Thèse soutenue

Analyses expérimentales de la réponse sismique non-linéaire du système sol-structure

FR  |  
EN
Auteur / Autrice : Johanes Chandra
Direction : Philippe Guéguen
Type : Thèse de doctorat
Discipline(s) : Sciences de la Terre, de l'Univers et de l'Environnement
Date : Soutenance le 28/10/2014
Etablissement(s) : Grenoble
Ecole(s) doctorale(s) : École doctorale Sciences de la terre, de l’environnement et des planètes (Grenoble ; 199.-....)
Partenaire(s) de recherche : Equipe de recherche : Institut des sciences de la Terre (Grenoble)
Laboratoire : Institut des sciences de la Terre
Jury : Président / Présidente : Olivier Coutant
Examinateurs / Examinatrices : Philippe Guéguen, Alain Pecker
Rapporteurs / Rapporteuses : Arezou Modaressi, Roberto Paolucci

Résumé

FR  |  
EN

La concentration de plus en plus importante de la population dans les milieux urbains exposés à une forte sismicité peut générer de plus en plus de dommages et de pertes. La réponse sismique en milieu urbain dépend des effets du site (direct amplification et non-linéarité du sol) et du couplage entre le sol et les structures (interaction sol-structure et site-ville). Par conséquent, la compréhension de la sismologie urbaine, c'est-à-dire le mouvement du sol intégrant l'environnement urbain, est critique pour réduire les dommages. Cela passe par la prédiction du mouvement du sol dans le milieu urbain, ingrédient fondamental à l'évaluation de l'aléa sismique. La prise en compte de l'amplification provoquée par la présence de sédiments est largement étudiée. Au contraire, la réponse non-linéarité du sol et du couplage entre le sol et la structure est rarement intégrée à la prédiction du mouvement du sol. A cause de leur complexité, ces problèmes ont toujours été abordés séparément. Dans ce contexte, cette thèse analyse la réponse non-linéaire du système sol-structure en intégrant la non-linéarité du sol et de l'interaction sol-structure. Deux travaux expérimentaux ont été conduits, avec comme but de proposer un proxy, rendant compte de la non-linéarité du sol. Le premier est l'essai en centrifugeuse qui reproduit à échelle réduite la réponse du sol et des structures. L'état de contrainte et de déformation est conservé en appliquant une accélération artificielle au modèle. Cet essai a été effectué à IFSTTAR Nantes dans le cadre de l'ANR ARVISE. Différentes configurations ont été testées, avec et sans bâtiments, sous différents niveaux de sollicitation, pour analyser la réponse du sol et des structures. Le deuxième utilise les enregistrements des réseaux accélérométriques verticaux de deux sites tests californiens : Garner Valley Downhole Arrat (GVDA) et Wildlife Liquefaction Array (WLA), gérés tout deux par l'Université de Californie, Santa Barbara (UCSB), Etats-Unis. La réponse in-situ est importante car elle décrit le comportement réel du site. Plusieurs informations décrivant les conditions de sites sont disponibles et les séismes enregistrés ont permis de tester plusieurs niveaux de déformations pour reconstruire la réponse globale de chaque site. De plus, le site GVDA est équipé d'une structure Soil-Foundation-Structure-Interaction (SFSI) qui a comme objectif d'étudier les problèmes d'interaction sol-structure. Dans les deux expériences, grace au réseau accélérométrique vertical dans le sol et la structure, on peut appliquer la méthode de propagation d'ondes 1D pour extraire la réponse de ces systèmes. Les ondes sont considérées comme des ondes SH qui se propage horizontalement dans une couche 1D. La méthode interférométrie sismique par déconvolution est appliquée pour extraire l'Impulse Response Function (IRF) du système 1D. On analyse ainsi la variation de Vs en fonction de la solliictation et à différente position dans le sol ainsi que la variation des éléments expliquant la réponse dynamique du système sol-structure. On propose au final un proxy de déformation permettant de rendre compte mais aussi de prédire la nonlinéarité des sols en fonction des niveaux sismiques subits.