Intelligence en essaim pour la distribution de simulations dans un écosystème computationnel

par Guilhelm Savin

Thèse de doctorat en Intelligence artificielle

Sous la direction de Damien Olivier.

Soutenue en 2014

à Le Havre .


  • Résumé

    Nous présentons dans ces travaux une contribution concernant la distribution de simulations de système complexe dans des environnements distribués ouverts. Nous considérons ces environnements comme des écosystèmes computationnels, dont nous décrivons les propriétés et les caractéristiques, dans lesquels évoluent, de par leur exécution, les simulations. Elles sont modélisées sous la forme d’un réseau d’interactions représenté à l’aide d’un graphe dynamique. En considérant les différentes dynamiques possibles, nous proposons un formalisme général représentant ces graphes, ainsi qu’une interface de programmation, GraphStream, permettant de les manipuler et de les étudier. Le graphe dynamique est alors un sujet d’étude dans lequel nous recherchons des organisations, que nous suivons dans le temps, afin de minimiser les coûts de communication entre les machines et d’équilibrer la charge de calcul. Nous apportons une amélioration visant à réduire les oscillations des résultats de l’algorithme AntCo2 utilisant des colonies de fourmis numériques qui, grâce à des mécanismes de compétition et de collaboration, détecte des organisations. La stabilité de ces dernières est déterminée par l’intermédiaire d’une heuristique de recherche distribuée et dynamique de centroïdes. Un intergiciel est proposé permettant de distribuer de manière décentralisée et dynamique les simulations dans un écosystème computationnel en favorisant les organisations et en respectant l’équilibrage de charge.

  • Titre traduit

    Swarm intelligence for simulations distribution in a computational ecosystem


  • Résumé

    This work presents our contribution about the distribution of complex system simulations in open distributed environments. We consider these environments as computational ecosystems, of whose we describe properties and characteristics, wherein simulations will evolve, by their execution. An interaction network models these simulations, that we represent as a dynamic graph. Considering the different kinds of possible dynamics, we propose a global formalism that can be used to describe these graphs, along with a software framework, GraphStream, allowing their manipulation and their study. The dynamic graph is then the object of a study wherein we are looking for organisations, following them through time, in order to minimise communications's costs between machines, and to balance the computation load. We bring an improvement aiming to reduce results's oscillations of AntCo2, which is algorithm using digital ants colonies to detect organisations, through competition and collaboration mechanisms. Stability of these organisations is determined by a dynamic and distributed heuristic to find centroid of graph. We propose a middleware allowing a dynamic and decentralized distribution of simulations in a computational ecosystem, by favouring organisations and respecting the load balancing.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (XV-243 p.)
  • Annexes : Bibliogr. p. 225-236

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université du Havre. Service commun de la documentation. Bibliothèque centrale.
  • Disponible pour le PEB
  • Cote : STH 1038
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.