T0= 23.2 °C by the use of the three omega method. 

Among them are lines A, B, and C listed with their properties in table 4.9. The parameter 

2bavg is the average width measured over a metallic line.  

Table 4.9: Properties of metallic lines deposited by inkjet technology on Polyimide substrate.   

line 2bavg (µm) l (mm) R0 (Ω) Power rms 
(W/m) 

A 51 1 36.675 2.36 

B 58 2 39.825 4.57 

C 64 2 32.838 1.18 

 

The temperature coefficients of resistance βh of the printed metallic lines are determined by 

the use of the hot plate method. Figure 4.24, shows an increasing linear graph of temperature 

versus resistance of the printed metallic line B.  

 

Figure 4.24: Metallic line resistance measured at different temperatures for line B. 

The temperature coefficients of resistance βh of metallic lines A, B and C are listed in table 

4.10. We can notice that the temperature coefficient of resistance for the silver printed 

metallic lines is around three times lower than that of the gold metallic lines. 
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Table 4.10: Temperature coefficient of resistance of lines A, B, and C measured by the hot plate method. 

Metallic line A B C 

βh (/°C) 9.05E-4 1.04E-3 1.28E-3 

 

The linear regime frequency upper and lower limits are determined in order to measure the 

third harmonic voltages. We recall the thickness of the polyimide substrate ts= 1 mm. The 

lower frequency limit is calculated to be 0.578 Hz for the three printed metallic lines. The 

higher frequency limits are found to be 1.14 Hz, 1.1 Hz, and 0.904 Hz for metallic lines A, B, 

and C respectively.  

 

Figure 4.25: Measured in-phase third harmonic voltages for lines A, B, and C plotted over the linear 
regime frequency range of each line.  

Figure 4.25 represents the in-phase third harmonic voltages for the printed metallic lines A, 

B, and C plotted over the linear regime frequency range corresponding to the calculated 

thermal conductivity. We can notice that for the three lines, the third harmonic voltages 

follow a linear path. We can find in table 4.11 the thermal conductivity values measured for 

polyimide through lines A, B, and C.  

Table 4.11: Thermal conductivities measured for polyimide through inkjet printed lines.  

Metallic line A B C 

k (W/m.K) 0.518 0.500 0.529 
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We can notice that the thermal conductivity values measured here are in good agreement 

with those measured by metallic lines deposited by photolithography over polyimide (table 

4.2).  

As we can notice in figure 4.23, the metallic line printed on polyimide substrate is of non-

uniform width. However, this non-uniformity has no effect on the value of the calculated 

thermal conductivity. This can be explained by observing equation 1.53 where the parameter 

2b in not considered when calculating the thermal conductivity of material.                                                                

II.2.c. Thermal conductivity measurement of Polyether ether ketone (PEEK)  

The previous section has showed that the thermal conductivity of Polyimide can be 

measured using the three omega method over metallic lines prepared by inkjet printing 

technology. In this section another material is used to confirm the compatibility of the three 

omega method with inkjet printing technology. The material used here is Polyether ether 

ketone (PEEK). PEEK is a thermoplastic polymer with good wear resistance, good insulating 

properties and high heat distortion temperature. These properties render it an important 

material in electronics, automotive, aircraft and health care industries [FRA 1991].   The 

PEEK polymer used here is bought from Goodfellow. It has a thickness of 1mm, density of 

1260 Kg/m3, specific heat capacity of 1340 J/Kg.K, and a thermal conductivity of 0.25 

W/m.K.  

Table 4.12 represents the different properties of three printed metallic lines used to 

measure the thermal conductivity of PEEK. 

Table 4.12: Different properties of metallic line D, E, and F printed on PEEK.  

line Average 2b 
(µm)  

l (mm) R0 (Ω) βh (°C-1) Power rms 
(W/m) 

D 35 2 127.95 5.61E-04 0.677 

E 37 

 

2 

 

160.96 

 

5.35E-04 

 

1.293 

 F 40 

 

2 

 

154.31 

 

5.40E-04 

 

1.334 
 

 

The temperature coefficient of resistance βh of the metallic lines is measured using the hot 

plate method. We can notice that in this case the values of βh are smaller than those measured 

for PI. The printing head used in printing the metallic lines over PEEK is different than the 

one used when preparing PI sample.  
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Figure 4.26: The in-phase third harmonic voltages measured over lines D, E, and F. 

Figure 4.26 represents the in-phase third harmonic voltages measured over metallic lines 

D, E, and F printed on PEEK substrate. The in-phase third harmonic voltages are close in 

value for metallic lines E and F since approximately the same power is applied on these lines. 

Moreover lines E and F have somehow the same dimensions. The power applied on line D is 

half of that applied on E and F. We can find the values of the thermal conductivities measured 

by each line over PEEK substrate in table 4.13.  

Table 4.13: PEEK thermal conductivity measured by lines D, E, and F. 

Metallic line D E F 

k (W/m.K) 0.272 0.298 0.294 

 

The average thermal conductivity measured for PEEK substrate is found to be kavg= 0.288 

W/m.K. This value is in good agreement with the thermal conductivity of PEEK given by the 

supplier (Goodfellow).   

III.3. Experimental-theoretical comparison for PI and PEEK 

III.3.a. Polyimide 

Experimental measurements performed over PI are compared to Cahill’s solution. The 

experimental and theoretical in-phase and out-of-phase third harmonic voltages are plotted for 

metallic lines B for an average width 2b= 58 µm.  
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Figure 4.27: Theoretical and experimental in-phase and out-of-phase third harmonic voltages measured 
on line B over PI substrate. 

In figure 4.27, we can observe that experimental in-phase measurements overestimate 

Cahill’s solution. 

 

Figure 4.28: The in-phase third harmonic voltages plotted with respect to Cahill for 2b1= 56 µm, 2bavg= 58 
µm and 2b2= 60 µm.  

Now, the effect of the variation of the width of the metallic line printed using inkjet 

printing technology on PI is studied using Cahill’s formula (equation 4.1). The average width 

measured on metallic line B is 2bavg= 58 µm. We consider three different width 2b1= 56 µm, 

2bavg= 58 µm, and 2b2= 60 µm. Cahill’s solution is plotted for the three different widths 

(figure 4.28). We can notice that the magnitude of the in-phase third harmonic voltage 

increases as the width decreases. However, the slope is the same for the three different linear 

graphs. Consequently, the variation of the metallic line width on polyimide substrate has no 

influence on the calculated thermal conductivity.  
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III.3.b. PEEK  

As for polyimide substrate, experimental measurements and theoretical data obtained by 

Cahill’s method are plotted for comparison reasons for metallic line F on PEEK as shown in 

figure 4.29. We can always notice an offset ∆V in the in-phase third harmonic voltages.  

 

Figure 4.29: Theoretical and experimental in-phase and out-of-phase third harmonic voltages measured 
on line F over PEEK substrate. 

The difference between the experimental and Cahill’s in-phase third harmonic voltages ∆V 

for both PI and PEEK reminds us of the frequency independent temperature oscillation ∆Tf 

produced due to a film-on-substrate system as explained in chapter 3. The offset ∆V is 

calculated for both PI and PEEK and found to be 2.1 mV and 0.254 mV respectively. 

However this difference (∆V) has no influence on the calculated thermal conductivity.  

III.4. Modeling improvement using FEM method 

III.4.a. Applying numerical simulation to polyimide with printed metallic lines 

As presented in figure 4.23, the inkjet printing process produces non-uniform metallic lines 

on the surface of the two polymers. Moreover, these metallic lines are of variable thickness. 

In this section we study among others things, the influence of width and thickness variation 

observed when using inkjet printing on the in-phase third harmonic voltages. This width 

effect has already been investigated in section III.3.a. However, numerical simulation using 

COMSOL® is also performed to examine this effect together with the influence of the metallic 

line thickness. 
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The heating element of width 2b made of solvent based silver nanoparticles is placed on 

the surface of the medium under-test (polyimide). Only half of the structure is simulated and 

the temperature boundary conditions are set as in section II.4.a.  

Different parameters such as the width (2b) and the thickness (t) of the metallic line and 

the solvent based silver nanoparticles thermal conductivity (k) are investigated to verify their 

influence on the precision of the thermal conductivity retrieved by the method proposed. 

 

Figure 4.30: The theoretical in-phase third harmonic voltages calculated by FEM for different metallic 
line width 2b (a) different metallic line thickness t (b) and different thermal conductivities of printed ink 
(c). 
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In figures 4.30(a), 4.30(b) and 4.30(c), the in-phase third harmonic voltages are plotted for 

different metallic line widths 2b, thickness t and thermal conductivities k.  These studies are 

done for metallic line B. We can notice that the slope keeps its value in each study. We 

conclude that the variation of the parameters 2b, t and k has no influence on the calculated 

thermal conductivity. This conclusion is coherent with the one drawn in chapter III. 

- Effects of the thermal contact resistance 

As discussed in section III.3, the experimental in-phase third harmonic voltages plotted for 

line B overestimate Cahill’s solution. This is due to the existence of a thermal contact 

resistance between the printed metallic line and the surface of substrate. This resistance is 

given by: 

                                                                  
rms

f
f p

bT
R

2*
                                                      (4.3) 

where Rf is the thermal contact resistance in W/m2.K, ∆Tf is the frequency independent 

temperature oscillations in K, 2b is the metallic line width in meters, and prms is the rms power 

applied to the metallic line in W/m. 

 

Figure 4.31: Thermal contact resistance Rf between the printed metallic line and the surface of PI.  

The frequency independent temperature oscillations are calculated for metallic line B and 

are found to be ∆Tf ~ 7.15 °C. Consequently, according to equation 4.3, the thermal contact 

resistance Rf is equal to 90.5E-6 m2.K/W. Thus, in order to improve modeling, a thin 

thermally resistive layer is added to the structure between the printed metallic line and the 

surface of substrate to simulate resistance Rf (figure 4.31). Figure 4.32 shows the experimental 

and theoretical simulation (FEM and Cahill) data. On one hand, we note that FEM modeling 

and Cahill's method lead to comparable results when the contact thermal resistance is not 

taken into account. On the other hand, thanks to the new FEM modeling approach that 
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introduces the contact thermal resistance, the simulation findings agree now very well with 

the measured data.  

 

Figure 4.32: In-Phase third harmonic voltage obtained by different methods for PI substrate (Cahill's 
formula, FEM and experimental measurements). 

The study of all these effects have shown that the method proposed using inkjet technology 

allows the thermal conductivity measurement with a good level of confidence.  

The effect of the thermal contact resistance is also studied for AC temperature oscillations 

measured over a wide frequency range. Figure 4.33 presents the AC temperature oscillations 

plotted with respect to Cahill’s solution and FEM modelling for frequencies between 0.01 Hz 

and 10 MHz. For Cahill’s solution (in red), the thermal contact resistance is not taken into 

consideration. 

 

Figure 4.33: In-phase and out-of-phase temperature oscillations plotted over a wide frequency range. 

2.1

2.6

3.1

3.6

4.1

4.6

5.1

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8

Série1

Série2

Série3

Série4

Ln(2ω)

In
-p

ha
se

 th
ird

 h
ar

m
on

ic
 v

ol
ta

ge
 (m

V
)

Experimental
FEM with Rf

Cahill
FEM without Rf

-5

0

5

10

15

20

-5 0 5 10 15 20

Cahill X

Cahill Y

FEM X avec RF

FEM Y avec RF

ω1

ω2

Linear zone

Te
m

pe
ra

tu
re

 o
sc

ill
at

io
n 

am
pl

itu
de

 (°
C

)

Ln(2ω)

∆TAC in-phase Cahill without Rf

∆TAC out-of-phase Cahill without Rf

∆TAC in-phase FEM with Rf

∆TAC out-of-phase FEM with Rf



 

 
 

209                                             Chapter IV: Inkjet printing technology for polymer testing by the 3-omega method. 

In the linear zone, we can observe similar slopes for the data obtained by Cahill’s solution 

and FEM modeling in the linear regime. However, at higher frequencies starting at around   

90 Hz, the FEM in-phase AC temperature oscillations plotted with respect to the natural 

logarithm of the thermal excitation frequency 2ω are no more parallel to Cahill’s based 

solution. Also, the FEM out-of phase temperature oscillations deviate from Cahill’s solution.  

III.4.b. Applying numerical simulation to PEEK with printed metallic lines 

In figure 4.23(b), a metallic line printed on PEEK substrate using inkjet printing 

technology is presented. We can see that less variations are produced at the level of the width 

of the printed metallic line on PEEK than on PI substrate (figure 4.23 (a)). This is due to the 

fact that the surface of PEEK is not as rough as that of PI. 

On the other hand, as for PI substrate, Cahill’s solution overestimates the experimental 

measurements performed on PEEK substrate due to a thermal contact resistance Rf. This 

resistance is calculated according to equation 4.3 for metallic line F and found to be            

Rf= 48.97E-6 m2.K/W. The contact resistance is introduced in FEM modeling and comparison 

between experimental and theoretical (Cahill and FEM) data is performed (Figure 4.34).  

 

Figure 4.34: In-Phase third harmonic voltage obtained by different methods for PEEK substrate (Cahill's 
formula, FEM and experimental measurements). 

The conclusions drawn after comparison are similar to those found for PI substrate in 

figure 4.32. FEM modeling when considering the thermal contact resistance agrees well with 

the experimental data.  
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III.5. Conclusion 

In this section, we have proposed the measurement of the thermal conductivity of PI and 

PEEK using the three omega method together with inkjet printing technology for sample 

preparation. Different polymer materials possess low chemical resistance to different 

solutions and solvents used in photolithography process. This renders the measurement of 

their thermal conductivity using the three omega method somehow difficult. Consequently, a 

new technology, inkjet printing technology, was introduced to deposit the metallic lines on the 

surface of polymers without the use of any chemical product. Inkjet printing technology is 

now considered to be a competitor to photolithography due to its simplicity and cost. Initially, 

metallic lines were printed using this technology on PI substrate. We were able to produce 

metallic lines of 60 µm average width. Linear regime frequency range was calculated and the 

third harmonic voltages were measured using the three omega method. An average thermal 

conductivity of 0.515 W/m.K was calculated at 23 °C. We have observed that this value is in 

good agreement with the value determined when using metallic line deposited by 

photolithography over PI. This proves that the three omega method is compatible with inkjet 

printing technology. PEEK is one of the polymers that are not compatible with 

photolithography. In our study metallic lines of around 40 µm width were printed on PEEK 

by inkjet printing technology. The three omega method was applied and an average thermal 

conductivity of 0.288 W/m.K was calculated. This value showed a good agreement with the 

thermal conductivity value given by the supplier. This confirms again the compatibility of the 

three omega method with inkjet printing technology. When comparing the experimental in-

phase third harmonic voltages measured using the three omega method with Cahill’s 

theoretical data for PI and PEEK, it was found that experimental V3ω in-phase overestimates the 

theoretical V3ω in-phase. This is due to the existence of a thermal resistance between the printed 

metallic lines and the surface of substrate. This thermal resistance is calculated. Then a thin 

thermal resistive layer is inserted between the printed metallic line and surface of substrate in 

order to investigate the effect of this resistance by means of FEM. The numerical simulation 

results showed a good agreement with the experimental data.  
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Conclusion             

Polymers are classified into three groups: thermoplastics, elastomers, and thermosets.  

Different chemical and physical properties of polymers were recalled in this chapter. The 

thermal conductivity of polymers was measured at different temperatures using the three 

omega method. Samples for the three omega method measurements are usually prepared by 

photolithography. However, not all polymers are compatible with this process due to their low 

chemical resistance to chemical solutions. 

The thermal conductivity of polyimide was measured using the three omega method. The 

metallic lines were successfully deposited on the surface of PI by photolithography. The 

thermal conductivities of polyimide at 20 °C, 25.4 °C, 40 °C, 90 °C, and 135 °C were found 

to be 0.492 W/m.K, 0.498 W/m.K, 0.53 W/m.K, 0.635 W/m.K, and 0.714 W/m.K 

respectively. One can see that the thermal conductivity of PI increases with increasing 

temperature. 

Also, the thermal conductivity of PDMS was measured. A special procedure was used to 

prepare PDMS sample for the three omega measurements. Actually, the metallic lines are 

embedded in the surface of PDMS. The thermal conductivity was successfully measured and 

an average value of 0.21 W/m.K at 22 °C was obtained. The thermal conductivity was also 

measured at different temperatures and it has been found that PDMS thermal conductivity 

increases with increasing temperature. The error produced by the experimental setup when 

using soft flexible materials as PDMS is due to the micromanipulator tips on one hand and the 

manual hot plate used to heat the sample on the other hand.  

Inkjet printing technology was also used with the three omega method. In particular, we 

have demonstrated that the thermal conductivity of polyimide can be measured by using 

metallic lines printed by inkjet technology. The thermal conductivity obtained by this 

technique agrees very well with that measured through metallic lines prepared by 

photolithography. These metallic lines were printed easily in a short period of time without 

the use of different chemicals and solvents as required in photolithography. We succeeded in 

performing measurements on metallic lines printed on a relatively rough surface of polyimide 

sheet. In addition, although the printed metallic lines are not perfectly homogeneous in terms 

of width, it seems that no perturbations were induced to measurements done in the linear 

zone. In order to confirm the compatibility of the three omega method with inkjet printing 

technology, metallic lines were printed on PEEK. Its thermal conductivity was measured and 

found to be close to the value given by the supplier. This investigation demonstrates that this 
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technique will permit the characterization of many polymers that have a low chemical 

resistivity. 

The printing head used in this study introduces some limits concerning the width of the 

fabricated metallic lines; a minimum width of 40 µm can be achieved. Using this printer 

permits only measurements on relatively thick substrates. The limits that we faced concerning 

the metallic lines width can be overcome by replacing the printing head by another having 

smaller nozzle diameter that can produce narrower metallic lines. This yield to the ability of 

characterizing thin polymer films over substrates of known thermal conductivities. Finally, 

this technology can be applied on polymers with a maximum operational temperature higher 

than 200 °C.  

In this chapter, an innovative method for measuring the thermal conductivity of polyimide 

and polyether ether ketone has been presented. The method is based on the use of inkjet 

printing technology that offers important benefits regarding cost and timeliness. In the current 

context of the booming of the applications based on flexible materials this method is very 

promising. 
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General conclusion 

In the past few years, the field of flexible or organic electronics has rapidly grown due to 

the manufacturing technology improvements, high quality processed organic or polymeric 

materials, and low cost potential. Nevertheless, despite these developments, challenges are 

still to take up in terms of fabrication and performance of polymeric materials. Such materials 

offer multiple advantages which permit their exploitation extensively in a large number of 

flexible electronic applications. The low thermal conductivity of polymers allows their use as 

dielectrics in many electronic applications such as insulators, intermetallic dielectric layers, 

encapsulants and dielectric substrates. One of the important issues when fabricating flexible 

electronics is thermal management. The thermal property which translates the ability to 

conduct or prevent heat transfer is the thermal conductivity. Therefore, the knowledge of this 

data is of great importance when selecting a polymer material. Among the different 

techniques available for the determination of the thermal conductivity of material, we have 

chosen the three omega method. This method requires heating a metallic line conductor just in 

contact with the surface of the material under test by an alternating current source. For most 

solid materials, photolithography process is applied for metallic line deposition on the surface 

of material. However, in case of soft materials, such a process might cause damage. 

Consequently, an alternative process based on inkjet printing technology is proposed to print 

metallic lines on surface of polymer materials to measure their thermal conductivities by 

means of the three omega method.  

In the first chapter we have presented the most commonly used steady state and transient 

methods to measure the thermal conductivity of materials. Comparison done between these 

methods has led to the choice of the three omega method, a transient one, which requires few 

minutes to initiate the measurements. It is considered simple to be implemented. Starting with 

the heat conduction equation given by Carslaw and Jaeger together with the application of 

Cahill’s assumptions, we have derived Cahill’s AC temperature oscillation integral formula. 

The measured third harmonic voltages are plotted with respect to the natural logarithm of the 

thermal excitation frequency 2ω. The linear zone of this plot is defined by determining its 

lower and upper frequency limits. Knowing these frequency limits, the third harmonic voltage 

measurements can be performed and then the thermal conductivity of the material under test 

can be extracted.  

In order to measure accurately the third harmonic voltages across the metallic line 

conductor, a three omega method-based experimental setup has been constructed as presented 
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in chapter II. Two systems, the Wheatstone bridge and the differential amplifier circuits have 

been designed and realized to extract the third harmonic voltage across the metallic line 

conductor and to eliminate any spurious third harmonic voltage that might add to the three 

omega measurements. We have presented the photolithography process used for the 

deposition of metallic lines on surface of material. Then, we have successfully validated the 

three omega method-based experimental setup by measuring the thermal conductivities of 

four materials ranging from insulators to semiconductors. Measurements done using the 

differential amplifier circuit have shown better results than those obtained when using the 

Wheatstone bridge circuit. Finally, an error analysis has been achieved and the measurement 

precision of the three omega method-based experimental setup built in the laboratory was 

found to be around ± 10 %. 

In chapter III, numerical simulations using FEM have been performed to study Cahill’s 

approximations on a metallic line-on-substrate system. These approximations have been 

applied on the structure and then it was numerically simulated to obtain the temperature 

oscillations for a large range of frequencies. We have found that Cahill’s analytical solution 

agrees well with FEM results. Moreover, the finite thickness substrate has no influence on the 

temperature oscillations in the linear regime. Similarly, the variation of the thickness and 

width of a metallic line does not affect the calculated value of the thermal conductivity. The 

differential three omega method has also been implemented. The thermal conductivities of 

1.38 W/m.K and 11.62 W/m.K of a SiO2 thin film and an epitaxial grown GaAs layer on 

GaAs substrate at low temperatures have been measured respectively. Finite element 

simulations have been performed for a thin film deposited over an infinite substrate and for a 

thin film-on-substrate system placed on a copper plate. The results of both models together 

with Cahill’s analytical solution have shown a good agreement when compared in the linear 

zone.     

In the last chapter, the three omega method is tested on polymer materials. The concern is 

the ability to deposit metallic conductors on the surface of polymers without causing any 

damage to the material. At first, metallic lines have been successfully deposited on PI sample 

using photolithography process. It was found that the thermal conductivity of PI, measured by 

the three omega method, increases with increasing temperature. Metallic lines were also 

fabricated by applying a special procedure to measure the thermal conductivity of PDMS. In 

this case, the metallic lines were embedded into its surface. The thermal conductivity of 0.21 

W/m.K was obtained at 22 °C. A new FEM model for PDMS sample has been designed. We 
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have found that the results obtained by FEM modelling are in better agreement than Cahill’s 

solution with the experimental measurements. This is due to the fact that the simulated PDMS 

structure with the embedded metallic line near the surface is closer to reality than Cahill’s 

solution assuming an infinite thin heating element on the surface of material. In a second part 

of the chapter, metallic lines were printed on the surface of PI sample using inkjet printing 

technology. The results demonstrated that the three omega method is compatible with inkjet 

printing technology. Another polymer sample, PEEK, was prepared by this technology for the 

three omega measurements. A thermal conductivity of 0.288 W/m.K at 22 °C was obtained. 

All in all, we have shown that the three omega method is feasible when metallic line 

conductors are prepared by means of inkjet printing technology.  

In order to bring some improvements to the system proposed, we envisage the use of an 

anti-vibratory probe station that might permit the reduction of the three omega method-based 

experimental setup measurement error. Also, the hot plate used to determine the temperature 

coefficient of resistance can be replaced by an oven. In this way, the sample is heated 

uniformly and no vibrations are generated when adjusting temperature.  

Most of the previous works related to the three omega method are based on one of the 

common mode cancellation techniques, either the Wheatstone bridge or the differential 

amplifier circuit. In this study, the three omega method experimental setup has been validated 

by applying both cancellation techniques. Then thin films and polymer materials have been 

characterized using only the differential amplifier electronic circuit. However, the Wheatstone 

bridge circuit stays an operational technique to measure the thermal conductivity of different 

materials.     

Enhancements can be performed at the level of the inkjet printer employed throughout the 

study. We have shown that metallic lines of minimum width of 37 µm were achieved when 

printed on PEEK substrate. Using the DMP-2800 printer allows performing the three omega 

measurements on relatively thick substrates. Narrower metallic line width might be achieved 

if using printing heads of smaller nozzle diameter. We note that the droplet diameter depends 

on the type of the surface of polymer to be tested.  

Recently, super-fine inkjet (SIJ) printing technology has appeared as a powerful tool for 

nanotechnology research. Such technology is capable of printing pattern widths less than 1/10 

of those produced by conventional inkjet printing technologies. Such a process is done by 

controlling the volume of the droplet ejected through the nozzle from the printing head. 

Metallic lines of few microns in width can be printed if applying this technology. This will 
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permit the characterization of polymer substrates of lower thicknesses using the three omega 

method.   
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A.1. Line heater study inside an infinite cylinder  

Cahill has first assumed a one dimensional line heater encased inside an infinite cylinder 

(figure A.1). According to Carslaw and Jaeger [CAR 1959] the equation of conduction of heat 

in cylindrical coordinates is given by: 
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where T  is the instantaneous temperature and  is the thermal diffusivity in m2/s defined as: 
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where k is the thermal conductivity in W/m.K, ρ is the density Kg/m3 and cp is the specific 

heat capacity in J/Kg.K. 

 

Figure A.1: Cross section of the infinite cylindrical sample. 

Assuming that the cylinder is of axis z and that the boundary conditions are independent of Ө 

and z (no circumferential or axial temperature gradient), equation (A.2) is reduced to: 
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As presented in figure A.2, the instantaneous temperature T(r,t) is equal to the ambient 

temperature T0 plus the DC temperature rise ∆TDC(r) and the steady state temperature 

oscillations ∆TAC(r,t).  

                                             ),()(),( 0 trTrTTtrT ACDC                                          (A.4) 
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Figure A.2: Behavior of temperature oscillations in the heater. 

Substituting equations (A.4) and (A.5) in (A.3) gives: 
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The DC temperature rise will not be taken into account in the solution since the thermal 

conductivity is extracted from steady state temperature oscillations. 

                                  0
),(1),(1),(

2

2







t
trT

r
trT

rr
trT ACACAC










                              (A.7) 

To solve equation A.7 separation of variables is used where   

                                                 )()(),( trTtrT ACAC                                                    (A.8) 

Temperature oscillations are produced at an angular frequency twice the excitation angular 

frequency. So the temporal evolution Θ(t) is a function of 2ω: 
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Substituting (A.9) and (A.8) in (A.7) gives: 
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where q is the wavenumber of the thermal wave in radian per meter and is defined by [PAR 

2010]: 
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modified Bessel equation of order zero and argument qr. The general equation of the modified 

Bessel equation is given by [BEL 1968]: 

                                              x 2 d2y
dx 2  x dy

dx
 (x 2  v 2)y  0                                           (A.12) 

The solution of this equation is: 

y  c1Iv (x)  c2Kv (x)  

where Iv(x) and Kv(x) are the modified Bessel functions of the first and second kind of order v 

and having an argument x.  

If we substitute for x=qr and v=0 in equation A.12, we can notice that equation 1.44 is the 

real part of a modified Bessel function of order zero and argument qr. Therefore, the solution 

of equation A.10 is given by: 

                                        )2exp()()(),( 0201 tiqrKcqrIctrTAC                           (A.13) 

Figure A.3 shows a plot of the zero order modified Bessel functions I0(x) and K0(x) of the 

first and second kind respectively. We can notice that I0(x) tends to infinity for large values of 

x. On the contrary, K0(x) tends to zero as x tends to infinity. 

To find the unknown constants c1 and c2 in equation A.13 the boundary conditions are 

applied. 

As the radial distance r from the heater tends to infinity, the steady state temperature 

oscillations starts to decay. Moreover, K0(qr) approaches zero, while I0(qr) tends to infinity. 

Therefore:  

For r→∞:                                           ∆T AC(∞,t)=0                                                            (A.14) 

                                                           I0(qr) ∞                                                               (A.15) 

                                                              K0(qr)=0                                                               (A.16) 
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Figure A.3: Zero order modified Bessel functions I0(x) and K0(x) of the first and the second kind 
respectively. 

Substituting equations A.14, A.15 and A.16 in equation A.13, the unknown c1 is found to be 

zero. 

                                                               c1=0                                                                     (A.17) 

The rate of heat conduction through a medium in a certain direction is expressed by 

Fourier’s law of heat conduction (1D heat conduction) in cylindrical coordinates: 

                                                         
dr
dTkA

dt
dQqW                                                     (A.18) 

where q is the heat rate in W and A is the cross-sectional surface area in m2. 

According to equation A.18, the dissipated heat by the heater at a radial distance r=a from the 

center of the infinite cylinder is defined by:  

                                      
ar

AC
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where k is the thermal conductivity of specimen, Prms is the power dissipated due to direct 

current in the metal line, and As= 2πrl is the surface area of the cylinder at a distance r=a 

from its center. 

Substitute As= 2πrl in equation A.19 and solve for c2: 

  
ar

armsW tiqrKc
r

rlktiPq


 



  )2exp()((2lim))2exp(( 020



  

For small values of x, K0(x) = -ln(x)[ABR 1972]. 

→ c2 
Prms

2kl


prms

2k
 , where prms is the rms power per unit length. 

 Substituting the calculated values of c1 and c2 in equation A.13 yields: 
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Therefore, equation A.22 shows that the AC temperature oscillations produced due to a 

line heater embedded inside an infinite cylinder are found to have the form of a zero order 

modified Bessel function of the second kind.  

A.2. Line heater study at the surface 

Equation A.22 is derived for a one-dimensional line heater enclosed inside an infinite 

cylinder.  However, the 3-omega method is carried out for metal lines deposited on the 

surface of a semi-infinite specimen. In order to acquire a similar model to that of the 3-omega 

method, the surface area of the infinite cylinder in the previous section is cut into half 

orthogonally to the radial axis as described in figure A.4.  
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Figure A.4: Cross section of a semi- infinite half cylindrical sample. 

Cutting the surface area of the infinite cylinder into half yields As= πrl. 

Substituting As= πrl in A.19 and solving for c1=0 gives: 
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Re-substituting for c1 and c2 in equation A.13 we can notice that the steady state temperature 

oscillations are divided by two when comparing it with equation A.22: 
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In reality, the specimen is not semi-finite; however it has finite thickness ts. The thermal 

penetration depth must not exceed the specimen thickness otherwise we will be measuring the 

thermal properties of what is underneath the specimen. 

A.3. The effect of the substrate’s thickness 

As shown in the figure below, the exponential function decays to 1% of its initial 

magnitude after five length constants. However, a Bessel function decays  faster than an 

exponential one rendering the thermal waves to decrease to less than 1% of their initial 

amplitudes after five length constants. Thus, for a semi-finite specimen, the thickness ts must 

be five times greater than the thermal penetration depth.  
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                                                                     st > 5                                                             (A.26) 

Where the thermal penetration depth is given by:  

                                                           




2

1


q
                                                        (A.27) 

  

Figure A.5: Comparison between a decaying exponential function Exp(x) in (blue) and a zero order 
modified Bessel function of the second kind K0(x) in (red) for a unit length constant. 
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B.1. Least square estimate coefficients 

In order to find the best linear fit for the set of measured points (xi, yi) = (ln(2ω)i, V3ωin-

phasei) the least square method is applied. This method attempts to minimize the sum of squares 

of deviations or the residual. The deviation is defined as the vertical distance between a data 

point and the best fit line. The smaller the deviations are the better is the fit.  

                                                             Residual= 2

1

2 )ˆ( i

N

i
i yy
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                                 (B.1)   

where N is the total number of data measured, iy are the data points, and iŷ  are the values 

from the best fit.              

The data follows a linear relation, so                       ii xBAy ˆˆˆ                                           (B.2) 

where and  and  are the least square estimates of the unknown coefficients A and B 

respectively.  

χ2 is minimum when its derivative with respect to Â  tends B̂  to zero. Differentiating 

equation B.1 with respect to Â 	and B̂ and setting them to zero we can find the least square 

estimates of A and B. 
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Solving for equation B.3 and B.4 the coefficients Â  and B̂  are as given below: 
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where x  and y are the mean values [STE 2002] of xi and yi respectively.  
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B.2. Standard error 

To gain some idea about the accuracy of our predictions, the estimated standard error of 

regression must be determined. It is a measure of the scatter of data about the regression line. 

It gives a first impression of how well the fitted equation fits the measured data. This standard 

error is given by: 
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The above statistic allows us to calculate the standard error of the regression slope coefficient

B̂ : 
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A more standardized statistic which determines the goodness of the fit is the coefficient of 

determination R2. 
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Where SSR= χ2 and SST are the residual sum of squares and the total sum of squares 

respectively. R2 is bounded between 0 and 1. If R2 is close to 1, this indicates that xi and yi are 

in a strong linear relation [YAN 2009].  

B.3. Linear least square fitting for V3ω in-phase versus Ln(2ω) 

A linear regression analysis is performed for the in-phase third harmonic voltages 

measured versus the natural logarithm of the thermal excitation frequency 2ω (equation 2.18).  

In tables B.1, B.2, B.3 and B.4 we present the linear least square fitting results for the four 

materials, borosilicate, gallium arsenide, indium phosphide and high resistivity silicon 

substrate respectively.  
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Table B.1 Linear least square fitting for third harmonic measurements done on BrSiO2. 

 Line N R2 Â (mV) B̂
mV/ln(rad/s) 

sε (mV) sB 

mV/ln(rad/s) 

 

WB 

1 14 0.9997 2.5198 -0.2172 3.014E-3 1.008E-3 

2 13 0.9991 0.1928 -0.0205 2.056E-4 1.86E-4 

3 15 0.9996 0.6469 -0.0559 8.927E-4 2.957E-4 

 

AD 

1 14 0.9999 2.2694 -0.1925 2.804E-4 9.386E-5 

2 13 0.9994 0.1907 -0.0198 1.598E-4 1.445E-4 

3 15 0.9995 0.6709 -0.0582 1.086E-3 3.596E-4 

 
Table B.2 Linear least square fitting for third harmonic measurements done on GaAs. 

 Line N R2 Â (mV) B̂
mV/ln(rad/s) 

sε (mV) sB 

mV/ln(rad/s) 

 

WB 

4 8 0.9886 0.0595 -0.00405 8.578E-5 1.772E-4 

5 9 0.9851 0.00631 -0.000443 1.075E-5 2.221E-5 

6 12 0.9946 0.03035 -0.001854 8.015E-5 4.288E-5 

 

AD 

4 8 0.9830 0.05897 -0.004183 1.087E-4 2.246E-4 

5 9 0.9410 0.00603 -0.0004376 2.165E-5 4.473E-5 

6 12 0.9992 0.0292 -0.001825 2.899E-5 1.551E-5 

 
Table B.3 Linear least square fitting for third harmonic measurements done on InP. 

 Line N R2 Â (mV) B̂
mV/ln(rad/s) 

sε (mV) sB 

mV/ln(rad/s) 

 

WB 

7 13 0.9996 0.5112 -0.03125 4.388E-4 1.789E-4 

8 11 0.9798 0.1564 -0.0105 3.561E-4 5.013E-4 

9 10 0.9882 0.1407 -0.00969 2.334E-4 3.743E-4 

 

AD 

7 14 0.9999 0.5377 -0.03273 2.803E-4 1.032E-4 

8 11 0.9964 0.1581 -0.0105 1.539E-4 2.136E-4 

9 11 0.9984 0.1539 -0.01035 9.858E-5 1.387E-4 
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Table B.4 Linear least square fitting for third harmonic measurements done on Si. 

 Line N R2 Â (mV) B̂
mV/ln(rad/s) 

sε (mV) sB 

mV/ln(rad/s) 

 

WB 

10 14 0.9983 0.1437 -0.00924 1.506E-4 1.089E-4 

11 24 0.9978 0.3956 -0.02398 8.701E-4 2.367E-4 

12 11 0.9926 0.2776 -0.01906 2.778E-4 5.475E-4 

 

AD 

10 14 0.9990 0.1408 -0.00918 1.153E-4 8.337E-5 

11 24 0.9974 0.4169 -0.02509 9.861E-4 2.683E-4 

12 11 0.9838 0.2736 -0.01875 4.071E-4 8.022E-4 

 

The coefficient of determination R2 for all measurements is around 1. This indicates a good 

linear relation between the in-phase third harmonic voltages and the thermal excitation 

frequency 2ω in the linear regime. Moreover, we can notice that the uncertainties in the slope 

sB are unimportant. This means that the scatter of data around the regression line is small.   
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Abstract 

The characterization of polymers is gaining a great attention as they are one of the main constituents 
of future flexible or organic electronics. Given the fact that thermal management is an important issue 
in the frame work of flexible electronics, the knowledge of the thermal conductivity of polymer 
materials is needed.   

In this work, we propose the measurement of polymer material thermal conductivity using the three 
omega method. This method requires heating a metallic line conductor placed on the surface of the 
material under test by an alternating current source. The first measurements were done on polydimethyl 
siloxane (PDMS) polymer material for which a special procedure that consists in embedding the 
metallic conductors near the surface has been applied. 

In addition to the well-known limitations of photolithography process which are the cost and the 
process duration, a particular concern lies in the fabrication of the metallic conductors by such process 
which might be destructive in case of polymer materials. Consequently, we propose an alternative 
method for this kind of materials based on inkjet printing technology. The thermal conductivities of 
polyimide and polyetherether ketone have been successfully measured using the three omega method 
combined with inkjet printing technology for sample preparation.  

Numerical simulations using finite element method (FEM) are also performed. Finally, the 
experimental measurements are compared to Cahill’s analytical solution and FEM modelling.  

The overall results demonstrate that the inkjet printing technology is a good candidate for the 
characterization of flexible substrates in terms of thermal conductivity. 

 
KEYWORDS: 
Flexible electronics, polymers, thermal conductivity, three omega method, inkjet printing technology 

 
Résume 

Dans le domaine de l'électronique souple, les substrats flexibles à base de polymères sont de plus en 
plus utilisés. Si dans les prochaines années, les structures de propagation mises en œuvre sur ce type de 
substrat véhiculent une puissance, alors la connaissance de la conductivité thermique de ces matériaux 
est essentielle. 

Dans ce travail, nous mesurons la conductivité thermique de matériaux de type polymère en utilisant 
la méthode 3 omégas. Des mesures ont été effectuées sur du polydiméthylsiloxane (PDMS). Un procédé 
technologique particulier est utilisé pour la fabrication des échantillons de PDMS. De ce fait, les 
conducteurs métalliques sont encapsulés dans le polymère et non en surface de ce dernier. Mais cela est 
sans conséquence sur les valeurs de conductivité thermique mesurées. 

Les procédés photolithographiques utilisés traditionnellement pour réaliser les lignes métalliques 
sont coûteux. Par conséquent, nous proposons pour ce type de matériaux une méthode alternative pour 
la réalisation des lignes conductrices par la technologie d'impression jet d'encre. Les conductivités 
thermiques du polyimide et polyétheréthercétone ont été mesurées en utilisant la méthode 3 combinée 
à la technologie d'impression par jet d'encre. 

Des simulations numériques basées sur la méthode des éléments finis ont  été développées au cours 
de la thèse. Les mesures expérimentales obtenues sont comparées aux résultats obtenus par une solution 
analytique et par notre modélisation numérique. 

Ainsi durant cette thèse nous montrons avec succès la possibilité d'utiliser la technologie 
d'impression jet d'encre pour mesurer la conductivité thermique d'un substrat souple. 

 
MOTS-CLES: 
Électronique souple, polymères, conductivité thermique, méthode 3 omégas, impression par jet d'encre. 
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