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Abstract 
In recent years, several great hydraulic projects are taken into construction or were 

brought into operation. Because of the great height of dams, hydraulic slopes in these projects 

are normally high and steep. In analyzing the high steep slopes, slope stability is the major 

research object for dam site selection, engineering construction and geological hazard 

assessment. 

Short-term and long-term stability are two important aspects in analyzing slope stability. 

The objective of this study is to propose the numerical models to simulate the short and long-

term mechanical behaviour of rock matrix and rock joint.  

For rock matrix, one elasto-damage model which takes both the compressive and tensile 

situations into account is employed. One parameter is introduced to emphasize the influence 

of confining pressures. And then one creep model for rock matrix which considering the 

damage parameter as a time-dependent variable is proposed. The simulation results show 

great agreement with experimental results. 

Generally, rock joints are the most fragile part in rock structures, the deformations is 

tend to concentrate in joint part, and then cause the joint surface slip, even the failure of the 

whole rock structure. For rock joint, the asperity of joint surface is represented by a parameter

JRC . This parameter is related to the friction angle, and then affects the shear stiffness of 

joint. In this work, a constitutive model is employed based on this theory, and then the 

parameter JRC  is proposed to be a time-dependent variable, which represents the graduate 

degradation of joint asperity with time passage. One simulation is performed and verified that 

this model is capable to describe creep phenomena. 

The extended finite element (XFEM) theory works by introducing additional degrees of 

freedom into traditional finite element theory to reflect the fracture position in elements. It is 

introduced and applied in the joint model to exactly describe the real condition of joint. 

A simulation of one complicated structure is performed at last to verify the simulating 

ability of these models.  

 

Keywords: rock; elasto-damage; rock joint, XFEM, time effect; long-term stability. 
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Résumé 
Au cours des dernières années, plusieurs grands projets hydrauliques ont débuté leur 

construction ou ont été mis en service. En raison de la grande hauteur des barrages, les pentes  

des massifs rocheux constitutifs de la structure de l’ouvrage sont raides. L'instabilité de ces 

pentes pourrait conduire à de graves accidents de barrages. Pour cette raison, elles sont au 

cœur des problématiques dans le domaine des ouvrages hydrauliques et ont été analysées 

depuis de nombreuses années. Plus précisément, la stabilité de la pente est l'objet de recherche 

principal pour la sélection du site de réalisation d’un barrage, sa conception et l'évaluation des 

risques géologiques.  

La stabilité des pentes à court terme n’est pas le seul sujet important dans la construction 

de barrage : plusieurs accidents dévastateurs des barrages ont eu lieu après des décennies 

d’années de fonctionnement de ces ouvrages hydrauliques. Par conséquent, la stabilité à court 

terme et à long terme sont deux aspects importants dans l'analyse de la stabilité des pentes. 

L'objectif de cette étude est de proposer des modèles numériques pour simuler le 

comportement mécanique à court et à long termes de la matrice rocheuse et des joints rocheux. 

Pour la matrice rocheuse, un modèle élasto-endommageable, tenant compte des effets en 

traction et en compression, est utilisé. Un paramètre est introduit afin de représenter 

l'influence de la pression de confinement sur le comportement global. En outre, un modèle de 

fluage de la matrice rocheuse qui considère le paramètre d’endommagement comme une 

variable dépendant du temps est proposé. Les résultats des simulations sont en très bon accord 

avec les résultats expérimentaux.  

Généralement, les joints rocheux sont la partie la plus fragile dans les structures 

rocheuses, les déformations ont tendance à se concentrer sur ces joints, puis engendrent le 

glissement des surface de joint, voire un effondrement de la structure. Pour les joints rocheux, 

l'aspérité des surfaces est représentée par un paramètre JRC . Ce paramètre est lié à l'angle de 

frottement, et donc affecte la rigidité en cisaillement de joint. Dans ce travail, un modèle 

constitutif est employé sur la base de cette théorie présentée, et le paramètre est proposé 

comme une variable dépendante du temps, ce qui représente la dégradation de l’aspérité avec 

le temps. Une simulation est réalisée et permet de vérifier que ce modèle est capable de 

décrire les phénomènes de fluage.  

La méthode des éléments finis étendus (XFEM) permet d’introduire des degrés de liberté 

supplémentaires dans la théorie traditionnelle des éléments finis pour tenir compte de la 

position de la fracture dans les éléments. Elle est introduite et utilisée dans le modèle de joint 

pour décrire le plus précisément possible les conditions réelles qui leur sont appliquées.  
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Une simulation d'une structure complexe est finalement effectuée pour vérifier la 

capacité de simulation des modèles proposés.  

 

Mots-clés: roche; élasto-endommageable; joint rocheux, XFEM, effet du temps; stabilité 

à long terme. 
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Chapter 1. Introduction 

1.1. Research background 

China has been putting efforts into the development of hydropower stations in recent 

decades of years in order to meet the increasing demand of electricity resulting from rapid 

growth of the economy. Started from 2000, one of the key goals of Western Development 

Strategy is to exploit numerous rivers for power production in the southwest region, such as 

Yalong River, Jinsha River and Lancang River as illustrated in Figure 1.1. A number of large 

scale hydraulic projects are currently being assessed at their feasibility stages; some of them 

are in construction or have already been put into production, such as the projects Three 

Gorges, Xiluodu, Xiangjiaba, Nouzhadu, Jinping I, Jinping II, and Xiaowan, etc. These 

projects are mostly located in Sichuan and Yunnan Provinces, the mountainous southwest of 

China. 

 

Figure 1.1 Big rivers and large hydraulic projects at southwest of China 

The Jinping River bend on the Yalong River is one of famous river bends in China. The 

length of the bend is about 150 km but the downstream part of the river on the opposite side is 
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only separated by 16 km, as illustrated in Figure 1.2. The 310 m elevation drop between these 

two places creates an excellent situation for hydroelectricity production. Two projects were 

planned for exploiting the bend of the Jinping I and Jinping II with a combined capacity of 

8,000 MW. The Jinping I is composed by a dam with a height of 305m which is the highest 

double-curvature thin arch dam in the world.  The total installed capacity of Jinping I is 3,600 

MW while that of Jinping II is 4400MW. The waters accumulated at Jinping I will be 

transferred along four long headrace tunnels of 16.6 km to the Jinping II, which located in 7.5 

km downstream of Jinping I, to supply the hydraulic power production. 

 

Figure 1.2 Locations of Jingping I and Jingping II at Yalong River 

As the largest hydroelectric project on the Upper Lancang River (Mekong River) Basin, 

in Yunnan Province, southwest China, the Nuozhadu hydraulic power station near Pu'er is the 

fourth largest hydropower in China. With the height of 261.5 m, the dam is one of the largest 

earth-rock filled dams over the world, and creates a reservoir with a normal storage capacity 

of 21,749,000,000
3m  at a water level of 812m. The main application of the dam is 

hydroelectric power production, flood control and navigation. The dam will support a power 

station with nine power generators and each of them generates a capacity of 650 MW. The 

total generating capacity of the project is 5,850 MW, which is enough for seven months of 

Yalong River       
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power consumption of New York City. The energy generated by Nuozhadu per year is 

equivalent to the power production of more than nine million tons of coal.  

 

Figure 1.3 Jinping I, the largest arch dam in the world in construction 

 

Figure 1.4 Nuozhadu Hydropower Project 

The Xiaowan Hydropower Project is composed by a double-curvature arch dam (292 m 

high and 902m long in crest) located on the Upper Lancang (Mekong) River in Yunnan 

Province, southwest China. The primary purpose of the dam is hydroelectric power generation. 

It has an underground powerhouse on the right bank and one spillway tunnel in the left bank. 

The flood discharge structures in dam include five surface spillways, six middle outlets, and 

two bottom outlets. The maximum capacity of flood discharge is 20709
3 /m s . The 

underground powerhouse located on the right bank has six turbines and each of them has 700 
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MW installed capacity. It is the world's second highest arch dam (292 m) and the third largest 

hydroelectric power station in China.  

 

Figure 1.5 Xiaowan Hydropower Project under construction 

As illustrated in Fig 1.1, Xiangjiaba, Xiluodu, Baihetan and Wudongde are cascade dams 

located at the Jinsha River, a tributary of the Yangtze River, in Yunnan provinces in the 

southwest of China. The Wudongde Dam is a large hydroelectric dam currently under 

construction mainly for power generation, flood control, and sediment trapping. The dam will 

generate power by utilizing 12 turbines, each with a generating capacity of 725 MW, totaling 

the generating capacity of 8700 MW. Construction began in 2014, and the first generator is 

scheduled to be commissioned in 2018 and the entire project will be completed in 2020.  

The Baihetan hydraulic power station will generate power by utilizing eighteen turbines, 

each with a generating capacity of 725 MW, totaling the generating capacity to 13,050 MW. 

In terms of generating capacity, it will be the fourth largest hydroelectric power plant in the 

world, after the Three Gorges Dam, Itaipu and Xiluodu Dam. In terms of dam volume, it is 

the third largest dam in China and the fourth in the world. The complicated underground 

cavern of the Baihetan hydropower plant is currently the world's largest underground rock 

cavern group under construction. 

The Xiluodu project includes a dam, an underground power generation unit and a flood 

discharge structure. It is mainly developed for power generation, and sediment and flood 
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control while improving the downstream navigation of the river. The Xiluodu dam is a 

concrete double-curvature arch dam with 278m height and 700m width. It is the biggest arch 

dam over the world and the second largest hydropower project in China just after the Three 

Gorges Dam. The total generating capacity will be 13,860 MW. It is also expected to replace 

the consumption of 41MT of coal for electricity generation.  

The Xiangjiaba Hydropower Project is the last step of the cascade development on the 

lower mainstream of Jinsha River. Apart from its main purpose of power generation, the 

Xiangjiaba Hydropower Project provides multiple benefits of flood control, navigation 

improvement and irrigation. It also plays the role of sediment trapping and counter regulation 

for the Xiluodu Hydropower Project. The concrete gravity dam has a crest elevation of 384m, 

a maximum height of 162m and a crest length of 896.26m. It has a total installed capacity of 

6400 MW and an annual power output of 30.747TWh. The Xiangjiaba Hydropower Project 

has a normal storage level of 380m and a dead storage level of 370m. Its reservoir has the 

capacity of partial seasonal regulation with a total storage capacity of 5.163 billion cubic 

meters and a regulation capacity of 903 million cubic meters.  

 

Figure 1.6 Xiluodu Hydropower Project under construction 

As the largest power station in the world until now, the Three Gorges Project should be 

introduced in detail. The total electric generating capacity of the dam is about 22,5MW.  In 

2012, the amount of electricity production of the dam was similar to the amount generated by 

the Itaipu Dam, the second largest dam in the world. As well as producing electricity, the dam 

is designed to increase the shipping capacity of Yangtze River and to reduce the potential 
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floods downstream. The Three Gorges reservoir has created a buffer which mitigates the 

periodic floods in the Yangtzi Valley. 

 

Figure 1.7 The bird view of the Three Gorges Projects 

After the construction of the Three Gorges Dam, the water level of the Three Gorges 

reservoir fluctuates between 145 and 175 meters every year. It has destabilized the slopes of 

the Yangtzi Valley, and increased serious risks of erosion and landslides. More than 150 

dangerous geological events were recorded within months after the reservoir was firstly 

impounded. Erosion affects slightly more than half the reservoir area, and 178 kilometers of 

riverbanks are in risk of collapsing. The landslide is now one of the main concerns of the 

hydraulic projects.  

These hydraulic projects are mostly located in mountainous region with deep valley. The 

rock slopes are generally steep and high and evidently fractured. And certain slopes are 

usually excavated for the dam construction and the short-term stability guarantee.  During the 

exploration stage of these hydraulic projects, the water level will increase remarkably with the 

impounding of the reservoir. Water leakage from the reservoir and the precipitation may 

considerably reduce the shear strength of the rock mass and more importantly of the rock joint. 

Therefore, the slope stability is influenced, especially for the long period in engineering 

lifetimes. So it is of great necessary to take this degradation into consideration when 

analyzing these jointed rock slopes in the reservoir regions.  
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Figure 1.8 A landslide in reservoir area 

With a height of 262m, the Vajont Dam was one of the tallest arc dams in the world. It 

was accomplished in 1959 in the valley of the Vajont River under Monte Toc, 100 km north 

of Venice, Italy. From February 1960, the Vajont reservoir was put into work. Since the dam 

construction, the stability of the slopes in upstream was under strict monitoring, and some 

detectors were placed to observe the slope deformation and to detect out the potential 

landslide surface. In 1963 the deformation of left bank slope was observed dynamically varied 

with the water level of reservoir, hence the water level was manipulated carefully to avoid the 

instability of left bank slope. In October 1963, a heavy rainfall caused a great increase of 

reservoir water level in a very short time. On 9 October during the third reservoir emptying 

operation, the catastrophic landslide occurred and the whole rock mass collapsed into the 

reservoir in less than 45 seconds. The slide mass of a volume of approximately 270 million m
3
 

generated a wave which crested 140 meters above the top of the dam and that still had a 

height of about 70 m downstream at the confluence of the valley. The wave arrived at the 

town of Longarone and other nearby villages and almost 2000 people lost their lives. 

After the accident, many studies and researches were carried out in the aspects of 

geological and geomechanical. Several attempts were made to explain the kinematics and 

dynamics of the landslide, and back analysis is also applied to study the factors involved in 

the landslide development. In fact, a gravely fractured zone, extending about 1.5 km along the 

left side of the valley corresponding to the sliding plane of the prehistoric landslide, has been 

identified during the survey stage. Nevertheless, the designers of the dam concluded that a 
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deep-seated landslide was very unlikely to occur mainly because of both the asymmetric form 

of the syncline which was expected to act as a natural break on possible slope movements and 

the good quality of in situ rock masses as derived from seismic surveys.  

As shown in Fig 1.9, it is now generally agreed that failure occurred along bands of clay 

within the limestone mass. With the water filling of the reservoir, the water level increases 

and the clay shear strength decreases. It is supposed that the total shear resistance of 

interlayers decreases progressively with the increase of water level, and the mass moves 

slowly towards the downstream under the effect of its own gravity as that reported by the in 

situ observation. Once the resistance attains its critical value, the disaster is unavoidable. 

  

Figure 1.9 (a) The panorama of Vajont Dam before and after the  disaster  

 

Figure 1.10 (b) Illustration of the interlayer (joint) of claystone in left bank of the reservoir where the 

landslide occurs 

The occurrence of landslides is related to variations in external conditions[1]: rainfall, 

groundwater, earthquake and manual excavation. Besides that, internal conditions controls the 

factors include the local and regional morphological and lithological setting, the presence and 

abundance of geological discontinuities, including bedding planes, faults, joints, and cleavage 

systems, the type and depth of rocks, the extent and type of the vegetation cover, and the 

mechanical and hydrological properties of rocks [2, 3]. The weathering effect and time effect 
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reduce rock strength on the joint surface. They can also result in the instability of slope and 

increase landslide possibility. 

The main internal factors that could influence the slope stability are discussed separately 

as below: 

1) Property of rock matrix 

The property of rock materials determines the mechanical behaviour of the whole slope, it 

related to the mechanical responses of structure under external loading, it is the foundation of 

sorts of material degradations (damage, weathering, etc.). The property of rock materials is 

certainly one basic factor affecting the slope stability.  

2) Structural plane (crack, joint) 

The stability of rock slope is decided not only by the property of rock material, but also 

by the rock structures. The presence of structural plane reduces the strength of the rock, 

increases the deformation properties of the rock mass, enhances rheological properties and 

other time effect of rock, and deepens the heterogeneity and anisotropic property of rock. A 

number of studies of rock slope accident showed that most of the landslides happen along one 

or several structural plane. Therefore, structural plane is an important issue in slope analysis, 

especially in long-term stability analysis 

3) Weathering and erosion effect 

Weathering is the breaking down of rocks, soil and minerals as well as artificial materials 

through contact with the Earth's atmosphere, biota and waters. It is also one frequently 

happened phenomenon in hydraulic structure slope. Two important classifications of 

weathering processes exist: physical and chemical weathering; each of them sometimes 

involves a biological component. Mechanical or physical weathering involves the breakdown 

of rocks and soils through direct contact with atmospheric conditions, such as heat, water, ice 

and pressure; the second classification, chemical weathering, involves the direct effect of 

atmospheric chemicals or biologically produced chemicals also known as biological 

weathering in the breakdown of rocks, soils and minerals[4]. 

The presence of water in hydraulic structure cannot be negligible when estimating the 

slope stability. Most slope accident were partly related to water presence, the physical and 

chemical effect caused by water can apparently expand the existing fissure in rock, enhance 

the weathering effect, and decrease the material properties. 

4) Time effect 

Some destruction and instability of rock do not happen immediately in the moment when 

the loading is taken place. With time passing, the stress and deformation state of rock also 

varies, and it would take a long period to arrive a stably state. This phenomenon is named 

http://en.wikipedia.org/wiki/Rock_(geology)
http://en.wikipedia.org/wiki/Soil
http://en.wikipedia.org/wiki/Mineral
http://en.wikipedia.org/wiki/Earth%27s_atmosphere
http://en.wikipedia.org/wiki/Biota_(ecology)
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rheology. It is one important issue in analyzing long-term stability of slopes. The 

instantaneous mechanical response and material degradation (damage) of rock matrix, the 

influence of the existence and propagation of discontinuities and the time effect for both the 

rock matrix and rock joint are discussed in detail in this work. 

1.2. Damage models for hard rock 

The typical rock studied in the geoengineering generally shows nonlinear mechanical 

response and irreversible behaviour. Generally, in geomaterials the dominant causes of 

irreversible deformations are plastic flow and damage process. The plastic flow is controlled 

by the presence of local shear stresses (deviatoric stress) which cause dislocation of some 

preferential elements due to existing defects. However, during this process, the elastic 

properties and the stiffness of the material are insensitive to the plastic flow. The main cause 

of irreversible changes in quasi-brittle materials, such as rock, is the damage process 

occurring within the material. From the viewpoint of microscopic, damage initiates with the 

nucleation and growth of microcracks. When the length of microcracks reaches a critical 

value, the coalescence of microcracks occurs and localized macrocracks appear. The 

macroscopic and phenomenological consequence of damage process is stiffness degradation, 

dilatation, softening and significant difference in tensile and compressive response.  

Lots of researches have been carried out to study the mechanisms of damage evolution, 

e.g. the microcracks initiation and propagation in hard rock [5]. In fact, the evolution of the 

damage state in the hard rock during loading is accompanied by typical evolutions of various 

physical properties such as elastic stiffness, permeability, electric resistance, ultrasonic wave 

velocity and acoustic emissions [6]. Therefore, the damage determined in laboratory is 

generally based on these physical parameters. 

Two typical microcrack evolutions are often mentioned, namely, the propagation of pre-

existing cracks and the nucleation and the growth of new cracks [7]. Most of the microcracks 

observed in laboratory are tensile cracks even if in a compressive test. The absence of shear 

cracks in direct observations was explained by the possible closure of these cracks once the 

sample was unloaded [8] or by the fact that their thicknesses could not be observed by the 

technical devices used in these studies. Some authors [5, 8] have found that the total number 

and the total length of cracks increased with the deviatoric stress augmentation. However, the 

mean crack length was quasi-constant. Some researchers suggested that cracking evolution at 

low deviatoric stress is mostly the result of the initiation of new cracks. On the other hand, at 

higher stress levels the coalescence of cracks is suggested to occur in the direction of the 
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maximum principal stress. In contrast, Hadley [9] suggested that cracking evolution is mostly 

due to pre-existing crack propagation. Mode I tensile wing crack growth at the tips of sliding 

crack was often considered as a principal microscopic mechanism of pre-existing crack 

propagation [10]. For the damage during creep in hard rock, it is also an important issue from 

practical or theoretical viewpoint. In the case of hard rocks, experimental data have shown the 

development of volumetric creep deformation. This is essentially related to the sub-critical 

propagation of microcracks [10]. 

Based on the experimental observation, many criterions are proposed to describe the 

cracking evolution. For example, the cracking evolution in quasi-brittle rock samples 

undergoing a compression test could be monitored by measuring the Young’s modulus. This 

is one of the most commonly cited evidence for inducing damage in the laboratory context 

because it is the simplest method to obtain through testing. It is sufficient to carry out 

unloading– reloading cycles test and measure the slope of strain-stress curves in order to 

assess the damage value. 

Consequently, based on the fracture mechanics principles, the initiation, growth, opening, 

closure, friction, and interaction conditions of microcracks are studied and then damage 

evolution laws are proposed. The macroscopic behaviour of material is then obtained through 

a homogenization procedure. However, the micromechanical mechanism in numerical models, 

particularly in 3D models, is difficult to implement. Recently, some micromechanical models 

based on continuum damage mechanics are proposed [11-16] [17, 18]. 

In late 1970s, the continuum damage mechanics theory is applied to brittle material, such 

as rock and concrete. In the damage mechanics theory the continuum behaviour of a solid is 

studied within the framework of thermodynamic fundamental, internal state variables, 

degradation rule and damage yield function which do not consider interacting microcracks 

and infinitesimal deformations. The main advantage of continuum damage models is that the 

macroscopic constitutive equations they provide can be easily implemented and applied to the 

engineering analyses. The weakness of these models is that some of the concepts and 

parameters involved do not have clear physical explanations. Beside the isotropic models, 

anisotropic damage models were proposed by some authors [19-22]. Generally, the damage 

process has been described within the framework of principle thermodynamic. Most of these 

works employed a thermodynamic potential function, which is dissipative, and irreversible in 

their studies.  

Description of failure processes in cohesive-frictional materials such as rock requires 

constitutive laws of strain softening, i.e. decrease of stress under increasing strain. If these 

constitutive laws are local, i.e. the stress state at a point depends uniquely on the strain history 
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at that point itself, strain softening leads to an ill-posed boundary value problem. A solution to 

the pathological mesh dependence is non-local constitutive laws [20, 23-28], for which the 

stress at one point depends on the strain history not only of that point but also of its 

neighborhoods or even of the entire body. In these models, a characteristic length is 

incorporated, which allows mesh-independent description of energy dissipation in a localized 

failure process. Typically, the deformations remain continuous even in the localized zone. For 

integral type non-local models, the interaction between neighboring points is taken into 

account by weighted spatial averaging. Such formulations were initially proposed in the 

context of elasticity and hardening plasticity, and they were applied as localization limiters for 

the first time by Pijaudier-Cabot and Bazant [29] in the context of damage mechanics.  

1.3. Constitutive models for rock joint 

Shear behaviour of a discontinuity plane is mainly controlled by its surface roughness. 

Surface roughness is an important factor to be evaluated in determining the stability of 

structures in jointed rock body. Several approaches can be adopted for the determination of 

surface roughness of discontinuities. Based on a series of direct shear tests of slight weathered 

rock joint in granite under constant normal stress, Johansson [30] has studied the basic friction 

angle and dilation angle, together with shear and normal stiffness. Woo [31] has conducted a 

series of direct shear tests on the porphyritic granite joints sampled from granitic rock slopes 

along a highway in the area of Jechon in South Korea, these samples were classified 

according to their initial weathering state and morphological conditions of the joint surface 

before direct shear tests. The experimental results showed that the joint compressive strength 

(JCS) can be reduced by 20-25% of the initial JCS value for a fresh joint wall by weathering 

processes and that the residual friction angle depends mainly on the weathering state of the 

joint surface. Rafek [32] presents a simple approach, in the form of two polynominal 

equations to correlate the peak friction angle with the Joint Roughness Coefficient (JRC) for 

discontinuity plane in fresh and slightly weathered schist. By using a three-dimensional (3D) 

image-processing technique, the roughness of naturally fractured rock joint surfaces is 

estimated by Mohd-Nordin [33]. The classification of the JRC is enhanced by introducing the 

scan line technique. The peak-to-valley height is selected as a key indicator for JRC 

classification. Meanwhile, the effects of degradation on the JRC have been also discussed.  

However, because of the lack of experimental data, the long-term behaviour of the joint 

concerning the weathering effects is still a difficult issue in joint analysis.  
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1.4. Numerical method for discontinuity simulation 

Long-term mechanical behaviour of jointed rock mass is poorly studied in laboratory due 

to the limited condition of long-term observations and the complex degradation process of 

rock mass and its joints. The degradation includes several interactions among hydrogeological, 

mechanical, chemical and morphological processes. However, some numerical models are 

proposed to fill this blank. 

With the efforts and advances made in recent years in both the numerical simulation 

methods and computational techniques, the jointed rocks can be simulated by various 

numerical methods. The finite element method, which has been widely used the 

geoengineering, has also been used to study the jointed rocks. For example, by using the FEM, 

Grasselli [34] has analyzed the 3D behaviour of bolted rock joints; Lacroix [35] has used the 

FEM for the long-term dynamics of rockslides and damage propagation analysis. The 

shortcoming of such method is evident, especially for the propagated cracks, the remeshing is 

needed. 

 Other methods, such as the boundary element method (BEM) [36], the discrete element 

method (DEM) [37], the numerical manifold method (NMM) [38] and the meshless methods 

[39], have been also widely used to simulate the jointed rock. In addition to the above 

numerical methods, the extended finite element method (XFEM) [40], which based on the 

theory of FEM, was widely used for predicting the behaviour of pre-existing crack and 

describing the crack initiation and propagation.  

As the first method for analyzing crack growth without remeshing, the XFEM theory 

works by adding enrichment shape functions into the traditional FEM theory in the simulation 

of discontinuous in fixed meshes. In the numerical simulation of cracked structures under 

statically and later under dynamically loading, XFEM has been successfully applied for 

several years. It is now becoming an efficient method to reduce the mesh dependencies in 

macrocracks growth simulation. XFEM has been adopted in this work for the numerical 

simulation of discontinuous analysis in hard rocks, and both the pre-exist rock joints and 

crack propagation are considered. 

1.5.  Creep models for rock materials 

As mentioned in previous section, because of the long work period which would during 

decades or even hundreds of years, for the high slopes in great hydraulic projects, besides the 

instantaneous mechanical behaviour, the creep phenomenon is another factor that cannot be 

negligible. Therefore, it is important to evaluate and to predict the long-term stability of 



 

14 

 

jointed rock slopes by taking into account of the mechanical degradation of rock joint. It is 

discussed as experimental part and numerical one. 

1.5.1. Experimental research on the creep  

The performance of creep experiments is an important part in analyzing creep 

phenomenon. Different test methods, using different loading methods in different 

environments would lead to different results. So the target should be very precise before the 

experiments. 

Experiments of creep are performed early. In 1939, Griggs [41] firstly started the creep 

experiments of shale, limestone, siltstone and argillite. He concluded that the creep 

phenomenon can take place when the stress loaded arrive only 12.5%~80% of the material 

failure load, and impressed that creep curves by logarithmic function.  

For soft rocks, with low strength, the creep phenomenon can easily take place, so lots of 

experiments are carried out in these materials. Haupt [42] analyzed the stress relaxation 

characteristic of salt rock, and pointed out that the micro-structure of salt rockcan remain 

complete in the procedure of stress relaxation. E. Maranini and M. Brignoli [43] performed 

series of axial and triaixal creep experiments of limestone, and found that creep of that 

material is mainly because of fissure propagation under low confining pressure and the 

elimination of pores under high stress, and the creep phenomenon can the yield stress of 

limestone. Y. Fujii [44] performed triaxial creep experiments of Granite and sandstone, and 

pointed out that the circumferential strain can also be one important induce of material 

damage in these experiments. Gasc Barbier [45] started lots of triaxial creep experiments of 

argillite in different loading method and different temperature to see the influences of these 

two factors, in result, the strain and strain rate is proportional with deviatoric stress and 

temperature. 

When dealing with the stability of rock slopes, in most situations, most part of rock 

slopes matrix is tended to be hard rocks. Comparing with soft rocks, hard rocks are not so 

sensitive in creep experiments. However, under high level of stress, creep phenomenon of 

some hard rocks is still very obvious. D.P. Singh [46] performed compress creep experiments 

of marble, and the curves obtained showed typical three stages of creep (primary stage, 

secondary stage and tertiary stage). Robert [34] focused on the fissure propagation in creep 

experiments of Granite. M. Ohnaka [47] studied acoustic emission characteristics in the 

process of brittle rock rheology. G. N. Boukharov [48] analyzed the creep phenomenon of 

brittle crystalline in experiments. Kazuhiko Miura [49] studied the prediction of creep failure 
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of hard rock for long-term safety of high-level radioactive waste disposal system. J. F. Shao 

[10] performed creep experiments with Granite of Lac du Bonnet. 

1.5.2. Numerical models for creep simulation 

In general, the creep constitutive models of rock can be classified into three distinct 

approaches, namely empirical models, component models, and mechanism-based creep 

constitutive models. The empirical models, which are based on experiments, need fewer 

parameters and thus have been widely used to predict creep deformation of rock [4]. The 

duration of an experimental study, however, is usually much shorter than a real engineering 

project. The difference in time scale between an experimental study and a real engineering 

project leads to an error between the predicted and measured creep deformations. On the other 

hand, the component models, which are based on a combination of standard elements such as 

the Newtonian dashpot, the Hooke spring and the frictional element, have the advantage of 

flexible description of different creep deformations [50-52], but the disadvantage of a 

mathematical complexity of a creep constitutive equation, result in difficulty in determination 

of parameters in component models. The mechanism-based creep constitutive model, as a 

distinct approach, focuses on the mechanical response such as cracking and damage growth at 

the micro-scale [49]. 

Many efforts have been directed toward the study on time-dependent behaviour of hard 

rocks and a variety of models have been proposed. Jin and Cristescu [53] suggested a new 

elastic/viscoplastic transient creep model based on triaxial experimental data. Yang [54] 

considered the effects of confining pressure and axial pressure on the time-dependent strain-

stress behaviour and suggested an exponential function to characterize the creep strain from 

transient to steady-state creep of rock. By applying the concept of damage accelerating limit 

to the Carter creep model, Wang [55] presented a new constitutive creep-damage model to 

describe the third stage creep of rock. By introducing the concept of a damage accelerating 

limit to the Carter creep model, Wang [56] presented a new constitutive creep-damage  model 

to describe the tertiary creep of salt rock. Mol-ladavoodi and Mortazavi [57] proposed a 

damage-based numerical analysis method for describing brittle rock failure mechanisms. Xie 

[58] presented a micromechanics-based elastoplastic damage model for quasi-brittle rocks 

under a compressive stress state with a proposed coulomb-type friction criterion based on the 

strain energy release rate. Although there have been many endeavors to investigate and 

construct a time-dependent damage constitutive model that can describe the time-dependent 

damage characteristics of rock masses and solve the time-dependent mechanics problems 

encountered in rock mechanics and engineering,  the time-dependent damage characteristics 
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and yield strength’s time-dependent evolution law of deeply buried hard rock are always 

investigated separately. It is not enough to accurately describe time-dependent damage 

characteristics of rock material, further investigations are required.  

Many authors have proposed unified approachs for the modelling of instantaneous and 

long term damage of brittle rocks in which creep deformation is described as an extension of 

short term anisotropic damage by assuming a subcritical crack growth mechanism [59]. 

Although all authors tend to concur that both the propagation of pre-existing cracks and 

nucleation and the growth of new cracks could be presented in rocks under loading, the results 

of direct microscopic observations on natural rock do not give a clear view of the role of each 

mechanism.  

1.6. The main contents of the thesis 

Based on the theoretical and experimental investigations, the basic mechanical behaviour 

of the rock matrix in long term under the quasi static mechanical loads could be characterized 

as the damage due to the initiation and propagation of microcracks in the rock. In this thesis, 

similar with the visco-plastic model, a damage model is proposed for describing the 

mechanical behaviour of rock matrix. While for the fracture in the rock, an empirical 

constitutive law relating stress and displacement has been proposed. The value of the peak-

shear strength is expressed as a function of the material strength, the load conditions, the basic 

friction angle and the morphological description of the surface. The most important aspect of 

this model is the introduction of quantitative time-dependent degradation of the surface 

morphology.  Based on XFEM, the two models have been implemented into a numerical 

calculation code. And then several numerical examples have been studied.  

The thesis is organized as below: 

Chapter 2 mainly introduces an elasto-damage model which considers the influence of 

confining pressure, and this model is also applied to some experimental results. Non-local 

method is employed in this chapter to solve the mesh dependency problem.  

In chapter 3, numerical models are presented to describe the mechanical response of rock 

joint respectively under normal traction, normal compression and shear stress under constant 

normal stress. And then the shear model is improved to consider the time effect. Numerical 

tests have been conducted to test the model with the experimental results.  

In chapter 4, the extended finite element method (XFEM) is briefly introduced. And then 

the numerical implementation techniques are discussed. Based on physical analysis, a crack 

initiation criterion which based on the critical damage has been proposed and illustrated by a 
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simple example. The crack propagation direction is determined by the average criterion. The 

influence of joint incline angle is analyzed by a simple pre-cracked rock mass.  

In the last, chapter 5, the whole proposed numerical model is used to investigate the long 

term stability of a jointed rock slope in a large scale hydraulic project. In this simulation, the 

main external loading affects the mechanical degradation of rock joints is gravity, three 

typical joints with different incline angles and geometrical position are investigated.  The 

numerical results have been interpreted and discussed. 
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Chapter 2. Time-dependent elasto-damage constitutive 
model for hard rock 

2.1. Introduction 

The physical mechanism of material failure of rock and concrete is generally due to the 

nucleation and propagation of microcracks. For example in concrete, because of the 

heterogeneity, i.e. the different stiffness of granular and cement paste, under the mechanical 

or other solicitations, the microcracks are generally observed firstly at the interfaces of 

aggregates and cement paste matrix. With the increase of the solicitation, the density of the 

microcracks increases. Furthermore, the existing microcracks will propagate and nucleate. 

The propagate orientation of microcrack usually geometrically depends on the loading history. 

Under different solicitations it would be opened, propagated or closed. The influence of 

closed crack is generally different from that of opened crack. However, for the sake of 

simplicity and in view of numerical implementation for engineering applications, an isotropic 

damage state is assumed and a scalar damage model which does not account for directionality 

of microcracks is adopted in this section.  

In isotropic models, it is assumed that the microcracks distribute randomly in space. The 

scalar damage variable can be physically identified as a microcrack density defined as 
3 /Na   [60], where   the damage effect caused by the microcracks,   stands for 

representative volume element, N the number of microcracks which supposed have a penny 

shape with radius of a . 

However, it is well known that the mechanical behaviour of geomaterials depends on the 

mechanical stress state and loading history. There is a strong difference between the responses 

under tensile and compression. This difference is directly related to the microcrack opening 

state. Under a tensile stress, the microcracks are opening and probably propagate. In 

compression, the microcracks are generally closed and their propagation is associated with the 

sliding friction along microcrack surfaces. The kinetics of damage is therefore different in 

compression and tension. So even in isotropic model, the damage in traction and in 

compression state should be clearly distinguished. 

With the further increase in the solicitation, the material attains the failure stage. The 

macroscopic failure usually occurs as the result of coalescence of microcracks, and leads to 

the formation of macroscopic cracks, i.e. the localization of deformation, therefore the diffuse 

damage is the precursor of macroscopic failure. However, in the framework of "the mechanics 
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of continuous medium", such phenomena will cause certain problems. The localization 

corresponds to the occurrence of bifurcation, and leads to the appearance and development of 

a band of discontinuity of the strain rate. When such a solution is possible, strains and damage 

concentrate into a zone of zero volume, and the energy dissipation in a finite volume of 

material tends to zero. However, this is physically incorrect [61]. For such ill posed problem, 

in the framework of numerical simulation using the finite element method (FEM), the results 

are generally mesh-dependent. 

Various methods are proposed to solve this problem. The basic idea is to incorporate a 

length, the so-called "internal length", into the constitutive relation to avoid localization in a 

region of zero volume. The "internal length" controls the size of the region in which damage 

may localize. In the "non-local damage model", this length is incorporated in the variable 

which controls damage growth with a spatial average of the local equivalent strain. 

When rock and concrete subjected to a constant stress, i.e. in creep conditions, they 

deform at a strain rate variable with time. The study of the fracture and deformation of rocks 

under creep is necessary for better analyze the behaviour of geological structures, such as 

landslides, rock massifs, and faults, which are subjected to a long-term loading. Three regimes 

are usually observed during creep experiments: primary creep (decreasing strain rate), 

secondary creep (constant strain rate), when under large enough stress, tertiary creep 

(increasing strain rate), and finally, ending by failure. During primary creep, the strain rate 

usually decreases as a power-law of the time since the stress change. The strain rate during 

secondary creep is nearly constant, and strongly depends on the applied stress. The secondary 

creep regime is not always clearly observed. In some cases, there is rather a cross-over 

between decaying primary creep and accelerating tertiary creep than a purely stationary 

regime. During tertiary creep stage, similar power-law accelerations of either strain rate 

acoustic emission rate before rupture have also been observed in natural structures such as 

landslides [62]. Experimental observations, such as an increase of dilatancy and hydraulic 

permeability, a decrease of elastic modulus, and the recording of acoustic emission, attest that 

crack propagation is acting during creep [63]. 

In this chapter, the formulation of an elasto-damage model for hard rock is firstly 

presented. In presented isotropic damage model, the damages in traction and in compression 

state have been clearly distinguished. Moreover, the influence of the confining pressure has 

also been taken into consideration, and then the mesh dependent problem with the damage 

model has been discussed, the “non-local” method has been adopted to resolve this problem. 

Finally, the proposed model has been extended to consider the time effects under constant 

stress states and has been verified and validated by simulating several laboratory tests. 
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2.2. Formulation of damage model for instantaneous mechanical 

behaviour 

The damage evolution depends on loading path. In both traction and compression states, 

the damage effects have been observed but with different evolutions. Therefore, it is 

necessary to distinguish the damage caused by traction from that by compression. Based on 

the works of Mazars [64] the total damage   could be decomposed into two parts: a tensile 

part t  and a compressive part c  as: 

 1 t c t t        (2.0) 

in which the combination coefficient t depends on the stress state. It is determined as 

following: 

t








  (2.0) 

 
 is the positive part of the current stress tensor. x  represents the norm of tensor x . To 

determine the actual mechanical properties of the damaged material, the existence of a 

thermodynamic potential is assumed. In this case, the free energy is described as the general 

form which is widely applied for geomaterials: 

  
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where   represents the total strain tensor while e  denotes the deviatoric strain tensor.   is 

the second order unit tensor. tr represents the trace operator. The specific forms of the two 

functions ( )K   and ( )G  , are respectively the bulk modulus and shear modulus of material 

in function of damage, which should be determined from relevant experimental data. For the 

reason of simplicity, the following linear functions are proposed to describe the degradation 

caused by damage of the two elastic moduli: 

 0 0( ) (1 ),  ( ) (1 )K K G G        (2.0) 

In these equations, 0K  and 0G  are respectively the initial bulk and shear moduli in 

undamaged state. These forms are equivalent to that proposed by the classical Lemaitre’s 

model [65] for metal materials and by Mazars’ model [64] which is widely used for 

geomaterials, such as concrete. In this case, only Young’s modulus is affected by damage, e.g.

   0 1E E   , while the Poisson ratio remains constant. 
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The stress-strain relation of damaged material is derived directly from the free energy 

function used as the thermodynamics potential: 

  
( , )

( ) 2 ( )K tr G e
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


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The conjugate thermodynamic force associated with the damage variable is deduced 

from the free energy function: 

( , )
dF

  




 


 (2.0) 

In the framework of irreversible thermodynamics, the damage evolution is determined by 

an appropriate damage criterion which is a function of damage conjugate forces given in(2.0). 

However, in practice, the experimental determination of such damage criterion is complex. 

Some physics-based approaches are generally preferred. For hard rock, it is well known that 

the damage induced by microcracks in traction state is inherently related to the tensile strains 

[64-66]. Therefore, by considering such effects, the following equivalent tensile strain is 

defined for damage in traction state: 

3
2

1

2t

eq i

i

 


   (2.0) 

in which i  denotes the principal strains. The bracket x  means that only the positive value 

will be taken into consideration, as: 

0   if 0

   if 0

x x

x x x

  


 
 (2.0) 

While in compression state, the damage evolution is generally related with the equivalent 

deviatoric strain, which is given directly as: 

2

3

c

eq ij ije e   (2.0) 

However, unlike that in traction state, the influence of confining pressure could not be 

neglected in the compression state. With the increase of the confining pressure, the 

propagation of existed microcracks become more and more difficult; most "opened" 

microcracks closed progressively; the probability of the initiation of “new microcrack” 

decrease. As a result, the material transfers from "brittle material" to "ductile material".  For 

taking such effects into consideration, we proposed to modify the equivalent strain in 

compression state (2.0) as follows: 

2

3

c n

eq ij ij ve e    (2.0) 

in which v is the volumetric strain in compression state, as:  

  and 0v xx yy zz v         (2.0) 
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While the parameter n  controls the influence of volumetric strain on the compression 

damage evolution. 

The conjugated damage driving force is then defined, respectively for that in traction state 

and compression state, as: 

max( , )t

dt eq thisY Y  (2.0) 

max( , )c

dc eq chisY Y  (2.0) 

with thisY  and chisY  are the maximum values of dtY and dcY reached in the previous loading 

history, these two variables assure the irreversibility of the damage effects in both traction 

state and compression state.  

The evolution of each damage component (traction and compression) can be expressed 

as the function of the conjugated damaged force dtY and dcY . For most geomaterials, the 

following exponential forms are adopted for the descriptions of damage evolution: 
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A
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B Y Y
  


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In the above equations, cA  and tA represent respectively the critical value of damage 

corresponding to residual strength of damaged material in compression and traction. For the 

reason of simplify, the two parameters are usually set as unit. cB  and tB control the kinetics of 

damage evaluation in compression state and traction state, respectively. 0cY  and 0tY define the 

initial threshold of damage force. Note that the proposed damage criterion is similar to that 

proposed by Mazars [64]. 

2.3. Identification of model parameters  

For the proposed elasto-damage model, there are only 7 parameters including two basic 

isotropic elastic parameters, they are listed as in the follows: 

E : Yong’s modulus of undamaged material; 

v : Poisson ratio; 

cB : The parameter controls the kinetics of damage in compression; 

tB : The parameter controls the kinetics of damage in traction; 

0cY : The threshold for damage in compression; 

0tY : The threshold for damage in traction; 

n : The parameter controls the influence of confining pressure on the compression damage 

evolution. 



 

23 

 

The Young’s modulus and Poisson’s ratio could be measured directly from a uniaxial 

compression test. A uniaxial tensile test and a uniaxial compression test could provide the 

parameters which are related to the damage evolution in traction and compression, 

respectively. The parameter n  is determined by the best fitting of the responses of the 

material under triaxial compression test. Because the damage evaluations in traction and in 

compression are clearly distinguished and controlled by different driving forces, the 

mechanical behaviour of hard rock in compression and in traction could be reproduced, as 

shown in Fig. 2.1.   

 

Figure 2.1 Typical stress-strain curve of the hard rock under uniaxial compression and traction 

In case of the rock slope stability, compression is the most usually encountered stress 

state, therefore, according to equation(2.0), the combination coefficient t is always zero. 

Only the damage in compression will be taken into consideration and cB , 0cY and n  are the 

most important parameters should be determined. The representative value for a typical 

marble is given in Tab. 2.1. Based on these determined parameters, the parametric study has 

been done for the latter 3 parameters cB , 0cY and n , as shown in Fig. 2.2-2.4. 

Table 2.1 Basic parameters for a typical Marble 

E  (GPa)   cB  0cY  n  

20 0.25 100 0 1 

 

The parameter cB controls the kinematic of damage in compression, as shown in Fig. 2.2. 

With the same axial deformation, which means the same equivalent deviatoric strain as given 

by equation(2.0), the damage is more important for a greater cB . According to equation(2.0), 

the peak value of stress depends on only the damage. As consequence, with a bigger value of



 

24 

 

cB , the peak value of the stress will be smaller, as compared in Fig. 2.2. From the strain-stress 

curve, it can be seen that, the parameter cB  has significant influence of the curvature of the 

strain-stress curve.  

 

Figure 2.2 Influence of parameter cB  on the stress-strain and damage-strain curve 
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Figure 2.3 Influence of parameter 0cY  on the stress-strain and damage-strain curve 

An important innovation in current model is that the effects of confining pressure has 

been taking into consideration, as shown in Fig. 2.4 (a),  three tests are performed with the 

same parameter under different confining pressure for a typical hard rock. It can be seen that 

the main features of the rock in triaxial tests have been captured: the increase of the deviatoric 

stress with the increase of confining pressure, and the transition from brittle material to ductile 

material.   
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(a)Influence of confining pressure on the stress-strain curve 

 

(b) Influence of parameter n  on the stress-strain curve 

Figure 2.4 Influence of confining pressure and parameter n  

 

The parameter n  controls the contribution of the “confining pressure”, i.e. the volumetric 

strain in compression. In fact, from equation(2.0), we can see that, the effects of parameter n  

are similar to that of 0cY . However, as shown in Fig. 2.4 (b), the big difference is that, the 

parameter 0cY  is constant, while the effects of the volumetric strain increases during the entire 

loading path. 
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2.4. Numerical simulation of laboratory tests 

The proposed model has been programmed and implemented in the calculation code.  

According the formulations in section 2.2, a big advantage of the proposed model is that the 

damage could be determined implicitly from the deformation. The stress at each integration 

point needs no correction and can be calculated directly with current damage. The flow chart 

of the proposed model has been given in Figure 2.5. 

Because in the latter work, the hard rocks, such as marbles and meta-sandstones, are the 

material encountered in slope analysis, the proposed model has been used firstly to simulate 

the laboratory tests on these rocks: on one hand, for the determination and verification of 

model parameters; on the other hand, for the verification of the proposed model. The 

experimental data for marble are from the thesis of Yang [67], and the sandstone data applied 

are in the works are from Meng [68]. 

2.4.1. Numerical simulations of triaxial tests of Marble  

Marble is a non-foliated metamorphic rock composed of recrystallized carbonate minerals, 

most commonly calcite or dolomite. Marble is widespread used as a building material and is 

frequently encountered in the nature rock slopes. Five groups of experiments are chosen for 

the numerical simulations. The experimental data for these five groups tests are from the 

thesis of Yang [67]. The experiments are realized at Hohai University. For the first 2 groups, 

the rocks are the marble rock with “fine-particle”, while for the third group, it is the marble 

with “medium-particle” and for the two last groups, they are marble with “coarse-particle”. 

The model parameters for these 5 group tests are listed in Table 2.2. It can be seen that, the 

mechanical behaviour is quite different for these marbles. That may be explained by the 

different microstructures of these rocks. It is worth mentioned that, for each group, different 

confining pressures have been used for the tests, however, the model parameters are the same 

for these confining pressure. As illustrated in the Fig 2.6-2.10, the numerical results are 

compared with the experimental data. Globally, the numerical results have a good 

concordance with experimental results.  

 

http://en.wikipedia.org/wiki/Metamorphic_rock
http://en.wikipedia.org/wiki/Calcite
http://en.wikipedia.org/wiki/Dolomite
http://en.wikipedia.org/wiki/Architecture
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Figure 2.5 Flow chart of the elasto-damage model for instantaneous mechanical behaviour 

Table 2.2 Parameters used for 5 groups of Marble rock 

Group E(Gpa)   cB  0cY  n 

1 50 0.25 850 3.00E-04 1.05 

2 50 0.25 900 3.00E-04 1.02 

3 50 0.25 600 9.00E-04 1.01 

4 35 0.25 450 3.00E-04 1.08 

5 25 0.25 800 3.00E-04 0.95 
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Figure 2.6 Numerical simulations of the triaxial tests of group 1 of marble 

 

 

Figure 2.7 Numerical simulations of the triaxial tests of group 2 of marble 
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Figure 2.8 Numerical simulations of the triaxial tests of group 3 of marble 

 

Figure 2.9 Numerical simulations of the triaxial tests of group 4 of marble 
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Figure 2.10 Numerical simulations of the triaxial tests of group 5 of marble 

2.4.2. Numerical simulations of triaxial tests of Meta-sandstone 

Meta-sandstones are also frequently encountered rock in the geoengineering. However, 

the microstructure of meta-sandstones is more complicated than that of marble rock. The 

experimental data are taking from Meng [68]. The experimental results seem a little scatter, so 

only three groups of tests with the specimens from different locations are simulated. The 

model parameters are listed in Table 3. For each group, three different confining pressures 

(10MPa, 30MPa and 50MPa) are used. As that for marble rock, the parameters are the same 

for the three confining pressures. The numerical results are compared with the experimental 

data in the Fig 2.11 and Fig 2.12 respectively for group 1 and 2. Even the experimental data 

has an important dispersion, the numerical results reproduce well the tendency of mechanical 

behaviour of the meta-sandstone. 

Table 2.3 Parameters used for 2 groups of Meta-Sandstone 

Group E (Gpa)   cB  0cY  n 

1 18 0.25 250 1.00E-03 1.18 

2 50 0.25 1050 3.00E-04 0.97 
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Figure 2.11 Numerical simulations of the triaxial tests of group 1of Meta-sandstone 

 

Figure 2.12 Numerical simulations of the triaxial tests of group 2 of Meta-sandstone 

 

2.5. Non-local form of proposed damage model  

With the damage model, after the stress attains its peak value, the deformation begins to 

localize to former a band and the numerical results will be “mesh dependent”. In this section, 

the mesh dependent problem is analysed. As shown in Fig. 2.13, a simple beam with a length 

of 10cm, while the height of 1cm, under a compression load has been studied. The boundary 

conditions are: a prescribed zero horizontal displacement is applied at the left side; while the 

vertical displacement at the bottom of beam has been blocked; at the right side, a prescribed 
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horizontal displacement of -0.01cm has been applied. For the configuration illustrated in Fig. 

2.13, when the damage model proposed in Section 2.2 has been used, the distribution of 

damage is uniform. For the localisation of deformation, two different materials are used, as 

shown in Fig. 2.13, at the centre of the beam, a “weaker” material is used, with width as 1cm.  

The elasto-damage model of section 2.2 is employed for these two materials. As the 

model parameters listed in Tab. 2.4, the only difference between the two materials is the 

Young’s modulus. Three different meshes, respectively with 11 elements, 22 elements, 44 

elements are used for the numerical simulations as shown in Fig. 2.14.  

 

Figure 2.13 Simple beam model under uniaxial compression controlled by displacement 

Table 2.4 Model parameters for two materials 

Material E (GPa)   cB  0cY  

1 25 0.2 800 0 

2 22 0.2 800 0 

 

 (a) 

 (b) 

 (c) 

Figure 2.14 Three meshes with different element densities 

(a) 11elements; (b) 22elements; (c) 44elements. 

The damage distributions at the end of calculation for the three different meshes are 

given in Figure 2.15 and 2.16. In fact, for the three calculations: the geometry, the boundary 

conditions, the constitutive model and its parameters are the same. The only difference is the 

mesh density. From the results, we can see that the mesh density has a big influence on the 
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results. With the increase of the mesh density, the width of the band of damage decreases and 

the peak value of the damage increases. It is evident that the results are mesh dependent. 

 (a) 

 (b) 

 (c) 

 (a)         (b)       (c) 

Figure 2.15 The distribution of Damage for three different meshes 

(a) 11 elements; (b) 22 elements; (c) 44 elements 

 

Figure 2.16 Distribution of damage based on length, local model 

For reducing the "mesh dependency", various methods have been proposed, the most 

widely used may be the "non-local" approach. The essential idea of this theory is to 
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incorporate a so-called "internal length" into the constitutive relation to avoid the 

"deformation localization".  Based on the work of Bazant et al. [61], the proposed model in 

section 2.2 is modified to avoid the problem of localisation. The non-local driving force 
dY is 

defined to replace the driving force dY defined in the section 2.2 ((2.0) and(2.0)): 

r

d

V

d

r

Y dV

Y
V




 (2.0) 

dY  is the average value of dY on a representative volume element (RVE) rV , a weighting 

function based on the so called "internal length"  ,w x y  is introduced for integration on the 

calculation domain   of analyzed structure: 

    
1

, . ,d dY Y x y w x y d


 
 

 (2.0) 

where 

 ,w x y d


    (2.0) 

The value of power function  ,w x y depends on its location and the distance r  to the 

aimed integration point. In this work, one Gauss type distribution function is applied, as: 
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in which cl  is a material characteristic length which determines the extent of interaction zone. 

The value of cl depends on characteristic element size, and in 2D problem is proposed to 

equal to:  

c el A  (2.0) 

in which eA  the average element surface in 2D mesh.  

The "non-local" damage model has been used to deal with the same problem proposed at 

the beginning of this section. In this work, we suppose that the characteristic length is 

1cl cm . The same parameters as listed in Table 2.4 are used. The distributions of damage are 

given in Figure 2.17 and 2.18. It can be clearly observed that, even with different mesh 

(different density with 11, 22 and 44 elements), the results are quasi identic. The damage is 

neither "local" nor mesh dependent. Because the conjugated damage force is the average 

value on a region with the character length, the maximum damage in the "non-local" model is 

greatly reduced comparing with that in the "local" model. 

 (a) 

 (b) 
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 (c) 

 (a)        (b)      (c) 

Figure 2.17 Results of the model non-local 

(a) 11 elements; (b) 22 elements; (c)44 elements 

 

Figure 2.18 Distribution of damage based on length, non-local model 

However, in the "non-local" model, the physical meaning of the so called "character 

length" is a little ambiguity and the determination of its value is sometimes difficult. 

Generally, the character length cl  defines the zone in which the conjugated damage force will 

be averaged. For the parametric study of cl , as shown in Fig. 2.19, with the decline of cl , the 

width of localized band will decrease too, while the value of the maximum damage will 

increase Another disadvantage of the "non-local" model is that, comparing to the "local" 

model, the "non-local" model calculation is time consuming, especially for a big structure. 

That is because, for each integration point, the conjugated damage force should be calculated 

by using that of its neighbors.  
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Figure 2.19 Influence of parameter cl  on the damage distribution 

Another approach, maybe the ideal approach, is that: when the damage arrive its value 

corresponding to the peak stress value, instead of the continuous approach, a discontinuous 

approach would be employed. By means of various discontinuous approach, the extended 

finite element method (XFEM) has been adopted later in this thesis, which be detailed in 

Chapter 4.  

2.6. Time effects on the damage  

The study of the deformation of rocks under creep is useful to better analyze the 

behaviour of geological structures e.g. the landslides and the long-term stability of rock slope, 

etc. in which the rock is subjected to a long-term loading. Experimental observations, such as 

an increase of dilatancy and hydraulic permeability, a decrease of elastic modulus, and the 

recording of acoustic emission, attest that microcrack propagation, i.e. the damage increase 

during creep [63]. According to the applied stress level, three damage evaluation models 

could be identified, which correspond to different creep stages: decreasing damage rate, 

constant damage rate and increasing damage rate. However, for the jointed rock structure, it is 

generally controlled by the rock joint which will be detailed in the next chapter. Therefore, 

only the creep in the first stage will be discussed in this section. 

As shown in Fig. 2.20, a typical creep curve of a hard rock under uniaxial compression 

stress state is considered. We consider two neighbour states of point 1 and 2, with an 

infinitesimal time increment dt , according to Hook's law and equation(2.0), we can obtained: 

0E E      (2.0) 
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The first term represents the effect of deformation variation and the second represents the 

effect of material soften. In case of creep state, the imposed stress is kept in constant, the sum 

of these two terms is zero, so according to the equation above: 

E

E




   (2.0) 

E E



   (2.0) 

After some simple mathematic manipulations, we can easily get the formulation as:  

 
2 1 1 1E E E E





 
    

 
 (2.0) 

This formulation can be interpreted in term of damage, as:  

 0 1E E    (2.0) 

The above equation is exactly the same formulation we used for the proposed damage 

model, i.e. equation(2.0). Therefore the material softening in creep phenomenon can be 

explained and described by damage model. For the damage evolution in the first creep stage, 

one simple damage model is proposed: 

 (1 exp( ))time mt     (2.0) 

where  and m are model parameters.   represent the total damage evolution during the first 

creep stage, while parameter m controls the kinematic of creep damage evolution. t denotes 

the time. The two parameters can be easily identified from a uniaxial creep test. 

 

Figure 2.20 A typical creep curve for hard rock in the first creep stage 

With the typical parameters for claystone listed in Tab. 2.5, the creep test for a claystone 

is simulated with the proposed model. The time effect on damage and Young’s modulus are 
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respectively illustrated in Fig. 2.21. With the increase of time, the damage increases 

exponentially and the Young’s modulus decrease in the inverse direction. Based on these 

parameters, two parametric studies have been conducted respectively for the two parameters, 

as shown in Fig. 2.22 and Fig. 2.23. 

Table 2.5 Model parameter for first creep stage 

E (GPa)   m    

4 0.3 1 0.1 

 

 

Figure 2.21 Time effect in damage and Young’s modulus 

Parameter m  controls the kinematic of the damage. With a higher m  value, the damage 

increases rapider. As a consequence, as illustrated in Fig. 2.22, the material becomes more 

“soft”, under the same stress level, the strain increases rapider. However, the final strains are 

the same, because the parameter   is identic for the three cases. The parameter   represents 

the total damage variation during the first creep stage. With a bigger  , the final strain will be 

increased as illustrated in Fig. 2.23.  
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Figure 2.22 Influence of parameter m  in creep curves 

 

Figure 2.23 Influence of parameter   in creep curves 

The creep damage model is then used to simulate the creep tests on a claystone which 

have been conducted in LML. The model parameters are listed in Table 2.6. The Young’s 

modulus and Poisson’s ratio are determined from the triaxial experiments of the same 

materials, m and  are determined by analyzing the creep experimental curves. The numerical 

results compared with the experimental data are illustrated in Fig. 2.24. There are good 

concordance between the numerical results and experimental data for both axial and lateral 

deformations.  
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Table 2.6 Model parameters for creep test of a claystone 

E (GPa)   m    

4 0.3 0.8 0.28 

 

 

Figure 2.24 Validation with the creep experiments 
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2.7. Conclusion  

In this chapter, an elasto-damage model for hard rock is proposed, this model considers 

the influence of volumetric deformation, so it has the ability in describing the mechanical 

response of rock under different confining pressures. A number of simulations of 

experimental results are performed to validate the prediction ability of this model. Non-local 

theory is employed in this elasto-damage model to eliminate the influence of element density. 

And then for analysing the long-term stability of rocks, one time-dependent model is 

developed, and the simulating results show a good agreement with the creep experimental 

data.  
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Chapter 3.  Time dependent constitutive model for rock joint 

3.1. Introduction  

The jointed rocks are frequently analysed in the geo-engineering, such as the rock slope. 

The term "joint" here represents various discontinuities represented in the rock mass, such as 

fracture, joints and faults, etc. It is well known that the "joint" dominates the mechanical 

behaviour of rock mass. In case of the jointed rock slope, the mechanical behaviour of joint 

controls the stability of the slope.  

In the natural conditions, the joints within the rock slopes undergo various coupling 

actions, which involve the mechanical, hydraulic, chemical and eventually thermal 

solicitations. Consequently, the mechanical properties of the rock matrix and joints degrade 

with time. Due to the degradation of the mechanical properties of rock matrix, and more 

importantly, with the decrease of the resistance of rock joint in the jointed rock slope, the 

possibility of "lost stability" increase with time. Therefore it is of great interest to evaluate 

and to predict the long-term stability of jointed rock slopes by taking into account of the 

mechanical degradation of rock joint.  

Many models have been developed to reproduce specific experimental results and then to 

interpret and predict the mechanical behaviour of jointed rock mass. The difficulty is that, in 

practice, the loading conditions of joints are more complicated than those exhibited in 

laboratory shear tests. 

Goodman [69] presents an approach for predicting the shear response of a joint under 

constant normal displacement. This method assumes a series of curves is available for shear 

tests under constant normal stress. Goodman [69] argues that changing the confinement of the 

joint to constant normal displacement corresponds to constantly moving from one constant 

normal stress test to another. Goodman [69] assumes that the instantaneous dilation angle is 

zero initially and reaches a peak approximately at peak shear stress after which it gradually 

drops. Saeb and Amadei [70, 71] followed the spirit of the approach used by Goodman [69] 

and developed a model where the behaviour of the joint is tied explicitly to the combination 

of shear displacement and confining stress. For example, the presentation of their model starts 

with model curves of shear stress as a function of shear displacement for different values of 

confining stress. Key events in the shear tests occur at fixed values of shear displacement. For 

example, peak shear stress is achieved at a constant value of shear displacement. Among the 

sample curves that Saeb and Amadei [70] present for their model, all of them commence 
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dilation immediately with any shear displacement. In one of their examples, dilation ceases at 

peak stress, while in another example the dilation continues well beyond peak stress. 

Plesha [72] introduced a yield surface and plastic potential function to describe the 

response of the joint. This model was subsequently extended by Nguyen and Selvadurai [73] 

to account for hydraulic behaviour. Prior to yield, the joint response is elastic. When yielding, 

the displacement on the joint has an elastic and plastic component. These plastic components 

of displacement can include dilatant effects. In the model, plastic deformation leads to 

degradation of the joint asperities and a reduction in friction angle. The theory leads to an 

elasto-plastic stiffness matrix which contains gradients of the yield function and plastic 

potential. 

Bandis [74] analysed the effect of roughness and alteration on the mechanical fracture 

under normal stress behaviour. It is showed that it was easier to close a smooth joint than a 

rough joint. Barton [75] also proposed one model which has been widely used. In these 

models, the influences of normal stress and the scale effects have been taken into 

consideration. Another advantage is that the model parameters could be determined easily 

from the in-situ measurements and laboratory tests. Based on these models, Bart [76] 

extended these models for considering the effect of the hydro-mechanical behaviour of rock 

joint. 

In this chapter, a constitutive model for rock joint has been presented. Firstly, the 

instantaneous behaviour has been presented. And then, the time effect, e.g. the long-term 

behaviour has been integrated in the proposed model via either the degradation of residual 

friction angle or the roughness of rock joint surface JRC.  The proposed model then has been 

validated by simulating laboratory tests.  

3.2. Instantaneous behaviour of rock joint  

We consider a segment of rock fracture in its local coordinate system, as shown in Fig. 

3.1 and 3.2, the contact surface is idealized as an infinitesimal area of material, thus the 

general elasto-plastic equations can be used. The normal and shear displacement increments 

are composed of two parts: an elastic part and a plastic part: 

 ;    e p e p

n n n t t tdu du du du du du      (3.0) 

where ndu  and tdu  are respectively the normal and shear displacement increment. The 

subscript n  and t  respectively indicates the normal and tangential direction. The superscript 

e  and p  respectively indicates the elastic and plastic parts. The plastic displacement 

corresponds to the permanent sliding and the dilatancy due to the asperities degradation. 
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Figure 3.1 Crack in macro-scale 

 

Figure 3.2 Idealized rock joint with regular asperities 

The stress variations are related to the elastic displacement increments by simple elastic 

constitutive law as: 
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where 
ijK  relates the stress increment in i  direction ( ,i n t ) and the displacement increment 

in j direction ( ,j n t ). Generally, these elastic stiffness coefficients 
ijK  are in function of 
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the normal stress. For simplicity, the two components ntK and tnK are taken as zero. The 

normal and shear stiffness nnK and ttK  will be introduced in the latter parts. 

3.2.1. The normal behaviour of rock joint in traction 

The stress-strain curve of rock and concrete loaded in uniaxial tension shows an 

ascending branch, a peak which is called the tensile strength, and a descending branch of 

softening branch. The post-peak behaviour, where marcoscopic fracture appears, can only be 

measured by using a stiff servo-controlled testing machine. Experimental results shown that 

beyond the peak, localization of deformations in a small region of the test specimen occurs. 

The behaviour of geomaterial under tensile loading can be divided into a stress-strain relation 

for the uncracked part and a stress-crack opening relation for the crack itself. 

The elasto-damage model discussed in chapter 2 is implemented in the calculation code 

for simulating the non-linear mechanical behaviour of rock on a macro level, where the 

unjointed rock is assumed to be homogeneous. The softening behaviour measured in tension 

is then considered to be a material property. This behaviour has to be derived from a stable 

displacement controlled uniaxial tensile test. The parameters that defined the first part of the 

measured response are the initial Young's modulus and the Poisson’s ratio, and the parameter 

controlling the damage kinematic and the damage threshold. For the second part of the 

response, the softening curve, i.e. the mechanical behaviour of the joint in traction, should be 

introduced. Based on the experimental measurements, an empirical formulation has been 

given as (similar to that of [77]): 
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 (3.0) 

where tf  is the tensile strength of the material,  n m
u  is the maximum crack opening when no 

stress is transferred any more, and 1c is an empirical constant, which controls the shape of 

stress-crack opening curve. From the post-peak diagram, as shown in Fig 3.3, the fracture 

energy 
fG  can be determined. 

fG  represents the area under the curve, the various parameters 

are assumed to be material properties, and can be identified directly from the uniaxial tensile 

test. In this model, one damage threshold 0  could be defined to determine the start point of 

the crack opening. 
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Figure 3.3 Fracture energy of in traction 

3.2.2. The normal behaviour of rock joint in compression 

A hyperbolic relation fitting the fracture closure-normal stress behaviour, similar to that 

of Bandis [74], is given as: 

 
 
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where 0

nK  is an empirical parameter representing the initial normal stiffness in compression, 

 n m
u is the maximum possible fracture closure. According to equation(3.0), the fracture 

closure  nu can be given in function of normal stress n  as: 
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Derived from equation(3.0) , the normal stiffness nK of the fracture can be written as: 
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Based on the experimental data, it is well known that the relationship between the 

variation of the fracture aperture and the normal stress is high nonlinear and the relation is 

always in the incremental form, as: 

    ( )n n n nd K u d u  (3.0) 

nd  is the increment of the normal stress, nK is the tangent normal modulus (expressed in 

MPa ) and  nd u is the increment of the fracture aperture. 

The most widely adopted model for a nonlinear behaviour of fracture under normal stress 

is the hyperbolic function for normal closure of fracture with consideration of normal stress 
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[78]. The fracture closure  nu  is related to the normal stress n  through an empirical 

hyperbolic formation, as given: 
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     (3.0) 

0n  is the initial normal stress or the so-called low seating normal stress, D is a dimensionless 

empirical exponent, approached asymptotically as the normal stress increases. 

In(3.0), two model parameters: the initial normal stiffness 0

nK  and the maximum 

possible fracture closure  n m
u have to be established. In the framework of XFEM, for the 

reason of simplification, it can be assumed that the maximum possible fracture closure n m
u  

equals to the initial fracture aperture. However, some experimental investigations show that 

there is always a residual flow even at high normal stress. Therefore, the maximum possible 

fracture closure is less than initial aperture. For taking the residual flow into account, we 

assume that the maximum possible fracture closure n m
u is equal to 90% of the initial crack 

aperture.  

Some experimental results[74] are employed for validate this compressive model. 

According to the tests in laboratory, the parameters of the fracture are established directly: 

Table 3.1 Crack parameters for joint compressive simulations 

Materials  0 /nK MPa m     n m
u m   

Marble of St Pons 0.0161 -123 

Granite of Tennelles 0.0157 -103 

Schist of Trélazé 0.1205 -65 

From the simulation results shown as belows (Fig. 3.4-3.6), it can be seen that the model 

can reflect exactly the relationship  nu stress . 
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8  

Figure 3.4 Simulation of Marble of St Pons 

 

 

Figure 3.5 Simulation of Granite of Tennelles 
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Figure 3.6 Simulation of Schist of Trélazé 

3.2.3. The tangent behaviour of rock joint in shear 

The plastic shear displacement or the permanent sliding between the two surfaces of rock 

joint, accompanying with the degradation of asperities, are given by the following plastic flow: 
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  (3.0) 

where F  is the loading surface and G  is the plastic potential.   is the plastic multiplier and 

H  is the hardening function. Both the loading surface and the plastic potential are given in 

latter part. 

The simplest interface, from the viewpoint of the microstructure, is the complete smooth 

surfaces. Assuming that the criterion of Coulomb is valid for this simplest surface, the loading 

surface is given by: 

  tan r nF       (3.0) 

where   and n  are respectively the shear stress and the normal compressive stress on the 

surface, while r  is the residual friction angle. 

The plastic potential is then given by Michalowski and Mroz [79]: 

 G     (3.0) 

However, it is evident that this assumption is not valid for rough surfaces fractures. As 

indicated by Bandis [80], the roughness, different sizes of asperities, has an important effects 

on the mechanical behaviour of rock joint. So the effects of roughness, i.e. the 

“microstructure”, should be taken into account in the numerical model of the rock joint. 

Plesha [72] idealized the asperities into two simple models: the saw tooth model and the 
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sinusoidal model. The model employed in this work is based on the saw tooth model, as 

shown in Fig. 3.2, where the angle   represents the roughness of the rock joint surface. The 

normal stress 
_n micro  and shear stress micro on the asperities surface, which have been taken 

into consideration in the scale of asperities, have been regarded as microscopic variables. 

Contrary, the normal stress n  and shear stress   on the rock joint surface have been 

considered as macroscopic variables. As illustrated in Fig. 3.2, the stress in microscopic scale 

can be determined from that of macroscopic scale as: 

 
_ cos sinn micro n        (3.0) 

 sin cosmicro n        (3.0) 

Assuming that the asperity surface is completely smooth with a friction angle as  , and 

the Coulomb model is valid on this type surface. By taking equation (3.0) and (3.0) into 

equation (3.0), we have the loading surface of the “rough” rock joint (the roughness is 

represented by a series of saw tooth with angle   as:  

   sin cos tan cos sinn r nF               (3.0) 

By taking the equation (3.0) into equation(3.0), we get the plastic potential as: 

 sin cosnG        (3.0) 

During shearing processes, under high normal stress, the asperity degraded, and as a 

consequence, the roughness of the rock joint decreases. In fact, the shearing load could 

translate the roughness surface to a smooth one. That means the angle  is not a constant 

during shearing, it decreases with the increase of plastic work. The definition of the angle 

during shearing is then based on the description of the phenomenon of asperity degradation. 

Plesha [72] provides a simple expression of this angle as: 

  0 exp pcW     (3.0) 

where 0 is the initial angle of the asperities, while pW  represent the plastic work, as defined 

as: 
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p
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tW du     (3.0) 

where p

tdu  is the plastic shear displacement.  

and c  is the constant expressing the effect of the degradation of asperity, according to 

Benjelloun and Nguyen [73, 81], it can be calculated as: 
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The asperities of a real rock joint are not a series of triangle we can measure directly the 

incline angle . In fact, the asperities are so complicated that it is difficult to measure and 

identify. Generally, it is represented by JRC , joint roughness coefficient. Based upon 
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experiments, Barton [75] determined the following relationship between 0 , normal stress 

n , joint compressive strength JCS  and joint roughness coefficient JRC as: 

 
0

n

JCS
JRC Log

 
    

 



  (3.0) 

where JCS is the joint compressive strength, it can be obtained either indirectly from 

representative rock material or directly from the joint surfaces themselves by means of simple 

test. JRC is the joint roughness coefficient which varies from 20 to 0 (Fig. 3.7) representing 

from the roughest to smoothest surfaces. JRC can be either an approximate value can be 

predicted by matching surface profiles from the joints of interest with typical profiles 

proposed by Barton and Choubey [82]: 
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'

0n  is the effective stress value when the slide happens, r  is the residual friction angle. 

JRC can also be back-calculated from the experiment results [75]: 
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Finally, just as that of Barton’s model [75], the following expression is used to define the 

shear stiffness ttK : 
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where pic

tu is the shear displacement corresponding to the peak shear stress, and it is defined 

by Barton and Bandis [75] as: 
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where L is the initial length of the fracture. We can find that when the shear displacement 

equal or less than pic

tu , the shear stress is always lower than the peak value
pic ; the stress state 

is always inside the loading surface and it is in the elastic state. Thus, a standard shear 

displacement - shear stress curve given by the proposed model will be divided into two phases: 

a linear phase until the peak shear strength 
pic  and a phase softening. 
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Figure 3.7 Typical roughness profiles for JRC range (Bandis) [80] 

This model is appropriate to describe the mechanical response of rock joints. Firstly, 

because of the simplicity of this mathematical formulation, it is easy to be implemented in a 

calculation code. Secondly, it is based on physical considerations: the loading surface and 

plastic potential are defined from the microstructure of rock joint. By relating the average 

asperities angle 0  to the joint roughness coefficient JRC , the proposed model initially for 

idealized rock joint with a series saw-tooth is valid for all types of joints with different 

microstructure of the interface. 
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3.3. Numerical simulation of laboratory tests  

3.3.1. Identification of model parameters 

A number of parameters are introduced when employing this joint shear model, so 

sensitive analyses are necessarily needed to investigate the effect of these parameters. 7 

parameters mentioned before are involved respectively: 

1) 0JRC , initial joint roughness coefficient; 

2) 0JCS , initial joint compressive strength; 

3) r , residual friction angle; 

4) nL , initial length of the fracture; 

5) 0L , initial length of the fracture determined in laboratory; 

6) a  and b , parameters in determination of . 

0JRC , 0JCS , r , nL and 0L can be determined in laboratory tests, variables a  and b  should be 

adjusted in simulations. 

One simple numerical model is built to perform these sensitive analyses: 

The Young’s modulus of matrix is set to be extremely big to make the deformations 

concentrate in joint, the original crack parameters employed are as below (Tab 3.2): 

Table 3.2 Basic parameters for the sensitive analyses 

0JRC  0JCS (MPa) r (°) nL (m) 0L (m) a (m/MN) b  

10.6 2 32 0.09 0.09 1000 0 

The results of the sensitive analyses (Fig. 3.9-3.15): 

 

Figure 3.8 Sensitive analyse of 0JRC  
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As shown in Fig. 3.7, the bigger value of 0JRC  represents the higher joint roughness, the 

same shear displacement corresponds the higher shear stress (Fig. 3.8). 

 

Figure 3.9 Sensitive analyse of 0JCS  

Different initial joint compressive strength 0JCS  would cause the variation of joint 

friction coefficients, and then influence the stress level (Fig. 3.9). 

 

Figure 3.10 Sensitive analyse of r  
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Figure 3.11 Sensitive analyse of nL  

 

Figure 3.12 Sensitive analyse of 0L  

As in (3.0) and (3.0), the initial crack length nL  and 0L work as a ratio 
0

nL

L
, the value of 

0JRC  and 0JCS  decrease with the augment of this ratio value, and then decrease the peak 

value of the curves (Fig. 3.11 and Fig. 3.12). 
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Figure 3.13 Sensitive analyse of a  

 

Figure 3.14 Sensitive analyse of b  

The coefficients a  and b  affect the angle of the asperities , ((3.0) and(3.0)), and then 

cause the variation of the displacement-stress curves (Fig. 3.13 and Fig. 3.14). 

3.3.2. Numerical simulation of laboratory tests 

In the base of these sensitive analyses, simulations of the experimental results are 

performed to verify the numerical model we employed. The same numerical mesh model of 

previous section is used.  

According to the experiments, the curses shear stress- shear displacement under different 

normal stress and different 0L are quoted for the calibrations (Tab. 3.3): (a) results of 
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experiments Bandis [83], these experiments analysed the influence of different normal 

stresses; (b) results of experiments Bandis [80], it shown the different results under divers 

initial crack length 0L ; (c) results of experiments Skinas [84]. These experiments analysed the 

influence of different normal stresses in a higher scale than (a). 

Table 3.3 Crack parameters for joint shear simulations 

N° of 

experime

nts 

Author 
Main parameters of 

fracture 
remarks 

Model 

parameters  

a and b 

1 
Bandis 

(1981) 

0 10.6JRC   

0 2JCS MPa  

0 0.09nL L m   

32r    

3 normal stresses are 

tested : 

90 ,n kPa   

34 , 10kPa kPa   

1000 /a m MN

 

0b   

2 
Bandis 

(1980) 

0 15JRC   

0 2JCS MPa  

0 0.09nL L m   

32r    

The normal stress: 

25n kPa   

3 lengths are tested: 

0 0.06 ,L m  

0.12 ,0.36m m  

3000 /a m MN

 

0b   

3 
Skinas 

(1990) 

0 9JRC   

0 28JCS MPa  

0 0.15nL L m   

37r    

3 normal stresses are 

tested : 

1 ,n MPa   

2 , 5MPa MPa   

2891 /a m MN

 

1.22b    

 

(a) Test of Bandis (1981) 
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(b)Test of Bandis (1980) 

 

(c) Test of Skinas (1990) 

Figure 3.15 Results of simulations for joint 

A short summary can be made for these parameters (Fig. 3.8-3.14) and simulations (Fig. 

3.15). The parameters 0JRC , 0JCS , nL and 0L  control the values of JRC  and JCS , which are 

the variables in calculating the shear stiffness of rock joint ttK , and then influence the 

mechanical responses of joints. Therefore, as can be observed in sensitive analyses, it can be 

concluded that with the increase of parameters 0JRC , 0JCS , the shear modulus grows and 

results the augment of shear stress peak value, the increase of initial crack length nL  and that 

laboratorial value 0L  will cause the decrease of material shear modulus. Parameters a  and b

only influence the variable , so they don’t affect the peak value of the curves but the only 
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the decrease velocity of the curves. From the results (Fig. 3.15), it can be seen that the 

numerical results agree well with the experimental ones. 

3.4. Time effect in crack  

Based on the experimental and in-situ observation, both the friction angle and the 

morphology of rock joint surface evaluated with time (generally decrease with the increase of 

time), resulting from the weathering, the freeze-thaw cycle and the interaction water-rock, etc. 

3.4.1. Time effect of friction angle r  

Gutierrez et al. [85] conducted an experimental study on the effects of fluid content on 

the mechanical behaviour of natural fractures in chalk. It is found that the weakening in shear 

strength of rock joint is attributed partly to the reduction of the basic friction angle, and this 

reduction was verified in a series of tilt tests to measure the frictional resistance between 

smooth edges of core samples of chalk. The reduction of the basic friction angle implies that 

the interaction of chalk with water is governed not only by capillary forces, as postulated in 

several previous studies, but also by chemical and/or physic-chemical effects. Woo et al. [86] 

conducted a series of experiments to investigate the influence of weathering on shear strength 

of joints in a porphyritic granite rock mass. It is found that the residual friction angle depends 

mainly on the weathering state of the joint surface. However, there is no enough experimental 

data to observe exactly the degradation of the friction angle. We suppose an exponential 

function to describe the friction angle degradation as: 

 0( ) ( )r r r r Exp At         (3.2) 

where 0r represent the initial friction angle of fresh rock joint surface, while r  represent 

the residual friction angle of weathered rock joint surface. t  is time and parameter A  controls 

the kinetic of the friction angle degradation. The friction angle degradation process has been 

illustrated in Fig. 3.16. 
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Figure 3.16 Illustration of the friction angle degradation in function of time 

To clarify the influence of this time effect, some sensitive analyses are performed. The 

initial residual friction angle is given as 37°, and the final residual friction angle is given as 

17°, and the time considered is supposed as 10 years. Four different velocities represented by 

parameter A are given, as illustrated in Fig. 3.17. When parameter A equal to 0, that means no 

degradation for the residual friction angle, while for A equal to 1, it means a total degradation, 

after 10 years, the residual frication angle attends the final value, i.e. 17°. With these four 

different degradation velocities, the shear displacement-shear stress relations are given in Fig. 

3.18.  

 

Figure 3.17 The degradation of residual friction angle in function of time with different velocities 
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Figure 3.18 Influence of the degradation of the residual friction angle on the mechanical behaviour of 

rock joint under constant normal stress 

3.4.2. Time effect of joint roughness coefficient JRC  

The asperities of the rock joint surface degraded under the weathering effect, the joint 

surface has the tendency to be smoother with time passage. As consequence, the joint 

roughness coefficient JRC  decreases. Similar to that of residual friction angle, we propose 

the following formulation to describe the morphology degradation of the rock joint as: 

 0( ) ( )JRC JRC JRC JRC Exp Bt       (3.2) 

where 0JRC and JRC represent the initial and the residual value of JRC , respectively. The 

parameter B controls the kinetic of the joint roughness coefficient degradation. If taking 

equation (3.2) into equation(3.0), we can get degradation function of the regular asperities 

angle 0 . Theoretically, the degradation may finally create an idealized smooth surface. That 

means with the time trends to infinite, the regular asperities angle trends to zero. 

Similarly as that of residual friction angle, the influences of the degradation of rock joint 

asperities are given in Fig. 3.19 and Fig. 3.20. According to equation(3.2), the joint roughness 

coefficient JRC  decreases with the time. As a consequence, the regular asperity's angle 

decreases also with time as indicated by equation(3.0). Four different velocities represented 

by parameter B are employed, as illustrated in Fig. 3.19, while for the fourth velocity, i.e. B=1, 

after 10 years, the initial rough joint surface becomes as a total smooth surface.  
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Figure 3.19 The degradation of   in function of time with different velocities 

 

Figure 3.20 Influence of the degradation of   on the mechanical behaviour of rock joint under 

constant normal stress 

Lots of variables mentioned in previous part vary with the variation of this time-

dependent JRC . Some simple sensitive analyses are performed to discuss this influence in 

detail (Tab. 3.4): 

Table 3.4 Basic crack parameters for sensitive analyse 

parameters  ( )n KPa   ( )F Kpa   ( )   B   0JRC   JRC  0JCS  

(MPa) 
L  (m) 0L  (m) 

value 100 50 32 0.03 18 3 20 0.09 0.09 

The sensitive analyses are performed by adjusting these time related parameters to see 

their influence: 
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1) Sensitive analyses of parameter B : 

 

Figure 3.21 Sensitive analyses of parameter B ( JRC ) 

 

Figure 3.22 Sensitive analyses of parameter B ( ttK ) 



 

65 

 

 

Figure 3.23 Sensitive analyses of parameter B (strain) 

Four values of parameter a  (0, 0.003, 0.005 and 0.01) are chosen. From the curves we 

can observe that, the augmentation of the parameter a  accelerate the variation rate of JRC  

with time (Fig. 3.21). Physically, this parameter controls the velocity of the rock joint asperity 

variation, reduce the resistance ability of rock joint which respected by the ttK value (Fig. 

3.22), and then finally induce the time-dependent shear deformation variation (Fig. 3.23), 

which is exactly creep phenomenon. 

2) Sensitive analyses of parameter 0JRC : 

 

Figure 3.24 Sensitive analyses of parameter 0JRC  (strain) 
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This parameter 0JRC  of (15) controls the initial point of the variable JRC , which respects the 

initial asperity state of rock joint. Therefore 0JRC can also expresses the initial mechanical 

property of rock joint, high value of 0JRC induce the high start point of ttK value and then the 

low initial value of shear deformation (Fig. 3.24). 

3) Sensitive analyses of parameter JRC : 

 

Figure 3.25 Sensitive analyses of parameter JRC  (strain) 

Similarly with 0JRC , the parameter JRC represents the ultimate state of JRC , ttK , and shear 

deformation (Fig. 3.25). 

4) Influence of normal stress n : 

 

Figure 3.26 Sensitive analyses of parameter n  ( ttK ) 
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Figure 3.27 Sensitive analyses of parameter n  (strain) 

When compressed by normal stress, the two surfaces of rock joint are easier to be firmed 

by grapping each other. Therefore, with the augmentation of normal stress n , the shear 

stiffness of joint ttK  increases (Fig. 3.26), the value of shear deformation of joint decreases 

(Fig. 3.27). 

And then simulations of creep experiments are performed to test the time effect part of 

this numerical model. The experimental data of slope rocks of Jinping project [87] are applied 

in the numerical model validation. 

With the same normal stress 0.75n MPa , four different shear stresses are imposed:

0.294F MPa , 0.22MPa , 0.147MPa , 0.073MPa , the model parameters employed are listed 

in table 3.5. 

Table 3.5 Crack parameters for creep simulation of joints  

parameters  ( )   B   0JRC   JRC  0JCS  

(MPa) 
L  (m) 0L  (m) 

value 40 0.2 18 8 35 0.028 0.1 
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Figure 3.28 Numerical simulation of direct shear tests compared with experimental data 

According to the results (Fig. 3.28), it can be observed that with the same parameters 

employed, under different shear stresses imposed, this numerical model can perform 

excellently in predicting the creep behaviour.  

3.5. Conclusion 

In this chapter, a constitutive model based on the continuous medium theory is developed 

for rock joints. A particular elasto-plastic model is proposed for the rock joint using Mohr-

Coulomb yield function by taking into consideration of microstructure and morphology of the 

joint surface. A non-associated flow rule is adopted in the model to incorporate shear induced 

degradation of roughness of rock joint surface. And then, the time effects, e.g. the degradation 

of residual friction angle and the roughness of joint surface are taken into consideration. The 

present constitutive model essentially employs a number of model parameters in terms of 

shear stresses and displacements. The results of three experimental studies on natural and 

artificial rock joints are employed to evaluate the validity of the present model. It shows a 

good agreement between the measured and predicted responses of the rock joints for all the 

three cases.  
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Chapter 4. Numerical method for the jointed rocks 

4.1. Introduction 

With the efforts and advances made in recent years in both the numerical simulation 

methods and computational techniques, cracks in rocks (including both the crack initiation 

and propagation) can be simulated by various numerical methods such as the boundary 

element method (BEM) [36], the discrete element method (DEM) [37], the numerical 

manifold method (NMM) [38] and the meshless methods [39]. In addition to the above 

numerical methods, the extended finite element method (XFEM) [40], which based on the 

theory of FEM, has been a widely used method for predicting the behaviour of pre-existing 

crack, e.g. the crack initiation and propagation. As the first method for analyzing crack 

growth without remeshing, this method works by adding enrichment shape functions into the 

traditional FEM theory in the simulation of discontinuous in fixed meshes. In the numerical 

simulation of cracked structures under static and later under dynamic loading, XFEM has 

been successfully applied for several years. It is now becoming an efficient method to reduce 

the mesh dependencies in macrocracks growth simulation. XFEM has been adopted in this 

work for the numerical simulation of discontinuous analysis in hard rocks, and both the pre-

exist rock joints and crack propagation could be taken into consideration. 

In this chapter, the basic theory of the XFEM is briefly recalled, and several numerical 

implementation techniques are discussed. Finally, several numerical applications have been 

discussed to illustrate the efficiency of this method. 

4.2. Basic theory of XFEM 

The basic idea of XFEM is “extending” the nodal displacement for those nodes 

associated with the elements crossed by cracks. The “extending” nodal displacements 

represent the “displacement jump”: the discontinuities in the displacement field. If one 

element is crossed by a crack, the nodes of this element are then enriched by additional 

degrees of freedom (DOFs). In XFEM theory, the displacement field is decomposed into two 

parts, as [88]: 

 ( , ) ( , ) ( , ) ( )n ru x t u x t u x t x    (4.0) 

in which nu  and ru  are continuous displacement functions. The first one nu is as that in the 

classical FEM, the nodal displacement vector; while the latter one ru  represents the 

discontinuities, such as the displacement jump cause by the crack.  is the enriched 
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approximation basis designed to describe the displacement jump, which is already described 

in many forms [40, 89-92]. 

A rock mass occupying a domain Ω crossed by a crack Γd with it normal as n , as 

illustrated in Fig. 4.1, is studied. According to the theory of XFEM, the studied domain is 

divided into two parts: 1) the left side of crack is considered as the positive part and noted as 

 ; 2) the right side of crack is noted as negative part and noted as 
 . (

   ). 

 

Figure 4.1 A domain crossed by a crack 

The simplest and the most efficient technique of enriched approximation basis form is 

Heaviside jump function, so the displacement filed can be written as:  

 ( , ) ( , ) ( ) ( , )n ru x t u x t H x u x t    (4.0) 

where the Heaviside equation is given as: 

 
1   if 

( )
1   if 

x
H x

x





 
 

 
  (4.0) 

In equation(4.0), the displacement field ( , )u x t is a continuous function in both 
  and 

 , thus it is derivable respectively in each region. So the strain field in 
  and 

  can be 

given as follows:   

    ( )
d

s
s s

n r ru H x u u n        (4.0) 

where is the gradient operator, 
d

 is the Dirac-delta distribution of the discontinuity and n

is the normal vector to the discontinuity (as shown in Fig 4.1).  .
s
represents the symmetric 

part of matrix. 
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In finite element theory, for an element with n nodes, if the displacement of each node is 

known, the displacement of any point in this element could be determined by using the 

interpolation function, as: 

    
1

n

i i

i

u x N x a


   (4.0) 

in which  u x  is the displacement at position x , while ia is the nodal displacement vector, 

and  N x is the interpolation function of given x . Finite element interpolation functions are 

also partitions of unity: 

 
1

( ) 1
n

i

i

N x


   (4.0) 

Similarly, for an element with enriched degree of freedom (DOF) in XFEM, the 

displacement at any point of given element can be given as: 

        
1 1

n m

i i j j j

i j

u x N x a N x H x b
 

     (4.0) 

where b represents the nodal displacement vector for those nodes with enriched DOFs. m

means the total number of “enriched” DOFs in current element. It is worth mentioned that, for 

the enriched DOFs, the same interpolation functions have been used, the only difference is the 

additional Heaviside jump function. Therefore, according to equation(4.0), the strain in the 

given enriched element can be given directly as: 

  
1 1

( ) ( ) ( ) '( )
n m

s

i i j j j

i j

x u x B x a B x H x b
 

      (4.0) 

where 

 

, ,

, ,

, , , ,

0 ( ) 0

0 ;   ' 0 ( )

( ) ( )

i x j x

i i y j j y

i y i x j y j x

N N H

B N B N H

N N N H N H

   
   

    
   
   

  (4.0) 

Then, the stress field can be determined by using an adequate constitutive law, as: 

 ( ) ( )x D x    (4.0) 

where D  is the constitutive matrix, which relates the stress and strain. The D matrix can be 

determined from the constitutive law of the matrix. The D  matrix is the elastic matrix when 

the Hook’s law is applied. 

Reconsidering the domain crossed by crack, as shown in Fig. 4.1, the equilibrium 

equations without taking the body force into account are given as: 

 0div    (4.0) 

with the boundary conditions: the prescribed displacement and external force, as shown in Fig. 

4.1:  
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  on 

  on 

d d

i i u

n t

u u

  

 
  (4.0) 

where   is the second order stress tensor, determined from the equation(4.0), while n  is the 

unit outward normal of boundary surfaces,  dt  is the external force on the boundary t ;  iu is 

the prescribed displacement components on the boundary u . Generally, the discontinuity is 

also considered as the “boundary”, as: 

    on tn t     (4.0) 

in the equation(4.0),  t is the stress on the crack surface. If  t equals zero, the crack is then 

considered as traction free.  

Similar to that of FEM, by applying the virtual work to the governing equations, after 

series of transformation, the governing equations finally turn to one solvable form, as: 

 
 

 

int

int
0

d

TT
ext

a

TT T
b

B DBd B DBd da ff

db fB DB d B DB d N TNd

 

  

                           

 

  
 (4.0) 

In the equation(4.0), da  represents the displacement increment for the normal DOF as 

that in the classical FEM, while db  is the displacement increment for enriched DOF. The left 

side of the equation is the rigid matrix, and the first term is noted as aaK : 

 T

aaK B DBd


    (4.0) 

this term is exactly the same as that in the classical FEM. If there is no enriched DOF, the 

matrix in equation(4.0) will be simplified to that as equation(4.0). The other two terms, 

considering the coupling effects between the "normal" and "enriched" DOF, are: 

 
 

 

T

ab

T

ba

K B DBd

K B D B d





 

 




  (4.0) 

The fourth term represents the contribution of the discontinuous and is expressed as: 

  
d

T T

bbK B DB d N TNd
 

       (4.0) 

The second term of (4.0) represents the contribution of the crack. It should be taken into 

account when considering the stress on the crack surface, which represents the third boundary 

conditions, e.g. equation(4.0). And T represents the rigid matrix of crack, as that in equation 

(3.2) in Chapter 3: 

 
nn nt

tn tt

K K
T

K K

 
  
 

  (4.0) 

The right side of the equation(4.0) is the nodal unbalance force vector. 
extf denotes the 

external force allocated in node, and it can be calculated as that in the classical FEM. While 
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int

af  and int

bf are respectively the nodal force vector for "normal" and "enriched" DOF caused 

by the internal force, as: 

 int T

af B d


    (4.0) 

  int

d

T T

bf B d N td
 

      (4.0) 

The equation(4.0) can also be given in a simple form. It is exactly the same as that for the 

classical FEM, as: 

 KU F   (4.0) 

Essentially, there are no great difference between FEM and XFEM. Based on the 

classical FEM theory, the XFEM "extended" it by enriching certain nodes of the elements 

which are crossed by the discontinuous. Coupling the solid fundamentals of the classical FEM 

with several numerical implementation techniques, as discussed in the next section, the 

XFEM could be introduced into the applications.   

4.3. Numerical implementation  

As mentioned above, for taking the discontinuities into consideration, some modification 

should be taken. In this section, the numerical implementations of the XFEM are discussed.  

Theoretically, when referring a classical 2D finite element mesh crossed by a crack, the 

crack could be any form, and is independent of the mesh (represent by the blue continuous 

line in Fig. 4.2). However, in the XFEM calculation program, the crack, as that of the 

calculation domain, should firstly be discretized. In place of the curve line, a straight line is 

used to replace the real crack in each element crossed by crack, as marked by dotted line in 

Fig. 4.2. 

After defining the crack position, certain nodes should be chosen for the enriched DOFs. 

The rules for picking these nodes are simple and clear: all the nodes associated with the 

elements crossed by crack should be enriched. In our case, all those nodes marked with red 

circle and red squares are the nodes have been chosen as enriched nodes. For each of these 

nodes, two "additional" DOFs are added for representing the displacement jump caused by the 

crack. 

Furthermore, the crack has its proper direction, as illustrated in the Fig. 4.1 from left to 

right, and the mesh has been divided into two parts. The chosen enriched nodes have been 

distinguished for two groups: for those enriched nodes located in the left side (above the 

crack), they have been marked by the red circles; while for those located in the right side of 

crack (below the crack), they have been marked by the red square. The reason is that, when 

calculate the rigid matrix, the nodal displacement or the strain, the Heaviside equation has 
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been used, e.g. equation(4.0), (4.0) and (4.0). The value of Heaviside equation depends on its 

position, as indicated in equation(4.0).  

 

Figure 4.2 A classical finite element mesh crossed by a crack 

For a crack crossed element, both the elemental rigid matrix and elemental nodal force 

vector are expressed as in equation(4.0). For example, when calculating the elemental rigid 

matrix, the integration should be done all over the element. However, not as that for classical 

FEM, the function for the integration is no longer continuous, as the Heaviside function has 

different value in 
  and  . Therefore, the integration should be performed respectively in 

each domain. The schema of integration for those elements crossed by crack has been 

illustrated in Figure 4.3: for both 
  and  , the domain has been divided into certain 

number of triangles; in each triangle, three integration points are prepared as that in the 

classical FEM for the integration. If the discontinuity is not traction free, the stress on the 

crack surface should be taken into consideration. The integration along the crack surface is 

illustrated by the red line in the Fig. 4.3. For this linear integration, two integration points are 

used. It should be mentioned here that, although several triangles and integration points are 

used for the mathematical integration, these triangles and integration points are determined 

according to the crack position and element nodes, nevertheless, no new element has been 

added, and no remeshing is needed, even for the propagated crack.  
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(1)                                                     (2) 

  

(3)                                                     (4) 

Figure 4.3 The integration schema for a 2D 4node element crossed by crack 

4.4. Crack propagation criterions  

When the crack propagation should be considered, two important problems arise. The 

first one concerns the determination of macroscopic crack initiation condition, i.e. the 

criterion condition for the transition from diffuse damage to localized crack. The second is 

related to the determination of propagation direction of the macroscopic cracks. 

4.4.1. Crack initiation criterion  

As discussed in Chapter 2, the macroscopic cracks are the result of coalescence of 

microcracks. The evolution of diffuse damage by microcracks is controlled by the damage 

criterion. When the diffuse damage reaches one critical state, the coalescence occurs and 

macroscopic cracks are initiated. Various macrocrack initiation criteria are proposed in the 

former researches. In present work, we propose a simple criterion based on a critical damage. 

In a given element, once the damage attains the defined critical damage, it is supposed that the 

given element is cracked and a crack should be “created”. The simplest method to identify 
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this characteristic damage is using the uniaxial test. We suppose that the macroscopic crack 

occurs when the damage value reaches the characteristic value corresponding to the peak 

stress state. In numerical implementation, when the damage value at an integration point 

inside an element reaches the critical value, a macroscopic crack will be inserted in this 

element by introducing additional degree of freedoms to the element nodes for representing 

the displacement discontinuities in current cracked element. 

For illustrating this criterion, a simple example illustrated in Fig. 4.4 is applied. This 

example is based on the laboratory test conducted by Camps [93]. In the numerical simulation, 

the length of the specimen is set as 10cm when the height as 1cm. The boundary conditions 

are as following: in the left side, the displacements in x direction are blocked, while at the 

bottom, the displacements in y direction are blocked, a prescribed displacement in x direction 

of 0.1mm is applied at the right side of the specimen. The beam is divided into 11 elements.  

  

Figure 4.4 A speciement of concret under uniaxial traction 

Before the initiation of crack, the damage model presented in chapter 2 has been 

employed. The parameters for the damage model are listed in Table 4.1. Firstly, by using 

these parameters, a uniaxial traction test is simulated; the strain-stress relationship is given in 

Fig. 4.5. In the same figure, the strain-damage curve is illustrated as well. Corresponding to 

the peak stress, the critical damage is about 0.62 and the value is used as the threshold of the 

crack initiation, i.e. the critical damage.  

Table 4.1 Model parameters for concrete under uniaxial traction 

(GPa)E    tB  0tY   nK MPa   tf MPa     n m
u m  1c  0  

90 0.2 4250 510  90 4 42 10  10 0.62 

 

In fact, for the given boundary conditions and the model used, the damage distribution in 

the specimen illustrated in Fig. 4.4 is uniform. The damage in all the integration points attains 

the critical damage at the same time since we suppose the concrete is a homogeneous material 

and a uniform Young’s modulus has been used. In such case, from the point of view of 

numerical simulation, all the elements will be “cracked”. However, due to the heterogeneity 

of the material in reality, the distribution of damage could not be uniform. Generally, one 

crack will firstly take place in the specimen at one point where the damage attains a critical 
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value. Thus, as a result of an arbitrary chosen, the crack is introduced in the centre of 

specimen.  

 

 

Figure 4.5 Identification of the critical damage for the crack initiation 

Once the crack is inserted in the element, an appropriate constitutive law should be used 

for the crack. The model for rock joint in traction proposed in chapter 3 (3.3) has been 

adopted here and the corresponding parameters are also listed in Table 4.1. With the “creation” 

of macro-crack and a “softening” constitutive model for the crack under the increasing 

loading, the damage in specimen keeps in the critical value.  

The tensile strain-stress relationship is given in Fig. 4.6. It should be noticed that the 

average strain is calculated as the ratio of the prescribed nodal displacement at the right side 

of the specimen to the initial length of the specimen. There are two distinguished stages: the 

first one corresponds the diffused damage, with the increase of the traction strain, the stress 

increases gradually until the damage attains the critical value; the second one corresponds the 

opening of the crack. With the increase of aperture, the stress decreases exponentially. The 

result of numerical simulation shows exact agreement with the experimental data. 
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Figure 4.6 The evolution of stress versus strain in the specimen under uniaxial traction 

4.4.2. Crack direction  

The determination of crack propagation orientation is one of the most difficult issues in 

modelling the propagation of macroscopic cracks. Different classical criteria have been 

proposed and adapted: such as the criterion based on the maximum energy release rate, the 

minimum strain energy density criterion [94, 95], and some other criteria based on the 

maximum principal stress [96]. Since the tip of a discontinuity is normally located at a point 

where the stress state isn’t known accurately (the discontinuity is independent of mesh), the 

local stress field cannot be relied upon to accurately yield the correct normal vector to a 

macrocrack. To overcome this problem, Wells [89] proposed a so-called averaged stress 

criterion. It is supposed that the crack direction perpendicular to the maximum principal stress 

(the tensile stress is positive). The averaged stress tensor is computed as: 

 m w dV     (4.0) 

w  is Gaussian type weight function defined as: 
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1
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l l

 
  

 
  (4.0) 

in this expression, r denotes the distance between the current point and the crack tip while cl  

is a material characteristic length which determines the extent of interaction zone. The value 

of cl depends on characteristic element size. In 2D problem, the material characteristic length 

is supposed to calculate as:  

 
c el A   (4.0) 



 

79 

 

which eA  the average element surface in a 2D mesh. Once the average stress tensor is 

determined, the three corresponding principal stresses can be calculated. The new crack 

direction is assumed to be perpendicular to the maximum principal stress (generally in 

traction). 

4.5. A simple numerical application  

In this section, a simple example of "artificial" jointed rock is used to verify and the 

XFEM program and the time-dependent behaviour jointed rocks. As illustrated in Fig. 4.7, the 

example concerns a straight pre-exist joint in a regular rock mass. A regular mesh with 1250 

4-node elements has been established for the numerical simulation. As given in Fig. 4.8, two 

straight pre-exist joints with inclined angle as 13.5° and 45° located at the center of the rock 

matrix, the position of these two "joints" is independent of the mesh. In these two cases, the 

body force caused by gravity is neglected. The initial strain and the initial stress in the jointed 

rock mass, as well as on the crack surface, are supposed as zero. The external load is a 

pressure stress applied at the top of rock mass. 

 

Figure 4.7 The geometry and boundary conditions of a rock mass 
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(a)     (b) 

Figure 4.8 The given mesh and the two pre-existed joints with different incline angles 

For the reason of simplicity, the rock matrix is supposed as a homogenous, isotropic, 

elastic material, with Young's modulus as 20GPa and Poisson's coefficient as 0.2. While for 

the rock joint, the simplest linear-elastic constitutive relation is used. The normal stiffness is 

supposed as 
610 GPa to prevent the penetration of one part into another. While the tangent 

stiffness, with a value of 10MPa, is relatively small when comparing with the Young's 

modulus of the rock matrix. In this case, under the compression stresses applied at the top the 

rock mass, the half part above the crack will slide along the pre-exist crack toward the right 

side the rock mass.  

The calculation is divided into two stages. The first one concerns the loading stage, the 

stress at the top the rock mass (0.1MPa) has been applied instantaneously. The final 

displacements for these two cases are given in the deformed mesh as given in Fig. 4.9. In such 

two simple cases, the results can be given directly by simple mathematic analysis. The 

calculation code gives exactly the same results as that given by theoretical analysis. 

It is worth to indicate that, with the same geometry configuration, the same external 

boundary conditions and the same model parameters, the difference of the incline angle of the 

crack leads to the distinct final results. 
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Figure 4.9 The final displacement of two simulations on the deformed mesh 

The second stage concerns the degradation of joint with the increase of time, i.e. the 

shear resistance of the rock joint decreases with time. For the reason of simplicity, a simple 

exponential formulation is proposed for the shear stiffness of the rock joint, as: 

  0 1 01 ( )t t tK K dK Exp B t t        (4.0) 

where 0tK  is the initial shear stiffness of joint, tdK  is the total shear stiffness degraded during 

the long-period, 1B  controls the velocity of the degradation, 0t prescribes the initial moment 

of the creep phenomenon. Because there is no adequate experimental observations, the 

parameters chosen here is a little arbitrary. The Young's modulus and coefficient of Poisson 

are coming from the laboratory observation of typical Marble rock. We suppose during 

100years, the shear stiffness of rock joint has reduction of 1 MPa . The kinetic of the 

degradation is controlled by parameter 1 0.1B  . All the parameters employed in this 

simulation are listed in Tab. 4.2. These parameters are used for both the two incline joints. 

Table 4.2 Parameters for the simulation of simple slope 

(GPa)E     nK GPa   0tK MPa   tdK MPa  1B   MPa   0t (s) 

20 0.23 
610  7.5 1 0.1 0.1 1 

  

The displacement of Point A and B, respectively for the two inclined joints are given in 

function of time in Fig. 4.10, as well as the degradation history of the tangent stiffness of the 

joint. It is obvious that with the same kinematic of degradation, the inclination of the joint has 

a big influence on the "landslide" observation. With the incline angle increase, the stress 

along the joint surface increases (shear stress component). During the degradation period, the 

shear stress remains constant, with the reduction of the shear stiffness, the shear displacement 
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increases. This example shows that the joint direction is important for the mechanical 

behaviour of the jointed rock. 

 

Figure 4.10 The time history of the displacement of Point A and B respectively for the two inclined 

joint and the time history of the degradation of Kt 

By modifying the parameter tdK  from 1MPa to 7.5MPa, which represents the joints are 

completely stress free (shear stress) after 100 years. In this case, the time-displacement curves 

of Point A and B are given in Fig. 4.11. These lines are similar to that third stage of typical 

creep. The stable state at the end of 100 years in Fig.4.10 could not be maintained, and the 

displacement will continue to increase until the totally rupture of the structure. 

 

Figure 4.11 The time history of the displacement of Point A and B respectively for the two inclined 

joint 
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For the second stage, in place of the simple elastic model, the more sophistic model 

which can reflect better the real joint conditions proposed in the chapter 3 (section 3.4.2) is 

used. It is supposed that, with the time increases, the asperities of the joint surface degrades, 

i.e. the JRC decrease with the increase of time. The model parameters are listed in Table 4.3. 

The variation of the JRC in function of time is illustrated in Fig. 4.12, the kinetic of JRC are 

the same for the two inclined joints. However, as given in Fig 4.13, there is a little difference 

for the average roughness angle 0  between the two joints. That is because the normal 

stresses applied on the two joint surfaces are not the same. In fact, in case of 13.5°, the stress 

component in the normal direction of the joint surface is greater than that of 45°.    

Table 4.3 Model parameters for the JRC degradation 

Parameters  ( )   0JRC   JRC  0JCS  (MPa) B 

value 32 18 3 28 0.003 

 

Figure 4.12 The variation of the JRC during the 100years for the two inclined joint 

The shear displacement along the joint surface at Point A and B, for the two joints with 

respectively the incline angle as 13.5° and 45° are given in Fig. 4.14, and compared with the 

variation of the shear stiffness of the joint. Although there is a little difference in 0 for the 

two cases caused by the different applied normal stresses, the difference in the shear stiffness 

for the two cases is negligible. We can find that the shear displacement in case of 45° 

increases rapider than that of 13.5°. This is because of the difference of the applied shear 

stresses on the two joint surfaces. In fact, in case of the 45°, the applied shear stress is more 

important than that of 13.5°.  
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It is worth mentioned, in Fig. 4.14, for the joint with an incline angle as 13.5°, with the 

degradation of the JRC, the shear displacement is stabilised at the end of calculation. The 

applied shear stress is always located in the elastic domain. While for the case of 45°, at the 

67
th

 years, the applied stress attains the shear resistance of the degraded joint, and the applied 

shear stress is the same as that of joint resistance. With the further degradation, the joint 

surface could not resist any more, and thus the rupture happens. 

 

Figure 4.13 The variation of 0  during the 100years for the two inclined joint 

 

Figure 4.14 The time history of the displacement of Point A and B respectively for the two inclined 

joint and the time history of the degradation of Kt 
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4.6. Conclusion 

In this chapter, XFEM theory is briefly recalled, and the numerical implementation 

techniques are discussed. The criterion based on the diffuse damage for the crack initiation is 

discussed based on a simple traction example. The crack propagation direction is given by an 

average stress based criterion. Finally, the efficiency of XFEM is illustrated by two simple 

jointed rock mass examples and the degradation of the rock joint has been also illustrated 

clearly. The XFEM could be ideal numerical tools for simulating the jointed rock mass in 

both short-term and long-term behaviours. 
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Chapter 5. Long-term stability analysis of a jointed rock 
slope  

5.1. Introduction 

In this section, the proposed numerical method will be applied to study the long-term 

stability of a jointed rock slope. The studied slope is one of the hydraulic projects presented in 

the first chapter. As illustrated in Fig. 5.1, the typical jointed rock slope is located in a narrow 

valley, with the river width about 80m~100m and the depth 6m~8m. The rock slopes at both 

sides of this river are solid and steep, which consist one typical deep “V” river valley. The 

main geometrical components of these slopes are marbles and meta-sandstones.  

 

Figure 5.1 The typical V valley with two high steep rock slopes at both side 

The left bank is typical reverse slope, its strata strike is basically same with the valley-

side slope direction (
 40~30 ). In the slope part above 350m, the main component are meta-

sandstones (incline
 50~40 ), below 350m, the slope is mainly constituted by marbles 

(incline
 70~50 ). Lamprophyre veins expose in both two banks of the valley, because of the 

tectonic movements, the contract surface of lamprophyre veins and surrounding rocks 

developed into structural surfaces, which may gravely affect the slope stability of the banks, 

and thus are regarded as the joints.  
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In the left bank, the weathering effect mainly concentrates in low-hardness rocks e.g. 

lamprophyre veins, or structural surfaces in the left bank. However, other rocks are weakly 

weathered and lightly abraded, that’s because the high hardness and high weathering 

resistance of marbles and meta-sandstones, which are the main components of the left bank. 

 

Figure 5.2 The height steep rock slope during the phase of excavation 

As mentioned before, because of the great height, the steep (Fig. 5.2) and the 

complicated geometrical and topographical condition of left bank, the slope stability is one of 

the most important issue in the whole hydraulic project. Until now, a lot of analyses are 

already performed for left bank stability during construction. Furthermore, after the 



 

88 

 

construction of the project, the eventual degradation of the "joint" will be one of the 

significant factors in rock deformation, during the long period of the operational stage. The 

rheology behaviour of left bank rocks under different water level and the long-term stability 

are important problems concerned. Therefore, the analyses of long-term stability of the 

structure are cardinal significant for the project. 

5.2. The geometry and the boundary conditions 

With fully consideration of the slope geological representation and the monitoring results, 

one typical section (Fig. 5.3) is chosen. 

 

Figure 5.3 Position of the typical section chosen for study 

The geometry of chosen section is given in Fig. 5.4. This typical section has a height as 

847.75m, and the width is 753.9m. The global coordinate is set as that illustrated in Fig. 5.4, 

the horizontal line is set as global X-axis. The rock in the given section can be distinguished 

as two main groups: the marble rock and the meta-sandstone. However, according to the 
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Chinese classification method[97] which is based on rock rigidity, completeness and the 

degree of degradation, the rocks can be classified into 5 grades and 2 sub-grades for each 

grade (gradeⅠ1 to grade V2 represent the solidest to the weakest groups). In the present 

section, there are totally 7 groups as illustrated in Fig. 5.4 and listed in Table 5.1.  

 

Figure 5.4 Geometry, boundary conditions and material groups 

Table 5.1 The rock groups in the chosen section 

Group Classification 

1 gradeⅡ 

2 gradeⅢ1 

3 gradeⅢ2 

4 gradeⅣ1 

5 gradeⅣ2 

6 gradeⅢ2  

7 gradeⅣ1  
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The chosen section is discretized into 2061 4node-elements, with 2178 nodes altogether. 

The boundary conditions are: two prescribed zero horizontal displacements are applied at 

right and left side respectively; a prescribed zero vertical displacement is applied at the 

bottom of the structure. This 2D case is a typical configuration of plane strain problem. 

In this typical section, there are three deep "joints", which represent the Lamprophyre 

veins, the weak and vulnerable material. In fact, lamprophyre and broken belt don’t consist 

big propotion in this rock slope, but they are the most fragile part of the structure, 

deformaitons tend to concentrate in these joints, degradate the material strength, and then 

could finally cause slip of joint surfaces and the failure of the whole structure. The position of 

the three "joints" are illustated in Fig. 5.5. The Joint N°1 has a incline angle about 30° while 

the Joint N°2 and Jiont N°3 have the incline angle as 75°and 61° respectively. 

 

(a)  The position of the joint N°1 
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(b)  The position of the joint N°2 

 

(c)  The position of the joint N°3 

Figure 5.5 The position of the three main joints in the rock mass 

In this study, the only external load is the gravity. The numerical simulation has has been 

divided into two stages. The first stage concerns the application of the gravity to get the 

distribution of the initial stress. And then, in the second stage, the gravity keeps as constant, 

and the mechanical properties of rock joints "degrade". The objective of this calculation is to 

find the influence of the "degradation" of the rock joints on the redistribution of the stress, the 

displacement and the damage, and finially, to evaluate the long term stability of the rock slope.   
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5.3. The models and parameters 

According to [97] and [98], the geometrical properties of rocks from gradeⅠto grade V 

are listed below (Tab. 5.2). 

Table 5.2 Properties of rocks in different grades (according to [97] and [98]) 

Ranking grade Young’s module 

(GPa) 

Poisson Ratio Compressive stress 

(MPa) 

Ⅰ >33 <0.2 >250 

Ⅱ 33~20 0.2~0.25 250~100 

Ⅲ 20~6 0.25~0.3 100~50 

Ⅳ 6~1.3 0.3~0.35 50~25 

Ⅴ <1.3 <0.35 25~0 

 

By comparing the classification of rock materials listed in Tab. 5.1, the essential 

mechanical parameters for each group in the slope are given in Table 5.3: 

Table 5.3 Essential mechanical properties of each rock group 

 
Ranking 

grade 

Young’s 

module 

(GPa) 

Poisson 

Ratio 
Compressive 

stress (MPa) 

Density 

( 3/kg m ) 

group 1 Ⅱ 25 0.23 110 2770 

group 2 Ⅲ1 15 0.25 80 2700 

group 3 and 6 Ⅲ2 10 0.28 65 2700 

group 4 and 7 Ⅳ1 5 0.3 42 2600 

group 5 Ⅳ2 3 0.35 30 2600 

 

The elasto-damage model presented in Chapter 2 is used for the 7 different rock groups. 

In the elastic damage model, the parameters cB
 and tB

 respectively control the evolution 

kinetics of the compressive and tensile damage. In this model, the peak value of the stress-

stain course is compared with the compressive strength of the material. As there is no 

sufficient data in the traction, the traction strength is arbitrary supposed as 10% of the of 

compression strength. Therefore, the cB
 and tB

 are adjusted to achieve the peak 

compressive/traction strength for each material. The damage threshold in both compression 

and traction are supposed as zero, i.e. 0 0 0c tY Y 
. While the parameter controlling the 

influence of confining pressure is set as 1n  . The model parameters for all the 7 groups are 

listed in Table 5.4. 
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Table 5.4 Damage parameters for 7 rock groups 

Materials group 1 group 2 group 3, 6 group 4, 7 group 5 

tB  850 850 750 600 500 

cB  320 200 130 90 60 

 

While for the rock joints, the identification of the model parameters is not so easy. Few 

experimental results are available for this situation. By comparing the essential rock 

properties and main parameters used for the three joints are listed in Table 5.5. 

Table 5.5 The essential parameters used for the three joints 

parameters  ( )   B   0JRC   JRC  0JCS  (MPa) 

Value 30 0.05 18 7 28 

 

5.4. Numerical results and discussions 

The numerical results are presented and discussed in this section. These results include 

the nodal displacement history during the "degradation" stage, the distribution of the 

displacement, the stress and the damage caused by the degradation of the mechanical 

properties of rock joints. 

The distribution of the initial stresses has a great influence on the global mechanical 

behavior and the deformation properties. Technically, the measurement of the in situ stress is 

difficult, therefore there is no sufficient information about the in situ stress distribution. The 

stress due to the gravity are calculated and served as the initial stress for the next stage of 

calculation. We suppose that during the stage of gravity application, there is no induced 

damage. Thus, in this stage, elastic model is employed for the entire 7 rock group. The 

distributions of the stresses induced by the gravity are illustrated in Figure 5.6. Due to the 7 

different rock groups and the non-homogenous density, the distribution of stress is not 

homogenous. And at certain place, such as the material interfaces and the structure boundaries, 

the stress concentration is observed.  
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Figure 5.6 The distribution of the stress in the rock mass due to the gravity 

5.4.1. Numerical results for Joint N°1 

The final displacements in both X and Y due to the rock's degradation are presented in 

Fig. 5.7. It is worth to be mentioned that the displacements presented in the Fig 5.7 are the 

"pure" displacement in the second stage ("degradation" calculation). The displacements 

induced by the gravity are reset to zero at the beginning of the second stage of calculation. 

Due to the "release" of the shear stress on the rock joint surface, a "slide" along the joint 

surface is observed in the displacement filed. Namely, for the horizontal displacement, as 

illustrated in Fig. 5.7(a), the rock above the joint surface has a tendency to slip to the right 

side, i.e. the positive X direction; while the part below the joint has an inverse tendency 

(displace in the negative direction of X-axis). While for the vertical displacement, as 

illustrated in Fig. 5.7(b), the rock above the joint surface has a tendency of slip down (to the 

negative direction of Y-axis), and the rock below the joint has a tendency to raise (in the 

positive direction of Y-axis). The shear stress is initially resisted by the joint surface, and then 

the resistance released progressively with the degradation of the joint asperity in shear 

direction. The release of shear stress induces the "rebound" of the displacement.  
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 (a) The distribution of the displacement in x direction   

 

(b) The distribution of the displacement in y direction   

Figure 5.7 The distribution of the displacement in section N°1 
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The final stress states induced by the “degradation” process are presented in Fig. 5.8. 

Similar to that of the displacement, the initial stresses have been removed from the final stress 

state. The main propose of this calculation is to investigate the influence of the "degradation" 

on stress distribution. Globally, the perturbation in the stress field is "local", i.e. the important 

variations of stress mainly concentrate at the two terminals of the joint. In fact, due the 

"release" of the shear stress on the joint surface, the stress initially resisted by joint has been 

relayed by the rock with more resistance. As illustrated in Fig 5.8, the released stress due to 

the degradation of joint has been transferred to the two terminals, especially the upper 

terminal, in where concentrated traction stress is observed.   

  

  

Figure 5.8 The distribution of the stress in the rock mass due to the joint degradation N°1 

The distribution of the damage is presented in Fig. 5.9. This is also the "pure" damage 

due to the joint degradation (as in the first stage where the gravity is applied, there is no 

damage). The damage mainly concentrates near the joint surface, especially at the two 

terminal points because of the "strain concentration" (stress concentration) at the two terminal 

points as illustrated in Fig. 5.8. Meanwhile, in the elements far from the joint, the damage is 

zero. As illustrated in Fig. 5.9, a greater damage concentrates on the centre of the joint with 

damage as 0.245. This is due to the curvature of joint of the material interface. The irregular 
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element discretization may be another factor to the damage concentration. It is worth to notice 

that the maximum damage in the calculation is about 0.25, which is much smaller than the 

critical damage value defined as the crack initiation criterion. According all the hypotheses 

supposed here, there is no "joint" propagation, the joint is stable during the "postulated" 

degradation process. 

 

 

Figure 5.9 The distribution of the damage in the rock mass due to the joint degradation N°1 

5.4.2. Numerical results for Joint N°2 

The final displacements in the direction of both X-axis and Y-axis due to the degradation 

Joint N°2 are presented in Fig. 5.10. Due to the "release" of the shear stress on the rock joint 

surface, the similar "slide" phenomena as that of Joint N°1 is observed. However, not as that 

of Joint N° 1, the displacement is mainly manifested in the X direction, in the case of Joint 

N°2, the induced displacement in Y direction is greater than that in X direction. In spite of the 

slide, the Joint N°2 has a tendency to rotate in the clockwise direction. That is due to the push 

from the rock located at up-right side of joint. On the other hand, the lower terminal of joint is 

imbedded in the deep rock where the displacement is limited by the boundary conditions. And 

in the lower part of joint, the compression stress is greater than that in the upper part which 
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caused bigger resistance in lower part. Because of the influence the distribution of initial 

stress, comparing with that of Joint N°1, the total displacement in current case is smaller. 

 

 (a) The distribution of the displacement in x direction   

 

 (b)  The distribution of the displacement in y direction 

Figure 5.10 The distribution of the displacement in section N°2 
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The final stress states induced by the "degradation" process in Joint N°2 are presented in 

Fig. 5.11. Similar to that of the case Joint N°1, the distribution of stress is mainly 

concentrated in the near field of joint, especially at the vicinity area of two terminals of the 

joint and on the surface of joint where the "asperities" are presented. As that in case of Joint 

N°1, the traction zone in current case is also obvious. However, in the current case, the 

traction seems smaller that of Joint N°1. This is due to a greater initial stresses which offered 

a bigger resistance. With the same degradation, the "released" stress is smaller than that in 

case of Joint N°1, therefore the concentrated traction stress is smaller. 

 

 

Figure 5.11 The distribution of the stress in the rock mass due to the joint degradation N°2 

The final stress states induced by the "degradation" process in Joint N°2 are presented in 

Fig. 5.11. Similar to that of the case Joint N°1, the distribution of stress is mainly 

concentrated in the near field of joint, especially at the vicinity area of two terminals of the 

joint and on the surface of joint where the "asperities" are presented. As that in case of Joint 

N°1, the traction zone in current case is also obvious. However, in the current case, the 

traction seems smaller that of Joint N°1. This is due to a greater initial stresses which offered 
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a bigger resistance. With the same degradation, the "released" stress is smaller than that in 

case of Joint N°1, therefore the concentrated traction stress is smaller. 

 

 

Figure 5.12 The distribution of the damage in the rock mass due to the joint degradation N°2 

5.4.3. Numerical results for Joint N°3 

For the Joint N°3, with which the incline angle is about 61°, between the other two cases, 

30° and 75° respectively for Joint N°1 and Joint N°2. Its geometry location is also between 

the two previous joints. The final displacements induced by the degradation Joint N°3 are 

presented in Fig. 5.13. The amplitudes of the displacement in X and Y are quasi the same. The 

main phenomenon observed is the sliding along the joint surface. The maximum 

displacements in both X and Y directions are located at the up terminal point of the joint. This 

is due to the "released" shear stress of the joint surface mainly concentrated on the upper part 

and transferred to the rock around. Comparing with the other two cases, the amplitude of the 

displacement, just as its incline angle, is medium. 
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 (a) The distribution of the displacement in x direction   

 

 (b)  The distribution of the displacement in y direction   

Figure 5.13 The distribution of the displacement in section N°3 

The final stress states induced by the "degradation" process in Joint N°3 are presented in 

Fig. 5.14. Similar to that of the two previous cases, the distribution of stress is mainly 
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concentrated in the near field of joint, especially at the neighbouring zone of two terminals of 

the joint and on the surface of joint where the "asperities" are presented. The maximum 

traction values appear at the place where the curvature of joint changes.  

 

 

 

Figure 5.14 The distribution of the stress in the rock mass due to the joint degradation N°3 

The distribution of the damage induced by the degradation process in Joint N°3 is 

presented in 5.15. The damage mainly concentrates near the joint surface, especially at the 

two terminal points and the transition point of the covertures.  The maximum value of the 

damage is about 0.016, which is much less than the critical value for the crack propagation. 

As that of two previous cases, the current joint is stable during the "postulated" degradation 

process too. 
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Figure 5.15 The distribution of the damage in the rock mass due to the joint degradation 

5.4.4. Discussions  

At the beginning of the construction, several monitor detectors are installed to test the in 

situ displacement and assess the long-term stability of slope. Several horizontal adits are 

arranged and excavated for the installation of the displacement detectors. The displacement 

detectors installed in deep rock masses is composed of graphite pole convergence meter, 

displacement across valley measuring line, leveling point and sliding micrometer. In the 

chosen section, there is an adit excavated for displacement monitors. The position of adit and 

detector is given in Fig. 5.16. As illustrated in Fig. 5.17, the displacements of 7 representative 

points of the detector are fetched to observe the deformation state. 



 

104 

 

 

Figure 5.16 The position of the observation gallery in current section (From internal report) 

 

Figure 5.17 The position of the detectors in the observation gallery (From internal report) 

As shown in Fig. 5.18, the monitoring results for more than 1600 days are showed. 

These deformations are mainly concerning the creep deformation caused by the excavation. 

On the other hand, the duration of these observation results time is only for about 5 years. 

During our calculations mentioned above, it mainly concerning the degradation of joint in the 

future 100 years. However, the data given in Fig. 5.18 still shows the time effect in slope 

deformation. 

deformation detectors 
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Figure 5.18 The historical displacement of each observation points (From internal report) 

Among the 7 observation points, three points are chosen for discussion, separately the 

Point 1, Point 3 and Point 7. The historical displacements of these three points in both X-

direction and Y-direction respectively for the three joints are presented in Fig.19-Fig.24. 

In case of Joint N°1, the joint by which the adit traversed. The Point 7 is located at the 

left side of joint, while Point 3 and Point 1 are located at the right side of joint. This is clearly 

reflected by the displacement in X direction, as illustrated in Fig.19. For Point 7, the 

displacement in X direction has a negative value, while those of Point 1 and Point 3 are 

positive. Comparing with Point 1, Point 3 is just near the joint. Thus during the degradation 

process, the displacement of Point 3 is greater than that of Point 1. While for the displacement 

in Y direction, all the three points have the same tendency in the negative direction of Y-axe. 

Globally, due to the degradation of the joint resistance, the strength of the structure weakens 

with time passage. Under the constant stresses, there will be subsidence (deformation in the 

negative direction Y-axis). This is available for all the three joints. 
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Figure 5.19 The historical displacement in X direction of three observation points induced by the 

degradation of Joint N°1 

 

Figure 5.20 The historical displacement in Y direction of three observation points induced by the 

degradation of Joint N°1 

In the case of Joint N°2, the displacements of the three points are presented in Fig. 5.21 

and Fig. 5.22, respectively for the displacement in X and Y direction. Generally, the 

observations points are far from the joint. The effect of the joint degradation has little 

influence on the displacement of observation point. Therefore, the amplitude of displacement 

in both directions is small. Comparing with that of Joint N°2, the upper terminal of Joint N° 3 

is much closer to the detector. So the amplitude of the displacement in case of Joint N°3 is 

greater than that of Joint N°2. 
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Figure 5.21 The historical displacement in X direction of three observation points induced by the 

degradation of Joint N°2 

 

Figure 5.22 The historical displacement in Y direction of three observation points induced by the 

degradation of Joint N°2 
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Figure 5.23 The historical displacement in X direction of three observation points induced by the 

degradation of Joint N°3 

 

Figure 5.24 The historical displacement in Y direction of three observation points induced by the 

degradation of Joint N°3 

5.5. Conclusion  

In this chapter, the elasto-damage presented in chapter 2, the constitutive model for rock 

joint presented in chapter 3, the XFEM method presented in chapter 4 have been adopted to 

study the long-term stability of jointed rock slope in a great-scale hydraulic project. Three 

joints with different incline angle in different position have been chosen for current study. It is 

supposed that during the operational stage of this project, the rock joint's resistance degraded 

gradually with time passage. The numerical simulation results showed that, the release of 

stress due to joint degradation is a local behaviour. With all the parameters adopted, the 

damage caused by the degradation process is relatively small and far away from the critical 

value for the crack propagation. 
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Chapter 6. Conclusion and perspectives 

6.1. General conclusion 

In this thesis, numerical models are proposed to simulate the mechanical responses of 

rock matrix and rock joints for both the short-term and long-term situations. 

Firstly, considering the influence of confining pressures, one elasto-damage model is 

ameliorated to describe the ductility of hard rocks, the simulation of a series of experimental 

results of marbles and meta-sandstones showed that the improved elasto-damage model is 

capable to describe the behaviour of hard rocks and it can especially reflect the ductile 

property of rocks. One time-dependent creep model is raised to simulate the short-term and 

long-term mechanical responses of rock matrix. Some simulations are also effected to verify 

the ability of this creep model. 

Secondly and more importantly, under external loadings, the deformations tend to 

concentrated in the joint part or rock, therefore the joint part is significant in analyzing rock 

behaviour. Similarly with the rock matrix, a constitutive model is employed for rock joint, the 

asperity of joint surface is represented by a parameter JRC . For this instantaneous model, 

both the normal and shear stiffness are discussed, the asperity, friction angle and length of 

joint surface are taken into consideration. For long-term model, the asperity parameter JRC  

is supposed to be time-dependent, and then some related parameters become variables of time. 

Several sensitive analyses are performed to study the effect of time related parameters. 

Experimental results are employed to validate the time-dependent model, the simulation 

results showed that this model have exact ability to describe the creep phenomenon of rock 

joint. 

For describing the opening and propagation of rock fractures more precisely, extended 

finite element method (XFEM) is employed. This method works by introducing additional 

degrees of freedom, which could reflect the fracture position in elements, into traditional 

finite element theory. A simple damage criterions is proposed for the joint initiation and 

validated by a simple traction example, in this example, the relationship normal joint 

departure and normal joint stress is traced, and then another simple slope mesh is created to 

analyze the influence of incline angle of joints. 

At last, all the theories and models mentioned are applied to assess the stability of one 

huge hydraulic structure. Three main joints within the slope are studied in detail respectively, 
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the simulation results show that these models are capable in simulating the great structures 

with complicated components. 

6.2. Perspectives 

Based on the researches of this thesis, it is possible to suggest a number of perspectives 

for some further theoretical and applied works to improve the theoretical basis and ability of 

models for more efficiency and more precise simulations. 

1) These models could be applied in more projects to examine their simulating ability. 

2) For better solve real engineering problems, the models should be extended to three-

dimensional algorithms. That would abundantly increase the calculation burden of 

computers. Algorithms more efficiency should also be developed to solve this 

problem. 

3) New initial propagation criteria should be developed for exactly reflects the real 

discontinuities’ situations. 

4) By considering the complicated environments of projects, the coupling factors, i.e. 

the hydraulic, chemical and thermal effect for rocks, especially for rock joints could 

be taken into account in this model. 
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