Thèse soutenue

Evaluation par nanoindentation des propriétés mécaniques locales d’alliages de titane superélastiques et à mémoire de forme

FR  |  
EN
Auteur / Autrice : Cécile Fizanne
Direction : Thierry Gloriant
Type : Thèse de doctorat
Discipline(s) : Sciences des matériaux
Date : Soutenance le 07/11/2014
Etablissement(s) : Rennes, INSA
Ecole(s) doctorale(s) : École doctorale Sciences de la matière (Rennes ; 1996-2016)
Partenaire(s) de recherche : Laboratoire : Institut des Sciences Chimiques de Rennes
: Université européenne de Bretagne (2007-2016)
Jury : Président / Présidente : Franck Tancret
Examinateurs / Examinatrices : Franck Tancret, Vincent Keryvin, Éric Le Bourhis, Gérard Mauvoisin, Marilyne Cornen
Rapporteurs / Rapporteuses : Vincent Keryvin, Éric Le Bourhis

Mots clés

FR  |  
EN

Mots clés contrôlés

Mots clés libres

Résumé

FR  |  
EN

Le titane, comme ses alliages, présente des caractéristiques remarquables qui peuvent être modulées du fait des nombreuses microstructures qu’il est possible d’obtenir. Grâce à cette grande variété, le titane et ses alliages possèdent un grand nombre de propriétés. Parmi les plus intéressantes, on peut citer leur résistance à la corrosion, leur biocompatibilité, mais aussi leurs excellentes propriétés mécaniques (résistance, ductilité, ténacité, fluage…). Pour toutes ces raisons, l’attrait pour les alliages de titane n’a cessé de croître dans de nombreux secteurs. En effet ils sont maintenant largement utilisés dans les industries aéronautique et chimique, mais aussi l’architecture, le naval, l’industrie automobile, le sport ou encore la médecine. La nanoindentation est utilisée couramment de nos jours pour déterminer les propriétés mécaniques locales des matériaux. Elle permet notamment de caractériser des alliages métalliques possédant une microstructure polycrystalline. La taille de l’indenteur en nanoindentation étant faible (de quelques micromètres à quelques dizaines de micromètres), cette technique est idéale pour caractériser les propriétés mécaniques de surface des différents grains d’un matériau. Elle permet notamment de mesurer simultanément la dureté et le module d’élasticité. Si les essais de nanoindentation sont associés à un banc motorisé X-Y, une matrice étendue d’indents peut être réalisée avec un pas de quelques micromètres. Grâce à cette technique et dans le cadre de ce travail de thèse, nous avons réalisé dans un premier temps des cartographies de dureté et de module d’élasticité (HIPF et EIPF). Dans un second temps, nous avons évalué des propriétés non-conventionnelles d’alliages de titane, telles que l’effet mémoire de forme et la superélasticité. Dans la première partie de l’étude, la nanoindentation a été corrélée à l’EBSD (diffraction des électrons rétro-diffusés) afin d’identifier la relation entre l’orientation cristallographique d’un grain et ses propriétés mécaniques. L’étude a été menée sur les alliages de composition Ti-30Nb et Ti-27Nb (%at) de structure cubique centrée (phase ), et sur le titane de pureté commerciale T40, de structure hexagonale compacte (phase ). Dans la seconde partie de l’étude, la nanoindentation a été utilisée pour mesurer l’effet mémoire de forme (SM) et la superélasticité (SE) de différents alliages de titane à travers une large gamme de profondeur d’indentation. La mesure de ces propriétés non-conventionnelles a été réalisée à partir de l’étude des courbes charge-déplacement obtenues pour chaque essai d’indentation. L’amplitude de l’effet SE et SM a été caractérisée par des ratios de hauteur et de travail déterminés par l’étude des courbes de nanoindentation ainsi que des profils AFM réalisés au microscope à force atomique.