Thèse soutenue

Une théorie des lignes de transmission améliorée et modifiée comme solution à des configurations de câbles incompatibles avec la théorie des lignes de transmission classique - Application aux faisceaux de câbles automobiles

FR  |  
EN
Auteur / Autrice : Sofiane Chabane
Direction : Philippe Besnier
Type : Thèse de doctorat
Discipline(s) : Electronique et télécommunications
Date : Soutenance le 10/06/2014
Etablissement(s) : Rennes, INSA
Ecole(s) doctorale(s) : École doctorale Mathématiques, télécommunications, informatique, signal, systèmes, électronique (Rennes)
Partenaire(s) de recherche : Laboratoire : Institut d'Électronique et de Télécommunications (Rennes) - Institut d'Electronique et de Télécommunications de Rennes
: Université européenne de Bretagne (2007-2016)
Jury : Président / Présidente : Odile Picon
Examinateurs / Examinatrices : Philippe Besnier, Odile Picon, Françoise Paladian, Flavio Canavero, Farhad Rachidi, Jean-Philippe Parmantier, Marco Klingler
Rapporteurs / Rapporteuses : Françoise Paladian, Flavio Canavero

Résumé

FR  |  
EN

Cette thèse présente, dans un premier temps, une nouvelle approche pour traiter les lignes de transmission, appelée la Théorie des Lignes de Transmission Améliorée et Modifiée (TLTAM). Cette extension du formalisme classique de la théorie des lignes de transmission est directement dérivée des équations de Maxwell et ne se limite pas à la seule prise en compte du mode transverse électromagnétique (TEM). Tout en conservant la simplicité du formalisme classique, cette extension aboutit à la définition de paramètres linéiques évolués et associés au mode antenne de la ligne de transmission. Cette solution présente l’avantage d’être compatible avec les noyaux de calcul existants, tout en palliant certaines limitations de la théorie des lignes de transmission (TLT) classique. LA TLTAM est tout d’abord définie pour le cas élémentaire d’une ligne de transmission à conducteur unique. Elle est ensuite généralisée au cas d’un nombre quelconque de conducteurs. Les matrices de paramètres linéiques correspondants sont alors définies. Les capacités de cette nouvelle théorie sont démontrées et validées au moyen de confrontations avec la solution directe des équations de Maxwell et de résultats de mesure. Dans un deuxième temps, le traitement d’une ligne de transmission multiconducteur située à distance d’un plan de référence conducteur est effectué au moyen d’une nouvelle approche désignée sous le nom de Théorie des Lignes de Transmission à Double Référence Intégrée (TLTDRI). Cette approche permet de simplifier l’évaluation des paramètres linéiques du faisceau en scindant le problème initial en deux sous-ensembles de lignes de transmission couplées. Le premier sous-ensemble est composé d'un fil conducteur du faisceau choisi arbitrairement et le plan de référence et constitue le sous-ensemble externe. Le deuxième sousensemble est composé uniquement des fils conducteurs du faisceau, en l’absence du plan de référence et constitue un sous-ensemble interne dont la référence locale est le fil choisi précédemment. On montre alors que seul le sous-ensemble externe nécessite le calcul de paramètres linéiques évolués associés à TLTAM. Le calcul des paramètres linéiques dans le système à référence unique constituée par le plan de référence, est reconstitué à partir de formules de passage permettant leur expression à partir des paramètres linéiques des deux sousensembles. Cette approche est validée et ses résultats sont en très bon accord avec ceux fournis par un calcul numérique direct des équations de Maxwell ainsi que ceux de la TLTAM. Elle permet une simplification très significative du traitement de l’interaction entre le faisceau de câble et la structure conductrice de référence.