Thèse soutenue

Contribution au développement d’une nouvelle plateforme de caractérisation non linéaire pour amplificateurs de puissance hyperfréquences pour les applications radar
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Vincent Bridier
Direction : Gilles Dambrine
Type : Thèse de doctorat
Discipline(s) : Micro et nanotechnologies, acoustique et télécommunications
Date : Soutenance le 20/11/2014
Etablissement(s) : Lille 1
Ecole(s) doctorale(s) : École doctorale Sciences pour l'ingénieur (Lille)
Partenaire(s) de recherche : Laboratoire : Institut d'Electronique, de Microélectronique et de Nanotechnologie

Résumé

FR  |  
EN

L’amplificateur haute puissance d’un radar, qui est l’un des éléments définissant les performances du système, est un sujet constant de rechecherche afin d’améliorer sa puissance et son rendement. Des améliorations des performances peuvent être apportées par la combinaison d’une technologie relativement nouvelle, le HEMT GaN et de classes de fonctionnement d’amplificateur à haut rendement telles les classes de commutation. Ces dernières faisant usage des harmoniques du signal complexe émis par l’amplificateur en compression, une caracterisation non linéaire est requise. Ce type de caractérisation existe déjà en mode CW et pulsé périodique. Cependant, le mode pulsé périodique n’apporte qu’une approximation du train d’impulsions radar réel excitant l’amplificateur, négligeant les effets causés par le train de pulse. Cela concerne particulièrement la technologie HEMT GaN qui est susceptible à des effets thermique et de mémoire. Ce travail propose une nouvelle technique de mesure reposant sur un prototype de NVNA basé sur des mélangeurs capable de mesurer trois fréquences simultanément, permettant la caractérisation non linéaire d’un amplificateur en condition radar réelle en terme de train d’impulsions. Cet instrument a été validé par des mesures CW et pulsée périodique en utilisant un appareil type LSNA et un VNA disponible sur le marché. La technique mesure, optimisée dans ce travail jusqu’à 12GHz, permet de visualiser des effets causés par le train d’impulsions sur l’amplificateur de puissance tout en mesurant les trois premiers tons du signal complexe au meilleur rapport signal à bruit disponible grâce à l’architecture de l’instrument.