Développement de cellules solaires à base de films minces CZTSSe - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2014

Development of CZTSSe based thin film solar cells

Développement de cellules solaires à base de films minces CZTSSe

Résumé

The main objective of this PhD thesis was directed toward establishing and explaining the relationships between synthesis conditions of CZTSSe, its physical properties and performance of photovoltaic devices. To tackle on this task the first approach was to understand the formation mechanism of the material in relation to the growth conditions. CZTSSe is synthesized by two-step selenization process, where a first step of precursor deposition by PVD is required, followed by a second step of annealing. Different precursor stacking orders have been studied in order to understand the sequence of reactions that, starting from their deposition, lead to the final CZTSSe layer. This study made step-by-step has required a strong effort on the material characterization at each step of the synthesis. The result demonstrated that in the case of two-step process, the final material is independent of the precursor deposition. The possible beneficial involvements due to incorporation of sodium in CZTSSe are also disclosed. This study is carried out by synthesizing CZTSSe on different sodium-containing substrates: in this way sodium migrates from the substrates to the absorber. After quantification of Na in CZTSSe right after growth, the latter is characterized to evaluate its quality and employed in a full solar cell to check on its photovoltaic properties. Results demonstrated that, as for CIGS technology, sodium is beneficial for CZTSSe allowing increasing the open circuit voltage and efficiency. Molybdenum is the most used back contact in CZTSSe based solar cells. However, it has been suggested recently that Mo is not stable at the interface with CZTSSe. In addition, to the best of our knowledge, no experimental study has been carried out so far to test whether solar cells built on another back contact could exhibit better photovoltaic properties. For this purpose, various metals (Au, W, Pd, Pt, and Ni) are deposited on top of Mo, and it is demonstrated that it is possible to synthesize device-quality CZTSSe thin films on W, Au, and Pt back contacts. It is shown that that W and Au back contacts allow enhancing the photogenerated current, but that Mo remains the best back contact in terms of power conversion efficiency. The effects of [S]/([S]+[Se]) ratio tuning on CZTSSe based solar cell performances have been studied by solar cell capacitance simulator (SCAPS) to find out the optimum absorber composition. Two different kind of approach have been studied: linear variation of the chalcogens ratio, and a parabolic variation. The simulations lead to an efficiency of 16.5% (with open-circuit voltage of 0.56 V, short-circuit current of 37.0 mA/cm2 and fill factor of 79.0%) when the sulfur content is linearly decreased from the back contact towards the buffer layer. Based on these results, we propose that bandgap engineering based on the control of [S]/([S]+[Se]) ratio in the absorber is a powerful tool which allows increasing the performances of CZTSSe based solar cells without changing the absorber material quality.
L'objectif principal de cette thèse est dirigé vers l'établissement et l'explication des relations entre les conditions de synthèse des couches minces de CZTSSe, ses propriétés physiques et les performances des dispositifs photovoltaïques. Pour faire face à cette tâche la première approche était de comprendre le mécanisme de formation de la matière par rapport aux conditions de croissance du matériau. Le CZTSSe est synthétisé par un processus de sélénisation en deux étapes, où une première étape de dépôt par PVD de précurseurs est nécessaire, suivie d'une seconde étape de recuit sous atmosphère de sélénium. Différents ordres d'empilement de précurseurs ont été étudiés afin de comprendre la séquence de réactions qui, à partir de leur dépôt, conduise à la couche finale de CZTSSe. Cette étude, fait en plusieurs étapes, a nécessité de un effort important sur la caractérisation du matériau à chaque étape de la synthèse. Le résultat a montré que dans le cas du procédé en deux étapes, le matériau final est indépendant du dépôt de précurseurs. Les possibles implications bénéfiques en raison de l'incorporation de sodium dans le CZTSSe sont également décrites. Cette étude est réalisée en synthétisant la couche de CZTSSe sur différents substrats contenant diffèrent taux de sodium: de cette manière, pendant la synthèse, le sodium migre de substrats vers l'absorbeur. Après quantification du Na dans le CZTSSe juste après la croissance, le matériau est caractérise afin d'évaluer sa qualité. Ensuite il est employé dans une cellule solaire complète pour vérifier ses propriétés photovoltaïques. Les résultats ont montré que, comme pour la technologie CIGS, le sodium est bénéfique pour le CZTSSe, permettant l'augmentation de la tension à circuit ouvert et le rendement de cellule. Le molybdène est le contact arrière le plus utilisé pour les cellules solaires à base CZTSSe. Cependant, il a été suggéré récemment que le Mo n'est pas stable à l'interface avec le CZTSSe. En outre, à ma connaissance, aucune étude expérimentale n'a été effectuée à ce jour pour tester si les cellules solaires construites sur un autre contact arrière pourraient présenter de meilleures propriétés photovoltaïques. A cet effet, divers métaux (Au, W, Pd, Pt et Ni) sont déposées sur le dessus de Mo et testés comme contacts arrières dans les cellules solaire à base de CZTSSe. Il est démontré qu'il est possible synthétiser de films minces de CZTSSe de qualité quand le tungstène, l'or et le platine sont employé comme contacts arrière. Il est démontré que les contacts en W et Au permettent d'augmenter le courant photogénéré, mais aussi que le Mo reste le meilleur contact arrière en termes d'efficacité de conversion. Les effets de la variation du rapport [S]/([S]+[Se]) sur les performances des cellules solaires à base CZTSSe ont été étudiés. Cette étude a été faite par simulations des cellules solaires à base de CZTSSe, où le taux de chalcogènes dans l'absorbeur est varié, avec l'objective de trouver la composition optimale de l'absorbeur. Deux types d'approche différente ont été étudiés: la variation linéaire du rapport des chalcogènes, et une variation parabolique. Les simulations conduisent à un rendement de 16,5% (avec une tension en circuit ouvert de 0,56 V, courant de court-circuit de 37,0 mA/cm2 et un facteur de forme de 79,0%) lorsque la teneur en soufre est diminué linéairement à partir du contact arrière en direction de la couche tampon. Sur la base de ces résultats, nous proposons que l'ingénierie de bande interdite sur la base de la variation du taux [S]/([S]+[Se]) dans l'absorbeur est un outil puissant qui permet d'augmenter les performances des cellules solaires à base CZTSSe sans changer la qualité de l'absorbeur en lui-même.
Fichier principal
Vignette du fichier
42283_ALTAMURA_2014_archivage.pdf (7.55 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-01071694 , version 1 (06-10-2014)

Identifiants

  • HAL Id : tel-01071694 , version 1

Citer

Giovanni Altamura. Développement de cellules solaires à base de films minces CZTSSe. Autre [cond-mat.other]. Université de Grenoble, 2014. Français. ⟨NNT : 2014GRENY022⟩. ⟨tel-01071694⟩
993 Consultations
591 Téléchargements

Partager

Gmail Facebook X LinkedIn More