Thèse soutenue

Nanoréacteurs à base de nanotubes de Carbone pour des applications Magnétiques
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Xiaojian Li
Direction : Philippe SerpAikaterini Soulantika
Type : Thèse de doctorat
Discipline(s) : Chimie Organométallique et de Coordination
Date : Soutenance le 24/04/2014
Etablissement(s) : Toulouse, INPT
Ecole(s) doctorale(s) : École Doctorale Sciences de la Matière (Toulouse)

Résumé

FR  |  
EN

Les nanotubes de carbone (NTCs), en raison de leurs propriétés exceptionnelles et d’une utilisation potentielle dans un grand nombre d'applications, constituent surement la classe la plus étudiée des nanomatériaux. Les NTCs fonctionnalisés, qui peuvent être facilement manipulés et modifiés par liaison covalente ou fonctionnalisation non covalente, apparaissent comme de nouveaux outils dans le domaine des biotechnologies et en biomédecine. En effet, les NTC ont des propriétés optiques, électroniques et mécaniques qui peuvent être exploitées dans des applications biologiques ou biomédicales. Les nanoparticules magnétiques métalliques (NPMMs) de la série 3d ainsi que leurs alliages présentent d'excellentes propriétés magnétiques contrairement à leurs homologues oxydes, qui peuvent être exploitées en biomédecine et pour l'enregistrement magnétique ultra-haute densité. Les nano-matériaux confinés dans les NTCs peuvent présenter des propriétés et des comportements différents par rapport aux matériaux massifs. Divers effets de confinement provenant de l'interaction entre les matériaux confinés et les cavités internes des nanotubes de carbone offrent des possibilités de réglage ou la conception de nouveaux nanocomposites. Cette thèse est consacrée à l’étude d’une nouvelle approche pour le développement de matériaux nanocomposites NPMMs@NTC et de leurs propriétés. Des NPMMs de taille et forme contrôlée de Co et de Fe ont été synthétisées avec de nouveaux ligands aromatiques comme stabilisants. Ces MMNPs ont ensuite été introduites de manière sélective dans la cavité de NTCs du fait d’interactions attractives/répulsives entre les nanotubes de carbone multi-parois fonctionnalisés et les NPMMs. Nous nous sommes ensuite intéressés à la protection de ces nanoparticules de l’oxydation par l’air. Les nanoparticules de fer confinées ont ainsi été revêtues par du polyisoprène. Pour ce faire, la surface des nanoparticules de Fe a été modifiée avec un catalyseur de polymérisation par échange de ligand, puis la polymérisation de l'isoprène a été réalisée à l'intérieur du canal des NTCs. La protection de l'oxydation par le polyisoprène a été évaluée par des mesures magnétiques après exposition à l'air. De façon tout à fait surprenante, cette étude a montré que les nanoparticules de fer les plus résistantes à l’oxydation étaient celles obtenues après échange de ligand et sans polymérisation. Dans ce cas seulement les propriétés des nanoparticules originales sont maintenues après mise à l’air. Enfin, des nanostructures (particules ou fils) magnétiques bimétalliques associant le Pt au cobalt ou au fer ont été obtenues et confinées dans les NTCs. Leurs structures chimiques ordonnées ont également été étudiées par des études de recuit thermique. Le travail développé dans cette thèse ouvre de nouvelles perspectives pour la production de nouveaux nanocomposites MMNPs@NTC résistants à l’oxydation.